
Multi-Channel Broadcast Encryption

Duong Hieu Phan1,2, David Pointcheval2, and Viet Cuong Trinh1

1LAGA, University of Paris 8
2ENS / CNRS / INRIA

Abstract. Broadcast encryption aims at sending a content to a large arbitrary group of users at once.
Currently, the most efficient schemes provide constant-size headers, that encapsulate ephemeral session
keys under which the payload is encrypted. However, in practice, and namely for pay-TV, providers have
to send various contents to different groups of users. Headers are thus specific to each group, one for each
channel: as a consequence, the global overhead is linear in the number of channels. Furthermore, when one
wants to zap to and watch another channel, one has to get the new header and decrypt it to learn the
new session key: either the headers are sent quite frequently or one has to store all the headers, even if one
watches one channel only. Otherwise, the zapping time becomes unacceptably long.
In this paper, we consider encapsulation of several ephemeral keys, for various groups and thus various
channels, in one header only, and we call this new primitive Multi-Channel Broadcast Encryption – MIBE:
one can hope for a much shorter global overhead and a short zapping time since the decoder already has
the information to decrypt any available channel at once. Our candidates are private variants of the Boneh-
Gentry-Waters scheme, with a constant-size global header, independently of the number of channels. In
order to prove the CCA security of the scheme, we introduce a new dummy-helper technique and implement
it in the random oracle model.

1 Introduction

Broadcast encryption has been widely and deeply studied as it is a core primitive for many concrete
applications. In the following, we focus on the pay-TV scenario, in which users own decoders to decode
only the channels they subscribed to. In this context, the broadcaster sends several channels at the
same time, to different groups of users or target sets.

Unfortunately, previous broadcast encryption models only dealt with one single content and one
single target set at a time. This was a first reasonable goal to get such an efficient broadcast encryption
scheme, but not quite relevant to practice. In fact, TV systems contain many channels, with different
sets of privileged users. One could argue that this scenario is covered by the usual systems, applying
independent broadcast encryption schemes for each channel. However, this results in a very inefficient
scheme: the bandwidth or header size grows linearly in the number of channels, which could be very
large; in case of zapping to another channel, one has to start from scratch, and namely to wait for the
reception of the new appropriate header, which can take some time, unless the decoder stores all the
headers all the time.

These two problems, of the bandwidth that should not be too large and zapping time that should
not be too long, lead to new efficiency criteria, with a common solution: a broadcast encryption with
a short global header. Our new primitive MIBE, for MultI-channel Broadcast Encryption, addresses
them. In the following, we show that it is possible to achieve this goal in an optimal way: a constant-size
global header, independently of number of channels.

Broadcast encryption schemes. Broadcast encryption was first described by Fiat and Naor in [5]
but receives much attention since the work of Naor, Naor, and Lotspiech [8] in which they presented a
symmetric-key subset-cover framework along with a security model and a security analysis. Dodis and
Fazio [4] presented the first public-key CCA-secure scheme. Boneh, Gentry, and Waters [2] designed a
fully collusion-resistant scheme and proposed a security model where the adversary can corrupt any

2

user, except the users in the challenge target set. With their scheme, the adversary had to precise this
challenge target set before knowing the parameters of the system, hence the so-called selective model.
Delerablée constructed a selectively secure ID-based BE [3] in the random oracle model. Thereafter,
Gentry and Waters [6] defined the adaptive model, where the adversary can corrupt users and then
adaptively choose the challenge target set, and provided adaptively secure schemes in the standard and
the random oracle models. Waters [11] and Lewko et. al. [7] used dual system encryption to achieve
adaptive security. Recently, a scheme that achieves all desired properties (constant-size ciphertexts,
adaptive and CCA security) has been presented in [9] but it relies on rather non-standard assumptions.

Phan, Pointcheval and Strefler [10] recently gave a global picture of the relations between the
security notions for broadcast encryption. However, our setting of multi-channel broadcast encryption
go beyond their consideration, because the adversary could corrupt some user of one channel to break
the security of the other channels. The sessions keys of all channels should indeed be compacted into
one ciphertext only, there are thus some relations between these keys inside one session and the security
model has to take these relation into account.

Contributions. We first propose a formalization of the problem, with the so-called Multi-Channel

Broadcast Encryption – MIBE. Because of some constraints between the various target sets, we in-
troduce the dummy-helper technique that helps to prove the security. We eventually propose two
constructions, derived from the Boneh-Gentry-Waters (BGW) [2] scheme. They are private broadcast
encryption schemes, with the following properties:

– The first construction is, asymptotically, very competitive with the BGW scheme. In fact, it
achieves the constant-size header, while the private decryption key size remains linear in the
number of the channels that a user has subscribed to. In addition, it is fully collusion resistant
against basic selective adversaries, i.e. the adversaries who can only ask corruption queries to get
the decryption keys of users in the selective security model (the challenge target set is announced
before having seen the global parameters). This is also the security level that the original BGW
scheme achieves and our security proof holds under the standard assumption n− BDHE, as in the
original BGW scheme [2].

– The second construction improves on the previous one, to resist to strong selective adversaries who
have the power of basic selective adversaries plus unlimited access to encryption and decryption
queries, while keeping the parameter sizes and computational assumptions unchanged. To this
aim, we introduce the dummy-helper technique and make use of a random oracle [1]. Our scheme
is more efficient than the CCA version of the BGW scheme [2] but our dummy-helper technique
actually works in the random oracle model.

Dummy-helper technique. In the multi-channel setting, because the session keys of all channels are
compacted in only one ciphertext, there exists an implicit relation between the session keys of the
channels which could be known by the simulator without the whole knowledge of the master key. By
introducing the dummy-helper technique, which consists in adding a new channel for one additional
dummy user, we get the following interesting properties:

1. it gives our simulator the possibility to decrypt this channel and get the corresponding session key.
This is then sufficient for the simulator to derive the other session keys and successfully answer
any decryption query.

2. by eventually publishing the decryption key of the dummy user, it introduces a channel that can
be decoded by all the users registered in the system: to send the program or ads.

3

We implement this dummy-helper technique in the random oracle model. It is worth noting that,
though working in a more complex setting of multi-channel broadcast encryption, the security is
achieved under the standard assumption n− BDHE as in the BGW scheme.

2 Multi-channel Broadcast Encryption

2.1 Syntax

In this section we describe the model for a multi-channel broadcast encryption system. Formally, such
a system consists of four probabilistic algorithms:

Setup(λ): Takes as input the parameter security λ, it generates the global parameters param of the
system, and returns a master key MSK and an encryption key EK. If the scheme allows encryption,
EK is public, otherwise EK is kept private, and can be seen as a part of MSK.

Extract(i,MSK): Takes as input the user’s index i, together with the master key, and outputs the
user’s private key di.

Encrypt(S1, S2, . . . , Sm,EK): Takes as input m subsets (or target sets) S1, S2, . . . , Sm where, for
i = 1, . . . ,m, Si ⊆ {1, . . . , n}, and the encryption key EK. It outputs (Hdr,K1,K2, . . . ,Km) where
Hdr encapsulates the ephemeral keys (Ki)i ∈ K. The key Ki will be associated to the subset Si.
We will refer to Hdr as the broadcast ciphertext, or header, whereas this header together with the
description of all the target sets is called the full header.

Decrypt(S1, S2, . . . , Sm,Hdr, j, dj , i) : Takes as input a full header (S1, S2, . . . , Sm,Hdr), a user j ∈
{1, . . . , n} and its private key dj , together with a subgroup index i ∈ {1, . . . ,m}. If j ∈ Si, then
the algorithm outputs the ephemeral key Ki ∈ K.

For correctness, we require that for all subsets Si ⊆ {1, . . . , n} and all j ∈ Si, if (EK,MSK) ←
Setup(λ), dj ← Extract(j,MSK) and (Hdr,K1, . . . ,Km)← Encrypt(S1, S2, . . . , Sm,EK) then Ki =
Decrypt(S1, S2, . . . , Sm,Hdr, j, dj , i).

In practice, the goal of such ephemeral keys is to encrypt the payload, which consists of m messages
M1, . . . ,Mm to be broadcast to the sets S1, . . . , Sm respectively. They will thus be encrypted under the
symmetric keys K1, . . . ,Km into the ciphertexts CM1, . . . ,CMm respectively. The broadcast to all users
in S1, S2, . . . , Sm consists of (S1, S2, . . . , Sm,Hdr,CM1,CM2, . . . ,CMm) where (S1, S2, . . . , Sm,Hdr) is
the full header and (CM1,CM2, . . . ,CMm) is often called the encrypted payload.

2.2 Security Model

We define the security of a multi-channel broadcast encryption system by the following game between
an attacker A and a challenger:

Setup. The challenger runs the Setup algorithm to generate the global parameters param of the
system, and returns a master key MSK and an encryption key EK. If the scheme is asymmetric,
EK is given to A, otherwise it can be seen as a part of the MSK, and thus kept secret. Corruption
and decryption lists ΛC , ΛD are set to empty lists.

Query phase 1. The adversary A adaptively asks queries:
1. Corruption query for the i-th user: the challenger runs Extract(i,MSK) and forwards the

resulting private key to the adversary. The user i is appended to the corruption list ΛC ;
2. Decryption query on the full header (S1, S2, . . . , Sm,Hdr) together with u ∈ {1, . . . , n} and

j ∈ {1, . . . ,m}. The challenger answers with Decrypt(S1, S2, . . . , Sm,Hdr, u, du, j). The pair
(Hdr, Sj) is appended to the decryption list ΛD

4

3. Encryption query (if EK is private) for the target sets (S1, S2, . . . , Sm). The challenger answers
with Encrypt(S1, S2, . . . , Sm,EK).

Challenge. The adversary A outputs t target sets S∗
1 , S

∗
2 , . . . , S

∗
t ⊆ {1, . . . , n} and an index j, which

specifies the attacked target set S∗
j .

The challenger runs Encrypt(S∗
1 , S

∗
2 , . . . , S

∗
t ,EK) and gets (Hdr∗,K∗

1 ,K
∗
2 , . . . ,K

∗
t). Next, the chal-

lenger picks a random b
$
← {0, 1}, sets K∗

j,b = K∗
j and picks random K∗

j,1−b
$
← K. It then outputs

(Hdr∗,K∗
1 , . . . ,K

∗
j−1,K

∗
j+1, . . . ,K

∗
t ,K

∗
j,0,K

∗
j,1) to A.

Query phase 2. The adversary A continues to adaptively asks queries as in the first phase.
Guess. The adversary A eventually outputs its guess b′ ∈ {0, 1} for b.

We say the adversary wins the game if b′ = b, but only if S∗
j ∩ ΛC = ∅ and (Hdr∗, S∗

j) 6∈ ΛD. We then

denote by Succind(A) = Pr[b′ = b] the probability that A wins the game, and its advantage is

Advind(A) = 2× Succind(A)− 1 = Pr[1← A|b = 1]− Pr[1← A|b = 0].

Definition 1 (Full Security). A multi-channel broadcast encryption scheme is said (t, ε, qC , qD, qE)-
secure if for any t-time algorithm A that makes at most qC corruption queries, qD decryption queries,
and qE encryption queries, Advind(A) ≤ ε. We denote by Advind(t, qC , qD, qE) the advantage of the
best t-time adversary.

There are two classical restricted scenarios: a selective attacker provides the target sets S∗
1 , S

∗
2 , . . . , S

∗
t ⊆

{1, . . . , n} at the beginning of the security game, and one can also restrict the adversary not to ask
some queries.

Definition 2 (Basic Selective Security). A multi-channel broadcast encryption scheme is said
(t, ε, qC)-selectively secure if it is (t, ε, qC , 0, 0)-secure against a selective adversary. We denote by
Advb−ind(t, qC) the advantage of the best t-time basic selective adversary.

Definition 3 (Strong Selective Security). A multi-channel broadcast encryption scheme is said
(t, ε, qC , qD, qE)-selectively secure if it is (t, ε, qC , qD, qE)-secure against a selective adversary. We denote
by Advs−ind(t, qC , qD, qE) the advantages of the best t-time strong selective adversaries.

2.3 Disjoint Target Sets

As discussed in the introduction, our main motivation is pay-TV. For such systems, there are several
channels, which are encrypted to sets of users. The users thus own decryption keys:

– When a user u registers to the system, he receives a smart card with decryption keys (diu) for every
channel i. But at the broadcast time, channel i is encrypted for the target set with the subscribers
to this channel only (a subset of the decryption keys);

– Another possibility is to first define Ui the set of all the possible decryption keys for the channel
i. When a user u subscribes to a channel i, he receives a key diu ∈ Ui.

In both the above case, the target sets are subsets of predetermined and disjoint sets of keys. As a
consequence, the target sets Si are disjoint too. However, we have to define many keys in the system.
In order to limit this number of keys, one could think about sharing keys for several channels. This
would allow profiling on users, that can be an undesirable feature. But we can still limit a little bit
the number of keys by reassigning keys when a user unsubscribes from a channel to another channel.

Anyway, in the following, at a time t, when the broadcaster encapsulates keys for several target
sets Si, we assume them to be disjoint.

5

3 Preliminaries

3.1 Computational Assumptions

We first recall the definition of the classical Computational Diffie-Hellman (CDH) assumption:

Definition 4 (CDH Assumption). The (t, ε)− CDH assumption says that for any t-time adversary
A that is given (g, gr, h) ∈ G, its probability to output hr is bounded by ε:

Succcdh(A) = Pr[A(g, gr, h) = hr] ≤ ε.

Stronger assumptions have been introduced by Boneh-Gentry-Waters [2]. They both imply the above
CDH assumption.

Definition 5 (BDHE Assumption). The (t, n, ε)−BDHE assumption says that for any t-time adver-
sary A that is given (g, h, gα

1

, . . . , gα
n
, gα

n+2

, . . . , gα
2n
) ∈ G

2n+1, its probability to output e(g, h)α
n+1

∈
G is bounded by ε:

Succbdhe(A) = Pr[A(g, h, g1, . . . , gn, gn+2, . . . , g2n) = e(gn+1, h)] ≤ ǫ.

Definition 6 (DBDHE Assumption). The (t, n, ε) − DBDHE assumption says that for any t-time
adversary A that is given (g, h, gα

1

, . . . , gα
n
, gα

n+2

, . . . , gα
2n
) ∈ G

2n+1, and a candidate to the BDHE

problem, that is either e(g, h)α
n+1

∈ G or a random value T , cannot distinguish the two cases with
advantage greater than ε:

Advdbdhe(A) =

∣

∣

∣

∣

Pr[A(g, h, g1, . . . , gn, gn+2, . . . , g2n, e(gn+1, h)) = 1]
−Pr[A(g, h, g1, . . . , gn, gn+2, . . . , g2n, T)) = 1]

∣

∣

∣

∣

≤ ǫ.

3.2 BGW Overview

To warm up, we first recall the BGW scheme [2], on which our constructions will rely.

Setup(λ): Let G be a bilinear group of prime order p. The algorithm first picks a random generator
g ∈ G and a random scalar α ∈ Zp. It computes gi = gα

i
∈ G for i = 1, 2, . . . , n, n + 2, . . . , 2n.

Next, it picks a random scalar γ ∈ Zp and sets v = gγ ∈ G.
The public key is EK = (g1, . . . , gn, gn+2, . . . , g2n, v), whereas the private decryption key of user
i ∈ {1, . . . , n} is di = vα

i
. These decryption keys are sent by the Extract algorithm.

Encrypt(S,EK): Pick a random scalar r ∈ Zp, and set K = e(gn+1, g)
r, where e(gn+1, g) can be

computed as e(gn, g1) from EK. Next, set: Hdr = (gr, (v ·
∏

j∈S gn+1−j)
r), and output (Hdr,K).

Decrypt(S,Hdr, i, di,EK): Parse Hdr = (C1, C2), output K = e(gi, C2)/e(di ·
∏

j∈S,j 6=i gn+1−j+i, C1).

Trivially, when one wants to broadcast m different messages to m different sets S1, S2, . . . , Sm, one
can combine m independent BGW schemes:

Setup(λ): As in the BGW scheme.
Encrypt(S1, S2, . . . , Sm,EK): Pick random scalars r1, . . . , rm ∈ Zp, and set

K1 = e(gn+1, g)
r1 , . . . ,Km = e(gn+1, g)

rm

Hdr =
(

(gr1 , (v ·
∏

j∈S1
gn+1−j)

r1), . . . , (grm , (v ·
∏

j∈Sm
gn+1−j)

rm)
)

.

Decrypt(S1, . . . , Sm,Hdr, i, (EK, di), j): Extract C1 = grj , C2 = (v ·
∏

j∈Sj
gn+1−j)

rj from Hdr and
decrypt as in BGW.

6

3.3 Intuition

One can note that, in the above “trivial” construction, the number of elements in the header is 2m,
and we want to reduce it. A first attempt is by reusing the same random scalar in all the ciphertexts,
which leads to a header of size m+ 1:

Hdr =



gr, (v ·
∏

j∈S1

gn+1−j)
r, . . . , (v ·

∏

j∈Sm

gn+1−j)
r



 .

However, this reuse of random coins suffers from a simple attack: the same random coins result in
the same session keys for all channels and a subscriber of a channel can decrypt all channels, since
the session key is e(gn+1, g)

r. Different r’s are thus required in each session keys, but not necessarily
totally independent. Our idea is to add an element Xi ∈ G corresponding to users i = 1, . . . , n, and
to adapt the session key and Hdr using scalars xi, where Xi = gxi , for i = 1, . . . , n,

K1 = e(gn+1, g)
r+

∑
j∈S1

xj , . . . ,Km = e(gn+1, g)
r+

∑
j∈Sm

xj ,

Hdr =
(

gr, (v ·
∏

j∈S1
gn+1−j)

r+
∑

j∈S1
xj , . . . , (v ·

∏

j∈Sm
gn+1−j)

r+
∑

j∈Sm
xj

)

The above step shorten the header to m + 1 elements, with no more easy attack. But our goal is to
have a constant number of elements:

Hdr =



gr, (v ·
∏

j∈S1

gn+1−j)
r+

∑
j∈S1

xj × · · · × (v ·
∏

j∈Sm

gn+1−j)
r+

∑
j∈Sm

xj





where we essentially multiply all the ciphertexts together. And, magically, it works because a user in a

set Si can cancel out all the terms (v ·
∏

j∈Sk
gn+1−j)

r+
∑

j∈Sk
xj for k 6= i in this product and transform

it into his corresponding ciphertext in Si.
Of course, security has to be proven, this is the goal of the next section to prove the basic selective

security. Limitation not to ask decryption nor encryption queries is quite strong, and is the main
drawback of the first scheme MIBE1. And thus, we provide a second construction MIBE2 that covers
strong selective adversaries. For that, we replace

∏

j∈Sk
Xj by a value outputted by a random oracle on

the set Sk and the value gr at the time of encryption. It will prevent malleability. The dummy-helper

technique will make the rest.

4 Multi-Channel Broadcast Encryption I – MIBE1

4.1 Description

Let us now describe formally our first construction MIBE1. We will then prove its basic selective
security.

Setup(λ): The algorithm takes as input the parameter security λ, it generates the global parame-
ters param of the system as follows: Let G be a bilinear group of prime order p. The algorithm
first picks a random generator g ∈ G and a random α ∈ Zp. It computes gi = gα

i
∈ G for

i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it picks a random γ ∈ Zp and sets v = gγ ∈ G. It also
picks additional random scalars x1, x2, . . . , xn ∈ Zp and sets X1 = gx1 , X2 = gx2 , . . . , Xn =
gxn . The master secret key is MSK = (g, v, α, γ, x1, x2, . . . , xn), while the encryption key (that
is private to the broadcaster) is EK = (g, v, gn+1, x1, x2, . . . , xn). The public global parame-
ters are (g1, . . . , gn, gn+2, . . . , g2n, X1, X2, . . . , Xn), whereas the private decryption key of user
i ∈ {1, . . . , n} is di = vα

i
. These decryption keys are sent by the Extract algorithm.

7

Encrypt(S1, S2, . . . , Sm,EK): Pick a random scalar r
$
← Zp, then set Kk = e(gn+1, g)

r+
∑

j∈Sk
xj for

k = 1, . . . ,m. Next, set

Hdr =



gr,

k=m
∏

k=1

(v ·
∏

j∈Sk

gn+1−j)
r+

∑
j∈Sk

xj



 .

The broadcaster knows gn+1, x1, . . . , xn from EK. It eventually outputs (Hdr,K1,K2, . . . ,Km).
Decrypt(S1, . . . , Sm,Hdr, i, di, k): Parse Hdr = (C1, C2). If i ∈ Sk then one computes

Kk =
e(gi, C2)

e(di ·
∏

j∈Sk
j 6=i

gn+1−j+i, gr ·
∏

j∈Sk
Xi) ·

∏ℓ=m
ℓ=1

ℓ 6=k

e(di ·
∏

j∈Sℓ
gn+1−j+i, gr ·

∏

j∈Sℓ
Xi)

=
e(gi, C2)

e(di ·
∏

j∈Sk
j 6=i

gn+1−j+i, g
r+

∑
j∈Sk

xj) ·
∏ℓ=m

ℓ=1

ℓ 6=k

e(di ·
∏

j∈Sℓ
gn+1−j+i, g

r+
∑

j∈Sℓ
xj)

=
e(gα

i
,
∏ℓ=m

ℓ=1 (v ·
∏

j∈Sℓ
gn+1−j)

r+
∑

j∈Sℓ
xj)

e(vαi · (
∏

j∈Sk
j 6=i

gn+1−j)α
i , g

r+
∑

j∈Sk
xj) ·

∏ℓ=m
ℓ=1

ℓ 6=k

e(vαi · (
∏

j∈Sℓ
gn+1−j)α

i , g
r+

∑
j∈Sℓ

xj)

=
e(gα

i
, (v ·

∏

j∈Sk
gn+1−j)

r+
∑

j∈Sk
xj)

e(vαi · (
∏

j∈Sk
j 6=i

gn+1−j)α
i , g

r+
∑

j∈Sk
xj)
·
ℓ=m
∏

ℓ=1

ℓ 6=k

e(gα
i
, (v ·

∏

j∈Sℓ
gn+1−j)

r+
∑

j∈Sℓ
xj)

e(vαi · (
∏

j∈Sℓ
gn+1−j)α

i , g
r+

∑
j∈Sℓ

xj)

=
e((v ·

∏

j∈Sk
gn+1−j)

αi
, g

r+
∑

j∈Sk
xj)

e((v ·
∏

j∈Sk
j 6=i

gn+1−j)α
i , g

r+
∑

j∈Sk
xj)
·
ℓ=m
∏

ℓ=1

ℓ 6=k

e((v ·
∏

j∈Sℓ
gn+1−j)

αi
, g

r+
∑

j∈Sℓ
xj)

e((v ·
∏

j∈Sℓ
gn+1−j)α

i , g
r+

∑
j∈Sℓ

xj)

= e(gα
i

n+1−i, g
r+

∑
j∈Sk

xj) = e(gn+1, g
r+

∑
j∈Sk

xj) = e(gn+1, g)
r+

∑
j∈Sk

xj

We used the relations di = vα
i
, gn+1−j+i = gα

i

n+1−j , and gα
i

n+1−i = gn+1.

Remark 7. In MIBE1, the encryption key EK contains gn+1 and thus cannot be public: this is a private
variant of BGW scheme. However, the broadcaster does not need to know α, γ to encrypt, and without
them it cannot generate decryption keys for users. We can separate the role of group manager (who
generates the decryption keys) and broadcaster (who encrypts and broadcasts the content).

4.2 Security Result

We now prove the semantic security of the first scheme.

Theorem 8. The MIBE1 system achieves the basic selective security under the DBDHE assumption

in G. More precisely, if there are n users,

Advb−ind(t, qC) ≤ 2×Advdbdhe(t′, n) +O(1),

for t′ ≤ t + (mn + nqC)Te + O(1) where Te is the time complexity for computing an exponentiation

and m is the maximum number of channels in the system.

Proof. Let us assume there exists an adversary A which breaks the semantic security of our first
scheme, we build an algorithm B that has the same advantage in deciding the DBDHE problem in G.
This algorithm B proceeds as follows:

8

Init. Algorithm B first takes as input a DBDHE instance (g,G, g1, . . . , gn, gn+2, . . . , g2n, T), where T
is either e(gn+1, G) or a random element of G. It implicitly defines α: gi = gα

i
. B then runs A, and

since we are in the selective model, it receives m sets S1, . . . , Sm and an index k that A wishes to
be challenged on.

Setup. B now generates the public global parameters and private keys di, for i /∈ Sk: it first chooses a
random scalar r ∈ Zp and sets h = gr, and hi = gri , for i = 1, . . . , n. One chooses a random index
η in Sk, and for i ∈ {1, . . . , n}\{η}, one chooses a random scalar xi ∈ Zp, and computes Xi = gxi .

One eventually sets Xη
def
= G/

∏

i∈Sk\{η}
Xi = gxη : All the scalars xi are known, excepted xη. B

gives A the public global parameters:

(g1, . . . , gn, gn+2, . . . , g2n, X1, X2, . . . , Xn)

B has to compute all the private decryption keys di except for i ∈ Sk: It chooses a random u ∈ Zp

and sets

v
def
= gu · (

∏

j∈Sk

gn+1−j)
−1 di

def
= gui /(

∏

j∈Sk

gn+1−j+i) = gu·α
i

· (
∏

j∈Sk

gn+1−j)
−αi

= vα
i

On can remark that B can compute, without explicitly knowing α,
∏

j∈Sk
gn+1−j+i for any i 6∈ Sk,

and cannot when i ∈ Sk. Moreover, since di = vα
i
, it satisfies the specifications of the schemes.

Challenge. To generate the challenge for A, B first computes Hdr = (C1, C2) by setting C1 = h, and

C2 = (hu ·Gu) ·
ℓ=m
∏

ℓ=1

ℓ 6=k



hu ·

(

∏

j∈Sℓ
hn+1−j

∏

j∈Sk
hn+1−j

)

· (v ·
∏

j∈Sℓ

gn+1−j)
∑

j∈Sℓ
xj





= (gu)
r+

∑
i∈Sk

xi ·
ℓ=m
∏

ℓ=1

ℓ 6=k






gur ·

(

∏

j∈Sℓ
gn+1−j

∏

j∈Sk
gn+1−j

)r

·



v
∏

j∈Sℓ

gn+1−j





∑
j∈Sℓ

xj







=



v
∏

j∈Sk

gn+1−j





r+
∑

i∈Sk
xi

ℓ=m
∏

ℓ=1

ℓ 6=k

(

gu
∏

j∈Sk
gn+1−j

)r




∏

j∈Sℓ

gn+1−j





r

v
∏

j∈Sℓ

gn+1−j





∑
j∈Sℓ

xj

=



v
∏

j∈Sk

gn+1−j





r+
∑

i∈Sk
xi

ℓ=m
∏

ℓ=1

ℓ 6=k



v
∏

j∈Sℓ

gn+1−j





r

v
∏

j∈Sℓ

gn+1−j





∑
j∈Sℓ

xj

=



v
∏

j∈Sk

gn+1−j





r+
∑

i∈Sk
xi

ℓ=m
∏

ℓ=1

ℓ 6=k



v
∏

j∈Sℓ

gn+1−j





r+
∑

j∈Sℓ
xj

=

ℓ=m
∏

ℓ=1



v
∏

j∈Sℓ

gn+1−j





r+
∑

j∈Sℓ
xj

We used the following notations and relations h = gr and grn+1−j = hn+1−j . Note that B knows all

the values xi, excepted xik,t , that appears in hu ·Gu = (v ·
∏

j∈Sk
gn+1−j)

r+
∑

j∈Sk
xj . To generate

session keys, B first computes, for all i 6= k, Ki = e(gn, g1)
∑

j∈Si
xj · e(gn, h1). It then randomly

chooses a bit b
$
← {0, 1} and sets Kk,b = T · e(gn, h1) and picks a random Kk,1−b in G. It outputs

(Hdr,K1, . . . ,Kk−1,Kk+1, . . . ,Km,Kk,0,Kk,1) as the challenge to A.

Note that, for i 6= k, Ki = e(gn+1, g)
r+

∑
j∈Si

xj , and, if T is the correct value, Kk,b = e(gn+1, G) ·

e(gn, h1) = e(gn+1, g
∑

j∈Sk
xj) · e(gn+1, g

r) = e(gn+1, g)
r+

∑
j∈Sk

xj .

9

Guess. A outputs its guess b′ for b. If b′ = b the algorithm B outputs 0 (indicating that T =
e(gn+1, G)). Otherwise, it outputs 1 (indicating that T is random in G1). From the above remark,
if T is the correct value, Pr[B = 1] = Pr[b′ = b] = (Advind(A) + 1)/2. However, if T is a random
value, Pr[B = 1] = 1/2: Advdbdhe(B) = Advind(A)/2.

⊓⊔

5 Multi-Channel Broadcast Encryption II – MIBE2

We now improve the previous scheme to allow encryption and decryption queries. To this aim, we will
need a random oracle.

5.1 Dummy-Helper Technique

First, in order to achieve semantic security, we still have to embed the critical element from the
n− BDHE instance in the challenge header related to the specific target set Sk. In the previous scheme,
it was implicitly embedded in the Xik,j , or at least in one of them. But then, if this element is involved
in a decryption query, the simulator cannot answer, hence the limitation for the adversary not to ask
decryption queries. For the same reason, it was not possible to simulate encryption queries with this
critical value.

Using a random oracle, it is possible to embed this element at the challenge time only, and then,
instead of a deterministic

∑

i∈Sj
xi one can use a random yj implicitly defined by Yj given by a random

oracle. The knowledge of the discrete logarithm yj (excepted in the challenge ciphertext), the simulator
is able to answer all encryption queries, but this is still not enough to answer decryption queries: the
simulator has no idea about the random scalar r involved in the ciphertext, whereas it as to compute
e(gn+1, g)

r. But this can be done by adding a dummy set for which the session key can be computed
by the simulator. In this case, we apply the dummy-helper technique to prove the security.

5.2 Description

Setup(λ): it takes as input the security parameter λ, and generates the global parameters param of
the system as follows: Let G be a bilinear group of prime order p; pick a random generator g ∈ G

and a random scalar α ∈ Zp; compute gi = gα
i
∈ G for i = 1, 2, . . . , 2n; pick a random scalar

γ ∈ Zp and set v = gγ ∈ G and dn = vα
n
. The algorithm also uses a random oracle H onto G.

The master key is MSK = (g, v, α, γ), the private encryption key is EK = MSK and the public
global parameters are (g1, . . . , gn, gn+2, . . . , g2n, dn), whereas the private decryption key of user
i ∈ {1, . . . , n} is di = vα

i
. These decryption keys are sent by the Extract algorithm.

Encrypt(S1, . . . , Sm,EK): Pick a random scalar r ∈ Zp; set Sm+1 = {n}, for each set Si, for i =
1, . . . ,m+ 1 compute Yi = H(i, g

r) (Yi = gyi , for some unknown scalar yi), and

Ki = e(gn+1, Yi) · e(gn+1, g)
r = e(gn+1, g)

r+yi , i = 1, . . . ,m+ 1

Eventually compute Hdr = (C1, C2, C3) as follows:

C1 = gr

C2 =
i=m+1
∏

i=1



Y
γ+

∑
j∈Si

αn+1−j

i ·



v ·
∏

j∈Si

gn+1−j





r

 =
i=m+1
∏

i=1



v ·
∏

j∈Si

gn+1−j





r+yi

C3 = H(C1, C2)
r

Note that the broadcaster knows both α and γ to compute C2. It outputs (Hdr,K1, . . . ,Km+1).

10

Decrypt(S1, . . . , Sm,Hdr, i, di, k): Set Sm+1 = {n}, parse Hdr = (C1, C2, C3). If i ∈ Sk then one first
checks whether e(C1,H(C1, C2)) = e(g, C3), computes Yi = H(i, gr), for i = 1, . . . ,m + 1, and
computes

Kk =
e(gi, C2)

e(di ·
∏

j∈Sk
j 6=i

gn+1−j+i, C1 · Yk) ·
∏ℓ=m+1

ℓ=1

ℓ 6=k

e(di ·
∏

j∈Sℓ
gn+1−j+i, C1 · Yℓ)

=
e(gα

i
,
∏ℓ=m+1

ℓ=1 (v ·
∏

j∈Sℓ
gn+1−j)

r+yℓ)

e(vαi · (
∏

j∈Sk
j 6=i

gn+1−j)α
i , gr+yk) ·

∏ℓ=m+1
ℓ=1

ℓ 6=k

e(vαi · (
∏

j∈Sℓ
gn+1−j)α

i , gr+yℓ)

=
e(gα

i
, (v ·

∏

j∈Sk
gn+1−j)

r+yk)

e(vαi · (
∏

j∈Sk
j 6=i

gn+1−j)α
i , gr+yk)

·
ℓ=m+1
∏

ℓ=1

ℓ 6=k

e(gα
i
, (v ·

∏

j∈Sℓ
gn+1−j)

r+yℓ)

e(vαi · (
∏

j∈Sℓ
gn+1−j)α

i , gr+yℓ)

=
e((v ·

∏

j∈Sk
gn+1−j)

αi
, gr+yk)

e((v ·
∏

j∈Sk
j 6=i

gn+1−j)α
i , gr+yk)

·
ℓ=m+1
∏

ℓ=1

ℓ 6=k

e((v ·
∏

j∈Sℓ
gn+1−j)

αi
, gr+yℓ)

e((v ·
∏

j∈Sℓ
gn+1−j)α

i , gr+yℓ)

= e(gα
i

n+1−i, g
r+yk) = e(gn+1, g

r+yk) = e(gn+1, g)
r+yk

Note that di = vα
i
, gn+1−j+i = gα

i

n+1−j , and gα
i

n+1−i = gn+1.

5.3 Security

Theorem 9. The MIBE2 system achieves the strong selective security under the DBDHE assumption

in G. More precisely, if there are n users,

Advs−ind(t, qC , qD, qE) ≤ 2×Advdbdhe(t′, n) + 2× Succcdh(t′′) + 2/p,

for t′ ≤ t + (nqC + nmqD + nmqE)Te + (mqD + mqE)Tp + mqDTlu + O(1) and t′′ ≤ t + (qC + qD +
nmqE)Te + (qD + mqE)Tp + qDTlu + O(1), where Te, Tp are the time complexity for computing an

exponentiation, a pairings, Tlu is the time complexity for a look up in a list, and m is the maximum

number of channels in the system.

Proof. We organize our proof in three games:

1. Game 0: The real strong selective security game between an adversary and a challenger.

2. Game 1: This is similar to Game 0 with a following exception: if we denote Hdr = (C1, C2, C3) the
challenge header, then any decryption query on a different header Hdr′ = (C1, C

′
2, C

′
3), but with

the same C1, we answer ⊥ (i.e. invalid ciphertext). We can shown that this exception happens
with negligible probability under the CDH assumption.

3. Game 2: We can now safely answer all decryption queries Hdr′ = (C1, C
′
2, C

′
3) by ⊥ and the

others using either a valid decryption key or dn. Using the programmability of the random oracle,
and thus the knowledge of the yi, one can easily simulate the encryption queries. Eventually, the
semantic security then relies on the DBDHE assumption.

Game 1: In this game, we know all the secret keys, but answer ⊥ to a decryption query Hdr′ =
(C1, C

′
2, C

′
3), with the same first C1 as in the challenge header. Our algorithm B is given a CDH

instance g,A = gr
∗
, B, and should answer C = Br∗ . It runs the adversary A:

11

– since we consider selective attacks only, the target sets are known from the beginning, and B can
thus first generate the challenge header using r∗ as random scalar, without knowing it: C1 = A.
Since B knows MSK, and namely α and γ, it can compute the appropriate C2: v

r∗ = Aγ and
gri = Aαi

. It then programs H(C1, C2) = gu for a random scalar u and sets C3 = Au. The triple
(C1, C2, C3) is a perfect header;

– answers all the hash queries H(A,X), for any X, by Bt for some randomly chosen scalar t;
– answers all the other queries with MSK.

Let now assume that A asks for a valid decryption query (S′
1, . . . , S

′
m′+1, k

′,Hdr′) in which C ′
1 = A.

Since C ′
3 = H(C1, C

′
2)

r∗ = Br∗·t for a known value t, one can extract C = Br∗ = (C ′
3)

1/t, which breaks
the CDH assumption. Succind(A)− Succ1(A) ≤ Succcdh(B).
Game 2: We now assume there exists a selective adversary A that breaks the semantic security of
our scheme while decryption queries with the same C1 as in the challenge are answered by ⊥. We
build an algorithm B that has twice the advantage in deciding the DBDHE in G. As said above, the
programmability of the random oracle will help simulating the encryption queries, and the dummy set
will help answering the decryption queries. In game 2.1, the algorithm B is defined as follows:

Init. Algorithm B first takes as input a DBDHE instance (g,G, g1, . . . , gn, gn+2, . . . , g2n, T) where
T = e(gn+1, G). It implicitly defines α: gi = gα

i
. B then runs A to receive m∗ sets S∗

1 , . . . , S
∗
m∗ and

an index k∗ that A wishes to be challenged on. Note that n /∈ S∗
k∗ because the decryption key dn

is public. B makes use of a random oracle H which output is a random element in G, and a hash
List is initially set empty list, to store all the query-answer, with additional information, when
possible. Namely, for a query q, with answer Y = gy, the tuple (q, Y, y) is stored. Sometimes, y
will not be known, and thus replaced by ⊥.

Setup. B needs to generate the public global parameters and decryption keys di, i /∈ S∗
k∗ : it chooses

a random u ∈ Zp and sets v
def
= gu/

∏

j∈S∗
k∗

gn+1−j . It then computes

di
def
= gui /

∏

j∈S∗
k∗

gn+1−j+i = gu·α
i

·





∏

j∈S∗
k∗

gn+1−j





−αi

= vα
i

Eventually, B gives A the public global parameters (g1, . . . , gn, gn+2, . . . , g2n, dn).
Phase 1. Since we now allow encryption and decryption queries, let show how they can be answered.

We first start by the hash queries:
1. There are two kinds of useful hash queries, (j, u) ∈ Zp×G or (u1, u2) ∈ G

2. But for any query
q, if it has already been asked, the same answer is sent back. Otherwise, B chooses a random

scalar y
$
← Zp and sets H(q) = gy. It appends the appropriate tuple (q, gy, y) to the hash List.

2. For an encryption query (S1, S2, . . . , Sm), B makes the ciphertext as follows: it first chooses a
random scalar r ∈ Zp and sets Sm+1 = {n}, and Yi = H(i, g

r) = gyi for i = 1, . . . ,m+1: yi is
obtained from the hash List. To generate Hdr = (C1, C2, C3), B sets C1 = gr, and computes

C2 =
m+1
∏

i=1



v ·
∏

j∈Si

gn+1−j





r+yi

C3 = H(C1, C2)
r

and Ki = e(gn, g1)
r+yi , for i = 1, . . . ,m+ 1.

3. For a decryption query (S1, . . . , Sm+1,Hdr, i, k) in the name of user i ∈ Sk, B decrypts as
follows: it first checks whether Sk ⊆ S∗

k∗ or not. In the negative case, it finds j ∈ Sk\S
∗
k∗ , and

using dj it can decrypt as the decryption oracle would do; in the positive case

12

– B uses dn to decrypt, using the decryption oracle, and obtain Km+1 = e(gn+1, g)
r+ym+1 ;

– B extracts, from the hash List for H(m+ 1, C1), the value ym+1, and computes

L =
Km+1

e(gn+1, g)ym+1
= e(gn, g1)

r

– B extracts, from the hash List for H(k, C1), the value yk, and computes the session key

Kk = L× e(gn, g1)
yk = e(gn+1, g)

r+yk

Challenge. The challenge has to be generated on the target sets S∗
1 , . . . , S

∗
m∗ , with the index k∗ for

the indistinguishability of the key:

– B first chooses a random scalar r∗ ∈ Zp and sets h = gr
∗
, and hi = gr

∗

i for i = 1, . . . , n;

– it chooses a random scalar z∗ ∈ Zp and sets H(k∗, h) = Y ∗
k∗ = G/gz

∗
, which is the value

Y ∗
k∗ = gy

∗
k∗ for an unknown y∗k∗ . The tuple ((k∗, h), Y ∗

k∗ ,⊥) is appended to the hash List;

– B asks for the other values Y ∗
i = H(i, h) = gy

∗
i , for i = 1, . . . , k∗ − 1, k∗ + 1, . . . ,m∗ + 1

Note that S∗
m∗+1 = {n}, then B generates Hdr∗ = (C∗

1 , C
∗
2 , C

∗
3) by setting C∗

1 = h and C∗
3 =

H(C∗
1 , C

∗
2)

r∗ , where

C∗
2 =

(

hu · (Y ∗
k∗)

u
)

ℓ=m∗
∏

ℓ=1

ℓ 6=k∗






hu ·

(∏

j∈S∗
ℓ
hn+1−j

∏

j∈S∗
k∗

hn+1−j

)



v
∏

j∈S∗
ℓ

gn+1−j





y∗
ℓ







= (gu)r
∗+y∗

k∗ ·
ℓ=m∗
∏

ℓ=1

ℓ 6=k∗

(

gu
∏

j∈S∗
k∗

gn+1−j

)r∗




∏

j∈S∗
ℓ

gn+1−j





r∗

v
∏

j∈S∗
ℓ

gn+1−j





y∗
ℓ

=



v
∏

j∈S∗
k∗

gn+1−j





r∗+y∗
k∗ ℓ=m∗
∏

ℓ=1

ℓ 6=k∗



v
∏

j∈S∗
ℓ

gn+1−j





r∗

v
∏

j∈S∗
ℓ

gn+1−j





y∗
ℓ

=

ℓ=m∗
∏

ℓ=1



v
∏

j∈S∗
ℓ

gn+1−j





r∗+y∗
ℓ

To generate the session keys, B first computes

K∗
i = e(gn, g1)

y∗i · e(gn, h1) = e(gn+1, g)
r∗+y∗i , i 6= k∗.

It then randomly chooses a bit b ∈ {0, 1}, picks a random K∗
k∗,1−b in G and sets

K∗
k∗,b =

T · e(gn, h1)

e(gn+1, gz
∗)

It gives (Hdr∗,K∗
1 , . . . ,K

∗
k∗−1,Kk∗+1, . . . ,K

∗
m∗+1,K

∗
k∗,0,K

∗
k∗,1) as the challenge to A.

Note that since T = e(gn+1, G), with G = Y ∗
k∗g

z∗ ,

K∗
k∗,b =

e(gn+1, Y
∗
k∗g

z∗) · e(gn, h1)

e(gn+1, gz
∗)

= e(gn+1, g)
y∗
k∗ · e(gn+1, g)

r∗ = e(gn+1, g)
r∗+y∗

k∗

13

Phase 2. B responds as in the first phase. Note that, if A asks a decryption query with C1 = C∗
1 , B

simply answers ⊥.

In this game 2.1, the advantage of A is unchanged, except in case of problem during the program-
mation of H, which is required once only, and the query has already been asked with probabil-
ity 1/p: Succ1(A) − Succ2.1(A) ≤ 1/p. In a game 2.2, we replace T by a random element in G:
Succ2.2(A) = 1/2, whereas Succ2.1(A)− Succ2.2(A) ≤ Advdbdhe(B).

As a consequence,

Succs−ind(A) ≤ Succcdh(B1) +Advdbdhe(B2) + 1/p+ 1/2,

where Bi denotes the simulator B in Game i. ⊓⊔

6 Conclusion

We initiate the new research line on multi-channel broadcast encryption and propose two efficient
schemes with constant-size ciphertexts, while computationally similar to the original BGW scheme in
the single-channel setting. We leave some challenging open problems:

– While privacy concerns imply independent keys for all the channels a user subscribed to, this
however also leads to large decryption keys for users (linear in the number of channels). One could
prefer to have shorter or even constant size keys, sacrificing on privacy, contrary to our priority
goal.

– Our first scheme achieves the basic selective security level in the standard model while our second
scheme achieves the strong selective security level, which resists to both CPA and CCA, but in
the random oracle model. Ruling out the random oracle seems quite challenging because of the
implicit relations between session keys.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In V. Ashby,
editor, ACM CCS 93: 1st Conference on Computer and Communications Security, pages 62–73. ACM Press, Nov.
1993.

2. D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and private
keys. In V. Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer

Science, pages 258–275. Springer, Aug. 2005.
3. C. Delerablée. Identity-based broadcast encryption with constant size ciphertexts and private keys. In K. Kurosawa,

editor, Advances in Cryptology – ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages
200–215. Springer, Dec. 2007.

4. Y. Dodis and N. Fazio. Public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In
Y. Desmedt, editor, PKC 2003: 6th International Workshop on Theory and Practice in Public Key Cryptography,
volume 2567 of Lecture Notes in Computer Science, pages 100–115. Springer, Jan. 2003.

5. A. Fiat and M. Naor. Broadcast encryption. In D. R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume
773 of Lecture Notes in Computer Science, pages 480–491. Springer, Aug. 1994.

6. C. Gentry and B. Waters. Adaptive security in broadcast encryption systems (with short ciphertexts). In A. Joux,
editor, Advances in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
171–188. Springer, Apr. 2009.

7. A. B. Lewko, A. Sahai, and B. Waters. Revocation systems with very small private keys. In 2010 IEEE Symposium

on Security and Privacy, pages 273–285. IEEE Computer Society Press, May 2010.

14

8. D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In J. Kilian, editor,
Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 41–62. Springer,
Aug. 2001.

9. D. H. Phan, D. Pointcheval, S. F. Shahandashti, and M. Strefler. Adaptive CCA broadcast encryption with constant-
size secret keys and ciphertexts. IACR Cryptology ePrint Archive 2012: 216, 2012. http://eprint.iacr.org/2012/
216.pdf.

10. D. H. Phan, D. Pointcheval, and M. Strefler. Security notions for broadcast encryption. In J. Lopez and G. Tsudik,
editors, ACNS 11: 9th International Conference on Applied Cryptography and Network Security, volume 6715 of
Lecture Notes in Computer Science, pages 377–394. Springer, June 2011.

11. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In S. Halevi,
editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 619–636.
Springer, Aug. 2009.

http://eprint.iacr.org/2012/216.pdf
http://eprint.iacr.org/2012/216.pdf

	Multi-Channel Broadcast Encryption
	Introduction
	Broadcast encryption schemes.
	Contributions.

	Multi-channel Broadcast Encryption
	Syntax
	Security Model
	Disjoint Target Sets

	Preliminaries
	Computational Assumptions
	BGW Overview
	Intuition

	Multi-Channel Broadcast Encryption I – MIBE1
	Description
	Security Result

	Multi-Channel Broadcast Encryption II – MIBE2
	Dummy-Helper Technique
	Description
	Security

	Conclusion

