
Multi-Channel Change-Point Malware Detection
Raymond Canzanese and Moshe Kam

Dept. of Electrical and Computer Engineering
Drexel University

Philadelphia, PA, USA
{rcanzanese,kam}@minerva.ece.drexel.edu

Spiros Mancoridis
Dept. of Computer Science

Drexel University
Philadelphia, PA, USA

spiros@drexel.edu

Abstract—The complex computing systems employed by gov-
ernments, corporations, and other institutions are frequently
targeted by cyber-attacks designed for espionage and sabotage.
The malicious software used in such attacks are typically custom-
designed or obfuscated to avoid detection by traditional antivirus
software. Our goal is to create a malware detection system that
can quickly and accurately detect such otherwise difficult-to-
detect malware. We pose the problem of malware detection as a
multi-channel change-point detection problem, wherein the goal
is to identify the point in time when a system changes from
a known clean state to an infected state. We present a host-
based malware detection system designed to run at the hypervisor
level, monitoring hypervisor and guest operating system sensors
and sequentially determining whether the host is infected. We
present a case study wherein the detection system is used to
detect various types of malware on an active web server under
heavy computational load.

I. INTRODUCTION

Our primary defense against malicious software (malware)
has traditionally been antivirus software, which use static
signature-based detection techniques to identify potential mal-
ware. Popular due to their low false-alarm rates and ease of
use, antivirus software require new malware samples to be
discovered and analyzed before they can be detected, leaving
hosts vulnerable to new malware during the time period
between the sample first being used in a cyber-attack and the
creation of detection signatures for that sample [1]. The com-
plex, ultra large-scale systems (ULS) used by governments,
corporations, and other institutions, are particularly vulnerable
to new malware, since these systems are constantly subject
to cyber-attacks and their size and complexity complicate
detection [2].

Antivirus software are also ineffective at detecting obfus-
cated variants of known malware [3], [4]. Obfuscations are
applied to malware using specialized software that reorders,
encrypts, compresses, recompiles, or otherwise changes the
code without altering its function [5]. Obfuscations can also
be applied automatically and incrementally, as is the case
with metamorphic and polymorphic malware that mutate as
they propagate [6]. Obfuscating malware to evade detection is
now common practice since the engineering effort required to
design new malware far exceeds the effort to obfuscate existing
malware. Accordingly, the majority of new antivirus detection
signatures are not created for new malware, but rather for
obfuscated variants of known malware [7].

In this paper, we present a malware detection system de-
signed to detect obfuscated variants of known malware and
previously unseen malware that are behaviorally similar to
known malware. The malware detection system monitors data
from a suite of sensors installed on a host server at both
the operating system and hypervisor levels, and processes the
sensor data sequentially as they become available, using the
data to infer whether the host is executing malware.

We pose the malware detection problem as a change-point
detection problem [8], wherein the goal is to detect whether
a host is infected with malware by detecting changes in
distribution of the sensor data as quickly as possible. We
assume that the host being monitored is initially clean and
free of malware and that during this period of time we are
able to establish a baseline of normal operation for the host.
Assuming that the host may become infected with malware at
any time, our goal is to determine whether the host is infected
so that appropriate mitigative actions can be performed to limit
data loss, data theft, further propagation of the malware, and
disruption of services.

We present a malware detection system that treats the
malware detection problem as a multi-channel, decentralized
detection problem. The problem is multi-channel because
each sensor measures a unique phenomenon and reports data
that are governed by a distinct probability distribution. The
problem is decentralized because detection is performed at
the sensor level, wherein each local detector uses data from
only one sensor to infer whether the host is infected. The
global decision is made by a data fusion center (DFC), which
sequentially processes the decisions from the local detectors
to infer whether the host is infected.

Finally, we present a case study using the described malware
detection system on a virtual machine host running a web
server under heavy computational load. During testing, the
host is originally clean and becomes infected with malware
at a randomly selected time instance. Two hundred different
malware samples, all gathered from the wild in the past year,
are used for the study. We examine the effectiveness of the
detection system both in terms of its overall detection accuracy
and its average time to detection.

The remainder of this paper is organized as follows: After
a description of related research in the following section, the
malware detection problem is formally stated in Section III
and details of the detection system are provided in Section IV.

Section V provides a detailed description of the case study
and analysis of the detection results. Section VI concludes
our analysis and provides an overview of our ongoing work.

II. RELATED WORK

This work draws on a substantial body of prior research in
the areas of malware detection and intrusion detection. Early
work in malware detection focused on static detectors which,
like antivirus software, label static files as either clean or
infected [9], [10]. This early work identified useful features
for malware detection, such as instruction sequences, strings,
and library calls. However, these features have been shown
to be difficult to extract from obfuscated malware, motivating
alternative approaches to the malware detection problem that
do not rely on static analysis [11].

Dynamic malware detectors are designed to detect whether
malware are executing on live a host. Early work on dynamic
detectors demonstrated system call sequences to be useful
features for malware and intrusion detection, using a database
of known benign call sequences to perform anomaly detection
on kernel traces [12]. More recently, this work has been ex-
panded to show that system call sequences together with their
input arguments can be used for malware classification [13].
Similar work using system calls and clustering algorithms for
malware detection in a virtualized environment has yielded
promising results [14]. Work by Landi et al. demonstrated
that call sequences alone are not very good indicators of
malicious behavior, instead using abstracted descriptions of
system activity [15].

Taint analysis techniques, which monitor data introduced
to a host, have been shown to be effective in detecting
malware, especially privacy-breaching malware [16], [17],
[18]. However, some research has shown that computational
complexity limits taint analysis to simple systems and offline
analysis [19], [20]. Other approaches to malware detection
have included monitoring system performance metrics [21],
[22], virtual machine sensors [23], and a combination of static
and dynamic features [24]. For a more detailed survey of
malware detection techniques, the interested reader is referred
to a survey by Idika and Mathur [25] and an evaluation of
commercial antivirus software by Sukwong et al. [3].

In the related field of network intrusion detection, sequential
detection techniques applied to network-based features have
been demonstrated to provide an accurate means of detecting
network intrusions [26] and denial of service attacks [27].
Hidden Markov models have been shown to be an effective
tool for detecting cyber-attacks using system call traces [28].

The malware detection system described in this paper bears
similarity to previous work in that it is a dynamic detec-
tion system that monitors features at the operating-system
level [21] and the hypervisor-level [23] to infer the execution
of malware. The described system is unique in its decentral-
ized application of two-sided sequential detection techniques
described Page [29] for malware detection and its use of a
data fusion center for global decision making. The merits of
the described system that set it apart from the previous work

include the low computational complexity of the detection
system, which allows for real-time detection of malware
infection on a live host, and the sequential formulation of the
malware detection problem that focuses on detecting malware
quickly and accurately.

III. THE MALWARE DETECTION PROBLEM

The present work focuses on the detection of clandestine
malware designed for espionage and sabotage that do not
present obvious signs of infection. Clandestine malware are
designed to be difficult to detect, analyze, and remove. Such
malware use a variety of tricks to avoid detection and removal,
including running as background processes, system services,
or device drivers; disguising themselves as legitimate software;
and altering the host OS’s security configuration. Furthermore,
malware are often protected against various types of reverse
engineering, including interactive debugging and disassem-
bly [1].

In order to perform the malicious tasks for which they are
designed, malware must interact with the host OS. Further-
more, the tricks used by the malware to thwart detection,
analysis, and removal also require OS interaction. We assume,
based on previous research in behavioral malware detection
(see Section II), that such OS interaction causes perturbations
in a set of observable features, and by monitoring these
features we can infer whether a host is executing malware.
For this paper, we focus on features measured by software
sensors at the guest OS level and the hypervisor level.

We pose the malware infection in the following way: We
assume that when a host is initially configured, it is clean,
i.e., there is no malware executing on the host. Furthermore,
we assume that we can monitor the host when it is initially
configured to establish a baseline model of the clean host.
Due to security vulnerabilities, intrusions, etc., the host can
become infected with malware at any time after the initial
model is established. We say a host is infected if there is
malware actively executing on the host.

We define the infection time ti as the time at which the
malware begins execution. Our goal is to detect that the host
is infected as close to time ti as possible so mitigative action
can be taken to prevent data theft, data loss, system down
time, further propagation of the malware, and other undesirable
effects. We define the time that elapses between the infection
time and the time we detect the malware as the detection delay
td. We assume that ti is not guaranteed to be finite and that
the distribution of ti is not known a priori, i.e., we do not
know if or when a particular host might become infected with
malware. Furthermore, we also do not know a priori how
likely it is that a particular host might become infected with
malware [30].

For a clean system, the feature data for each sensor are
considered to be a sequence of independent random vari-
ables, where the data for the mth feature are given by
xm = {xm,1, xm,2, ..., xm,ti−1} distributed according to a
probability density pΘm,0 (xm), where Θm,0 is a vector of
the parameters of the distribution.

Fig. 1. Malware detection timeline

At time ti the malware executes, and the feature data
form a new sequence of independent random variables xm =
{xm,ti , xm,ti+1, xm,ti+2, ...} distributed according to a prob-
ability density pΘm,1(xm) and Θm,1 6= Θm,0. The goal is
to determine if and when the distribution of the feature data
changes from pΘm,0(xm) to pΘm,1(xm) for each sensor, where
Θm,0 and Θm,1 are uniquely determined for each sensor.
This type of detection problem, detecting a sudden change
in distribution, is referred to as quickest detection, change
detection, or change-point detection [8], [31], [32].

Finally, we assume that at infection time ti a subset of the
M total features will experience a change in distribution, and
by monitoring which subset of sensors experience a change
in distribution, we can infer the presence of malware on a
host. The subset of features that change distribution will not
necessarily be the same for all malware samples but rather will
be determined by the function and design of the malware.

To summarize, the goal is to detect the time ti when a
system changes from a clean to infected state, under the
assumption that at time ti a subset of the features will change
distribution from pΘm,0(xm) to pΘm,1(xm), where Θm,0 and
Θm,1 are uniquely determined parameters for each feature
distribution. We assume that Θm,0 can be learned from a
limited set of clean training data and that Θm,1 is unknown.
A depiction of the timeline of these events is provided in
Figure 1, which shows the host starting, the clean training
data being collected, the malware executing at time ti, and
the malware being detected after a brief delay td.

IV. DETECTION SYSTEM DESIGN

The malware detection system (MDS) is designed to detect
whether the guest OS running inside a virtual machine (VM) is
infected with malware. We assume that the VM is managed by
a hypervisor or a virtual machine monitor (VMM). Figure 2
shows the architecture of the MDS, comprising four major
components:

1) The sensors, which monitor the host at the hypervisor
and guest OS levels;

2) The feature extractor, which samples the feature data
from the sensors;

3) The local detectors, which perform detection on each
stream of feature data independently; and

4) The data fusion center (DFC), which uses the decisions
from the local detectors to infer whether the guest OS
is infected.

Fig. 2. Malware detection system architecture

A. Sensors and feature extractor

The MDS is designed to work with any set of numeric fea-
tures collected from applications, the guest OS, the hypervisor,
or the host OS. In its current configuration, the features used by
the MDS are data sampled from sensors in both the guest OS
and the hypervisor. The features fall roughly into the following
categories:

• Memory usage,
• Processor usage,
• Disk usage,
• Page file usage,
• Hardware usage, and
• Network usage.
To mitigate the risk of malware running on the guest

OS tampering with the MDS, the hypervisor sensors, feature
extractor, local detectors, and DFC are all located outside the
guest OS, as shown in Figure 2. The guest OS sensors are
built-in to the kernel of the guest OS, making them more robust
than, for example, sensors running as a user-level process or
sensors hooking the System Service Dispatch Table (SSDT)
that can be easily modified [33]. Furthermore, the layered
approach of using sensors at both the guest OS and hypervisor
is designed to reduce the likelihood that compromised sensors
at a particular layer would result in missed detections.

B. Local sequential detectors

The feature extractor sends streams of feature data to a
series of local detectors, each of which independently infers
whether the OS is infected based only on a single feature.
This detection architecture was chosen because the subset of
features exhibiting a change in distribution when malware are
executed differ for each malware sample, likely due to the
differing function and implementation of the malware.

Since we have posed the malware detection problem as a
change-point detection problem, the local sequential detectors
each perform an implementation of a popular change-point
detection algorithm called Page’s cumulative sum (CUSUM)
test [29]. The algorithm, originally described as a method
for detecting faults in industrial production processes, can be

implemented as a repeated cumulative log-likelihood ratio test
with an adaptive detection threshold.

The CUSUM algorithm was originally formulated as a
method to detect a change in a scalar parameter of a dis-
tribution from a known value θ0 to another known value θ1.
Thus, we assume that the feature data can be approximately
described by a known parametric distribution both before and
after the change. However, we do not assume that the value of
the parameter is known after the change. Rather, we assume
that the change will have a magnitude of at least δ, i.e.:

|θ0 − θ1| ≥ δ. (1)

Thus, we use a double-sided implementation of Page’s
CUSUM algorithm to detect whether each of the parameters
of the distribution exhibits either an increase or decrease of
magnitude δ, uniquely determining δ for each parameter.

While the CUSUM algorithm can be used on any parametric
distribution, we observed during testing that for the majority
of the features, the data can be approximately described using
a normal distribution. We formally define the CUSUM test
performed at each local detector as the detection of a change
in either the mean or the variance of the feature data. Thus,
we have four possible changes at each sensor. Either:

1) The mean increases from µ0 to µ0 + δµ,
2) The mean decreases from µ0 to µ0 − δµ,
3) The variance increases from σ2

0 to σ2
0 + δσ2 , or

4) The variance decreases from σ2
0 to σ2

0 − δσ2 .

We begin by defining the normal probability distribution
function:

pµ,σ2(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (2)

Next, we define the set of four cumulative log likelihood ratios
(LLR) that are computed by each sensor. We define these
four cumulative LLR as g(1)

n , g(2)
n , g(3)

n , and g
(4)
n , where the

subscript indicates that it is the LLR at the nth data sample
and the superscript indicates which of the four changes in the
list above it is used to detect. We define the cumulative LLR
recursively as:

g
(1)
n = g

(1)
n−1 + log

(
p
µ0+δµ,σ

2
0

(x)

p
µ0,σ

2
0

(x)

)
g

(2)
n = g

(2)
n−1 + log

(
p
µ0−δµ,σ20

(x)

p
µ0,σ

2
0

(x)

)
g

(3)
n = g

(3)
n−1 + log

(
p
µ0,σ

2
0
+δ
σ2

(x)

p
µ0,σ

2
0

(x)

)
g

(4)
n = g

(4)
n−1 + log

(
p
µ0,σ

2
0
−δ
σ2

(x)

p
µ0,σ

2
0

(x)

)
.

(3)

Each cumulative LLR above will decrease if no change
in parameter occurs and will increase if the corresponding
change in parameter occurs. Since our goal is to detect only
an increase in the LLR associated with a change in parameter,
we reset the LLR to zero each time it becomes negative. This
reset has the effect of transforming the standard log likelihood
ratio test (LLRT), where the values in Equation 3 are compared

Fig. 3. Page’s CUSUM test

to a fixed threshold, into an adaptive threshold test. We modify
the LLR in Equation 3 as follows, where a ∈ {1, 2, 3, 4}:

g(a)
n =

{
g

(a)
n if g(a)

n > 0

0 otherwise.
(4)

Next, a modified LLRT is performed on each of the four
transformed LLR described by Equations 3 and 4 by compar-
ing each ratio to a threshold h(a) in order to make a decision
d

(a)
n :

d(a)
n =

{
1 if g(a)

n > h(a)

0 otherwise.
(5)

The effect of resetting the cumulative LLR and using a fixed
threshold as shown in Equations 4 and 5 is that g(a)

n will
remain near zero so long as a change in the distribution of the
data has not occurred, and will increase after the corresponding
change has occurred.

Figure 3 provides a visual depiction of Page’s CUSUM test
being used to detect an increase in the mean of a particular
feature, the virtual processor other intercepts cost, as reported
by the hypervisor. Before the malware infection occurs, the
cumulative LLR values periodically spike above zero and are
frequently reset to zero when the LLR becomes negative. At
ti = 840 seconds, the malware is executed and the system is
infected. After that time, we note an increase in the LLR g

(1)
n .

Once it crosses the detection threshold h(1), the local detector
reports the decision that malware has been detected.

Each LLRT results in a new decision d
(a)
n after each new

data point is considered. Whenever the decision is zero,
indicating no malware has been detected, the test continues
when the next data point arrives. Whenever the decision is
one, indicating malware has been detected, the pair of tests for
the parameter in which the change was detected stops since a
decision has been reached, and the local detector notifies the
DFC that malware has been detected. If a change is detected
in both parameters, all four tests stop, and the local detector
notifies the DFC that malware was detected in both parameters.

Fig. 4. Feature data change in parameter

Once the tests have stopped, subsequent data are discarded
until the DFC notifies the detector that it should continue
testing.

The local detection process of computing four adaptive,
cumulative LLR and comparing them to a threshold to make
a decision is performed independently for each of the M fea-
tures. Because each sensor measures a different phenomenon,
the parameters of the distributions and detection thresholds are
uniquely determined for each feature.

The parameters µ0 and σ2
0 are determined during an initial

training period, when the host is in a clean state and operating
normally, as shown in the timeline in Figure 1. During the
training period, data are collected and separated into blocks
of equal length and the maximum likelihood estimates of
the parameters are computed. The standard deviations of the
estimates are used to determine the magnitudes δµ and δσ2 of
the changes to be detected.

If the maximum likelihood estimate of the mean is given by
µML and has a standard deviation given by σµML , then the goal
will be to detect a change of magnitude δµ = nσµML , where n
is a multiplier which indicates how many standard deviations
of change we aim to detect. δσ2 is similarly determined using
the maximum likelihood estimate of the sample variance and
the standard deviation of the estimate.

For example, Figure 4 shows the virtual processor other
intercepts cost data used in Figure 3. The bold horizontal
line indicates µML, the maximum likelihood estimate of µ0,
and the parallel lines indicate µ0 ± 3σµML , the parameters
after the change used for computing the LLR g

(1)
n and g

(2)
n .

Figure 4 also shows a plot of the raw feature data and
its moving average. Before ti, the moving average closely
matches σµML , and after ti, the moving average increases,
resulting in the increase in g

(1)
n and the positive detection

indicated in Figure 3.
Finally, the detection thresholds h(k) are set to be a fixed

number of standard deviations above the mean g
(a)
n value

observed during the training period. The appropriate number of
standard deviations is determined experimentally as described
in Section V.

The selected approach described in this section is asymptot-
ically efficient but sub-optimal, as the thresholds are selected
in an ad hoc manner based on previously detected infections.
The optimal selection of thresholds for decentralized quickest
detection is known to require simultaneous solution of coupled
algebraic equations [34].

C. Data fusion center

The data fusion center (DFC) is responsible for making the
global decision as to whether the host is infected. The DFC
receives, at each iteration, reports from each local detector
indicating whether a change was detected in one or both of
the parameters and uses a fusion rule to arrive at a global
decision. The DFC employs a k out of N fusion rule, where
k is the threshold of the number of positive detections and N
is the total number of decisions reported by the local detectors.
Because each local detector detects changes in two different
parameters, N is given as 2M where M is the number of local
detectors. Thus, the DFC decides that the host is infected if
at least k out of the N decisions reported by the local sensors
are positive.

One phenomenon observed during testing is that some
sensors report transient data spikes when running on a clean
host. The magnitude of the spikes cause an increase in both the
mean and the variance of the data, causing the corresponding
local detectors to report a positive detection. Over time, spikes
from multiple sensors yield multiple false positive detections
leading eventually to a global decision that the system is
infected even though it is in fact clean, i.e. a global false
positive. Our testing indicated that these transient spikes in
the sensor data are isolated events, happening at only one or
two sensors at a time. This is a sharp contrast to the behavior
exhibited when malware infection occurs, characterized by
near-simultaneous changes in distribution at multiple sensors,
leading to true positive detections from multiple local detectors
in quick succession.

To mitigate the occurrence of global false positives due to
transient data spikes, the DFC tracks not only the decisions
made by each of the local sensors, but also the times at which
the decisions are made. If the DFC fails to make a global
decision that the host is infected in a fixed time window
after a local detector indicates a positive detection, the DFC
notifies the local detector to resume normal operation and
reset its decision to zero. This modification to the k out of N
decision rule used by the DFC reduces the number of global
false alarms reported by the DFC, especially during prolonged
periods of clean operation of the host. The time window is
determined experimentally as discussed in Section V.

V. CASE STUDY

To assess the usefulness of the described malware detection
system (MDS), we performed a case study using the MDS
to detect whether a host under heavy computational load was
infected with one of 200 different malware samples collected
from the wild. The case study was performed on a custom-
built malware detection testbed.

Malware often require a network connection to perform
various tasks, such as “phoning home” to indicate that a new
host has been infected, sending out spam email messages,
sending stolen information to a remote host, attempting to
propagate to other hosts, or communicating with other com-
promised hosts. Accordingly, we designed a testbed that would
allow malware to establish connections to a remote host and
have that remote host provide some limited interaction with
the malware. The testbed comprises two physical machines: a
server that becomes intermittently infected with malware and
a network emulator.

The network emulator is the portion of the testbed designed
to interact with malware that attempt to communicate over
the network. The network emulator runs two major pieces of
software: (1) a DNS server and (2) the Dionaea low interaction
honeypot [35]. The DNS server is used as the primary DNS
server for the testbed and resolves all hostnames to the IP
address of the honeypot. Furthermore, the network emulator is
also configured as the default gateway for all traffic originating
on the testbed, forwarding all traffic to the honeypot. The
honeypot accepts incoming connections using many different
protocols, including SMB, http, ftp, and MySQL, and interacts
with the malware in order to gain copies of their malicious
payloads. Thus, whenever malware attempt to communicate
over the network, they are forwarded to the honeypot, which
provides limited network interaction.

The server that becomes intermittently infected with mal-
ware runs Microsoft Windows Server 2012 and Microsoft’s
Hyper-V hypervisor-based server virtualization software [36].
The virtual machines that are infected with malware run
Microsoft Windows 7, Microsoft IIS Express Web Server,
and Microsoft SQL Server [36], and are configured to host
a default installation of the Drupal Content Management
System [37].

In order to characterize how the MDS will perform when
deployed on a live system, the testbed is designed to automati-
cally and repeatedly run all of the tests in the Drupal test suite
in a random order determined each time the virtual machine is
started. The Drupal test suite consists of 66 different categories
of tests, each exercising different Drupal functions, such as
file access, database access, image processing, PHP functions,
content searches, system updates, content creation, and content
access. All of the tests are used to ensure heterogeneity in
the intensity of the load placed on the host and heterogeneity
in the types of operations being performed. The test order
is randomized to ensure the load during the training period
varies and that the malware infection time ti does not always
coincide with a particular test.

The final component of the testbed is the mechanism that
infects the VM with malware. Each time the VM is started,
the MDS automatically starts, first training the detectors using
the initial data retrieved from the sensors and then performing
detection. A separate daemon is used to randomly determine
when the malware is executed on the VM. For the case
study, the daemon executes the malware anywhere between 15
minutes and 2 hours after the VM is started, to ensure that the

Fig. 5. Flow chart of malware testbed execution

malware executes independently of the underlying test load.
Figure 5 shows a flow chart summary of the testing process.

When the VM starts, the test load begins immediately, and
the MDS trains the detector and begins detection. The VM
executes in a clean state for a randomly determined period of
time until ti, when the malware executes and the system enters
and infected state. The VM continues to run in an infected
state for ten minutes, while the MDS gathers data and performs
detection. This ten minute period is used for testing only. In an
actual deployment, the MDS would apply mitigation as soon as
the malware are detected. Finally, the VM is stopped, the MDS
saves all of the data it collected, the VM is restored to its clean
state, and the next test cycle begins with another randomly
chosen malware sample, permutation of the background load,
and infection time ti.

A. Malware

The malware used in the case study come from two dif-
ferent sources. First, a custom-built program is used to crawl
blacklisted sites known to be hosting malware and download
any samples it finds. Second, the Dionaea honeypot used in
our network emulator is also used for its intended purpose
as a honeypot, which interacts with infected hosts on the
Internet to obtain malware samples. All of the malware are
scanned and classified using the VirusTotal free online virus
scanner [38], which scans the malware using a variety of
different commercially available antivirus software.

For the case study, we selected 200 malware samples
at random from our malware collection. Of those malware
samples, 16 were first seen between 2006 and 2011, and
the remaining samples were first seen in 2012. Although
there is no universal malware taxonomy, we can use malware
detection signatures to approximately determine the classes of
the selected malware. Using the Microsoft Malware Protection
Center (MMPC) [36] naming scheme, we can assign the
malware into the categories listed in Table I. The categories
are defined as follows:

• Backdoors are malware that provide clandestine remote
access;

TABLE I
MALWARE SAMPLE CLASSIFICATION

Category Count

Backdoor 27
PWS 45
Trojan 69
VirTool 19
Virus 8
Worm 16
Undetected 8
Other 8

• PWS are password stealers, malware that steal personal
information;

• Trojans are malware that are disguised as legitimate
software;

• Viruses are malware that replicate automatically;
• Worms are malware that propagate automatically over a

network; and
• VirTools are tools such as rootkits that provide clandes-

tine access to a host.
In addition to the above categories, two other categories

are listed in Table I. Other refers to malware that do not fall
into any one of the above categories and undetected refers
to malware that were not detected by any MMPC signatures
as of January 2013. These eight undetected malware samples
are indicative of the shortcoming of signature-based antivirus
detection: although these samples were first seen as early as
May 2012, virus detection signatures were still not available
up to seven months after their discovery.

Several of the more commonly known malware families are
represented in the 200 malware samples used for testing, in-
cluding Bifrose, Fynloski, Kelihos, ZBot, Swisyn, and Ramnit.
The samples also include multiple variants within some of
these malware families. Before they were used for testing,
we analyzed kernal traces and network logs to verify that the
malware performed some observable malicious task, such as
attempting to propagate over the network, altering the host
configuration, or installing additional software.

B. Feature selection

In its current configuration, 667 sensors exported by the
guest OS and 989 sensors exported by the hypervisor are
available for detection. Rather than use all 1, 656 available
sensors for detection, we first performed feature selection
using a randomly selected subset of 20% of the malware
samples to determine which features are most useful for
malware detection.

The motivation for performing feature selection is two-
fold: First, by reducing the total number of features used for
detection we reduce both the computational requirements of
the detectors and the computational overhead introduced by the
sensors. Second, experimentation revealed that only a subset
of the features exhibited detectable changes in distribution
that were correlated with the introduction of malware to a
host. Other features exhibited changes in distribution that

were uncorrelated with the introduction of malware, likely
due to the changes in the background load running on the
testbed. The inclusion of such features in the detector would
result in spurious detections leading to decrease in the overall
accuracy of the MDS. Such features are deemed not useful for
malware detection and are removed from consideration during
the feature selection step.

The feature selection process proceeds in three stages. First,
we perform a two-sample Kolmogorov-Smirnov test on the
feature data to determine for each feature and each malware
sample whether the feature exhibits a change in distribution
after the system is infected [39]. Here, we remove from
consideration all features that do not exhibit a change in
distribution for at least one of the malware samples.

For the second stage, we eliminate those features whose data
are not useful for malware detection using Page’s CUSUM
test even though they exhibit a change in distribution. As
a simple example, one of the sensors reports the uptime of
the VM, which is always higher after the malware executes
and thus identified as one of the sensors whose distribution
is different after infection. We remove from consideration
all of the features that exhibited such behavior, including
features that exhibited monotone or near-monotone increasing
behavior.

In the final stage, we use the local detectors to perform
Page’s CUSUM as described in Section IV on the remaining
features. We perform the test as previously described: first
training the detector when the guest OS is first started and
then performing detection on the remaining data. Sensors
exhibiting a high false alarm rate, i.e., sensors that frequently
indicate the host is infected when it is clean, are removed from
consideration.

After feature reduction, 339 features remain that are used
for detection. The remaining features include mainly processor
and network performance indicators. On the processor side, the
remaining features include:

• Processor hypercalls/sec,
• Interrupt hypercalls/sec,
• Large page TLB fills/sec,
• Percent privileged time,
• MSR accesses cost, and
• CPUID instructions cost.

And on the networking side, the remaining features include:
• Outbound connections/sec,
• Miniport Send Cycles/sec,
• Stack Receive Indication Cycles/sec, and
• NDIS Receive Indication Cycles/sec.

C. Detection performance

In this section, we examine the detection performance of
the MDS in terms of overall detection accuracy and detection
delay. The detection results presented in this section are
obtained using 375 iterations of the test sequence described
in Figure 5. Since there are only 200 malware samples used
for testing, this means that multiple malware samples are

Fig. 6. Receiver Operating Characteristic of the MDS

used twice, each time with a different start time and different
ordering of the background load generated by the Drupal test
suite.

The testing results presented in this section are obtained
using the following parameters: The parameter estimates are
determined during a 7 minute training period separated into 20
second blocks. We configure the standard deviation multiplier
for the change magnitude to be n = 3, setting δµ = 3σµML

for the mean and δσ2 = 3σσ2
ML

for the variance. Finally,
the number of standard deviations above the mean to set the
detection thresholds h(a) was determined experimentally by
determining the smallest number of standard deviations that
would result in no false alarms in data sets used for feature
reduction. The number of standard deviations is uniquely
determined for each sensor. Finally, a 5 minute reset delay
is used at the DFC after which any local detector indicating
a positive detection is reset if no global detection has been
made.

We evaluate the overall accuracy of the MDS in terms of
its receiver operating characteristic (ROC), a plot of the true
positive rate vs. the false positive rate of the system. The curve
is generated by varying the threshold k of the DFC. Here, we
define the true positive rate as the fraction of the data sets
that the MDS correctly identifies as infected after the malware
executes. Conversely, we define the false positive rate as the
fraction of the data sets that the MDS incorrectly identifies as
infected when the host is in a clean state.

The ROC is presented in Figure 6 and shows only the
detail of the upper-left quadrant of the ROC. For comparison,
we show three ROC curves for different change magnitudes:
n = 1, n = 3 and n = 5. The total area under the curve
(AUC) of the ROC is a measurement of the overall accuracy
of the detector, where a perfect detector has an AUC of 1. The
AUC of the MDS when n = 3 is the highest, at 0.94. We are
also interested in determining the highest detection rate we

Fig. 7. Distribution of detection lags

can achieve without experiencing any false alarms: 0.52. This
number indicates that the MDS was able to correctly identify
that the VM was infected for 52% of the data sets without any
occurrence of false alarms, using a DFC threshold of k = 21.

We continue our analysis of the performance of the MDS
by examining the detection delay td. For this analysis, we use
the DFC detection threshold k = 21 that gives rise to the
52% detection rate described above and measure the detection
delays as the elapsed time between when the malware is
executed and when the MDS correctly identifies the host as
infected. The median detection delay td is 96 seconds and
90% of the malware are detected in under 3 minutes.

A histogram of the detection delays measured in minutes
for each of the data sets is shown in Figure 7. The histogram
indicates that for some data sets the MDS took up to 10
minutes to detect the offending malware. These data sets likely
involved malware samples that were less aggressive at their
onset. For example, one such malware sample was observed
waiting several minutes before spawning new processes and
performing malicious tasks, presumably to avoid being noticed
by an administrator monitoring the process activity on the
system. This finding points to the possibility that there may
have been other malware samples that the MDS would have
detected if the host continued to run longer than 10 minutes
after infection, leading to an increase in the overall detection
accuracy of the system.

D. Comparison to related work

Lanzi et. al [15] provided what is probably the most
comprehensive evaluation of the state of the art in behavioral
malware detection techniques to date, evaluating the accuracy
of two different detection techniques on data captured from
multiple production computer hosts. They provide detection
results for both an n-gram system call sequence detector [12]
and their own malware detector that uses abstracted models of

filesystem and registry usage, called access activity models.
Since Lanzi et. al did not characterize the overall accuracy
of their detector in terms of its ROC, we compare our results
using the detection rates achieved at a zero false alarm rate.
At zero false alarms, our MDS with a 52% detection rate
outperforms the n-gram detector with a detection rate under
40%.

However, our MDS underperformed the access activity
model detector, which exhibited a detection rate of 90%.
Reasons for this performance discrepancy include differences
in the time period over which training data was captured –
more than 40 hours for the access models compared to 7
minutes for our MDS – and the manual adjustments performed
to the access activity models after they were learned from
the training data to mitigate the occurrence of false alarms.
Furthermore, we believe our MDS, whose sensors span a wide
array of system functionality, including CPU, memory, storage,
and service usage patterns to be complementary to the the
access activity models, which are designed to detect malware
that violate file and registry access policies. Other comparable
work includes work by Moskovitch et. al [21] which aims
to detect network worms by using a similar set of sensors
and various machine learning algorithms. However, the limited
malware corpus considered by Moskovitch et. al (5 network
worms) precludes meaningful comparison.

E. Discussions

The case study was designed to determine whether the de-
scribed MDS architecture coupled with the selected features is
effective at detecting the execution of state-of-the-art malware
on a modern operating system under heavy and heterogeneous
computational load. Three design choices – the decentralized
detection architecture, the use of Page’s CUSUM test, and the
fusion rule used at the DFC – warrant further discussion.

The decentralized detection architecture was chosen un-
der the assumption that the function and implementation of
malware determine the subset of features that are perturbed
when the malware executes. In the case study, we achieved
a 52% detection rate with 0 false alarms when only 21 pa-
rameters from the 339 features exhibited a detectable change.
Furthermore, the subsets of features exhibiting a change for
each malware sample varied, with all 339 features being
perturbed by at least one malware sample. Additionally, the
ROC curve shows that increasing the detection threshold leads
to a decrease in detection rate, indicating that the number of
sensors perturbed by the malware also differs from sample to
sample.

Page’s CUSUM test was chosen because it is among the
computationally least complex algorithms for change-point
detection that can handle a problem where only the parameters
before the change are known. However, it requires that we
assume a parametric distribution for the feature data and limits
us to detecting only changes in parameter for the chosen
distribution. Statistical goodness of fit tests were used to deter-
mine that the majority of the feature data could be accurately
approximated by a normal distribution; however, there were

features that were not well-described by a normal distribution.
The application of non-parametric detection techniques at the
local detector level could possibly overcome this limitation
and provide more accurate detection results [43].

The k out of N fusion rule is used to establish a baseline
of the performance that can be achieved using the described
system. We expect that the use of fusion rules that consider the
statistics of the local detectors and the sequential nature of the
data will lead to improved overall detection performance [40],
[41], [42]. The DFC may also be extended to perform classifi-
cation to help guide mitigation and post-mortem analysis. For
example, since we know that the subset of perturbed features
differs for each malware sample, we may be able to map from
the perturbed features to an existing malware taxonomy.

The features chosen for this study were chosen because
they monitor a wide variety of features of the underlying
operating system, and the detection results indicate that a
subset of 339 of them provided adequate information to infer
the execution of malware on a live computer host. We expect
that in order to make the system more accurate and applicable
to a wider variety of computer hosts, the feature set should
be expanded to other layers, including sensors monitoring
individual applications and services, network usage, and the
host OS running the hypervisor. Additionally, it may prove
useful to extract features from system call, filesystem, registry,
or network traces, as such traces have been shown to be useful
data sources for malware detection [12], [15].

Finally, we briefly discuss our choices for the amount of
training time, the block size used during training, the detection
thresholds h(a), and the standard deviation multiplier n used to
determine the change magnitudes. These values were arrived
at experimentally, by considering a variety of choices for each
parameter and comparing the AUC of the associated detec-
tion results. Changing each parameter from the stated values
generally resulted in a marginal decrease in overall detection
accuracy, with the exception of the training time. For example,
Figure 6 shows that changing the standard deviation multiplier
from n = 3 results in an overall decrease in detection accuracy.
Increasing the training time leads to an increased detection
accuracy, although the percent improvement quickly declines
as the training time increases. For example, increasing the
amount of training from 7 to 8 minutes led to an increase
in the AUC of less than 1%.

VI. SUMMARY AND CONCLUSIONS

This paper presents a novel application of Page’s CUSUM
test to the malware detection problem, using the test as part
of a decentralized malware detection system (MDS) that uses
a data fusion center (DFC) to process decisions made by the
local detectors to determine whether a host is infected with
malware. The paper poses the malware detection problem as a
quickest detection problem and describes a novel application
of sequential detection techniques and data fusion rules to infer
the presence of malware.

The paper presents the results of a case study designed
to test the effectiveness of the described MDS in detecting

malware on a virtual machine host experiencing heavy and
diverse computational load. The results demonstrated that the
MDS was capable of quickly detecting a majority of the
malware with no false alarms on the described testbed. We
believe these results demonstrate the promise of both quickest
detection algorithms and the described MDS architecture as
potential solutions to the malware detection problem.

We identified potential avenues for future work, including
an exploration of alternate fusion rules, expansion of the
system to perform classification, and the inclusion of addi-
tional features to use for malware detection. Furthermore,
additional testing of the MDS under different load conditions
and on different hosts would be useful for determining the
applicability of the described approach to other systems. We
will continue to explore some of the questions posed here in
our continuing effort to build an adaptive host-based malware
detection system that is robust in detecting new malware that
are behaviorally similar to known malware and obfuscated
variants of known malware.

REFERENCES

[1] P. Szor, The Art of Computer Virus Research and Defense. Addison
Wesley Professional, Feb. 2005.

[2] B. Pollak, Ultra-Large-Scale Systems: The Software Challenge of the
Future. Software Engineering Institute, Carnegie Mellon, 2006.

[3] O. Sukwong, H. Kim, and J. Hoe, “An empirical study of commercial
antivirus software effectiveness,” Computer, vol. PP, no. 99, p. 1, 2010.

[4] M. Christodorescu and S. Jha, “Testing malware detectors,” SIGSOFT
Softw. Eng. Notes, vol. 29, pp. 34–44, July 2004.

[5] C. Nachenberg, “Computer virus-antivirus coevolution,” Commun. ACM,
vol. 40, no. 1, pp. 46–51, 1997.

[6] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware:
from a survey towards an established taxonomy,” Journal in Computer
Virology, vol. 4, pp. 251–266, 2008, 10.1007/s11416-008-0086-0.

[7] D. Gryaznov and J. Telafici, “What a waste - the av community dos-ing
itself,” in Proc. of the Virus Bulletin Conf. McAfee Avert Labs, 2007.

[8] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes - Theory
and Application. Prentice-Hall, 1993.

[9] M. Schultz, E. Eskin, F. Zadok, and S. Stolfo, “Data mining methods
for detection of new malicious executables,” in Security and Privacy,
2001. S P 2001. Proceedings. 2001 IEEE Symposium on, 2001, pp. 38
–49.

[10] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantics-aware malware detection,” Security and Privacy, IEEE Sym-
posium on, vol. 0, pp. 32–46, 2005.

[11] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual, dec. 2007, pp. 421 –430.

[12] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security, vol. 6, no. 3,
pp. 151–180, 1998.

[13] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis
of malware behavior using machine learning,” Journal of Computer
Security, 2011.

[14] T. Lee and J. J. Mody, “Behavioral classification,” in Proceedings of the
15th European Institute for Computer Antivirus Research (EICAR 2006)
Annual Conference, 2006.

[15] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: using system-centric models for malware protection,”
in Proceedings of the 17th ACM conference on Computer and
communications security, ser. CCS ’10. New York, NY, USA: ACM,
2010, pp. 399–412.

[16] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 14th ACM conference on Computer
and communications security, ser. CCS ’07. New York, NY, USA:
ACM, 2007, pp. 116–127.

[17] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A. Kemmerer,
“Behavior-based spyware detection,” in Proceedings of the 15th
conference on USENIX Security Symposium - Volume 15. Berkeley,
CA, USA: USENIX Association, 2006.

[18] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dynamic
spyware analysis,” in 2007 USENIX Annual Technical Conference on
Proceedings of the USENIX Annual Technical Conference. Berkeley,
CA, USA: USENIX Association, 2007, pp. 18:1–18:14.

[19] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in Security and Privacy, 2007. SP ’07. IEEE
Symposium on, may 2007, pp. 231 –245.

[20] A. Slowinska and H. Bos, “Pointless tainting?: evaluating the
practicality of pointer tainting,” in Proceedings of the 4th ACM
European conference on Computer systems, ser. EuroSys ’09. New
York, NY, USA: ACM, 2009, pp. 61–74.

[21] R. Moskovitch, Y. Elovici, and L. Rokach, “Detection of unknown
computer worms based on behavioral classification of the host,”
Comput. Stat. Data Anal., vol. 52, pp. 4544–4566, May 2008.

[22] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
“Andromaly: a behavioral malware detection framework for android
devices,” Journal of Intelligent Information Systems, pp. 1–30, 2011,
10.1007/s10844-010-0148-x.

[23] E. Stehle, K. Lynch, M. Shevertalov, C. Rorres, and S. Mancoridis,
“On the use of computational geometry to detect software faults
at runtime,” in Proceeding of the 7th international conference on
Autonomic computing, ser. ICAC ’10. New York, NY, USA: ACM,
2010, pp. 109–118.

[24] A. Shabtai, E. Menahem, and Y. Elovici, “F-sign: Automatic, function-
based signature generation for malware,” vol. PP, no. 99, 2010, pp. 1
–15.

[25] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue University, p. 48, 2007.

[26] A. G. Tartakovsky, B. L. Rozovskii, R. B. Blaek, and H. Kim,
“Detection of intrusions in information systems by sequential change-
point methods,” Statistical Methodology, vol. 3, no. 3, pp. 252 – 293,
2006.

[27] H. Wang, D. Zhang, and K. Shin, “Change-point monitoring for the
detection of dos attacks,” Dependable and Secure Computing, IEEE
Transactions on, vol. 1, no. 4, pp. 193 –208, oct.-dec. 2004.

[28] Xin and Xu, “Sequential anomaly detection based on temporal-
difference learning: Principles, models and case studies,” Applied Soft
Computing, vol. 10, no. 3, pp. 859 – 867, 2010.

[29] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1/2, pp. pp. 100–115, 1954.

[30] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion
detection,” ACM Trans. Inf. Syst. Secur., vol. 3, pp. 186–205, August
2000.

[31] H. V. Poor and O. Hadjiliadis, Quickest Detection. Cambridge, 2009.
[32] J. Chen and A. K. Gupta, Parametric Statistical Change Point Analysis.

Birkhauser, 2000.
[33] G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel.

Addison Wesley Professional, 2005.
[34] D. Teneketzis, “The decentralized quickest detection problem,” in De-

cision and Control, 1982 21st IEEE Conference on, vol. 21, dec. 1982,
pp. 673 –679.

[35] Dionaea. [Online]. Available: http://dionaea.carnivore.it
[36] Microsoft, “Microsoft server products.” [Online]. Available: www.

microsoft.com
[37] “Drupal content management system.” [Online]. Available: http:

//drupal.org/
[38] B. Quintero. (2012) Virustotal. [Online]. Available: www.virustotal.com
[39] N. Smirnov, “Tables for estimating the goodness of fit of empirical

distributions,” Annals of Mathematical Statistics, 1948.
[40] R. Blum, S. Kassam, and H. Poor, “Distributed detection with multiple

sensors ii. advanced topics,” Proceedings of the IEEE, vol. 85, no. 1,
pp. 64 –79, jan 1997.

[41] W. Chang and M. Kam, “Asynchronous distributed detection,” Aerospace
and Electronic Systems, IEEE Transactions on, vol. 30, no. 3, pp. 818
–826, jul 1994.

[42] A. Hussain, “Multisensor distributed sequential detection,” Aerospace
and Electronic Systems, IEEE Transactions on, vol. 30, no. 3, pp. 698
–708, jul 1994.

[43] J. Thomas, “Nonparametric detection,” Proceedings of the IEEE, vol. 58,
no. 5, pp. 623 – 631, may 1970.

