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Abstract: The recently growing progress in neuroscience research and relevant achievements, as well as
advancements in the fabrication process, have increased the demand for neural interfacing systems.
Brain–machine interfaces (BMIs) have been revealed to be a promising method for the diagnosis
and treatment of neurological disorders and the restoration of sensory and motor function. Neural
recording implants, as a part of BMI, are capable of capturing brain signals, and amplifying, digitizing,
and transferring them outside of the body with a transmitter. The main challenges of designing
such implants are minimizing power consumption and the silicon area. In this paper, multi-channel
neural recording implants are surveyed. After presenting various neural-signal features, we investigate
main available neural recording circuit and system architectures. The fundamental blocks of available
architectures, such as neural amplifiers, analog to digital converters (ADCs) and compression blocks,
are explored. We cover the various topologies of neural amplifiers, provide a comparison, and probe
their design challenges. To achieve a relatively high SNR at the output of the neural amplifier, noise
reduction techniques are discussed. Also, to transfer neural signals outside of the body, they are
digitized using data converters, then in most cases, the data compression is applied to mitigate power
consumption. We present the various dedicated ADC structures, as well as an overview of main data
compression methods.

Keywords: neural recording implant; brain–machine interface; analog front-end; neural amplifier;
low-noise amplifier; chopper stabilization technique; compressive sensing

1. Introduction

In the past decade, researchers have worked on the brain to understand its functions and monitor the
brain’s electrical signals to research, diagnose and treat its disorders, as well as to utilize these signals to
control artificial limbs. Brain–machine interfaces (BMIs) can serve people with different clinical disorders.
For example, researchers have implemented robotic limbs [1,2], speech synthesizers [3], and human
neuroprosthetic control of computer cursors [4–6], utilizing less than 300 electrodes [7]. In addition,
monitoring the bio-potential signals is a fundamental and vital part of a medical diagnostics system.
For this purpose, patients are generally connected to a massive bio-potential acquisition equipment.
However, this limits the patient’s daily routine on the one hand, and on the other hand requires the
long-term arduous monitoring of diagnostics [8]. One of the most promising solutions is to use neural
recording implants as a part of BMI systems, which are in high demand and are being developed and
improved as technology develops.

Inability to record from large numbers of neurons has limited the development of BMI.
Noninvasive methods are capable of recording millions of neurons through the skull, however this
signal is nonspecific and distorted [9,10]. Utilizing electrodes placed on the surface of the cortex,
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an invasive method, records proper signals. However, the disadvantage of this is not being able to
record deep in the brain and they average the activity of thousands of neurons [11]. Invasive techniques
have been utilized by some BMIs. This is because recording single action potentials from neurons
in distributed, functionally-linked ensembles are necessary for the most accurate readout of neural
activities [7]. Therefore, increasing the spatial resolution and the number of electrodes are essential for
developing BMI.

The implementation of a neural recording implant is multi-disciplinary, as it involves the various
scientific fields such as electronics, medical, materials, electrodes, and system integration. Increasing
the number of electrodes and, consequently, the number of channels (in the range of thousands),
creates new challenges for neural recording in the various fields mentioned. Microelectrode technology
is not appropriate for these large-scale recordings [12]. Recently, Neuralink Company has built arrays
of small and flexible electrodes (3072 electrodes per array), which have enabled thousands of channel
recordings [13]. In the microelectronics field, large-scale recordings create many challenges with
regards to decreasing the power consumption and chip area.

In the design of the neural recording implants, the two constraints, the power consumption and
chip area, should be addressed. Implantable circuits should consume very low power to avoid any
damage to the surrounding tissue due to generated heat. Additional challenges in the design of the
analog front-end (AFE) of the neural recording systems arise in advanced and scaled technologies.
The main reason is due to the short-channel effects of MOS transistors. These effects in the MOS
down-scaled technologies decrease the transconductance (gm) of the transistor on one hand and on the
other hand increase the gate leakage current, the flicker, and thermal noise power of an MOS transistor.
This creates challenges in the design of the high gain and low noise neural amplifier, which will be
explained in this paper.

Although there are few reviews on neural recording microsystems and low-frequency low-noise
amplifiers [14–16], a comprehensive review focused on large-scaled neural recording implants and
their challenges was not found in any prior-art publication. To help readers to get involved with the
state-of-the-art and challenges of this rapidly growing field, led us to write this paper.

The remainder of this paper is organized as follows. Section 2 reviews the different types of
neural signals and their properties. Section 3 presents the essential neural recording architectures in
the literature. Section 4 surveys the neural amplifiers. The neural amplifiers are the most challenging
part of a neural recording implants. They must be compact, high gain, low power, and low noise
amplifiers. To satisfy these constraints in the design of the neural amplifiers, various topologies and
techniques are proposed which are presented in the subsections of Section 4. Section 5 covers the
ADCs that are suitable for neural implant applications based on their various architectures. Finally,
Section 6 discusses the data compression methods in neural recording systems and Section 7 presents
the conclusion.

2. Neural Signals

The electrical activities of the brain can be recorded through three different methods: (1) from
the scalp: its corresponding signal is electroencephalogram (EEG); (2) the surface of the brain, which
extracts an electrocorticography (ECoG) or intracranial electroencephalography (iEEG) signal; and
(3) within the brain, which captures the extracellular activities of neurons. The extracted signals from
these methods have a frequency range of a few mHz to 10 kHz and their amplitude is at the range of
20 µV to 10 mV [17].

In the first method, surface electrodes can be used to un-invasively measure the biopotentials of
EEG on the scalp. In contrast, in the second method, the electrodes can be placed directly on the brain
surface invasively to record electrical activity from the cerebral cortex. The brain signals provided
with this method have a dramatically high signal-to-noise ratio (SNR) and are less sensitive to artifacts
than EEG. Furthermore, these signals have high spatial and temporal resolution. Capturing the signal
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inside the body by utilizing implantable electrodes is the most effective approach for direct control of
prosthetic devices [18].

In the third method, a sharp biocompatible microelectrode is utilized to perform bioelectrical
recordings invasively inside the body. By penetrating microelectrodes into the brain, the bioelectrical
activity that is transmitted along the axon of a neuron can either be measured intracellularly in a single
neuron or extracellularly from the brain [19]. The extracellular action potentials (APs) generated by
depolarization of the membrane of the neuron are at the range of 100 Hz to 10 kHz and their duration
is a few milliseconds. The number of occurrences of the APs are between 10 to 120 times per second.
The distance between the active neuron and the recording electrode determines the amplitude of
the extracellular APs, which are between 50 µVpp to 500 µVpp [20]. In the following, the extraction
procedure of the APs (spikes) and the local field potential (LFP) is explained. LFP is the mean field
potential generated by neurons in the vicinity of the electrode.

The neural activities are first amplified after sensing, then are low-pass filtered to obtain the LFP
and are also high-pass filtered to identify the activity of single neurons by using spike detection and
performing sorting algorithms [21]. The LFP includes lower-frequency neural waveforms in the range
of mHz to 200 Hz with an amplitude of 500 µVpp to 5 mVpp. These potentials are used for brain
interfacing applications and carry complementary important information [22,23]. High-pass filtering
extracts the spikes of the nearby neurons on top of background activity. Amplitude threshold methods
are used to detect these spikes. In the next step, the features of the spikes are extracted and sorted
accordingly. Note that the SNR of the neurons located at a distance of 50–100 µm from the electrode is
large enough to easily distinguish the activity of each single unit [24,25].

For neurons located between 100 µm to approximately 150 µm far from the electrode, spikes can
still be detected but their shapes are masked by the noise. These signals are grouped in a ‘multi-unit’
cluster. However, neurons farther than 150 µm from the tip of the electrode cannot be detected and are
added to the background noise.

In addition to the extracellular method, the intracellular procedure is explained in [26]. In this
method, a sharp glass micropipette penetrates into a neuron of a slice of a brain in the laboratory
for neuroscience research. The neurons of the brain slice die after few hours of recording. A metal
electrode located inside the micropipette and in contact with electrolyte is connected to an amplifier.
The amplitude of intracellular APs is in the range of 10 to 70 mVpp. The neural recording parameters
for different signal modalities are summarized in Table 1.

Table 1. Neural signal parameters.

Signal Type Amplitude Bandwidth

Extracellular action potential 50–500 µVpp 100 Hz–10 kHz
Intracellular action potential 10–70 mVpp 100 Hz–10 kHz

Local field potentials 0.5–5 mVpp 1 mHz–200 Hz
Electroencephalogram 10–400 µVpp 1 mHz–200 Hz
Electrocorticography 10–1000 µVpp 1 mHz–200 Hz

3. Neural Recording Architectures

The multi-channel neural recording implants are designed in three main architectures in the
literature and are shown in Figure 1. The most common architecture illustrated in Figure 1a exploits
one analog to digital converter (ADC) that is shared among all channels. Each channel has a neural
amplifier, and the neural signal of each channel is passed to the ADC through an analog multiplexer.
The performance of this multiplexing method, which is also referred to as time division multiplexing
(TDM) method in analog domain, becomes limited when the number of channels increase dramatically.
In order to improve the neural recording spatial resolution, the number of channels increase. This results
in a higher sampling frequency of the ADC and the multiplexer which in turn increases the power
consumption of the ADC and the driving buffers. Since analog signals are more prone to distortion
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due to cross-talk noise in analog multiplexers compared to digital signals, careful design considerations
have to be accounted for the design process. An example of this design is presented in [27].
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Figure 1. Block diagram of different multi-channel neural recording architectures. (a) This architecture
shares an analog to digital converter (ADC) among all of the channels. (b) This architecture utilizes an
ADC for each channel. (c) This architecture shares an ADC at each column.

The architecture shown in Figure 1b utilizes one ADC for each channel. Due to the low bandwidth
of neural signals, the sampling frequency and the power consumption of the ADCs are low. In this
architecture, a digital multiplexer is used, unlike the previous architecture, where an analog multiplexer
is used. The main advantage of utilizing a digital multiplexer is that the power-consuming buffers and
ADC drivers are avoided, and the inter-channel cross-talk noise is eliminated. This is due to the fact
that digital signals have high noise margins and are more stable, compared to analog signals against
cross-talk and other noises. However, this architecture has higher numbers of ADCs and, consequently,
consumes a higher area and power consumption. Therefore, area and power reduction techniques
should be applied in the design process. This architecture is shown in [28].

In the third architecture, unlike the other two architectures in which there is one ADC for all
the channels or one ADC for each channel, one ADC is shared among multiple channels. Figure 1c
shows the block diagram of this architecture, where there are m rows and n columns. As shown in
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this figure, one ADC is assigned to each column with m rows through an analog multiplexer. Since
these multiplexers are smaller compared to the first architecture, the design considerations to avoid
cross-talk is less challenging. As another advantage of this architecture, since the number of ADCs are
dependent on the number of columns (n), choosing an appropriate value for n results in minimum
value of the power consumption and the area, especially when the total number of the channels is very
high. Therefore, as a solution for the large-scale recordings, the architecture of Figure 1c is the best
option. This architecture is presented in [15].

In addition to these main architectures, other non-popular architectures are reported in the
literature where no ADC is involved. As an example, in [29], the analog signals are converted to
time duration using the pulse width modulation (PWM) technique and transmitted to the outside of
the body.

Increasing the number of channels in order to increase the spatial resolution is desirable, however,
it increases the output data rate and the power consumption especially in the transmitter. In order to
decrease the data rate, researchers have proposed different methods to compress the data. One of the
main methods to compress the data that is utilized in neural extracellular activities is done in the time
domain. In this method, only the APs are detected and transferred out of the body. Since the duty
cycle of this method is in the range of 2% to 20%, the data can be compressed by a maximum factor of
50 [28,30]. This method is applicable in both digital and analog domains.

Another compression method that is used in both analog and digital domains is compressive
sensing (CS). This method is simple in its implementation and efficient in compression and is suitable
for neural signals, especially iEEG. In this method, instead of sending all N samples of the neural signal
of each channel, an M linear combination of these samples are sent where M is less than N [31–33].
The compression blocks can be implemented in analog in points A1 and A2 or can be implemented
digitally in points D1 and D2 in various architectures of Figure 1. In Section 6, we explore the compression
methods and their challenges in more detail. In the following sections, we probe the main blocks of these
architectures and their challenges.

4. Neural-Signal Amplifiers

As discussed in Section 2, neural signals have very small amplitude and bandwidth and are
required to be amplified before converting them to digital signals by an ADC. The amplification is done
in AFE with neural amplifiers. Different DC offset voltages are generated across various electrodes
due to the electrochemical reaction at the electrode–tissue interface on each channel. These voltages
vary from 1 mV to 50 mV [15]. The offset voltage of channel can saturate the neural amplifier due to
its very high voltage value compared to the amplitude of the neural signal. Therefore, these offset
voltages should be eliminated. In addition, to design multi-channel neural amplifiers for implantable
applications, the power consumption and chip area should be minimized.

Different noise sources also impose challenges in the design of neural amplifiers. Neural amplifiers
have very low bandwidth. Therefore, the main sources of noise are flicker and thermal noises from the
neural amplifiers, which decrease the SNR in the output of the amplifiers. To achieve the adequate
output SNR, the neural amplifier is designed as an LNA.

Generally, in the design of neural amplifiers, to provide the required signal quality, several factors
should be considered. These factors are sufficient gain, high SNR, appropriate bandwidth, high
common mode and power supply rejection ratio (CMRR and PSRR), low power consumption and low
chip area.

4.1. Neural-Signal Amplifier Topologies

In this paper, we classify the neural amplifier topologies to AC-coupled and DC-coupled neural
amplifiers based on their tissue DC offset cancellation methods. In AC-coupled neural amplifiers,
the DC offsets are blocked using one or two AC-coupling capacitors placed at the input of the amplifier.
To achieve high gain in the amplifier, these capacitors are usually very large. A drawback of this is



Sensors 2020, 20, 904 6 of 29

that the chip area increases significantly and the input impedance decreases. A small-frequency and
well-defined high-pass pole is required to record low-frequency signals while rejecting the tissue DC
offset voltage.

An alternative approach to canceling the tissue DC offset effect is utilizing the DC-coupled neural
amplifiers. This type of amplifier uses a low-pass filter (LPF) in the feedback path (shown in Figure 2)
to generate a high-pass pole as the overall transfer function.
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Figure 2. Implementing a high-pass pole using a low-pass filter in the feedback.

4.1.1. AC-Coupled Neural Amplifiers

One of the most popular neural amplifier topologies is the closed-loop capacitive feedback
amplifier introduced in [34], which is also known as the conventional capacitive feedback network
(CFN) topology [29,35–39]. Figure 3a shows the conventional circuit architecture of this topology.
A large capacitor CI at the input is used to block the tissue DC offset. The gain of this amplifier is equal
to CI

CF
. To implement the high-pass pole, a capacitor CF is set in parallel with a highly resistive element

RF in the feedback path.
The main drawback of this topology is its large area due to the huge input capacitor CI . To achieve

high gain and low-cutoff frequency at the range of 1 Hz and lower, a huge capacitor at the input of
the amplifier is required. This large capacitor (CI) occupies a large chip area and results in reduced
input impedance of the neural amplifier. For this reason, this structure is not suitable for multi-channel
applications. Using two or three gain stages could reduce the size of the capacitors and, consequently,
the chip area, at the cost of increased power consumption.

The total input-referred noise of the amplifier is presented as [34]

V2
ni,amp =

(

CI + CF + Cin

CI

)2

.V2
ni (1)

where CF is the feedback capacitor, CI is the input capacitor, Cin is the OTA input terminal capacitance,
V2

ni is the OTA input-referred noise power and V2
ni,amp is the input-referred noise power of the whole

neural amplifier.
Equation (1) shows that increasing the gain of the neural amplifier, or in other words increasing the

value of CI , for a constant CF, reduces the overall input-referred noise (IRN). In addition, for constant
gain, increasing the sizes of the differential pair transistors on the one hand decreases the IRN power
of the OTA (V2

ni), and, on the other hand, increases the size of the OTA input capacitance Cin which,
according to Equation (1), results in increasing the noise multiplication factor. As a trade-off, there is
an optimum point for the size of the differential pair to minimize the overall IRN power of the neural
amplifier for a specific gain.

By replacing the feedback capacitor CF in the conventional CFN topology shown in Figure 3a to
a T-capacitor network topology in Figure 3b, the total equivalent feedback capacitor is reduced [40].
Therefore, a similar gain is maintained with a smaller CI capacitor. However, this comes at the cost of
increased low-cutoff frequency due to the reduced effective feedback capacitance. In order to maintain
the same low-cutoff frequency, the feedback resistor has to increase. Increasing the feedback resistor,
increases the input referred noise of the whole neural amplifier.
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Figure 3. AC-coupled neural amplifier topologies. (a) Conventional capacitive-feedback network (CFN)
topology. (b) CFN amplifier using T-capacitor feedback network topology. (c) AC-coupling utilizing the
electrode capacitance and a resistive feedback. (d) Open loop network (OLN) topology. (e) Capacitive
amplifier feedback network (CAFN) topology. (f) Miller compensated CFN (MCCFN) topology.

Another topology of the AC-coupled neural amplifier is shown in Figure 3c. In this topology,
a high-pass filter (HPF) followed by a resistive feedback non-inverting amplifier is used to cancel the
DC offset [41]. The HPF is composed of an electrode capacitance and a high resistive PMOS where
the bias current is programmable. The operating point of MP in Figure 3c determines the amount of
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resistance and the low-cutoff frequency. Since the value of the electrode capacitance varies significantly
from one electrode to the other, the low-cutoff frequency is not accurate. In [42], the same structure
is used to design multi-channel AFE to construct a neural signal recording utilizing off-the-shelf
components. This structure is used with an on-chip AC-coupled capacitor in the literature. However,
in these designs, large off-chip resistors or active on-chip resistors implemented with MOS transistors
biased in the subthreshold region are used, which increase the IRN.

Figure 3d shows an open loop network (OLN) topology. It is similar to that of Figure 3c, while
utilizing an open loop amplifier [43]. This topology can consume smaller silicon area compared to
CFN topology, however it suffers from non-accurate gain and also sensitivity to the technology
process deviation.

Capacitive amplifier feedback network (CAFN) topology is another topology that removes the
tissue voltage offset using a coupling capacitor shown in Figure 3e [44]. This structure is a band-pass
amplifier where its midband gain (Am) is calculated by C2C3

C1C4
and its low-cutoff frequency ( fL) is

calculated by C2
R f 1C1C4

. As explained in [44] and [16], C3 has to be maximized to decrease the input

referred noise. For a given gain, the ratio of C3/C4 has to increase and the ratio of C2/C1 has to
decrease. By increasing C3/C4 and decreasing C2/C1, the input referred noise gets close to the CFN
topology of Figure 3a. In conclusion, the added complexity to this structure does not significantly
improve its parameters. Even in some cases, with the same conditions, the noise, power consumption
and chip area of this neural amplifier deteriorates compared to the CFN structure of Figure 3a.

The topology shown in Figure 3f is a Miller compensated CFN (MCCFN) topology, which is
similar to the conventional CFN topology, but it uses two OTAs in series. In some implementations,
such as in [45,46], no Miller compensation capacitors are utilized in the OTAs. However, in other
implementations, such as [47], a Miller compensation capacitor is used in the second OTA (OTA2) to
make the non-dominant pole further away for better stability. In addition, in the design presented
in [16] a Miller compensation capacitor is used in OTA1 to create a double pole in the low-cutoff
frequency. In the design of a single stage neural amplifier with high gain, this topology can provide
a fair trade off between output swing, DC gain, noise, and power consumption. This advantage is
realized by utilizing the OTA2 in this structure, which increases the open loop gain. In addition,
by designing the OTA2 as a high-swing OTA in this structure, we can increase the output swing.
Designing neural amplifiers with this topology (MCCFN) can result in low power and low noise
with a low-noise efficiency factor (NEF) compared to the other topologies. However, in advanced
technologies, where the neural amplifiers are designed in multistage architecture, there is no significant
advantage compared to the conventional CFN topology. Note that high-cutoff frequency in all
AC-coupled topologies of Figure 3 is determined by the frequency response of OTA1.

4.1.2. DC-Coupled Neural Amplifiers

The schematic shown in Figure 4a is the first neural amplifier that uses an LPF in the feedback path
which is based on the block diagram of Figure 2 [48]. The high-cutoff frequency of this architecture is
also realized by the frequency response of OTA1 and its midband gain is obtained from the DC gain of
this OTA. As a result of this feature, no large capacitor ratio is required to obtain high midband gains.
However, the midband gain is affected by strong process variations.

Utilizing an integrator as an active LPF in the feedback path results in a lower area since a smaller
capacitor is required due to the Miller effect compared to the structures that utilize passive LPF.
However, to reduce the IRN, the capacitors CI and CL should be increased, which results in additional
area. In addition, this topology consumes huge amount of power in OTA2 (feedback path) which in
turn reduces the NEF in this topology.
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Figure 4. DC-coupled neural amplifiers utilizing (a) an analog active low-pass filter (LPF); (b) an analog
passive LPF and a differential difference amplifier; (c) analog and digital DC servo loops (DSL); and
(d) input differential pair width modulation by an offset cancellation feedback.
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A single ended configuration is utilized in Figure 4a. This topology has a lower CMRR and PSRR
compared to a fully differential configuration; however, it occupies a lower area, since it only has one
Miller capacitor. Moreover, the resistance of the pseudoresistor shown in Figure 4a varies due to the
high voltage swing at the output and, consequently, alters the high-pass pole. The variation in the
open-loop gain of the OTA1 can also change the high-pass pole.

A DC-coupled neural amplifier topology similar to Figure 4a is shown in Figure 4b [49]. Unlike
Figure 4a, the architecture in Figure 4b utilizes a fully deferential architecture and a passive LPF.
Since this architecture does not exploit the miller effect, a huge feedback capacitor is used to obtain
a high-pass pole at low frequencies. Passive off-chip elements are used in the architecture of [49] that
is not suitable for multi-channel and implantable applications. Since no OTA is utilized in the feedback
path, the noise and NEF are reduced at the cost of a huge feedback capacitor. Note that the feedback
capacitor is implemented off chip, due to the high area.

Figure 4c shows a neural amplifier that utilizes the block diagram of Figure 2 as well to remove the
DC offset of the input signal [8]. However, in this method, the currents are compared in the input instead
of voltages, unlike the two previous topologies. This figure shows an AC-coupled chopper stabilized
instrumentation amplifier (ACCIA), which utilizes a current balancing instrumentation amplifier
(CBIA) block. The coarse-fine servoloop is implemented using a coarse transconductance (CGM), a fine
transconductance (FGM), and an integrator as shown in Figure 4c. In [8], the authors have minimized the
output range of analog fine servo by designing the coarse servo digitally. With this technique, the power
consumption of the fine servo is reduced and the power–noise performance of the ACCIA is improved
when compared to the previous ACCIA reported by the same group in [50]. This design also uses
a CHS technique to reduce noise. However, this design still consumes a large area and has high power
consumption, which is not attractive for multi-channel applications.

The idea of utilizing a digital LPF instead of analog in the feedback path of Figure 2 in order to
avoid utilizing huge capacitors and high-power OTA is proposed in [51,52] and shown in Figure 4d.
In this method, the low-cutoff frequency can be determined more accurately. Also, it can result in
lower area and less power consumption in advanced technologies, and a comparison between the
input signal and the feedback signal is performed by utilizing a DAC and an array of transistors in
a differential pair. This structure modulates and changes the width of the transistor based on the
offset voltage to maintain constant IRN and CMRR. Nevertheless, measurement results show that
these parameters vary with the offset voltage variation. The digital LPF in [51] is designed off chip.
The off-chip implementation of the filter creates an undesired delay to the low-frequency signal path.
This limits the order of the filter to first order and makes it difficult to stabilize the feedback loop.
In [52], a digital LPF is implemented on chip for four channels to eliminate the delay issue. The low
cut-off frequency of this design can be programmed down to 40 Hz.

The authors in [15] also exploit a digital on-chip filter to implement a 56 channels neural recording
implant. In this design, comparing the input signal and the feedback signal is performed directly in the
currents passing through the differential pair with a current steering I-DAC. This design uses a CHS
to reduce the flicker noise, but due to the high power consumption of the blocks and relatively high
bandwidth (10 Hz–5 KHz) compared to fC (≃100 Hz, flicker noise corner frequency), a high NEF (=7)
is observed. Also, in addition to the complexity of this design, the midband gain is very sensitive to
the technology process deviation.

4.2. Multistage Amplifiers

In the literature, there are reports of single stage amplifier designs for biomedical implants that
are mostly implemented as capacitive coupled with the microelectrode sensors [53–57]. One-stage
neural amplifiers face the following challenges. In the case of DC-coupled neural amplifiers that are
generally designed as open loop structures with high gain, the midband gain is very sensitive to
process variation. In addition, the gain variation causes undesired variation in the low-cutoff frequency
( fL). On the other hand, in the case of AC-coupled, very popular and commonly-used conventional
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CFN topology shown in Figure 3a, has the following drawbacks. The midband gain (AM) of such
an amplifier is obtained by CI

CF
. For a specific and fixed value of AM, the minimum possible value is

chosen for CF to minimize the CI and, consequently, the chip area. The CF is usually chosen in the
range 100–200 fF to be larger than the neighborhood parasitic capacitances. Therefore, to have a high
gain, the CI has to be increased AM times greater than the CF, which results in a huge chip area and
very low input impedance. Also, the latter factor itself causes attenuation of the neural signal in the
input of the amplifier, which in turn reduces the total gain of the amplifier and the CMRR. Furthermore,
in the scaled and advanced technologies, the transconductance (gm) reduces due to short-channel
effects of MOS transistors, which creates challenges and difficulties in designing high gain OTAs.

To overcome these challenges, amplifiers are designed in two or three stages in the AFE of the
neural recording systems. Utilizing AC-coupled multistage amplifiers reduces the input capacitors’
value that leads to a reduction in the chip area at the expense of slightly increasing the power
consumption. A few examples of such multistage amplifiers are provided in [58–62].

In order to have low IRN, the first stage is designed as a low noise amplifier (LNA). The other
stages (i.e., the second and third stages) are designed to provide enough gain and linearity. Also,
tuning the gain, as well as the fL and fH , is carried out in the second or third stages. Although it
may be observed in [37] that fL and fH are tuned in the first stage of the neural amplifier, this is not
desirable as it affects the IRN.

It has been proven by Isoperimetric Theorem in mathematics that for two or three-stage AC-coupled
amplifiers (assuming that the main area of the neural amplifier is consumed by the capacitors),
the maximum total gain for a specific area or the minimum area for a specific total gain is obtained
when the gains at all stages are equal. However, further design considerations, such as lowering
the IRN, causes the first stage of the neural amplifier, which is an LNA, to be designed with higher
gain compared to the other stages [37,63].

Another challenge seen in both single-stage and multistage amplifiers (in the second or third stage)
is that the high output swing of the OTA varies the feedback resistance of the MOS pseudoresistor
in the CFN topology of Figure 3a. This variation increases the non-linearity of the amplifier and
consequently increases the distortion and makes the high-pass pole frequency variable with time [64].

Figure 5a illustrates a solution to this problem that is exploited in [65–67]. In these designs,
the front-end amplifiers are composed of two stages, in which the second stage utilizes a source
follower such as that in Figure 5a to provide a constant voltage for the gate-source terminals of the
MOS pseudoresistors, while the output swing is high. This technique increases the linearity of the
amplifier significantly.

Nowadays, many designed and proposed front-end amplifiers have two or three stages.
The design in Figure 5b utilizes of two stages [65,66]. The gain of the first and second stages are
as 39 and 14, respectively. To increase the linearity in the first stage, NMOS transistors are used
as pseudoresistors and in the second stage as shown in this figure, NMOS and PMOS transistors
accompanied by a source follower, are used. The pseudoresistors are all thick-oxide transistors, which
provide higher resistance compared to the standard CMOS transistors. The high-pass pole frequency
is adjusted with the bias current of the source followers in the second stage. This happens while,
the low-pass pole frequency is determined by CL. This extra and large capacitor is used in [34,36,68],
which, in all of these designs, causes an overhead in the consuming area.

The architecture shown in Figure 6a utilizes three stages for amplification [63]. The first stage is
an LNA, the second stage is band-pass filter where the low and high-cutoff frequencies are adjusted.
The third stage behaves like a variable gain amplifier (VGA) and a buffer. The gains of the first, second,
and third stages are 50, 2, and 5, respectively. As illustrated in Figure 6b, the second stage utilizes
a current-controlled pseudoresistor, that uses a cross-coupled architecture to provide a symmetrical
resistance with high linearity in the range of 0.2 V. This voltage is at the voltage swing range of the
second stage. The low-cutoff frequency of these circuits is determined by the bias current of the current
sources, while altering the value of CL2 tunes the high-cutoff frequency.
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Figure 5. Improving the linearity of a CFN amplifier utilizing (a) source-followers (SF). (b) Two gain
stages employing the proper NMOS and PMOS pseudoresistor and SFs.

�

�

�

�

�

�

C11

C11

C12

C12

C21
C22

CL2

C31

C323

C322

C321

CL

R12

R11

R3

R2

VIN+

VIN-

Vout

VREF

VREF

VREF

Low-noise amplifier Band-pass filter VGA and Buffer

VCTL_VGA_2

VCTL_VGA_1
C32

(a)

Figure 6. Cont.



Sensors 2020, 20, 904 13 of 29

�

�

C21

CL2

C22

MA MB

Vin

VREF

Vout

MBA MBB
ITune,A ITune,B

(b)

Figure 6. (a) Schematic of a three-stage amplifier. (b) Second-stage amplifier tunes the high and
low-cutoff frequency.

4.3. Noise Reduction Techniques

As illustrated in Table 1, the amplitude of the neural signals are very low; therefore, to achieve
a high SNR, the first stage of a multistage neural amplifier should be an LNA. Since the noise in the
second and third stages of the amplifiers is divided by the squared gain of previous stages, the input
referred noise of these stages is less important [69]. The noise efficiency factor (NEF) is a widely used
figure of merit and is presented as [70]

NEF = Vni,rms

√

2Itot

π.UT .4kT.BW
(2)

where Vni,rms is the input referred rms noise voltage, Itot is the total supply current of the amplifier,
and BW is the amplifier bandwidth (in Hz). To compare LNAs with a different IRN, power consumption
and bandwidth, NEF is utilized and the smaller NEF is better.

To reduce the noise of LNAs, we explain circuit and systematic approaches in the following subsections.
Both of these approaches are applicable to AC and DC-coupled neural amplifiers. IRN and NEF in different
topologies are calculated and compared together in [16]. However, since the conventional CFN topology
of Figure 3a is more appropriate and popular for multi-channel neural recordings compared to other
topologies, we focus more on this topology in this paper.

4.3.1. Circuit Techniques

The IRN value of an OTA varies based on its architecture. For example, a two-stage OTA (or
Miller OTA) could have a lower IRN compared to folded cascade architecture, due to the lower number
of transistors in the first stage. However, in general and in the same condition of bias current and
transistor sizes, the differential pair transistors have a maximum contribution in the IRN value of
various OTA architectures. Also, the transistor of the tail current source (the current source that
is connected to the differential pair) in all architectures as well as in the cascode transistors in the
telescopic or folded cascode architectures has the minimum contribution in the IRN value.

As presented in Table 1, neural signals have very low frequency components and small band width.
For the frequencies higher than the corner frequency ( fc) in an LNA, the thermal noise is dominant
and for the frequencies lower than ( fc), the flicker noise is dominant, where both of these noises should
be mitigated. For example, in [34] and [48] , ( fc) is reported as 100 and 300 Hz, respectively. In [14],
the IRN of the thermal noise is calculated and tabulated for different OTA architectures. Equation (3),
presents the flicker noise power of a MOS transistor [71].
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V2
n =

K

CoxWL
.
1
f

(3)

where Cox is the gate oxide capacitance per unit area, and K is a process dependent constant for a MOS
transistor. W and L are the width and length of a MOS transistor, respectively. To reduce the flicker
noise power of an OTA, the differential pair transistors should be a PMOS type, which have lower K
compared to the NMOS transistors and according to Equation (3), the size chosen should be large.

In addition, based on the IRN equations of the thermal and flicker noise in various OTA
architectures, increasing the transconductance of the differential pair (gm) compared to other transistors
reduces the IRN that corresponds to both thermal and flicker noise. Therefore, by biasing the differential
pair in the subthreshold region, the gm of these transistors could be maximized. This can be achieved
by increasing the W/L ratio of the differential pair for a constant bias current. Increasing the W/L
ratio also decreases the flicker noise of the differential pair.

As explained in Section 4.1.1, for the CFN topology, increasing the CI based on Equation (1),
increases the midband gain of the neural amplifier and results in a reduction of the IRN. This is why
the gain of the first stage (LNA) is usually designed to be significantly higher than the following stages.
Also, for a given gain, increasing the width of the differential pair, decreases the flicker noise power of
the OTA in Equation (1) on one hand, and increases the Cin on the other hand. Therefore, as a trade
off, there is an optimum point for the W where IRN is minimized. The low noise neural amplifier
in [34,63,65,72] has been designed to consider the circuit noise reduction techniques explained in this
section, but without considering the systematic technique of the following section.

4.3.2. Systematic Technique

The neural signal contains important information in the low frequency range (i.e., less than fc).
In this frequency range, the flicker noise is dominant and, to reduce its effects, the chopper stabilization
(CHS) technique is usually used [73,74]. The CHS technique operates as follows.

Utilizing up-modulation by the first chopper, CHS transposes the neural signal to a higher
chopping frequency ( fch) where the 1/f noise is not available. In the next step, the amplifier amplifies
the signal while adding its 1/f noise and offset. The second chopping modulates up the offset and 1/f
noise to fch while the signal is demodulated back to the baseband. A LPF extracts the original signal
with a much higher SNR.

CHS can be used in both AC and DC-coupled amplifiers. Examples of utilizing this technique for
DC-coupled amplifiers are shown in [8,15,50]. However, in this section, we will further explore the
CNF topology of Figure 3a. This is because this topology is more appropriate for multi-channel neural
recordings and is more commonly used.

In practice, implementing the CHS technique is challenging. The fact that the chopping switches
are not ideal, as well as the amplifier, which has offset, limited gain and bandwidth, creates challenges
in the design process. Utilizing the CHS technique in a designed LNA with the CFN topology of
Figure 3a for the same capacitor size does not reduce the noise at low frequencies, but rather it increases
it. The reason for this is explained in [75]. Figure 7a shows the amplifier utilized in [75] with the input
and output chopper switches and the IRN of OTA. The input chopper switches, accompanied by the
OTA input parasitic capacitance (such as the switched capacitor circuits), can be modeled as a resistor,
with a value that can be calculated as

Req =
1

fchCin
(4)

where Cin is the OTA input parasitic capacitance and fch is the chopping frequency. The total noise
of the neural amplifier, when transferring the OTA noise to the input of the neural amplifier by
considering the effect of the resistor and other capacitors, could be presented as
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Figure 7. Chopper stabilization (CHS) technique in the CFN neural amplifiers. (a) Noise model of
a neural amplifier when the first chopper is placed in front of the OTA; (b) Utilizing an impedance
boosting feedback circuit to increase the amplifier input impedance.

This equation shows that reducing the total IRN of the amplifier requires a huge CI capacitor.
The capacitance value of the CI in [75] and [76] are reported as 300 pF and 1 nF, respectively. These
large capacitors increase the area and also decrease the input impedance of the neural amplifier.
The latter factor reduces the CMRR and also increases the effect of the main interferences on the
system [77]. To improve the input impedance of this neural amplifier, an input impedance boosting
circuit is utilized in [75,76] as shown in Figure 7b. The operation of this circuit is such that a larger
portion of the input capacitor current is provided by the output of the OTA through positive feedback.
This technique increases the input impedance in [75] from 400 MΩ to 2 GΩ at 1 Hz.

Two other challenges regarding the chopper amplifiers are reducing the output ripple and their
residual offsets [75,78]. The offset voltage of the OTA causes the ripple. When the offset voltage becomes
amplified after up modulation, it can even have an amplitude that is greater than biopotential signals;
therefore, it can limit the amplifier’s output headroom. The amplifier designed in [78] senses the ripple
in the output using a ripple reduction loop (RRL), and compensates for the ripple by applying it to
the input through a feedback. Note that since RRL is implemented in analog and works continuously,
it increases the power consumption significantly.

The residual output offset is mainly due to the non-idealities of the CMOS switches in the input
chopper [73]. Clock feedthrough and charge injection creates spikes in the input of the OTA and
they are amplified and presented in the output of the OTA. Then, these spikes are down modulated
with the output chopper and increase the DC at the output, which is called the residual output offset.
The authors in [76] have compensated for the residual offset by embedding the circuit, called DC
servo loop (DSL) in the feedback path. DSL takes samples from the output and provides almost equal
current, but in the opposite direction to the offset current by utilizing a Gm − C filter and applying it to
the input of the chopper. The main drawback of this circuit is that it requires a huge off-chip capacitor
(greater than 10 µF) to decrease the low-cutoff frequency to the appropriate value.

To reduce the power consumption while removing the ripples in [78] and to avoid huge off-chip
capacitor in [76], a new mechanism called a digitally-assisted calibration loops is proposed in [75] that
removes both the ripple and the offset. This mechanism provides a digital implementation of both RRL
and DSL. There are also more examples in the literature that utilize techniques to reduce the charge
injection [79]. Three examples of these techniques that are employed in the chopper amplifiers are
nested chopping, spike filtering, and the use of delayed modulation or a dead-band.

Figure 8a shows the schematic of the nested chopper amplifier [80–83]. As illustrated in the figure,
this architecture utilizes a pair of internal and external choppers, where the frequency of the internal
chopper should be chosen to be greater than 1/f noise corner frequency ( fC). The frequency of the
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external chopper ( fchL), which is a relatively low frequency, can be optimized for the input signal
efficiently. With this technique, [80] has achieved 100 nV offset, with fchH = 2 KHz and fchL = 15.6 HZ.
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Figure 8. (a) Schematic of the nested chopper amplifier technique; (b) Schematic of the Spike
filtering technique.

A spike filtering technique is another approach for reducing the residual offset. As explained
earlier, the charge injection in the MOS switches of the input chopper creates spikes in the output of the
amplifier, which eventually appears in the output of the second chopper as the residual offset in the
frequency spectrum. Therefore, we can assume that these spikes have odd harmonics in the frequency
domain [84]. By filtering these spikes, the residual offset can be reduced significantly. Figure 8b shows
the schematic of this technique used in [85,86].

Unlike the previous method, where a filter is used to reduce the residual offset in the frequency
domain, in the delayed modulation or dead-band technique, the residual offset is mitigated in the
time domain. Figure 9a shows the schematic of the delayed modulation technique. As shown in the
figure, this technique utilizes a modulator M, amplifier A1, and demodulator D. In [87], an amplifier
is used followed by a LPF to shape the spikes and the second chopper with a constant delay is used
(as shown in Figure 9b) to demodulate the spikes. This causes the average of the signal to be zero
which is extracted by a LPF. Another method, which is called dead-band or guard-band, that has
a relatively simpler implementation, is shown in Figure 9c. In this method, there is no modulation
when there is spike in the output signal. This technique is used in [88,89].

Another approach to implementing the CHS technique in the AC-coupled CFN topology, as shown
in Figure 10a, is to use a chopper in front of the input coupling capacitors [60,90]. In this figure, there are
two feedback loops that determine the midband gain and high pass corner of the amplifier. However
the main drawback of this architecture is its low input impedance, which is calculated as

Zin =
1

jωsig(1 + fch/ fsig)CI
(6)

where fch is the chopping frequency and fsig is signal frequency. Increasing the fch causes a more
relaxed implementation of LPF on the one hand, and on the other hand, it reduces the input impedance
according to Equation (6). The input impedance is reported to be about 8 MΩ in [60]. In order to
improve the low impedance of the design in [60,90], a positive feedback loop (PFL) shown in Figure 10b
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is proposed in [91]. This circuit takes samples from the output and then provides a large portion of the
current of the input coupling capacitors. The measurement results show that the input impedance
increases from 6 MΩ to 30 MΩ. Note that due to the presence of parasitic input capacitances, the boost
factor and the original input-impedance are lower than the expected (100 and 8 MΩ, respectively).

Finally, at the end of this section, we analyze [15], as a sample of the DC-coupled neural amplifier.
Figure 11 shows the block diagram of this amplifier, which has 56 channels. In this architecture,
a digital DSL is used in each channel to remove the input DC offset (caused by recording electrodes).
In addition, CHS is used to reduce the 1/ f noise of the LNA. Avoiding huge capacitors in the DC
coupled architecture due to utilizing a digital DSL reduces the chip area. However, due to utilizing
CHS at a much higher bandwidth (10 Hz–5 KHz) than fC (≃100 Hz, flicker noise corner frequency),
it does not present a good noise reduction performance. The reported IRN and NEF are 5.4 µVrms

and 7, respectively, with a offset voltage of 50 mV.
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Figure 9. (a) Delayed modulation technique; (b) delayed demodulation clock diagram; and (c)
dead-band clock diagram.
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Figure 10. Chopper switches placed in front of the AC-coupling capacitors. (a) Circuit architecture
of a neural amplifier, illustrating two loop feedback paths to define the midband gain and high pass
corner; (b) schematic of the capacitively-coupled low noise amplifier (LNA) with the positive feedback
loop for input impedance boosting.
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4.4. Advanced Neural-signal Amplifiers

In this section, we compare and summarize the various mentioned topologies of neural amplifiers
for multichannel neural recording application in Table 2. Also we investigate the noise reduction
techniques in advanced technologies. DC-coupled neural amplifier is not appropriate for large-scale
recording application due to following drawbacks. The high gain value of this amplifier has much
variation due to its open loop implementation. Also it needs a huge capacitor in the feedback path
where it implements a passive analog integrator and dissipates large power where it implements
an active analog integrator. In case of digital implementation of the integrator for each channel,
it consumes relatively large silicon area and power consumption. The best choice is to design the
neural amplifier in two or even three gain stages with AC-coupled CFN topology to obtain the
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necessary gain in lower area. The gain of the first stage should be higher compared to the other
stages to decrease the IRN of the whole amplifier. If achieving the required SNR in the output of
the amplifier is possible by applying the circuit noise reduction techniques, it is not necessary to
utilize the systematic techniques due to its silicon area and power overhead. Otherwise, the first
stage of the neural amplifier as an LNA needs CHS technique to reduce the flicker noise of the LNA.
Applying CHS to decrease the IRN needs to increase the input capacitors value which causes the input
impedance reduction and consequently, CMRR reduction. Input impedance boosting circuit increases
the input impedance by utilizing a positive feedback as mentioned in Section 4.3.2. Furthermore,
offset voltage of OTA causes ripple at the output of the amplifier which can be reduced by the RRL
circuit. Also, the non-idealities of the first chopper switches (charge injection and clock feedthrough)
cause the residual offset which can be compensated by DSL circuit in the feedback path. However,
we presented three methods to decrease the residual offset at the origin in Section 4.3.2. Among these
methods, we suggest the nested chopper technique (Figure 8a), because of its simple implementation
and high performance.

Table 2. Comparison between different topologies of neural amplifiers.

Amplifier
Topology Figure

Ref. Pros Cons

CFN 3a [34]
Accurate gain, suitable for

multistage amplifier
Large cap. area to obtain high gain

CFN with
T-network

3b [40] Input and total cap. reduction Low-cutoff frequency increase

Electrode cap.
and resistive

feedback
3c [41] No need to input cap.

Inaccurate and not adjustable high
pass pole

OLN 3d [43] Small input cap. area Inaccurate gain

CAFN 3e
[44],
[16]

Smaller total cap. area
compared to CFN

Higher power consumption and noise
compared to CFN

MCCFN 3f [45,46]
Higher swing as a single stage
high gain amplifier compared

to CFN

Higher power consumption compared
to CFN, Higher area consumption

compared to multistage CFN

Analog Integrator 4a [48] Elimination of input cap.
Inaccurate gain and Low-cutoff

frequency, Large power consumption

Differential
difference
amplifier

4b [49] Elimination of input cap.
Inaccurate gain and Low-cutoff
frequency, large off-chip passive

components

Analog & digital
DSL

4c [8,50]
Relax analog DSL requirement

due to digital DSL
Large area and power consumption

Differential pair
width modulation

4d [51,52]
Fully-digital DC offset

rejection
IRN and CMRR variation with input
offset variation, complexity overhead

Fully-digital DSL 11 [15]
Fully-digital DC offset

rejection
Inaccurate gain, high power

consumption and NEF

5. Analog to Digital Converters

The amplified neural signals are converted to digital by an ADC as shown in Figure 1, before
transmitting it out of the body. This is because the digital data is very tolerant of noise and other
interferers, compared to analog signals. As the neural signals have very low bandwidth and require
low power consumption for implant applications, successive approximation architecture analog to
digital converters (SAR ADCs) are one of the best options. This ADC utilizes digital to analog converter
(DAC) and successive approximation register (SAR) blocks. Most of the neural recording systems
utilize an 8 to 10 bit resolution SAR ADC [92], however in [93], the resolution of the ADC is adaptively
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configured by the activity of the input neural signal, to save the power and compress the data. Figure 12
shows a SAR ADC which uses charge redistribution between the capacitors. Also, two sub DACs are
utilized to decrease the total amount of capacitance and consequently reduces the total area [15,65,94].
This ADC is suitable for neural recording architectures shown in Figure 1a,c which use one or several
ADCs for all of the channels. Due to their large area and high-power consumption, this ADC is not
suitable for the architecture shown in Figure 1b where each channel uses one ADC. For this purpose,
the authors in [95] propose an improved SAR ADC shown in Figure 13a. The output bits of this
ADC are extracted in serial. In addition, this structure exploits binary search algorithm as shown in
Figure 13b.
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Figure 12. Differential 8-bit SAR ADC.
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Figure 13. Modified successive approximation architecture analog to digital converters (SAR ADCs)
for single-channel application. (a) Block diagram of the modified SAR ADC; (b) Schematic of binary
search algorithm.
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Although, in general, SAR ADC is a common architecture used in neural recording implants,
the use of other ADC architecture is sometimes presented in the literature. For example, a logarithmic
pipeline ADC with 8 bit resolution is used in [39]. The logarithmic encoding is used to represent the
high dynamic range with a short word length. Another neural recording system with 256 channels is
shown in [96]. In order to reduce the area and power consumption, an 8 bit resolution single slope
ADC is used for each channel. The ramp generator and counter are shared between all channels in
this architecture. The authors in [97] introduce a 10-bit resolution dual mode SAR and single-slope
ADC for neural recording application. In the normal mode, the ADC works as a SAR ADC to quantize
the extracellular action potential. In the compression mode, to reduce the dynamic power, the ADC is
configured to single-slope and it processes just essential parts of spike waveforms.

Sigma-Delta modulators are also utilized in neural recording applications due to the low-frequency
bandwidth of neural signals [98,99]. Sigma-Delta modulators operate based on oversampling data
conversion. Therefore, although this data converters can be low power, they can increase the power
consumption in the subsequent circuits especially in the wireless transmitter due to increasing the
output data rate of Σ∆ modulators much higher than Nyquist-rate ADCs. However, as mentioned
earlier, the charge redistributed SAR ADC is the best data converter option for multi-channel neural
recording implants.

6. Data Compression

Increasing the number of channels improves spatial resolution on the one hand, and on the
other hand, increases the output data transfer rate and power consumption, especially in the wireless
transmitter. One of the methods to decrease the power consumption is to decrease the data transfer
rate by reducing the data redundancy, which is called data compression. Since the encoders of the
compression methods are implanted on the brain, the method that has a simpler encoder in terms of
consuming less area and power is desirable.

As mentioned earlier in Section 3, CS is a compressing technique that efficiently acquires and
reconstructs a bio-signal, especially EEG and iEEG signals. CS is only used for bio-signals that are
sparse in time or other domains. Luckily, most of the bio-signals are sparse in the time, Gabor or
wavelet domains [100,101], which makes them suitable to use CS. Data reconstruction can be achieved
with far fewer samples compared to the Shannon–Nyquist sampling theorem by utilizing optimization
methods and by exploiting the sparsity of the signal.

The core of CS encodes an N-dimensional sampled input signal (X) into an M-dimensional sequence
of measurement (Y) through a linear transformation by the M × N measurement matrix Φ, where
Y = ΦX. In this matrix equation, M is less than N (M < N) that represents the compressing of data
from N sample to M sequence. There are an infinite number of feasible solutions for X, as the equation is
underdetermined. Assuming X is sparse, the sparsest solution is often the correct solution with high
probability. As presented in [102], employing a random measurement matrix Φ, as a universal encoder
as well as large enough input samples X is required to perform signal reconstruction of any sparse signal.
A general approach to facilitating an efficient circuit implementation of Φ is to utilize a pseudo-random
Bernoulli matrix where each entry φm,n is ±1 [103,104].

As shown in Figure 14, a CS encoder can be implemented in both an analog and a digital domain.
Figure 14a demonstrates the block diagram of an analog implementation of a CS encoder presented
in [72,94,105,106]. The sparsity of the EEG signal in the Gabor domain is utilized in [94] and the design
in [72,105,106] exploits the spatial sparsity of the iEEG signals recorded from the electrodes of the
sensor array. The CS core block diagram in the digital domain is shown in Figure 14b. The sparsity of
the neural signal in the Gabor domain is utilized in [107–112] and implements the CS encoder digitally.

Another signal compression method, which is suitable for extracellular recordings, is presented
in the literature [28,30]. This compression method is based on the sparsity of APs in the time domain.
Since most of the information corresponding to the extracellular activities that are sensed and captured
by the microelectrodes are in the APs, and the duty cycle of the APs is between 2% and 20%, it is
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sufficient to detect only the APs and transfer them out of the body [14]. As the waveform of the
APs captured by different neurons in a microelectrode are different, we can exploit the features of
these waveforms for the subsequent processes such as spike sorting. These waveform features could
be for the time of occurrence and the maximum and minimum amplitude value. Note that the best
performance is achieved when complete waveform representations are available [113,114].
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Figure 14. Block diagram of compressive sensing (CS) core of (a) an analog implantation (b) a digital
implantation.

An analog compression block is usually placed after the neural amplifier. Therefore, the neural
signals have a relatively high voltage amplitude. One of the simplest methods for detecting and
extracting the location of the APs is using a comparator in order to compare the neural signals with
a threshold voltage [115,116]. The APs are detected while the neural signal cross the voltage threshold.
The implementation of the detection circuit is simple in both the analog and digital circuits. However,
in this method, we can only capture a portion of the AP that is above the threshold and the rest are
neglected. Furthermore, accurate detection of this method is only feasible for high SNR [117]. To optimize
the detection rate, the threshold voltage is chosen very carefully based on the level of the noise in the
channel. This noise consists of background neural noise, flicker noise and thermal noise. Another similar
method which is more effective in raising the detection rate is based on exploiting a bilateral threshold to
consider both positive and negative signal polarities as presented in [28,54,118–120]. Saving a signal in
a buffer and transmitting it with a very short delay allows for the whole waveshape of the APs to be
captured, without missing any portion of them. Employing an SRAM as a data buffering block and the
bilateral threshold technique in [28] improves the accurate detection rate.

In order to improve the SNR and, consequently, to increase the accurate detection rate of the APs,
a pre-processor block is used in the designs in [121,122]. In this method, on one hand the waveform of
the neural activities is emphasized and on the other hand the noise is attenuated to increase the SNR.
This method also helps to choose the threshold voltage easily to detect the APs accurately. In practice,
the implementation methods of the pre-processor in the literature are different. For instance, in [121],
a pre-processor detector and spike sorting system are presented, which operates based on the variance
of the neural signal. Another example is presented in [122], where an energy-based pre-processor is
implemented utilizing low-power current-mode circuits.

Adaptive threshold is also another method to maximize the detection rate [123–125]. In this method,
the threshold of detection is not a constant value and varies dynamically based on the SNR of the neural
signal and the background noise. Moreover, compression and other processes such as spike detection,
feature extraction, and spike sorting can be implemented digitally in digital signal processors (DSPs).
Refs. [126–129] provide samples that exploit DSPs to carry out such processes.

At the end of this section, it is necessary to mention that the application of these methods are
based on the input signals. The CS method is the appropriate method for the EEG and iEEG signals
due to its simplicity of implementation and no need to high SNR. However, for the extracellular neural
activities which is important to extract the spikes for subsequent processes such as spike sorting,
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the data compression method based on the threshold is suitable and the adaptive threshold method
is proposed.

7. Conclusions

In this paper, we briefly explain the necessity of the neural recording, especially the invasive method
of implanting a chip on the brain in the skull. The neural signals and their electrical specifications are also
discussed. The large-scale channel recording requirements, as well as utilizing the advanced fabrication
process, have imposed new challenges in the design of neural recording implants. The two most
important parameters that should be considered in these designs are power consumption and silicon area.
We review the various architectures of neural recording systems and conclude that architecture that
utilizes an ADC for each column is the best option for the very large-scale recording. We provide detailed
explanations of each block of these architectures. The most challenging block of a neural recording
implant is the neural amplifier. Therefore, this block is elaborated in terms of designing a compact,
high gain, low power, and low noise amplifier. We demonstrate several typologies for both AC and
DC-coupled neural amplifiers. Employing a multistage amplifier to obtain high gain and to reduce the
chip area for an AC-coupled neural amplifier is described. Also, various techniques to reduce the noise
of the neural amplifier are discussed in detail. Although SAR ADC is the best choice for neural implant
applications, we provide a complete survey of all other ADCs presented in the literature. In the end,
we evaluate the data compression methods to decrease the output data rate and power consumption.
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