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Abstract. In multi-channel (MC) registration, fusion of structural and
diffusion brain MRI provides information on both cortex and white
matter (WM) structures thus decreasing the uncertainty of deforma-
tion fields. However, the existing solutions employ only diffusion tensor
imaging (DTI) derived metrics which are limited by inconsistencies in
fiber-crossing regions. In this work, we extend the pipeline for registra-
tion of multi-shell high angular resolution diffusion imaging (HARDI)
[15] with a novel similarity metric based on angular correlation and an
option for multi-channel registration that allows incorporation of struc-
tural MRI. The contributions of channels to the displacement field are
weighted with spatially varying certainty maps. The implementation is
based on MRtrix3 (MRtrix3: https://www.mrtrix.org) toolbox. The app-
roach is quantitatively evaluated on intra-patient longitudinal registra-
tion of diffusion MRI datasets of 20 preterm neonates with 7–11 weeks
gap between the scans. In addition, we present an example of an MC
template generated using the proposed method.

Keywords: High angular resolution diffusion imaging · Multi-channel
registration · Fibre orientation distribution registration · Certainty
maps

1 Introduction

The combined analysis of diffusion and structural MRI is extensively used in
adult and neonatal [20] brain studies. Structural MRI has the highest contrast
for the cortex region, while dMRI primarily provides information about white
matter (WM) structures.

The uncertainty of deformation fields in the regions characterised by low con-
trast or homogeneous intensities (e.g., low WM fibre density regions in dMRI) is
one the primary challenges associated with both longitudinal and inter-subject
registration. Multi-channel registration that includes both anatomical and
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diffusion channels has been shown to improve registration and label-propagation
results [2,7,19]. The reported MC registration solutions generally employ frac-
tional anisotropy (FA) [7,8,14,19] or DTI [2,9,13] as an additional channel.
However, DTI-extracted metrics are characterised by inconsistencies in fibre-
crossing regions. On the other hand, higher-order techniques such as constrained
spherical deconvolution (CSD) [21] alleviate some of the limitations of the DTI
model and allow extracting orientation-resolved microstructural information as
so-called orientation distribution functions (ODFs) from HARDI data.

The classical approach for the fusion of information from different channels is
based on simple averaging of individual channel updates [2]. More recently pro-
posed solutions include scalar weighs for ROIs defined by thresholded FA maps
[13] or local certainty maps based on normalised gradients correlated to struc-
tural content [7]. While the detailed overview of the choice of registration met-
rics is out-of-scope of this work, it can be summarised that the published works
on intensity-based multi-channel registration primarily use the sum of squared
differences (SSD) [2,7,8,14] or local normalised cross-correlation (LNCC) [4]
metrics. There is also a reported approach for T1-DTI atlas generation where
datasets are spatially normalized only according to the structural channel [9].

Contributions. In this work we present a framework for multi-channel brain
registration that allows local certainty-based fusion of dMRI-derived ODFs and
structural MRI and is based on a novel similarity metric for dMRI. The solution
is an extension of the multi-contrast ODF registration framework [15,17]. The
novel elements include implementation of local angular correlation (AC) as a
metric for ODF channels, LNCC for structural channels and weighted fusion
based on local certainty maps. The pipeline was implemented in MRtrix3 [22].

The method is evaluated on 20 longitudinal (intra-patient) neonatal MRI
datasets from the developing Human Connectome Project (dHCP)1 which con-
stitutes a particularly challenging task for registration due to the rapid changes
that occur in volume, structure and intensities during brain development. In
addition, we demonstrate an example of a MC template of neonatal brain gen-
erated from 10 datasets (40–43 weeks PMA) using the proposed registration
approach.

2 Method

2.1 Datasets, Acquisition and Pre-processing

The data used for evaluation of the proposed method include 20 longitudinal
datasets of neonates scanned as a part of the dHCP project at St. Thomas
Hospital, London. The gap between the scans is in the range of 7–11 weeks
which is associated with significant changes in volume, myelination and cortical
folding [16]. The postmenstrual age (PMA) at the first scan is within 30–35
weeks.

1 dHCP project: http://www.developingconnectome.org.

http://www.developingconnectome.org
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Each dataset includes two scans with diffusion and structural MRI volumes
acquired on a Philips 3T scanner. The multi-shell HARDI volumes were acquired
with four phase-encode directions on four shells with b-values of 0, 400, 1000 and
2600 s/mm2 with TE 90 ms, TR 3800 ms [10] with 1.5×1.5×3 mm resolution and
1.5 mm slice overlap and reconstructed to 1.5 mm isotropic resolution using the
SHARD pipeline [5]. The structural T2-weighted volumes were acquired using
a TSE sequence with TR = 12 s, TE = 156 ms. The T1-weighted volumes were
acquired using an IR TSE sequence with TR 4.8 s, TE 8.7 ms. The isotropic T2
and T1 volumes with 0.5 mm resolution were reconstructed using a combination
of motion correction [6] and super-resolution reconstruction [11]. All volumes
of the same modality were normalised to the same global intensity ranges. The
tissue segmentations were generated by the Draw-EM pipeline [12].

The preprocessing of the datasets was performed in MRtrix3 including: (i)
decomposition of WM ODF from HARDI data via constrained spherical decon-
volution (CSD) [21] followed by intensity normalisation; (ii) extraction of FA and
mean diffusivity (MD) DTI-metrics; (iii) alignment of the structural to dMRI
volumes based on affine registration of T2 to MD volumes using global NCC met-
ric; (iv) resampling of all channels to 1 mm isotropic resolution with B-Spline
interpolation. In addition, we manually segmented internal capsules (IC) in FA
volumes for all datasets.

2.2 Multi-channel Registration Pipeline

The proposed registration pipeline is an extension of the multi-contrast ODF
registration framework [15,17]. The original method is based on SyN Demons
[2] with an SSD metric and reorientation of ODF using apodized point spread
functions [18]. In order to decrease the sensitivity to acquisition or physiology
related changes in signal intensities, we replace SSD with a novel similarity metric
based on angular correlation [1] and add certainty-maps weighting for fusion of
structural and diffusion channels.

The input channels for each of the cases include: WM ODFs, structural MRI
(T2-weighted and T1-weighted) volumes and FA maps. At first, the cases are
globally aligned using affine registration of structural volumes using the global
NCC metric. Next, we employ symmetric diffeomorphic LNCC demons [3] for
structural and FA channels and local angular correlation metric [1] for ODF
channels. In comparison to the classical ODF registration approach based on
SSD metric in [15], using AC provides a more robust solution since it is less
susceptible to the local changes in signal intensities while preserving directional
information. However, unlike SSD, AC might be affected by the noise in the
directional information.

Angular correlation rA between two ODFs FODF and GODF represented
with real valued spherical harmonic (SH) orthonormal basis functions Ylm(θ, φ)

FODF (θ, φ) =

∝∑

l=0

l∑

m=−l

flmYlm(θ, φ), GODF (θ, φ) =
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l=0

l∑

m=−l

glmYlm(θ, φ)

(1)
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is computed as [1]:
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where glm and flm are the SH coefficients of GODF (θ, φ) and FODF (θ, φ) of
order L with even l = {2, 4, ..., L} harmonic degree terms, correspondingly. The
l = 0 term does not contribute to AC values.

Since this is a correlation metric, the corresponding symmetric updates to
the displacement fields ΛF and ΛG can be computed in a similar manner to
LNCC demons [3] but with respect to the 4D ODFs rather than only the 3D
local neighbourhood (Eq. 3).
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where G = {gn
lm}l=2,...,lmax,m=−l,...,l and F = {fn

lm}l=2,...,lmax,m=−l,...,l are the
vectors of SH coefficients at a given location in the 3D volume space with local
neighbourhood n = 1, ..., N . We refer to this registration metric as local angular
cross-correlation (LAC).

The updates from the structural channels are computed similarly to [3]. We
also consider Y00(θ, φ) as a separate channel and use the LNCC metric for its
contributions since it is excluded from the AC metric formalisation (Eq. 2).

The contributions from each of the channels i to the global symmetric dis-
placement field update Λglobal are locally weighted with respect to the 3D cer-
tainty maps based on the approach proposed in [7]. At first, the certainty maps
αF

i and αG
i are computed from the original volumes F and G for each of the

channels (including structural and ODF volumes) and normalised as:

αF
i = ‖ ∇FT

i ∇Fi ‖, α̂i
F =

αF
i

max(αF
i )

(4)

Then, the global symmetric updates to the displacement fields are computed
by weighted averaging of the channel-specific update fields with respect to the
certainty maps:

ΛF
global =

∑
i α̂i

F
ΛF

i∑
i α̂i

F
, ΛG

global =

∑
i α̂i

G
ΛG

i∑
i α̂i

G
(5)

Figure 1 shows an example of the certainty gradient maps α̂i for structural,
FA and one of the ODF component channels and the

∑
i α̂i of all channels.

This approach ensures that the output deformation fields are defined by the
contribution of the local channel regions with the highest structural content. This
is relevant for the ROIs where one of the channels has low intensity contrast. In
comparison, the multi-variate SyN (MVSyN) approach [2] is based on averaging
of the individual channel updates.
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Fig. 1. An example of the certainty maps α̂i for T2, one of the ODF component
channels (lmax = 2), FA, and the sum of all channels (

∑
i
α̂i).

2.3 Implementation Details

The method was implemented in MRtrix3 [22]. The new elements include: LAC
metric for ODF registration and certainty-based weighting of the channels. In
addition, we transferred ANTs2 implementation of LNCC Demons metric [3] to
MRtrix3 for registration of structural, Y00(θ, φ) ODF and FA channels.

It was experimentally identified that multi-resolution {0.5; 0.75; 1.0} and SH
order lmax = {0; 2; 4} schemes and 3 voxel radius for the local neighbourhood
for both structural and ODF channels are optimal for deformable registration of
the investigated datasets. We used the standard MRtrix3 regularisation of gra-
dient update and displacement fields based on Gaussian smoothing with 1 voxel
standard deviation. The MRtrix3 parameter settings employed for generation of
the multi-channel template are based on the pipeline formalised in [16].

3 Experiments and Results

3.1 Longitudinal Registration Study

For each of the investigated 20 cases, we performed a set of longitudinal (intra-
patient) registrations with different settings including different combinations
of channels {T2; FA; T2+FA; STR (structural: T1+T2); ODF; ODF+STR;
ODF+STR+FA} and similarity metrics {SSD; LNCC; LAC}. The channel
weighting options include average and weighted: {A-; W-}. The employed param-
eter settings are given in Sect. 2.3.

The MRtrix3-based implementation of LNCC Demons [3] is based on the
ANTs toolbox and provides similar performance for structural registration.
Therefore, we compare the proposed method directly to the existing MRtrix3
registration module. The main aim is an improvement of the combined quality of
label propagation and image similarity for the structural and diffusion channels.

Table 1 presents the results of the comparison study. The quantitative evalu-
ation is performed with respect to the quality of label propagation (Dice score)
and similarity of the registered ODF volumes. The labels include: cortical grey

2 ANTs: http://stnava.github.io/ANTs.

http://stnava.github.io/ANTs
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matter (C-GM), hippocampus (HIP) and internal capsule (IC). The intensity-
based similarity is assessed in terms of ODF AC (Eq. 2) for lmax = 4. The best
performance results are highlighted in blue.

Firstly we can observe that locally weighted fusion [7] of T2 and FA improves
the combined results while slightly lowering the dice score for cortex compared
to single channel T2.

Table 1. Quantitative evaluation of the proposed multi-channel registration approach
on longitudinal dMRI datasets of 20 neonates: Dice coefficient for brain tissue labels
and AC between ODF volumes.

Channels/metrics IC CGM HIP ODF AC

ANTs LNCC demons: single-channel registration [3]

T2:LNCC 0.676 ± 0.021 0.724 ± 0.034 0.794 ± 0.027 0.427 ± 0.035

FA:LNCC 0.686 ± 0.021 0.569 ± 0.031 0.770 ± 0.025 0.348 ± 0.040

ANTs LNCC demons: MC registration with certainty map weighting [7]

T2+FA:W-LNCC 0.686 ± 0.036 0.700 ± 0.034 0.800 ± 0.023 0.429 ± 0.037

MRtrix3 MC Syn demons (SSD): registration of ODFs [15,17]

ODF:SSD 0.710 ± 0.019 0.619 ± 0.045 0.784 ± 0.026 0.422 ± 0.045

ODF+STR:A-SSD 0.667 ± 0.116 0.628 ± 0.047 0.768 ± 0.072 0.413 ± 0.054

MRtrix3 LAC/LNCC demons: MC registration of ODFs and structural volumes with certainty

map weighting (proposed method)

ODF:LAC 0.709 ± 0.022 0.661 ± 0.041 0.788 ± 0.032 0.448 ± 0.039

ODF+STR: A-LAC/LNCC 0.709 ± 0.020 0.678 ± 0.039 0.799 ± 0.028 0.451 ± 0.039

ODF+STR:W-LAC/LNCC 0.713 ± 0.023 0.689 ± 0.038 0.803 ± 0.027 0.455 ± 0.038

ODF+STR+FA:W-LAC/LNCC 0.714 ± 0.022 0.677 ± 0.039 0.800 ± 0.028 0.454 ± 0.039

In general, myelination and cortical folding occurring during 7–11 weeks
period significantly change local intensities in both structural and diffusion MRI
data [16]. Therefore, even though all input volumes were normalised, using SSD
metric for ODF or structural MC registration leads to the lower quality results in
comparison to the proposed LAC metric which produced statistically significant
(p < 0.05) improvement for C-GM and HIP Dice scores and ODF AC, while
there was not a significant difference in Dice scores of IC.

Figure 2 demonstrates an example of the original and transformed WM ODF
SH coefficients (l = 2, m = 0) for longitudinal registration of 31 to 42 weeks
PMA datasets. There is a clear difference in the magnitude of SH coefficients
between the original scans. Using MC registration with LAC for ODF and LNCC
for structural channels produces visually sharper results for the IC region in
comparison to both classical SSD ODF registration [15,17] or fusion of T2 and
FA [7]. This is in agreement with the higher AC values reported in Table 1.

Furthermore, there is a clear indication that additional structural channels
(in this case T1+T2) and certainty-based weighting increase the quality of label
propagation and AC similarity of ODF volumes. Adding the FA channel did not
significantly affect the results since ODFs contain the WM structure information.
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Fig. 2. An example of longitudinal intra-patient registration for 31 =⇒ 42 weeks PMA
datasets. Difference between the original and transformed WM ODF SH coefficients
(l = 2, m = 0) for the classical ODF registration with SSD metric, weighted MC
registration of T2+FA channels with LNCC metric and weighted MC registration of
ODF+T1+T2 channels with LAC and LNCC metrics.

All ODF-based options resulted in approximately the same range for the IC
Dice score values due to its high contrast and showed significant improvement (p
< 0.05) in comparison to using the FA and T2 channels only. Apart from the IC
values for ODF registration, the improvement in performance of the proposed
method (ODF+STR: W-LAC/LNCC) in comparison to the baseline methods
(structural LNCC Demons, ODF MRtrix registration as well as fused T2+FA)
is statistically significant with p < 0.05.

An example of symmetric LAC+LNCC MC registration for 31 ←→ 42 weeks
PMA at scan case is presented in Fig. 3. The registration of the structural and
ODF channels was successful even though there are significant differences in
contrast of both structural and ODF volumes, cortex folding surface and the
global shape. Visualisation of the original and transformed normalised ODFs
over the same padded T1 volume (third row) confirms that the global shape and
features of the volumes are sufficiently well aligned. Label propagation for tissue
and IC segmentations also resulted in relatively similar results. This, however,
might also be affected by the quality of the original segmentations produced by
the automated Draw-EM method [12].

3.2 Multi-channel Template Example

Figure 4 shows and example of a multi-channel template generated using
MRtrix3 population template tool with the proposed MC registration pipeline
and LAC+LNCC metrics. The template with 1 mm resolution was generated
from 10 neonatal MRI datasets from 40–43 weeks PMA. It includes T2, T1,
normalised WM ODF and FA channels. The resulting volumes are characterised
by well defined features of both cortex and WM structures.
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Fig. 3. An example of longitudinal symmetric MC registration for 31 ⇐⇒ 42 weeks
PMA at scan case including: original and transformed T2 volumes, original and trans-
formed ODF over T2, original and transformed ODF over masked original T1 volume
(used as a template), original and transformed labels.

Fig. 4. An example of multi-channel template of neonatal brain generated from 40–43
PMA datasets including: WM ODF, FA, T1 and T2 channels.
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4 Discussion and Conclusions

This paper presents a solution for multi-channel registration combining multi-
shell HARDI and structural MRI data. It is based on a novel similarity metric for
diffusion MRI and certainty-based weighting of the channels. The method was
implemented in MRtrix3 and can be integrated into neuroimaging pipelines.

The quantitative evaluation was performed on 20 longitudinal neonatal
datasets from the dHCP project. The results showed that fusion of structural
and diffusion ODF channels improves overall results, compared to single-channel
registrations. The weighting of channels based on certainty maps also improves
the results thus potentially minimising the uncertainty of deformation fields.
Furthermore, the proposed LAC metric outperforms the state-of-the-art ODF
registration method for challenging cases.

An example of the generated multi-modal template shows that this tool has
a potential application for generation of spatio-temporal multi-modal brain MRI
templates that require robust similarity metrics. Simultaneous segmentation of
WM and cortex structures could also potentially improve the accuracy of mor-
phometry in structural MRI processing pipelines.

However, these results also emphasise the fact that accurate alignment of
diffusion and structural volumes is a critical step for multi-channel registration
since affine registration might not fully solve this due to distortions in dMRI
data. Future work will focus on further optimisation of the MC ODF registration
pipeline and extensive evaluation on adult and multi-site datasets.
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