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Abstract

Time–frequency representations of the speech signals provide dynamic information about how the frequency component 

changes with time. In order to process this information, deep learning models with convolution layers can be used to obtain 

feature maps. In many speech processing applications, the time–frequency representations are obtained by applying the 

short-time Fourier transform and using single-channel input tensors to feed the models. However, this may limit the potential 

of convolutional networks to learn different representations of the audio signal. In this paper, we propose a methodology 

to combine three different time–frequency representations of the signals by computing continuous wavelet transform, Mel-

spectrograms, and Gammatone spectrograms and combining then into 3D-channel spectrograms to analyze speech in two 

different applications: (1) automatic detection of speech deficits in cochlear implant users and (2) phoneme class recognition 

to extract phone-attribute features. For this, two different deep learning-based models are considered: convolutional neural 

networks and recurrent neural networks with convolution layers.

Keywords Speech processing · Multi-channel spectrograms · Cochlear implants · Phoneme recognition

1 Introduction

In speech and audio processing applications, the data are 

commonly processed by computing compressed representa-

tions that may not capture the dynamic information of the 

signals. In the recent years, there has been an increasing 

number of works considering deep learning methods for 

speech and audio analysis such as convolutional neural net-

works (CNNs) and recurrent neural networks (RNN), among 

others [1]. Particularly for CNNs, audio data are processed 

by feeding the convolution layers with time–frequency 

representations (spectrograms) of the signals providing 

information about how the energy distributed in the fre-

quency domain changes with time. After the convolution 

operation, the resulting feature maps contain low- and 

high-level features representing the acoustic information 

of the signals. Many works have shown the advantages of 

using CNNs and spectrograms in different speech process-

ing applications such as automatic detection of disordered 

speech [2–4], acoustic models for automatic speech rec-

ognition systems [5, 6], and emotion detection [7], among 

others. These studies, however, consider single-channel 

spectrograms to obtain the feature maps, e.g., the short-

time Fourier transforms (STFT) are applied to the audio 

signal and the resulting spectrogram is used as an input to 

the model. However, using only one representation may limit 

the potential of CNNs to learn more complex representations 

from the signals. One way to overcome this limitation is to 

use multiple spectrograms of each audio signal as input data 

to the CNN. For instance, multi-channel spectrograms were 

considered for audio source separation in [8, 9]. In those 

studies, audio recordings were captured with multiple micro-

phones; thus, the multi-channel spectrograms are extracted 

from the same signal recorded with different microphones. 

A similar approach was presented in [10]. In this case, far-

field automatic speech recognition is performed considering 
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3D-channel spectrograms, i.e., three different microphones 

were used to capture the speech signals. The main limitation 

of this approach is that it requires more than one microphone 

to obtain multiple spectrograms, which is not always pos-

sible (or necessary) in other applications, e.g., automatic 

detection of pathological speech. Multi-channel spectro-

grams can be also obtained from signals recorded with one 

channel. For instance, in [11] a methodology was presented 

to enhance noisy audio signals using complex spectrograms 

and CNNs. In that work, the real and imaginary part of the 

STFT is computed to form a 2D-channel spectrogram, which 

is then processed by the convolution layers; thus, the ampli-

tude and phase information of the signal are considered to 

extract the feature maps.

In this study, we propose to combine Mel-spectrograms, 

Gammatone spectrograms (Cochleagrams), and continuous 

wavelet transform (CWT) to form multi-channel spectrograms. 

The proposed approach is then evaluated in two speech pro-

cessing applications: automatic detection of disordered speech 

of cochlear implant (CI) users and phoneme class recognition 

to extract phone-attribute features. In our previous work [12], 

we showed that combining at least two different time–fre-

quency representations of the signals can improve the auto-

matic detection of speech deficits in CI users by training a 

bi-class CNN to differentiate between speech signals from CI 

users and healthy control (HC) speakers. This paper extends 

the use of multi-channel spectrograms to phoneme recogni-

tion using recurrent neural networks with convolutional layers 

(CRNN). For both, the CNN and CRNN, the first channel is 

the Mel-spectrogram, the second channel is the Cochleagram, 

and the third channel is the CWT of the speech signal. The Mel 

scale is inspired by findings of how humans perceive speech, 

which makes it suitable to represent the acoustic informa-

tion of the sounds produced during speech. Cochleagrams 

are obtained with a Gammatone filter bank, which is based 

on the cochlear model proposed in [13], which consists of an 

array of bandpass filters organized from high frequency at the 

base of the cochlea, to low frequencies at the apex (innermost 

part of the cochlea). Both Mel and Gammatone spectrograms 

are computed based on the STFT whose time and frequency 

resolutions are determined by the size of the analysis win-

dow and the time-shift. A small window size can improve tie 

localization while resulting in poorer frequency resolution. 

Conversely, the larger we make the size of the window the 

more we will know about the frequency value and less about 

the time. Thus, the CWT is considered in this study to over-

come this problem. The wavelet transform uses variations in a 

base function (called wavelet) highly localized in time. Each 

variation has a different scale, which allows to have high-fre-

quency resolution for small-frequency values at the cost of low 

time resolution. At the same time, the CWT allows to have 

high time resolution at the cost of low-frequency resolution 

for high-frequency values. Our main hypothesis is that using 

the spectrograms as a 3D-channel input will allow the CNN 

to complement the information from the two time–frequency 

representations. The rest of the paper is organized as follows: 

Sect. 2 describes the time–frequency analysis performed and 

the model architectures considered in this study. Section 3 

describes the two applications for multi-channel spectrograms 

considered in this study. The data, preprocessing steps, and the 

training of the models (for each application) are also described 

in this section. Section 4 describes the experimental setup and 

the results obtained for each application. Finally, the conclu-

sions derived from this work are presented in Sect. 5.

2  Methods

2.1  Time–frequency analysis

2.1.1  Mel/gammatone filterbanks

The STFT is the most commonly used time–frequency rep-

resentation in speech and audio processing applications due 

to its simplicity and low computational cost. Alternatively, 

time–frequency representations can be obtained by applying 

a set of bandpass filters in the Mel scale (for Mel-spectro-

grams) or in the equivalent rectangular bandwidth (ERB) 

scale (for Cochleagrams) [14]. The log-Mel-spectrum is 

computed in three steps: First, the signal X is framed into 

short-time windows, i.e., X = {x1, x2,… , x
T
} where T is the 

Tth speech frame. In this work, the size of the windows is 

40 ms, which are extracted every 10 ms. In the next step, 

Hamming windows are applied to the framed signal in order 

to compute the STFT. In the last step, a set of 128 triangular 

filters in the Mel scale is applied and the logarithm of the 

resulting signal is computed in order to obtain the Mel-spec-

trum. Frequencies in Hz can be converted to Mel scale as:

The steps to obtain the Cochleagram are similar to the Mel-

spectrum; however, it consists of bandpass filters in the ERB 

scale and the shape is obtained as the multiplication of sine 

and gamma functions. The Gammatone filter bank is defined 

in the time domain by Eq. 2 as:

where fc is the filter’s center frequency in Hz, � is the phase 

of the carrier in radians, a is the amplitude, n is the order 

of the filter, b is the bandwidth in Hz, and t is the time. The 

Gammatone filters are implemented following the procedure 

described in [15]. The number of filters used for both Mel-

scale and Gammatone based features is n = 128 . Figure 1 

shows the triangular and Gammatone filter banks considered 

in this study.

(1)M
(

f
Hz

)

= 1125 ln
(

1 + f
Hz
∕700

)

(2)g(t) = atn−1 exp(−2�bt) cos(2�fct + �)
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2.1.2  Continuous wavelet transform

Contrary to the STFT, the time and frequency resolutions 

of the CWT are not determined by the size of the analysis 

window and the time-shift. Instead, the CWT considers 

a base function called wavelet in order to decompose the 

speech signal. This procedure is performed by convolving 

the signal with shifted and compressed versions of the 

wavelet. Formally, the CWT is defined as

where x(t) is the speech signal, u and s are the shift and scale 

parameters, respectively, and � is the mother wavelet (base 

function), which in this study is the Morlet wavelet. Figure 2 

shows the Mel-spectrum, Cochleagram, and resulting CWT 

of a speech signal. The Mel-spectrum and the Cochleagram 

are obtained after applying filter banks to the STFT of the 

speech signal. The output of the CWT consists of a two-

dimensional time-scale representation of the speech signal. 

In our case, the number of scales used ranges from 1 to 128, 

in order to match the dimensions of the Mel-spectrum and 

the Cochleagram in the frequency dimension.

2.2  Model architectures

Two different models are used to test the suitability of multi-

channel spectrograms for speech processing applications. 

The first method consists of a CNN for automatic detection 

of disordered speech. The convolution layer in a CNN acts 

like a filter bank, which allows to capture high- and low-level 

features from the spectrograms [16, 17]. The second method 

consists of a convolutional recurrent neural network with 

gated recurrent units (CGRU) for phoneme recognition. The 

main advantage of using recurrent networks is their ability 

to learn contextual information from speech sequences [18], 

which makes them suitable for speech recognition applica-

tions. For both methods, the input tensor of the convolu-

tional layers consists of the Mel-spectrogram in one channel, 

the Cochleagram in the second channel, and the CWT in the 

(3)CWT(u, s) =
1
√

s
∫

+∞

−∞

x(t)�∗
�

t − u

s

�

dt

Fig. 1  Set 128 triangular filters in the Mel scale and 128 Gammatone 

filters in the ERB scale are applied to the STFT in order to obtain the 

Mel-spectrum and the Cochleagram, respectively

Fig. 2  Mel-spectrum, Cochleagram, and CWT of a speech signal. 

The Mel-spectrum is obtained after applying a set of triangular filter 

bank (in the Mel scale) to the STFT of the speech signal. The Coch-

leagram is obtained after applying a Gammatone filter bank (in the 

ERB scale) to the STFT. The CWT is obtained after convolving a 

Morlet wavelet (with a linear scale from 1 to 128) with the speech 

signal
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third channel. The framework PyTorch [19] is considered to 

implement the proposed architectures. From the documenta-

tion, it can be observed that the output of the convolutional 

layer for an input signal is described as:

where Bs is the batch size and C is the number of channels of 

the input tensor (C = 3) . The following subsections describe 

the architectures implemented in this study.

2.2.1  Convolutional neural network

There are no standard guidelines to determine the optimal 

architecture of a CNN. Commonly, the best configuration 

is chosen experimentally based on performance evaluation. 

Instead of trying different architectures, we test the multi-

channel spectrograms by adapting the LeNet-5 convolutional 

network [20]. The configuration of our network consists of 

two convolution layers with rectifier linear (ReLU) activa-

tion functions, two max-pooling layers, dropout to regu-

larize the weights, and two fully connected hidden layers 

(4)

h
(

Bsi, Coutj

)

= bias
(

Coutj

)

+

Cin−1
∑

k=0

weights ∗ (Cout, k) ∗ input(Bsi, k)

followed by the output layer to make the final decision using 

a softmax activation function. The CNN is trained using 

the Adam optimization algorithm [21] with a learning rate 

of � = 10
−4 . The cross–entropy between the training labels 

y and the model predictions ŷ is used as the loss function. 

The size of the kernel in the convolution layers is k
c
= 1 × 3 . 

For the pooling layers, the kernel’s size is kp = 1 × 2 . Note 

that the convolution and pooling operations are performed 

only in one dimension (frequency/scale). The reason is that 

we want to keep as much information from the time dimen-

sion as possible. Figure 3 summarizes the configuration of 

the network used in this work. The number of output chan-

nels in the first and second convolution layers is 8 and 16, 

respectively. The size of the second layer is twice the size 

of the first convolution layer in order to allow the network 

to extract high-level features from the speech signals [17].

2.2.2  Recurrent neural network with convolution layers

The architecture of the CGRU is summarized in Fig. 4. 

The multi-channel spectrograms are processed by two con-

volution layers with ReLU activation functions, two max-

pooling layers, and dropout to regularize the weights. The 

Fig. 3  Architecture of the CNN implemented in this study. The size of the kernel in the convolutional (Conv. i) and pooling layers (Max. pool) is 

1 × 3 and 1 × 2 , respectively

Fig. 4  CGRU architecture considered in this work. The input 

sequences are 3D-channel inputs formed with Mel-spectrograms, 

Cochleagrams, and CWT with Morlet wavelets. Convolution is per-

formed only on the frequency axis to keep the time information. The 

resulting feature maps are then feed into a 2-stacked bidirectional 

GRU. A softmax function is then used to predict the phoneme label 

for every speech segment in the input signal
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convolution and max-pooling operations are performed 

only on the frequency axis of the 2D-channel spectrograms 

in order to keep a one-to-one relation between the length 

of the input (speech sequences) and the output (phoneme 

prediction). The size of the kernel in the convolutional 

(Conv. i) and pooling layers (Max. pool) is 1 × 3 and 1 × 2 , 

respectively. After convolution, the resulting feature maps 

are concatenated to form the sequence of feature vectors 

� = {�1, �2,… , �
T
} , where T is the total number of frames. 

The sequence � is then processed by two bidirectional 

recurrent layers (BiGRU-1 and BiGRU-2) with shared 

weights on each time frame t. Thus, for every input data 

�
t
 in the sequence, the network has sequential information 

about the data points before ( �1,… , �
t−2, �

t−1 ) and after 

( �
t+1, �

t+2,… , �
T
 ) [22]. A softmax activation function is 

used to compute the sequence of phoneme posterior prob-

abilities � = {�1, �2,… , �
T
} . Bidirectional recurrent nets are 

used in this work because they have shown better results than 

standard GRUs in similar speech processing tasks [23, 24].

Similar to the CNN, the CGRU is trained using the same 

optimization algorithm, learning rate, and loss function. 

Note that some phonemes are more frequently produced 

than others. For instance, the number of vowels is higher 

than the number of nasal sounds in the database. As a result, 

the performance of the system to detect the phoneme classes 

that are underrepresented is lower than the phonemes that 

are more commonly produced. Thus, class weights are intro-

duced into the loss function, which is described as:1

(5)loss(p, class) = w[l]

(

−p[l] + log

(

∑

j

exp(p[j])

))

where p are the posterior probabilities of the sequences 

obtained from the output layer y = {y1, y2,… , yT} , l are the 

target labels, and w are the class weights.

3  Applications

3.1  Automatic detection of disordered speech in CI 
users

Cochlear implants (CI) are the most suitable devices for 

severe and profound deafness when hearing aids do not 

improve sufficiently speech perception. However, CI users 

often present altered speech production and limited under-

standing even after hearing rehabilitation. People suffering 

from severe to profound deafness may experience differ-

ent speech disorders such as decreased intelligibility and 

changes in terms of articulation [25]. Acoustic analysis is 

performed in order to detect articulatory problems in the 

speech of CI users by detecting the voiceless-to-voiced 

(Onset) and voiced-to-voiceless (Offset) transitions, which 

are considered to model the difficulties of the CI users to 

start/stop the movement of the vocal folds [26, 27]. The 

method used to identify the transitions is based on the pres-

ence of the fundamental frequency of speech (pitch) in 

short-time frames as it was shown in [28]. The transition is 

detected, and 80 ms of the signal are taken to the left and 

to the right of each border, forming segments with 160 ms 

length (Fig. 5).

3.1.1  Data: CI speech

Standardized speech recordings of 107 CI users (56 male) 

and 94 HC (46 male) are considered for the experiments. All 

Fig. 5  Onset and offset transi-

tions extracted from a speech 

recordings. The transitions 

consist of speech segments of 

160 ms containing voiceless and 

voiced segments

0 ms 80 ms 160 ms

1

-1

0

0 ms 80 ms 160 ms

1

-1

0

Voiceless Voiceless

sound sound

Voiced

sound

Voiced

sound

ONSET OFFSET

0 ms 80 ms 160 ms

1

-1

0

Voiceless

sound

Voiced

sound

ONSET

1 https ://pytor ch.org/docs/stabl e/nn.html#cross entro pylos s.

https://pytorch.org/docs/stable/nn.html#crossentropyloss


428 Pattern Analysis and Applications (2021) 24:423–431

1 3

of them are German native speakers. The speech signals of 

the CI users were recorded at the clinic of the Ludwig-Max-

imilians University in Munich (LMU). The recordings of the 

HC speakers were extracted from the PhonDat 1 (PD1) cor-

pus from the Bavarian Archive For Speech Signals (BAS), 

which is freely available for European academic users.2 The 

speech recordings include the reading of Der Nordwind und 

die Sonne (The North Wind and the Sun) text.

3.1.2  Preprocessing

Note that some of the recordings from the HC speakers were 

collected in different acoustic conditions than the speakers 

recorded in the clinic; thus, noise reduction and compres-

sion techniques are applied to the speech signals in order to 

reduce the effect of the channel in the recordings.

Noise reduction Background noise is reduced based 

on the spectral gating algorithm implemented in the SoX 

codec.3 The core idea of the algorithm is to attenuate the 

speech segments in the signal with spectral energy below 

certain thresholds, which are obtained by computing the 

mean power on each frequency band from the STFT of a 

noise profile extracted from a silence region of the speech 

signal.

Compression After noise reduction, the GSM full-rate 

compression technique is considered to normalize the chan-

nel conditions of the recordings [29]. First, the denoised 

signals are down-sampled to 8 kHz and the resolution is low-

ered down to 13 bits, with a compression factor of 8. Next, 

a bandpass filter between 200 Hz and 3.4 kHz is applied 

in order to meet the specifications of a GSM transmission 

network. Figure 6 shows the STFT spectrograms of a speech 

recording before and after applying noise reduction and 

compression. The figures correspond to a speech segment 

of 600 ms extracted from the recording of one of the healthy 

speakers in the database.

3.1.3  Training of the CNN

Onset and offset transitions are extracted from the speech 

recordings in order to train the CNN described in Sect. 2.2.1. 

A tenfold cross-validation strategy is considered in order to 

train and test the models. The performance of the CNN is 

measured by means of precision, recall, and F1-score. Preci-

sion measures the proportion of predicted speech segments 

(onset/offset transition) that are correctly classified. Recall 

measures the proportion of actual speech segments that are 

correctly classified. The F1-score measures the performance 

of the CNN to classify all speech segments, which reaches 

its best value at 1 and worst score at 0. These three measures 

are computed as in [30].

3.2  Phone‑attribute features

Previous work has shown the suitability of phone-attribute 

features to evaluate articulation precision in people learn-

ing a second language [31] as well as to evaluate speech 

problems in patients affected by different medical condi-

tions such as Parkinson’s disease [32] and hearing loss [33]. 

In this work, phone-attribute features are computed using 

the CGRU described in Sect. 2.2.2 which converts speech 

sequence X = {x1, x2,… , x
T
} into a sequence of pos-

terior probabilities y = {y1, y2,… , yT} , where T is the 

number of frames extracted from the speech signal. The 

speech sequences consist of Mel-spectrograms, Cochlea-

grams, and CWT. The vector of phone-attribute features 

yn = {y1

n
,… , yk

n
,… , yK

n
} consists of K phoneme probabili-

ties (posteriors). The CGRU estimates the posterior yk
n
 as the 

probability of occurrence of the kth phone-attribute feature. 

The main hypothesis is that normal speakers can produce 

phonemes correctly; thus, the posterior probabilities of 

occurrence of phonemes (phone-attribute features) are close 

to 1. On the other hand, if the model is tested with a speech 

Fig. 6  Time–frequency repre-

sentation of a segment from a 

speech signal. The figure shows 

a the original signal, b the 

signal after noise reduction, and 

c the signal after compression
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signal from a speaker with pronunciation problems, then the 

posterior probability will be lower compared with respect to 

the normal speaker. In this paper, the phone-attribute feature 

are computed for nine phoneme classes (including “silence”) 

which are grouped according to the standard German lan-

guage system. A short description of the phone-attribute 

features is presented in Table 1.

3.2.1  Data: Verbmobil

The Verbmobil corpus consists of speech recordings from 

586 German native speakers (308 male, 278 female). The 

database contains about 29 hours of dialogues with their cor-

responding phonetic transcriptions. The data were captured 

in controlled acoustic conditions with a close-talk micro-

phone at a sampling frequency of 16 kHz and a resolution 

of 16-bit. The age of the speakers ranges from 20 up to 40 

years [34].

3.2.2  Training of the CGRU 

Chunks of data of 1 s are extracted from the speech record-

ings in order to train the CGRU, i.e., the input data consist 

of speech sequences with a fixed length. Each sequence is 

then time-aliment with their corresponding phonetic tran-

scription; thus, each time-frame is labeled according to one 

of the nine phoneme classes described in Table 1. The input 

tensors and their corresponding target labels are then used 

to train the CGRU for phone-attribute feature extraction. 

Table 2 shows the information about the train, validation, 

and test sets considered in this study. The performance of 

the model is evaluated by means of the precision (the ability 

of the CGRU not to label as positive a sample that is nega-

tive), recall (the ability of the CGRU to correctly label the 

phonemes classes), and F1 score (weighted harmonic mean 

of the precision and recall) [30].

4  Experiments and results

4.1  Multi‑channel spectrograms with CNN

Table 3 shows the results obtained when the CNN is trained 

to classify speech segments (onset/offset transitions) from 

CI users and HC speakers. The highest classification per-

formance is obtained with three-channel spectrograms 

extracted from the offset transitions ( F1 = 0.84 ). Note also 

that the results obtained with the Mel-spectrum and the 

Cochleagram are similar for both onset and offset transitions. 

This can be explained considering that these time–frequency 

representations are obtained from the same transformation, 

i.e., the STFT. Furthermore, the lowest performance was 

Table 1  Phone-attribute features considered in this study

Feature Brief description

Stop Refers to sounds produced by a total oral closure that is rapidly released

Trill Phonemes produced by a vibration of the two articulators, caused by the current of air

Nasal Refers to sounds produced by a lowered velum such that air can flow through the nasal cavity

Vowel Sounds produced by the vibration of the vocal folds and the changes in the shape of the vocal tract

Silence Regions of the signal with the absence of speech

Lateral The air passes at the sides of the tongue which forms a central closure

Fricative A constriction in the articulator causes a turbulence in the flowing air, producing a hissing sound

Sibilants Similar to fricatives, however, these phonemes have more acoustic energy in higher frequency bands

Approximants Similar to fricatives, however, the constriction is not narrow enough to cause turbulences in the air flow

Table 2  Information on the partitions

Test Test set, Val validation set, Train train set

Test Val Train

Male speakers 14 19 275

Female speakers 15 3 260

Hours of speech 1.5 1.5 26

Number of recordings 585 584 10,845

Table 3  Classification results between speech segments of CI users 

and HC speakers

Prec Precision, Rec recall, F1 F1 score, CWT  continuous wavelet 

transform, 3D-spectrum mel-spectrum, Cochleagram, and CWT 

Model Channel Prec Rec F1

Onset CWT 0.78 0.77 0.77

Mel-spectrum 0.82 0.80 0.81

Cochleagram 0.81 0.81 0.81

3D Spectrum 0.84 0.82 0.82

Offset CWT 0.80 0.78 0.78

Mel-spectrum 0.84 0.82 0.82

Cochleagram 0.84 0.80 0.81

3D Spectrum 0.86 0.83 0.84
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obtained when only the CWT is considered as input to the 

CNN ( F1-Onset = 0.77 ; F1-Offset = 0.78).

4.2  Multi‑channel spectrograms with CGRU 

Table 4 shows the results obtained for the automatic detec-

tion of the phoneme classes described in Table 1. On the one 

hand, it can be observed that the performance of the CGRU 

is similar when is trained with Mel-spectrograms, Cochlea-

grams, and 3D-channel spectrograms; thus, the contribution 

of three channels is not decisive enough to improve the pho-

neme class recognition. On the other hand, the performance 

of the CGRU trained with the CWT is lower than for Mel-

spectrum and Cochleagram in all classes. Particularly, it can 

be observed that it was not possible to detect any phoneme 

from the class “Trills.”

5  Conclusion

In this paper, Mel-spectrograms, Cochleagrams, and CWT 

are combined to form three-channel spectrograms. Two dif-

ferent applications were considered: (1) automatic detection 

of disordered speech of CI users and (2) phoneme class rec-

ognition to extract phone-attribute features. In the first appli-

cation, speech signals of CI users and HC were considered 

to train a CNN to perform binary classification. The CNN 

was trained considering Mel-spectrograms, Cochleagrams, 

CWT, and the combination of the three representations. 

Additionally, onset and offset transitions are extracted from 

the speech signals in order to perform acoustic analysis to 

evaluate the articulatory precision of the speakers. Accord-

ing to the results, the highest performance was achieved 

when the CNN was trained with the 3D-channel spectro-

grams extracted from the offset transitions. In the second 

application, a CGRU was trained to automatically recognize 

phonemes grouped in seven different classes. The model 

was trained with recordings of normal speakers, i.e., people 

without any speech disorder or neurological disease. From 

the results, it was observed that the contribution of the multi-

channel spectrograms was not decisive enough to improve 

the recognition of phoneme classes. One hypothesis is that 

the way the spectrograms are combined does not provide 

sufficient information for the network to learn a proper rep-

resentation of the phoneme classes; thus, future work should 

focus on different configurations of the network or include 

different time–frequency representations. Furthermore, the 

models should be trained and tested with noisy signals in 

order to test the robustness of the classifiers for speech sig-

nals captured in non-controlled acoustic conditions.
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Table 4  Performance of the 

CGRU for phoneme class 

recognition

Prec Precision, Rec recall, F1 F1 score

Phoneme class CWT Mel-spectrum Cochleagram 3D spectrum

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Silence 0.89 0.86 0.87 0.91 0.86 0.88 0.90 0.87 0.88 0.90 0.86 0.88

Stop 0.81 0.80 0.80 0.83 0.82 0.82 0.83 0.82 0.82 0.84 0.80 0.82

Nasal 0.80 0.83 0.82 0.82 0.85 0.83 0.81 0.85 0.83 0.81 0.85 0.83

Trill 0.00 0.00 0.00 0.80 0.67 0.73 0.76 0.68 0.72 0.78 0.69 0.73

Fricative 0.79 0.80 0.79 0.84 0.82 0.83 0.83 0.83 0.83 0.82 0.83 0.82

Sibilant 0.84 0.89 0.86 0.86 0.90 0.88 0.85 0.90 0.88 0.85 0.90 0.88

Approximant 0.81 0.79 0.80 0.79 0.84 0.81 0.80 0.82 0.81 0.84 0.78 0.81

Lateral 0.69 0.60 0.64 0.71 0.68 0.70 0.73 0.68 0.70 0.68 0.70 0.69

Vowel 0.82 0.86 0.84 0.84 0.87 0.85 0.85 0.86 0.85 0.84 0.86 0.85
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