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Summary

Multi-class continuum traffic flow models: Analysis and

simulation methods

Traffic flow modelling has developed rapidly over the last two decades. In many ap-

plications, the models are combined with measured data concerning the current traffic

state and with fast computational methods. Because of this combination it has become

possible to make accurate and useful short term predictions about the evolution of the

traffic state. The predictions can be used to inform and advise road users, for example

about alternative routes. Furthermore, the predictions can be used to control traffic in

an efficient way in order to prevent or reduce delays. The predictions are in particular

useful in the case of exceptional circumstances such as an accident, extreme weather

conditions or festivities. In such cases historical data is less useful and routes that are

optimal under normal circumstances are not optimal anymore.

The main contribution of this dissertation is the development and analysis of a new

traffic flow model and accompanying numerical methods. This model, Fastlane, takes

into account the differences between types of vehicles (for example passenger cars and

trucks) and driving styles. Furthermore, the model is well suited to make useful short

term predictions for the traffic state on a network of main roads. This is due to the

development of efficient numerical methods.

This summary largely follows the outline of this dissertation: first the literature review

is discussed, followed by the model development and analysis. We then make a short

side step to discuss the Lagrangian coordinate system that has proven useful in the mo-

del analysis. Furthermore, the Lagrangian coordinate system is subsequently applied

in numerical methods for homogeneous roads and networks of inhomogeneous roads.

Finally, we present recommendations for both practice and science.

Model tree

The literature review in Chapter 2 is largely based on a newly developed genealogy

of traffic flow models, see also Appendix A. This model tree shows how such models
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have developed since their introduction in the 1930’s. We distinguish four families:

the fundamental relation, microscopic, mesoscopic and macroscopic models. The fun-

damental relation describes the (static) relation between the velocity of a vehicle and

the distance to its leader. The other models describe how this relation develops over

time and space, and how these dynamics are described, differs per family. Microscopic

models describe and trace the movement of individual vehicles. Macroscopic models

aggregate many vehicles and their ‘average’ behaviour (velocity, following distance,

time headway) is described. The aggregation level in the mesoscopic family is between

that of microscopic and macroscopic models.

Within each family many different branches are distinguished. Furthermore, connec-

tions can be made between the families. By analysis of the model tree we identify

the following trends: 1) convergence to generic models that include all models in a

certain branch, 2) extensions and adaptations of the prototype macroscopic model (the

LWR model) to better reproduce relevant phenomena, 3) extensions of almost all types

of models to model heterogeneity among vehicles and drivers, and 4) the develop-

ment of hybrid models that combine the advantages of (for example) microscopic and

macroscopic models. In the model development we combine these trends in a ma-

croscopic model with heterogeneity. A small adaptation then gives a generic model.

Subsequently, a new formulation of the model creates possibilities for the development

of new hybrid models.

Model development and analysis

In Chapter 4 we develop the (macroscopic) Fastlane model based on the modeling

principles that we introduce in Chapter 3. The model includes multiple classes which

express the heterogeneity between vehicles and drivers. The model is formulated in a

broad way, but it can, for example, distinguish between, on the one hand, passenger

cars which are relatively short and have a high maximum velocity and short headways

and, on the other hand, trucks which are long and have low maximum velocities and

long headways. The heterogeneity is introduced in Fastlane mainly via pce (passenger

car equivalent) values. The pce values express, per class, how much one vehicle of that

class contributes to the traffic flow in comparison to one passenger car. For example, a

large truck has a high impact on the traffic flow and thus a high pce value. A van has

a somewhat smaller pce value, but it is larger than that of a passenger car. Fastlane is

unique in that, in contrast to other multi-class kinematic wave models, the pce values

depend on the actual traffic state. Therefore, the pce values are based on a simple

microscopic model. This ensures that at high velocities and low densities, the pce

values of trucks are relatively low and thus they contribute little to the total traffic

flow. However, in (heavy) congestion (low velocities, high densities), trucks take up

the same road space as multiple passenger cars. In this case the pce values of trucks

are high and they contribute relatively a lot to the total flow. The heterogeneity ensures
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that, even though the model is based on a simple kinematic wave model, it can describe

and reproduce complex phenomena.

The Fastlane model is generalized in Chapter 5. We show that the generalized mo-

del includes all kinematic wave models known from the literature. The generalization

enables us to compare the models in Chapter 7 with respect to the requirements that

are formulated in Chapter 3. The requirements are related to for example, a consis-

tent model formulation, the speed and direction of information (characteristic velocity,

anisotropy) and intuitive relations between a change in the number of vehicles and a

change in their velocity. We show that Fastlane and only one other model are the only

models that satisfy all requirements. Furthermore, a step-by-step plan is introduced

that can be applied to analyse any other (newly developed) multi-class kinematic wave

model with respect to the requirements. For this model analysis, we need a new for-

mulation of the generic model, which is introduced in Chapter 6.

Lagrangian coordinate system

Chapter 6 is the core chapter of this dissertation. The generalized model is reformu-

lated in the Lagrangian coordinate system. Lagrangian coordinates travel with the

vehicles of the fastest class. This new formulation makes it easier to analyse whether

or not information goes faster than vehicles (anisotropy). This is because information

travels with characteristic velocities which, in turn, are equal to the eigenvalues of a

certain system of equations. However, the eigenvalues of that system in the traditional

formulation are difficult to determine exactly, and if there are many classes it may even

be impossible. The Lagrangian formulation offers the advantage that it is only neces-

sary to determine the sign of the eigenvalues. In contrast to determining the value

itself, it is possible to determine the sign of the eigenvalue. Finally, the Lagrangian

coordinates are applied to develop more efficient numerical methods.

Numerical methods and road networks

In order to apply a traffic flow model like Fastlane in a simulation, the continuous

equations need to be discretized and solved. In Chapter 8 we develop the accompa-

nying numerical methods for kinematic wave models of one class. In Chapter 9 the

methods are extended to models with multiple classes. Furthermore, in Chapter 8 we

develop measures to qualify the accuracy of traffic flow models, using measures that

are especially relevant for traffic flow.

The Lagrangian coordinate system offers advantages for the accuracy and speed of the

simulation. In traditional numerical methods for traffic flow models, time and space are

divided into discrete units (time steps and grid cells). The solution of the equations is

then computed at each time step and in each grid cell. The disadvantage of this method
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is that information can go both from a grid cell to its downstream neighboring grid

cell (in free flow) or it can go to its upstream neighboring grid cell (in congestion).

This results in relatively slow computation and inaccurate solutions. However, once

we know that, in a certain model, information does not travel faster than vehicles,

the Lagrangian coordinate system can be used to develop efficient numerical methods.

Instead of dividing space into grid cells, vehicles are divided into groups. Because

information does not travel faster than the vehicles or vehicle groups, information only

travels from one group to its following group and never to its leading group. This

results in fast and accurate computational methods.

In Chapter 10 we extend the methods from Chapter 8 and 9 to networks (so as to per-

form simulations on networks of roads). Therefore, we add discretisations of node

models that describe inflow and outflow boundaries, on and off ramps and other in-

homogeneities. These other inhomogeneities, such as a decrease or increase in the

number of lanes, or a change in the speed limit, are expressed in temporary or local

changes in the fundamental relation. The traditional numerical methods are in gene-

ral more easy to extend with these node models, but also node models based on the

Lagrangian coordinate system are possible and lead to satisfying results.

Recommendations

We conclude this summary with two types of recommendations: recommendations

for applications of the results, including the Fastlane model, and recommendations for

future research.

Applications

Fastlane is especially well suited for applications on networks of main roads with many

different types of vehicles. For example, it can be applied for state estimation, and

for prediction and control of road networks. Two colleagues discuss these applica-

tions in their dissertations: Yuan (2013) introduces methods for state estimation using

Fastlane in Lagrangian coordinates, Schreiter (2013) introduces control methods that

apply Fastlane for the road network in the port of Rotterdam. It is shown that Fastlane

yields fast and accurate results which are superior to results achieved with the simula-

tion tools that are currently applied in practice.

In cases where Fastlane does not satisfy the requirements for a certain application, the

model tree (Chapter 2, Appendix A) or the step-by-step plan for the assessment of

multi-class kinematic wave models (Chapter 7) can be applied to find another suitable

model. The step-by-step plan especially provides an efficient method to distinguish

qualitatively suitable models from unsuitable models. The advantage of the step-by-

step plan is that it becomes unnecessary to perform (usually costly) calibration to all
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models. The calibration to the qualitatively good models can then be performed by

applying the accuracy measures that are proposed in Chapter 8.

Finally, the numerical methods for homogeneous roads and for networks of inhomo-

geneous roads (Chapter 8–10) can also be applied to other models than Fastlane.

Future research

We distinguish three main areas for future research: the model tree, the Fastlane model

and the accuracy of numerical methods.

The model tree (Chapter 2, Appendix A) provides clues for the future development of

traffic flow models. Firstly, generic models can be developed that include even more

models than the current generic models. The generic models can in turn be applied

to qualitatively assess the models that fit within the generic model. Secondly, hybrid

models appear to be suitable to combine the advantages of the different types of mo-

dels. This development can be continued for example by application of the Lagrangian

formulation (Chapter 6) and by combining models with only one class with multi-class

models.

The Fastlane model (Chapter 4) can be developed further. For example, the current

method to determine pce values in free flow is not very realistic. This can be improved.

Furthermore, the numerical methods can be improved further. The node models in

Lagrangian coordinates deserve especial attention (Chapter 10).

The measures to determine the accuracy of numerical methods (Chapter 8) can be ex-

tended further. After small adaptations, they are also suitable to compare, for example,

simulation results with measured traffic states. This innovation provides new and better

methods for calibrating traffic flow models.





Samenvatting

Continuüm verkeersstroommodellen met meerdere

klassen: Analyse en simulatiemethoden

Verkeersstroommodellen hebben zich de afgelopen twee decennia snel ontwikkeld.

In veel toepassingen worden zulke modellen gecombineerd met meetgegevens over

de huidige verkeerstoestand en met snelle rekenmethoden. Door deze combinatie is

het mogelijk geworden om nauwkeurige en bruikbare korte-termijn voorspellingen te

doen over hoe de verkeerstoestand zich zal ontwikkelen. De voorspellingen kunnen

gebruikt worden om weggebruikers te informeren en adviseren, bijvoorbeeld over al-

ternatieve routes. Bovendien kunnen de voorspellingen gebruikt worden om op een

efficiënte manier het verkeer te regelen om zo vertragingen te voorkomen of vermin-

deren. De voorspellingen zijn vooral nuttig bij bijzondere omstandigheden zoals een

ongeluk, extreme weersomstandigheden of evenementen. In zulke gevallen zijn his-

torische gegevens minder bruikbaar en routes die optimaal zijn onder normale om-

standigheden, zijn opeens niet meer optimaal.

De belangrijkste bijdrage van dit proefschrift is de ontwikkeling en analyse van een

nieuw verkeersstroommodel en bijbehorende numerieke methoden. Dit model,

Fastlane, houdt rekening met verschillen tussen soorten voertuigen (bijvoorbeeld per-

sonenauto’s en vrachtwagens) en rijstijlen. Bovendien is het geschikt om bruikbare

korte-termijn voorspellingen te maken voor de verkeerstoestand op een netwerk van

hoofdwegen. Dit komt door de ontwikkeling van efficiënte numerieke methoden,

Deze samenvatting volgt in grote lijnen de opbouw van dit proefschrift: ten eerste

wordt het literatuuronderzoek besproken, daarna volgt de modelontwikkeling en

-analyse. Dan maken we een korte uitstap naar het Lagrangiaanse coördinatensysteem

dat bruikbaar is gebleken in de modelanalyse. Bovendien wordt het Lagrangiaanse

coördinatensysteem vervolgens toegepast in de numerieke methoden voor homogene

wegen en netwerken van inhomogene wegen. Als laatste volgen aanbevelingen voor

zowel de praktijk als de wetenschap.
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Stamboom

Het literatuuroverzicht in Hoofdstuk 2 is grotendeels gebaseerd op een nieuw ontwik-

kelde stamboom van verkeersstroommodellen, zie ook Appendix A. De stamboom laat

zien hoe deze modellen zich hebben ontwikkeld sinds hun eerste introductie in de jaren

’30 van de twintigste eeuw. We onderscheiden vier families van modellen: de fun-

damentele relatie, microscopische, mesoscopische en macroscopische modellen. De

fundamentele relatie beschrijft het (statische) verband tussen snelheid van een voer-

tuig en de afstand tot zijn voorligger. De andere modellen beschrijven hoe dit verband

zich ontwikkelt over de tijd en ruimte. Hoe deze dynamica wordt beschreven, is per

familie verschillend. Enerzijds beschrijven en volgen microscopische modellen de be-

weging van individuele voertuigen. Anderzijds aggregeren macroscopische modellen

vele voertuigen en wordt hun ‘gemiddelde’ gedrag (snelheid, volgafstand, volgtijd)

beschreven. Het aggregatieniveau in de mesoscopische familie zit tussen dat van de

miscroscopische en macroscopische familie in.

Binnen iedere familie worden vele verschillende takken onderscheiden. Bovendien

zijn er verbanden te leggen tussen de families. Door analyse van de stamboom iden-

tificeren we de volgende trends: 1) convergentie naar generieke modellen die alle

modellen in een bepaalde tak omvatten, 2) uitbreidingen en aanpassingen van het

oer-macroscopische model (het LWR kinematische golf-model) om beter relevante

fenomenen te kunnen reproduceren, 3) uitbreidingen van bijna alle soorten modellen

om heterogeniteit tussen voertuigen en bestuurders te modelleren, en 4) de vorming van

hybride modellen die de voordelen van (bijvoorbeeld) microscopische en macroscopi-

sche modellen combineren. In de modelontwikkeling combineren we deze trends in

een macroscopisch model met heterogeniteit. Een kleine aanpassing van het model

levert een generiek model. Vervolgens levert een nieuwe formulering van het model

mogelijkheden voor de ontwikkeling van nieuwe hybride modellen.

Modelontwikkeling en -analyse

In Hoofdstuk 4 ontwikkelen we het (macroscopisch) Fastlanemodel op basis van mod-

elleerprincipes die we in Hoofdstuk 3 introduceren. Het model kent meerdere klassen

waardoor de heterogeniteit tussen typen voertuigen en bestuurders tot uitdrukking

komt. Het model is algemeen geformuleerd, maar kan bijvoorbeeld onderscheid maken

tussen enerzijds personenauto’s die relatief kort zijn, een hoge maximumsnelheid heb-

ben en korte volgtijden en anderzijds vrachtwagens die lang zijn en een lage max-

imumsnelheid en lange volgtijden hebben. De heterogeniteit wordt in Fastlane met

name geı̈ntroduceerd via pce-waarden (‘passenger car equivalent’-waarden). De pce-

waarden drukken, per klasse, uit hoeveel één voertuig van die klasse bijdraagt aan de

verkeersstroom ten opzichte van één personenauto. Een grote vrachtwagen heeft bij-

voorbeeld een grote invloed op de verkeersstroom en dus een hoge pce-waarde. Een
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bestelbus heeft een wat kleinere pce-waarde, maar de waarde is groter dan die van

een personenauto. Het bijzondere aan Fastlane is dat, in tegenstelling tot andere kine-

matische golf-modellen met meerdere klassen, de pce-waarden afhankelijk zijn van de

actuele verkeerstoestand. Daartoe worden de pce-waarden gebaseerd op een eenvoudig

microscopisch model. Dit zorgt ervoor dat bij hoge snelheden en lage dichtheden, de

pce-waarden van vrachtwagens relatief laag zijn en ze dus relatief weinig bijdragen aan

de totale verkeersstroom. Echter, in (zware) congestie (lage snelheden, hoge dichthe-

den), nemen vrachtwagens dezelfde ruimte in als meerdere personenauto’s. In dit geval

zijn de pce-waarden van vrachtwagens dus hoog en dragen ze relatief veel bij aan de

totale stroom. De heterogeniteit zorgt er vervolgens voor dat, ondanks dat het model

gebaseerd is op een eenvoudig kinematische golf-model, het complexe fenomenen kan

beschrijven en reproduceren.

Het Fastlane model wordt gegeneraliseerd in Hoofdstuk 5. We laten zien dat het ge-

generaliseerde model alle kinematische golf-modellen met meerdere klassen omvat

die bekend zijn uit de literatuur. De generalisatie stelt ons in staat om in Hoofdstuk

7 de modellen te vergelijken op basis van kwalitatieve vereisten die in Hoofdstuk 3

worden opgesteld. De vereisten hebben onder andere te maken met een consistente

modelformulering, de snelheid en richting van informatie (karakteristieke snelheid,

anisotropie) en intuı̈tieve verbanden tussen een verandering in het aantal voertuigen

en een verandering in hun snelheid. We laten zien dat Fastlane en slechts één an-

der model, de enige modellen zijn die aan alle vereisten voldoen. Bovendien wordt

een stappenplan geı̈ntroduceerd dat toegepast kan worden om ieder ander (nieuw te

ontwikkelen) kinematische golf-model met meerdere klassen te analyseren met be-

trekking tot de vereisten. Voor de modelanalyse die wordt gepresenteerd in Hoofdstuk

7 hebben we echter een nieuwe formulering van het generieke model nodig, die wordt

geı̈ntroduceerd in Hoofdstuk 6.

Lagrangiaans coördinatenssyteem

Hoofdstuk 6 vormt de kern van dit proefschrift. Het gegeneraliseerde model wordt

geherformuleerd in het Lagrangiaanse coördinatensysteem. Lagrangiaanse coördina-

ten bewegen mee met de voertuigen van de snelste klasse. Deze nieuwe formulering

maakt het eenvoudiger om te analyseren of informatie sneller gaat dan de voertui-

gen zelf (anisotropie). Dat is omdat informatie reist met de karakteristieke snelheden,

die op hun beurt weer gelijk zijn aan de eigenwaarden van een bepaald systeem van

vergelijkingen. De eigenwaarden van dat systeem in de traditionele formulering zijn

echter moeilijk analytische te bepalen, en in gevallen met veel klassen kan dat zelfs

onmogelijk zijn. De formulering in de Lagrangiaanse coordinaten biedt het voordeel

dat het alleen nodig is om te bepalen wat het teken is van de eigenwaarden. In tegen-

stelling tot het bepalen van de waarde zelf, is het wel mogelijk om het teken van de

eigenwaarde te bepalen. Tenslotte, worden Lagrangiaanse coordinaten toegepast om

efficiënte numerieke methoden te ontwikkelen.
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Numerieke methoden en netwerken van wegen

Om een verkeersstroommodel zoals Fastlane toe te passen in een simulatie, moeten

de continue vergelijkingen gediscrediteerd en opgelost worden. In Hoofdstuk 8 ont-

wikkelen we de bijbehorende numerieke methoden voor kinematische golf-modellen

met één klasse. In Hoofdstuk 9 worden de methoden uitgebreid naar modellen met

meerdere klassen. Bovendien ontwikkelen we in Hoofdstuk 8 meetmethoden om de

nauwkeurigheid van verkeerstroommodellen te kwantificeren, volgens grootheden die

speciaal relevant zijn binnen verkeersstromingen.

Het Lagrangiaanse coördinatensysteem biedt voordelen voor de nauwkeurigheid en

snelheid van de simulatie. In traditionele numerieke methoden voor verkeerstroom-

modellen worden tijd en ruimte in discrete eenheden (tijdstappen en roostercellen)

verdeeld. De oplossing van de vergelijkingen kan dan iedere tijdstap en voor iedere

roostercel benaderd worden. Het nadeel van deze methode is dat informatie zowel

van een roostercel naar de stroomafwaartse roostercel kan gaan (in vrije afwikkeling),

als van een roostercel naar de stroomopwaartse roostercel (in congestie). Dit levert

relatief trage berekeningen en onnauwkeurige oplossingen op. Echter, zodra van een

bepaald model bekend is dat informatie niet sneller reist dan de voertuigen, kan het

Lagrangiaanse coördinatensysteem gebruikt worden om efficiënte numerieke metho-

den te ontwikkelen. In plaats van het verdelen van de ruimte in roostercellen, worden

de voertuigen nu in groepen verdeeld. In iedere tijdstap wordt vervolgens de positie en

de snelheid van iedere voertuiggroep benaderd. Omdat informatie niet sneller reist dan

de voertuig(groep)en, reist informatie altijd van de ene groep naar de volgende groep,

en nooit naar de vorige. Dit levert snelle en nauwkeurige rekenmethoden op.

In Hoofdstuk 10 presenteren we een uitbeiding van de numerieke methoden uit Hoofd-

stuk 8 en 9 naar netwerken, om simulaties uit te kunnen voeren op netwerken van

wegen. Daarvoor voegen we discretisaties toe van knoopmodellen die instroom- en

uitstroomranden, toe- en afritten en andere inhomogeniteiten beschrijven. Deze an-

dere inhomogeniteiten zoals vermindering of vermeerdering van het aantal rijstroken

of een verandering in de snelheidslimiet komen tot uiting in tijdelijke of plaatselijke

veranderingen in de fundamentele relatie. De traditionele numerieke methoden zijn in

het algemeen eenvoudiger uit te breiden met deze knoopmodellen, maar ook knoop-

modellen gebaseerd op het Lagrangiaanse coördinatensysteem zijn mogelijk en leveren

goede resultaten op.

Aanbevelingen

We sluiten deze samenvatting af met twee soorten aanbevelingen: aanbevelingen voor

toepassingen van de resultaten, waaronder het Fastlane model, en aanbevelingen voor

toekomstig onderzoek.
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Toepassingen

Fastlane is in het bijzonder geschikt voor toepassing op netwerken van hoofdwegen

met veel verschillende soorten voertuigen. Het kan bijvoorbeeld gebruikt worden voor

toestandschatting, -voorspelling en -regeling voor wegennetwerken in havens. Twee

collega’s bespreken deze toepassingen in hun proefschriften: Yuan (2013) introduceert

methoden voor toestandschatting met Fastlane in Lagrangiaanse coördinaten, Schreiter

(2013) introduceert regelmethoden die gebruik maken van Fastlane voor het wegen-

netwerk in de Rotterdamse haven. Het is aangetoond dat Fastlane snelle en nauw-

keurige resultaten oplevert die superieur zijn aan de resultaten die worden bereikt met

simulatiegereedschappen die momenteel in de praktijk worden toegepast.

Indien Fastlane niet voldoet aan de eisen voor een bepaalde toepassing, kan de stam-

boom (Hoofdstuk 2, Appendix A) of het stappenplan voor de beoordeling van kine-

matische golf-modellen met meerdere klassen (Hoofdstuk 7) gebruikt worden om een

ander geschikt model te vinden. Vooral het stappenplan levert een efficiënte methode

om kwalitatief geschikte modellen te onderscheiden van ongeschikte modellen. Het

voordeel van het stappenplan is dat de (meestal kostbare) kalibratie niet uitgevoerd

hoeft te worden voor alle modellen. De kalibratie van de kwalitatief geschikte model-

len kan vervolgens uitgevoerd worden door toepassing van de nauwkeurigheidsmaten

die zijn voorgesteld in Hoofdstuk 8.

Als laatste kunnen de numerieke methoden voor homogene wegen en voor netwerken

van inhomogene wegen (Hoofdstuk 8–10) ook toegepast worden op andere verkeers-

stroommodellen dan Fastlane.

Toekomstig onderzoek

We onderscheiden drie voorname gebieden voor verder onderzoek: de stamboom, het

Fastlane model en de nauwkeurigheid van numerieke methoden.

De stamboom (Hoofdstuk 2, Appendix A) geeft een aantal aanknopingspunten voor

de verdere ontwikkeling van verkeerstroommodellen. Ten eerste, kunnen er generieke

modellen ontwikkeld worden die nog meer modellen omvatten dan de huidige gene-

rieke modellen. De generieke modellen kunnen vervolgens toegepast worden voor het

kwalitatief beoordelen van de modellen die binnen het generieke model vallen. Ten

tweede, blijken hybride modellen geschikt om de voordelen van verschillende typen

modellen te combineren. Deze ontwikkeling kan voortgezet worden bijvoorbeeld door

toepassing van de Lagrangiaanse formulering (Hoofdstuk 6) en door het combineren

van modellen met slechts éń klasse met modellen met meerdere klassen.

Het Fastlane model (Hoofdstuk 4) kan verder ontwikkeld worden. De huidige manier

waarop pce-waarden momenteel in vrije afwikkeling worden bepaald is bijvoorbeeld

niet erg realistisch. Dat kan verbeterd worden. Bovendien kunnen de numerieke me-

thoden verder verbeterd worden, met name de knoopmodellen in Lagrangiaanse co-

ordinaten verdienen aandacht (Hoofdstuk 10).
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De meetmethoden voor de nauwkeurigheid van numerieke methoden kunnen verder

uitgebreid worden (Hoofdstuk 8). Na kleine aanpassingen, zijn ze bijvoorbeeld ook

geschikt om simulatieresultaten te vergelijken met de gemeten verkeerstoestand. Deze

innovatie levert nieuwe en betere methoden voor het kalibreren van verkeerstroom-

modellen.



Chapter 1

Introduction

Traffic flow models are used to describe and predict traffic on roads. For example,

they model the number of vehicles, their velocity, their acceleration and the distance

and time between vehicles. By doing simulations based on these models, the perform-

ance of roads or traffic networks can be assessed. This includes answering questions

about the presence and duration of congestion, travel times and travel time delays. This

information can be used in many applications including providing information on con-

gestion to road users, and in traffic control. In this dissertation we develop and analyze

a traffic flow model and numerical methods that can be applied in a simulation tool.

The outline of this introductory chapter is as follows. We elaborate further on the con-

text of this research in Section 1.1. In Section 1.2 we introduce our research objective

and approach. In Section 1.3 we outline our main scientific contributions, whereas the

main applications and practical contributions are discussed in Section 1.4. We con-

clude this chapter with an outline of the rest of this dissertation (Section 1.5).

1.1 Background and motivation

Figure 1.1 shows the traffic flow modelling cycle. It consist of five main items: obser-

vation, theory and model development, discretization and simulation. In this section

we discuss the modelling cycle and position our research within this cycle.

The development of traffic flow models leans heavily on observations: the first step

in Figure 1.1. Data is collected using, for example, loop detectors, cameras or GPS

devices that many vehicles have on-board, such as the mobile phone of the driver.

Alternatively, data is collected using lab experiments for example with a driving sim-

ulator. These observations are analyzed and phenomena that characterize traffic flow

are recognized.

In the second step, observations are used to build a theoretical framework. The theoret-

ical framework consists of (mainly qualitative) statements and (behavioural) assump-

tions. For example, it is assumed that drivers perceive short space headways as more
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Numerical methods Accuracy measures

Figure 1.1 Traffic flow modelling cycle. In this dissertation we focus on the center part

(in the grey rectangle).

dangerous at high velocities than at low velocities. This is assumed to be the reason

why at low velocities shorter headways are maintained. Another assumption is that

drivers only react to their leaders and not to their followers.

In the third step, the theoretical framework is used to build a traffic flow model. The

model consists of a set of (usually continuous) equations. For example, the theory

about short headways at low velocities and long headways at high velocities is quanti-

fied in a fundamental relation. The fundamental relation expresses the average vehicle

velocity as a function of the average headway. Alternatively, a car-following model is

developed that describes how a following vehicle reacts to its leader. In such models,

the assumption that drivers only react to their leaders is applied.

The continuous models can not be used directly in a computer simulation and discret-

ization is applied in the fourth step. In most simulation tools, time is divided into

discrete time steps. Furthermore, depending on the model, also space or other continu-

ous variables are discretized. Numerical methods are applied to approximate the new

traffic state each time step. This results in a discrete traffic flow model.

Finally, the discrete traffic flow model is implemented in a computer program. Using

the simulation tool, traffic state estimation and predictions can be made. Simulation

results are compared to observations to calibrate the parameters and to validate the

simulation tool.

Our work contributes to the entire traffic flow modelling cycle, while focussing on the

central part in Figure 1.1: theory and model development and discretization.
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1.2 Research objective and approach

In this section we discuss in more detail some of the elements in the traffic flow mo-

delling cycle and identify the key areas to which this research contributes. We discuss

which elements we have improved (i.e., our research objectives) and we describe how

we improve those elements (i.e., our research approach).

1.2.1 Research objective

As mentioned before, we focus on the central part of the modelling cycle in Figure 1.1,

including theory, modelling and discretization. The choice of phenomena that we want

to model is mainly determined by our foreseen applications (traffic state estimation

and prediction, traffic management, dynamic traffic assignment, see Section 1.4). The

applications call for a deterministic traffic flow model that allows for efficient simu-

lations (i.e., fast and accurate) but which also takes into account heterogeneity among

vehicles and drivers. From here onward we build a framework and within the frame-

work we develop a model and discretize it. Our main research objectives are related to

these three steps in the modelling cycle:

1. Development of a theoretical framework for multi-class kinematic wave traffic

flow modelling.

2. Development and analysis of a multi-class kinematic wave traffic flow model

within the framework.

3. Development of numerical methods to solve the model equations efficiently (i.e.,

both fast and accurate).

The approach for each of the objectives is detailed below.

1.2.2 Research approach

In order to define the research needs more clearly, we start with a literature study on

existing traffic flow models. We identify trends in the traffic flow modelling literature

and determine which type of model is suitable for our purpose.

Based on the findings from the literature study and anticipated foreseen applications,

we define a theoretical framework. The theoretical framework consists of a set of

modelling principles and requirements. Most of the principles are common for all

kinematic wave models or even for all macroscopic traffic flow models. However, we

add a principle about the heterogeneity of vehicles and drivers. The principles are

used as a foundation for the model. After the model has been formulated, we will

test whether it satisfies the requirements. The requirements are related to the model

formulation itself, the fundamental relation and the model dynamics.



34 Multi-class continuum traffic flow models: Analysis and simulation methods

Secondly, we develop a multi-class kinematic wave traffic flow model, that we call

Fastlane. It is based on the above principles and we analyze it with respect to the

requirements. Furthermore, we compare it to other, similar, models with respect to the

requirements. The comparison is largely based on a thorough mathematical analysis

of a novel generalized model. The analysis includes a reformulation of the model in

the Lagrangian coordinate system. This system moves with the vehicles, as opposed

to the traditional Eulerian coordinate system which is fixed in space. The reformulated

model has the same mathematical properties as the original model, but it is easier to

analyze.

Thirdly, we develop numerical methods to solve the model equations. The numeri-

cal methods are also based on the reformulated model in Lagrangian coordinates. We

extend the methods for long homogeneous roads and mixed-class models to include

road networks and multiple vehicle classes. The numerical methods based on the La-

grangian coordinate system are compared with more traditional numerical methods.

Therefore we compare simulation results with the analytical solution of the model.

For the comparison we develop two novel accuracy measures to measure the type of

errors that are most important in the traffic flow context.

1.3 Scientific contribution

This dissertation includes the following main scientific contributions:

• A model tree showing the historical development of traffic flow models (see

Section 1.3.1).

• A multi-class kinematic wave model (see Section 1.3.2) including:

– A theoretical framework for multi-class kinematic wave modelling

– A model based on sound principles and satisfying important requirements

(Fastlane)

– A generalized single-pipe multi-class kinematic wave model

– A framework for the assessment of the generalized model and special cases

thereof

• Application of the Lagrangian coordinate system to (multi-class) kinematic wave

models (see Section 1.3.3)

• Efficient numerical methods for traffic flow models (see Section 1.3.4).

• Measures of accuracy both for numerical methods and traffic flow models (see

Section 1.3.5).

We discuss the contributions in more detail below.

1.3.1 Model tree

We introduce a model tree showing the genealogy of traffic flow models. It provides

an overview of the main traffic flow models and their relations since the first study on
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the relation between traffic density and flow (Greenshields, 1934). It does not only

give a description of the state-of-the-art, as most literature reviews do. But rather, by

visualizing the information in the form of a genealogy it presents in a clear way:

• An historical overview of traffic flow models.

• The main families of traffic flow models.

• How certain models are derived from or inspired by other models.

• The convergence of certain branches of models to a generalized model.

Using the model tree we are able to identify research needs.

1.3.2 Multi-class kinematic wave modelling

We develop the Fastlane model. It is a novel type of multi-class kinematic wave model

and is well suited for the anticipated applications. Just like many other multi-class mo-

dels, it includes a passenger car equivalent (pce) value, expressing that certain types

of vehicles (e.g., trucks) have a higher impact on traffic than others (e.g., passenger

cars). Fastlane is distinguished from other models by the fact that it incorporates space

occupancy in the pce-value, or in the pce function. It is the first multi-class model that

bases its pce function (via the space occupancy function) on a set of behavioural as-

sumptions. The behavioural assumptions are in line with assumptions in safe-distance

car-following models. Moreover, the Fastlane model has a firm basis in a theoretical

framework for multi-class kinematic wave traffic flow modelling, including a consist-

ent set of principles. The framework furthermore includes a set of qualitative require-

ments, which are all satisfied by Fastlane.

We present a step-by-step plan for the qualitative assessment of multi-class kinematic

wave models. Over the last decade, many multi-class kinematic wave models have

been developed. We propose a generalized multi-class kinematic wave model, based

on the Fastlane model that includes all these models as special cases. As far as we

know, this is the only generalized model that includes all those models. Furthermore,

we apply the generalized model to assess each model with respect to a consistent set

of qualitative requirements. We develop a step-by-step plan to perform such an as-

sessment. With the results of the assessment, it can be decided more easily which

models need or deserve further development and which do not because they have qual-

itatively undesirable properties. We do not know of any previous rigorous effort to

qualitatively assess such models. Individual models have been assessed before. This

includes ‘basic’ models (Benzoni-Gavage & Colombo, 2003; Zhang et al., 2006) and

more ‘advanced’ models (Ngoduy & Liu, 2007). In their assessments an eigenvalue

analysis is performed. However, they apply the traditional Eulerian coordinate system.

Therefore, the eigenvalue analysis is difficult, if possible at all, if there are many (more

than 3 or 4) vehicle classes. We apply an alternative coordinate system which allows

for an eigenvalue analysis even if there are arbitrary many vehicle classes.
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1.3.3 Lagrangian coordinate system

The rigorous model assessment is possible due to the reformulation of the generalized

model in Lagrangian coordinates. Multi-class kinematic wave models are traditionally

formulated in the Eulerian coordinate system, which is fixed in space. We reformulate

those models in the Lagrangian coordinate system, which moves with the vehicles.

The new formulation has multiple advantages. Using this coordinate system, the as-

sessment of the models with respect to certain criteria becomes easier. Furthermore,

more efficient numerical methods can be based on this coordinate system.

1.3.4 Numerical methods

We model traffic flow using a nonlinear hyperbolic partial differential equation of the

following form:

∂u

∂ t
+

∂ f (u)

∂x
= 0 (1.1)

with u a variable, f (u) a convex function and t the time coordinate and x the space

coordinate. We extend the model to include multiple classes, which implies that u

becomes a vector of variables, and to include a source term on the right-hand side.

The equation (1.1) is also know as the conservation equation (or conservation of mass,

conservation of vehicles). In our application, the function f is a highly nonlinear

function. One important difficulty is that its derivative changes sign. The Godunov

method (Godunov, 1959) is often used to solve this type of equations. In traffic flow

it is often referred to as the minimum supply demand method or the cell transmission

model. However, this solution method is inaccurate because of the nonlinearity of f .

We solve this problem by first reformulating the model in the Lagrangian coordinate

system, which leads to a ‘less nonlinear’ function f ∗: it is now nondecreasing and thus

its derivative does not change sign. Secondly, we apply the Godunov method. We show

that this numerical method, the upwind method, is more accurate than the traditional

minimum supply demand method. Furthermore, we study alternative upwind methods

which are expected to be even faster.

1.3.5 Accuracy measures

We develop two novel accuracy measures that are especially well suited to assess the

accuracy of traffic flow models and simulations. They quantify phase and diffusion er-

rors which are important in traffic flow context, unlike more commonly used measures

of accuracy such as the root mean square error (RMSE). The phase error measures

whether congestion in the simulation occurs at the same moment and at the same place

as in the exact solution of the model equations or in real traffic. This is important in ap-

plications where one wants to know whether congestion will spill back to, for example,
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an off ramp. Another important property of traffic flow (and traffic flow models) is that

there are sharp discontinuities which do not smooth out over time. The diffusion error

measures whether the discontinuities are preserved in the simulation. We only apply

the measures to compare simulation results obtained using numerical methods with the

analytical solution of the problem. That is, we quantify errors that are made in the step

from model to discretization in the traffic flow modeling cycle (Figure 1.1). However,

we foresee that these measures can be applied in other steps in the traffic flow model-

ling cycle as well. They can be applied to quantitatively compare traffic flow models

and simulations or traffic state estimations with observations.

1.4 Application and practical contributions

The applications and practical contributions of this dissertation are partly related to the

application of the Fastlane model. In this section we also discuss other applications

and practical contributions.

1.4.1 Applications of Fastlane

Our traffic flow model is a deterministic model that includes multiple user classes.

When compared to other multi-class models it is a relatively simple model, especially

when formulated in the Lagrangian coordinate system. Because of its simplicity we are

able to develop numerical methods which allow for efficient simulations. Because of

these properties, the model is well suited for applications in which it is important that

the model is deterministic and gives quick and accurate simulation results. Examples

of such applications are:

• On-line traffic state estimation

• Real time traffic state prediction

• Traffic management

• Dynamic traffic assignment

• Training of traffic controllers

• Planning of evacuation strategies

All these applications serve the goal of improving transportation systems and espe-

cially motorway networks. However, vehicles and drivers on motorway networks can

be highly heterogeneous. For example, passenger cars are usually shorter than trucks,

have higher maximum velocities and acceleration. Furthermore, trucks have a large

impact on traffic flow: only a small percentage of trucks can reduce the capacity of

a road substantially (Elefteriadou et al., 1997; Kockelman, 1998). Therefore, in re-

gions with many trucks, such as around logistics hubs, it is important to include the

heterogeneity of vehicles and drivers in the traffic flow model.
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Figure 1.2 Control loop for multi-class model predictive control using Fastlane.

An example of the application of our Fastlane model is shown in Figure 1.2. It shows

how sensors measure traffic characteristics such as class-specific flows and velocities.

The data is then used to estimate the current traffic state. Based on this estimation

a prediction of one hour ahead is made. This is done within an optimization loop:

different traffic management scenarios are tested and their performance is assessed.

The scenarios include different measures for different classes. For example, trucks

may be instructed to use one route, while passenger cars are directed to another route.

The optimal control scenario is then implemented in reality. The traffic system reacts

to this and the loop starts again. Fastlane is especially well suited for this application

because:

• Fastlane includes multiple vehicle/driver classes.

• Fastlane allows for efficient state estimation using Kalman filtering and the La-

grangian coordinate system (Yuan, 2013).

• Fastlane allows for quick and accurate predictions that can be used within an

optimization loop (Schreiter, 2013).

1.4.2 Other applications and practical contributions

Other applications and practical contributions of this dissertation include:

• A step-by-step plan for the qualitative assessment of traffic flow models.
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• Efficient numerical methods for traffic flow models.

• Accuracy measures for traffic flow models and simulation tools.

They are discussed in more detail below.

Our method for the qualitative assessment of traffic flow models helps in selecting an

appropriate model. By first assessing a (new) model this way, it can be shown whether

the model has qualitatively desirable properties. If it has, the model may be worth the

effort of calibrating it to the problem at hand. If not, there is no need to try to calibrate

and apply the model because it will not be able to reproduce observations accurately

enough.

Once a traffic flow model has been evaluated as a qualitatively good model, the accu-

racy measures are useful in calibrating and validating the model. They can be applied

to evaluate errors that are especially important in traffic flow, unlike most commonly

used accuracy measures such as the RMSE.

Finally, we develop efficient numerical methods to be applied to Fastlane. However,

they can also be applied to other multi-class or mixed-class macroscopic traffic flow

models. They include methods to simulate traffic flow over nodes, which are essential

elements if one wants to simulate traffic on a network.

1.5 Dissertation outline

The content of the main part of this dissertation is schematically outlined in Figure

1.3. The figure shows that the research focusses on two issues: multi-class traffic flow

modelling and efficient simulation methods for networks with this type of models. In

both parts we apply the Lagrangian formulation of a generic multi-class traffic flow

model, which is introduced in the central chapter (Chapter 6).

In the first part of this dissertation we develop a macroscopic traffic flow model:

Fastlane. The outline of this part is as follows. In Chapter 2 we review the existing

literature on traffic flow models. The historical development of traffic flow models is

condensed in a model tree, showing the genealogy of traffic flow models. We identify

gaps and argue why we continue with the development of a multi-class kinematic wave

model. In Chapter 3 we propose a theoretical framework for the development and

analysis of multi-class kinematic wave models. The framework consists of a set of

principles and a set of requirements. The principles are later used in the development

of Fastlane. The requirements are later used to assess whether Fastlane and similar

models have some important qualitative properties. The actual model development of

Fastlane is described in Chapter 4. This chapter focusses on the model equations and

their derivation and interpretation. In Chapter 5 we generalize the Fastlane model.

This results in a generic single-pipe multi-class kinematic wave model in which all

such models known from literature (Chapter 2) are contained. Finally, some results
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Figure 1.3 Overview of the content of this dissertation.
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from Chapter 6 (outlined below) are used in Chapter 7 to assess the generalized ki-

nematic wave model and all specific models known from theliterature. It is assessed

whether the models satisfy the requirements proposed in Chapter 3.

In Chapter 6 we reformulate the generalized multi-class kinematic wave model in the

Lagrangian coordinate system. The Lagrangian coordinate system moves with the

vehicles. The reformulated model allows for an easier assessment of the requirements

(Chapter 7). Furthermore, the Lagrangian formulation is used in the second part of this

dissertation to develop more efficient simulation methods.

In Chapter 8 we develop numerical methods for mixed-class kinematic wave models.

Furthermore, we develop accuracy measures and apply them in the assessment of the

accuracy of numerical methods. In Chapter 9 we develop the numerical methods fur-

ther for multi-class kinematic wave models. All numerical methods in Chapter 8 and

9 are developed for homogeneous roads without considering inflows or outflows. In

Chapter 10 the numerical methods are developed further to include inflow and out-

flow boundaries and inhomogeneities including ramps. Finally, Chapter 11 concludes

this dissertation by summarizing the main findings and applications and by suggesting

future research directions.





Chapter 2

State-of-the-art traffic flow modelling

Traffic flow models have been developed and used since the beginning of the twentieth

century. Traffic flow models are part of a long history of mathematical modelling of

physical and other systems. Scientists and engineers use these models as simplified

representations of real-world systems. They are applied to explain and predict weather

or chemical reactions, behaviour of materials or humans, fluid or traffic flow, etc. In

this chapter we present a review of traffic flow models. The discussion of the relations

between traffic flow models and other models is postponed until the end of this chapter.

The review follows the historical lines of the development of traffic flow models since

they were first studied in the 1930’s. Previous reviews focus on the current state-of-the-

art and review the models on their current value (Papageorgiou, 1998; Brackstone &

McDonald, 1999; Zhang, 2001; Hoogendoorn & Bovy, 2001b; Helbing, 2001; Kerner,

2009; Treiber & Kesting, 2010; Treiber et al., 2010; Orosz et al., 2010; Wilson &

Ward, 2011; Bellomo & Dogbe, 2011). We aim to take one step further back and give

an historical overview of the highlights in traffic flow modelling. This approach shows

better how traffic flow models have developed and how different types of models are

related to each other. Furthermore, it forms the basis of our next step in traffic flow

modelling, using a multi-class approach. To show the historical development of traffic

flow models we introduce a model tree, see Figure 2.1. A more detailed version of the

model tree is included as Appendix A. The rest of this chapter is devoted to discussing

the model tree, the models in it and the relations between them.

All models in the tree have one common ancestor: the fundamental relation (or fun-

damental diagram). The other three families consist of micro-, meso- and macrosopic

models. After the introduction of the fundamental relation in the 1930’s, microscopic

and macroscopic models were introduced simultaneously in the 1950’s. Mesoscopic

models are about a decade younger. The model tree shows that particularly over the

last two decades, the fundamental relation and all three types of models have been

developed further and many offshoots can be recognized. The fundamental diagram

relates the headways (front-to-front following distance) to vehicle velocity. How head-

ways and velocities change can be described by micro-, meso- or macroscopic models.
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Figure 2.1 Genealogical tree of traffic flow models. Grey lines indicate descent, black

dots indicate publications, black lines indicate that the model has (or multiple very

similar models have) been published multiple times. Most labels are omitted for read-

ability. A larger and labeled version is included in Appendix A.
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On the one hand, microscopic models distinguish and trace the behaviour of each indi-

vidual vehicle. On the other hand, macroscopic models aggregate vehicles and traffic

is described as a continuum. Mesoscopic models are categorized in between micro-

and macroscopic models as their aggregation level is between those of micro- and

macroscopic models. Categorizing traffic flow models can be done according to other

criteria such as whether the variables are continuous or discrete, the level of detail, sto-

chastic or deterministic process representation and the scale of the application (large

networks vs. links and intersections), type of model equations ((partial) differential

equations, discrete model equations, static models) or the number of phases described

by the model (Hoogendoorn & Bovy, 2001b; Treiber & Kesting, 2010; Treiber et al.,

2010). Since the development of traffic flow models has followed largely the family

lines of micro-, meso- and macrosopic models, we use this traditional categorization

throughout the rest of this chapter.

In the model tree we omit models related to lateral behaviour such as lane changing

and gap acceptance models. This would make the model tree, and especially the mic-

roscopic family much more extended without adding much to our aim of setting up a

basis for the development of a novel multi-class kinematic wave model. For the same

reasons, we only include models for homogeneous roads. The discussion on node

models describing the behaviour at inhomogeneities such as on- and off ramps is post-

poned until Chapter 10. Moreover, we do extensively discuss the branch of multi-class

kinematic wave models. By doing so, we can later (in Chapter 5) relate and compare

our newly introduced model to other similar models. However, we do not include

multi-class extensions of microscopic models. Again, this would have made the model

tree much more extended without adding much insight since almost any microscopic

model can be, and has been, formulated with multiple classes.

In this chapter we first discuss the fundamental relation in more detail, see Section

2.1. We then discuss models in each of the other three families: Section 2.2 presents

microscopic models, Section 2.3 presents mesoscopic models and Section 2.4 presents

macroscopic models. Section 2.5 discusses some relations between traffic flow models

and other similar models, it reviews critical remarks on traffic flow models. Section

2.6 concludes this chapter with arguments as to why we have chosen to further develop

the branch of multi-class kinematic wave traffic flow models.

2.1 Fundamental diagram

Most traffic flow models are based on the assumption that there is some relation be-

tween the distance between vehicles (headway or spacing) and their velocity, e.g., as

in Figure 2.2(d). The relation between spacing and velocity was first studied by Green-

shields (1934) and called the fundamental relation (or fundamental diagram) later. Tak-

ing one step further back in time, Knight (1924) was the first to discuss traffic equilib-

rium, in an example that has later become famous as Wardrop’s principle. However,
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Figure 2.2 Fundamental relations in different planes.

Greenshields is often regarded as the founder of traffic flow theory as he was the first

to observe and describe the movement of vehicles (Kühne, 2011). In fact, the article

(Kühne, 2011) was presented on a conference devoted to the 75th anniversary of the

introduction of the fundamental diagram by Greenshields (Kühne & Gartner, 2011).

In this section we consider the fundamental relation as (part of) a traffic flow mo-

del. Alternatively, the fundamental relation (or fundamental diagram) is often used to

present observed traffic states. In Section 2.1.4 we discuss how these observations are

used to adapt the fundamental relation which is applied in a model.

2.1.1 Definition of variables

Originally Greenshields studied the relation between the variables spacing and velo-

city. However, the fundamental relation can also be expressed in other variables such as

density (average number of vehicles per unit length of road) and flow (average number

of vehicles per time unit), see Figure 2.2. These variables were first defined rigorously

by Edie (1965). Figure 2.3 illustrates the definitions. Edie defines flow as the flow in

an area A with length dx and duration dt which is determined by the number of vehicles

N(A) that travel through the area and the distance yn they travel through the area:

qarea =
∑

N
n=1 yn

dxdt
(2.1)

Similarly, Edie defines density as the density in an area using the time rn vehicle n is

present in the area:

ρarea =
∑

N
n=1 rn

dxdt
(2.2)
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Figure 2.3 Time-space region with some vehicle trajectories to illustrate Edie’s defini-

tions of flow and density. N(A) is the number of vehicles that travel through the area A.

Edie concludes with the intuitive definition of velocity in an area by dividing the total

distance traveled by the total time spent:

varea =
qarea

ρarea
=

∑
N
n=1 yn

∑
N
n=1 rn

(2.3)

These are workable definitions to extract flow, density and velocity from observations

of a large area A with many vehicles N. Edie shows that they can even be applied

to long road sections observed over a short period of time or, vice versa, short road

sections observed over a long period of time. However, for other applications such as

macroscopic traffic flow models, flows, densities and velocities at points in (x, t) are

considered. Therefore, we have to assume that traffic is a continuum flow. In Section

2.5.1 we argue why this is a reasonable assumption. The assumption implies that N be-

comes continuous (instead of discrete). Furthermore, N is assumed to be continuously

differentiable in x and t. Edie’s definitions are then not applicable directly. However,

by decreasing the area A such that it becomes a point, they reduce to definitions of

flow, density and velocity at points.

The local and instantaneous flow, density and velocity are found using the procedure

described by Leutzbach (1988). To find the local and instantaneous flow (the flow at a

point in (x, t)) we decrease the length of the road section: dx → 0. This yields the local

flow through a cross section x. Afterwards, we decrease the time dt → 0 and find:

Definition 2.1 ((local and instantaneous) flow).

q(x, t) = lim
dt→0

lim
dx→0

∑
N
n=1 yn

dxdt
= lim

dt→0

N(x, [t, t +dt])

dt
︸ ︷︷ ︸

=qlocal(x)

(2.4)
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To find the local and instantaneous density we decrease the time: dt → 0. This yields

the instantaneous density through a cross section t. Afterwards, we decrease the length

dx → 0 and find:

Definition 2.2 ((local and instantaneous) density).

ρ(x, t) = lim
dx→0

lim
dt→0

∑
N
n=1 rn

dxdt
= lim

dx→0

N([x,x+dx], t)

dx
︸ ︷︷ ︸

=ρinstantaneous(x)

(2.5)

Finally, similar to Edie’s definition of velocity (2.3), we define the local and instanta-

neous velocity:

Definition 2.3 ((local and instantaneous) vehicle velocity).

v(x, t) =
q(x, t)

ρ(x, t)
(2.6)

In addition, we define local and instantaneous spacing:

Definition 2.4 ((local and instantaneous) vehicle spacing).

s(x, t) =
1

ρ(x, t)
(2.7)

2.1.2 Shapes of the fundamental relation

In 1934, Greenshields proposed a fundamental relation that is linear in the spacing-

velocity plane. However, his name has now been linked to the fundamental relation

that he proposed one year later (Greenshields, 1935). This fundamental relation is

linear in the density-velocity plane and thus parabolic in the density-flow plane, see

Figures 2.4(a) and 2.5(a). Since then, many other shapes of fundamental relations

have been proposed. The Daganzo (1994) fundamental relation is probably the most

widespread. It is bi-linear (triangular) in the density-flow plane, see Figures 2.4(b) and

2.5(b). Figures 2.4(c) and 2.5(c) show the Smulders fundamental diagram (Smulders,

1990), which is a combination of the previous two: it is parabolic for low densities and

linear for high densities (parabolic-linear). It satisfies, unlike Greenshields’ fundamen-

tal relation, later findings that the relation between density and flow is (approximately)

linear at large densities (Cassidy & Windover, 1995; Kerner & Rehborn, 1996; Treiber

& Helbing, 2002). However, it does represent that also at low densities vehicles interact

and their velocity decreases with an increase in density (Hoogendoorn, 1999, Chapter

8), unlike in Daganzo’s fundamental relation. Finally, Figures 2.4(d) and 2.5(d) show

the Drake fundamental relation (Drake et al., 1967). For a more detailed overview of

different shapes of fundamental relations we refer to (Li, 2008).
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Figure 2.4 Different shapes of density-flow fundamental relations.
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Figure 2.5 Different shapes of density-velocity fundamental relations.
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Figure 2.6 A sound fundamental relation and its properties, according to Del Castillo

(2012).

2.1.3 Properties and requirements

Figure 2.6 illustrates some properties and requirements of fundamental relations. The

properties of a sound fundamental relation are discussed by Del Castillo (2012):

1. Velocity ranges from zero to a maximum value vmax.

2. Density ranges from zero to a maximum value ρjam.

3. Velocities at the extreme density values are v(0) = vmax and v(ρjam) = 0.

4. Flows at the extreme density values are q(0) = q(ρjam) = 0.

5. Maximum velocity and congestion wave speed are the slopes of the fundamental

relation at the extreme density values: vmax = dq/dρ (0) and w = dq/dρ (ρjam).

6. The fundamental relation is strictly concave: d2q/dρ2 < 0, ∀0 < ρ < ρjam.

The first three properties can be regarded as requirements following from traffic flow

fundamentals: they result from easily observable facts. First, velocities are bounded

from above by (legal or technical) maximal vehicle velocity which is reached (in the

limit) if there are no other vehicles. Second, vehicles take up space and there is a max-

imum number of vehicles that can be fitted on a certain road length. At this maximum

density, vehicles can not move. Finally, both velocity and density can not be negative.

The fourth and fifth property follow from the first three requirements combined with

the definition of velocity (Definition 2.3). The fifth property furthermore includes the

definition of congestion wave velocity w. Del Castillo (2012) argues that the sixth

property is necessary to define a traffic flow model with a unique solution. However,

there are no reasons to assume that real traffic can not behave in a way that would be

described by a fundamental relation that is not strictly concave. In fact, Zhang (2001)
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shows that a unique solution can be found even if the fundamental relation is convex

and Herbin & Leclercq (2011) show that it is sufficient if the density-flow fundamental

relation is Lipschitz-continuous. Furthermore, it is reasonable to assume that velocity

does not increase with increasing density (dv/dρ ≤ 0). Del Castillo does not require

that directly. However, it is a necessary, but not sufficient condition for his last property

on the strict concavity of the fundamental relation.1

Another important property of fundamental relations is the existence of a maximum

flow, or capacity: qcap = max0<ρ<ρjam
q(ρ). Assuming the above requirements are

satisfied, the capacity is related to a single density called critical density ρcrit and a

single velocity called critical velocity vcrit, with qcap = ρcritvcrit. The critical density

separates the fundamental relation into two parts: 1) a free flow branch with densities

below critical, velocities above critical and increasing flow for increasing density and

2) a congestion branch with densities above critical, velocities below critical and a

decreasing flow for increasing density.

The Greenshields fundamental relation is the only one of the fundamental relations in-

troduced in Section 2.1.2 that satisfies all of Del Castillo’s criteria. The other ones (the

Daganzo, Smulders and Drake fundamental relation) are not strictly concave, though

the first two are concave. Furthermore, in the Drake fundamental relation there is no

jam density for which velocity and flow are zero.

2.1.4 Scatter in the fundamental relation

For many decades, it has been recognized that the points in observed density-flow plots

usually are wide scattered, see Figure 2.7. (Zhang, 1999; Laval, 2011) argue that much

of the scatter can be explained by non-equilibrium traffic conditions. Zhang defines

traffic to be in equilibrium if over a sufficiently long time and road length velocity and

density do not change: ∂v/∂ t = 0, ∂ρ/∂ t = 0, ∂v/∂x= 0 and ∂ρ/∂x= 0. Only points

in the scatter plot that satisfy these criteria can be used to fit the fundamental relation.

This is then called the equilibrium fundamental relation.

Furthermore, it has been argued that fundamental relations consisting of a continuous

line, such as those discussed in the previous sections are not realistic. Edie (1961);

Cassidy & Bertini (1999) explain part of the scatter with a capacity drop: just before

the onset of congestion the outflow out of a bottleneck is higher than in congestion,

see Figure 2.8(a). This phenomenon is still verified and studied nowadays (Coifman

& Kim, 2011). The capacity drop has been explained by a low acceleration rate of

vehicles leaving congestion (Treiterer & Myers, 1974). Slow acceleration can also be

included in a fundamental diagram with hysteresis (Newell, 1965; Zhang, 1999), see

Figure 2.8(b). From a different perspective, Kerner (2009) argues that observed scatter

plots show too much scatter to derive a unique fundamental relation from, cf. (Kerner

1Application of the chain rule shows that if the q(ρ) is concave then dv/dρ ≤ 0. That is: d2q/dρ2 =
d2(ρv)/dρ2 = ρdv/dρ + v is negative only if dv/dρ ≤ 0, because ρ ≥ 0 and v ≥ 0.
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& Rehborn, 1996; Kerner, 2004). He proposes to use a Three-Phase approach char-

acterized by the existence of three phases, one of them featuring wide scatter in the

density-flow plane. In his theory the fundamental relation is replaced by two lines and

a two-dimensional region, see Figure 2.8(c).

Both fundamental relations with capacity drop (Figure 2.8(a)) and with hysteresis (Fig-

ure 2.8(b)) imply a non-unique fundamental relation: at a certain density (usually just

above (outflow) capacity) the flow is not uniquely determined by the density but also

depends on previous traffic states. Therefore, for a unique solution of the model, ad-

ditional assumptions are needed on transitions between the branches of the funda-

mental relation (Zhang, 2001). Furthermore, the concavity requirement (see Section

2.1.3) is usually not satisfied by fundamental relations with capacity drop or hysteresis.

The density-flow plane proposed by Kerner & Rehborn (1997); Kerner (2009) (Figure

2.8(c)) is even ‘less unique’. Treiber et al. (2010) show that simulation results of sim-

pler models with a unique fundamental diagram are similar to those of Three-Phase

models, when parameters are chosen appropriately.

Finally, heterogeneity among vehicles and drivers has been used to explain scatter in

observed density-flow plots. In this approach it is assumed that flow not only depends

on density, but also on the traffic composition: a large fraction of trucks, which usually

drive at low speeds and take much space, will result in a low flow. This leads to three-

dimensional fundamental relations such as in Figure 2.8(d) (Chanut & Buisson, 2003).

Its main advantage is that it is uniquely determined by the current densities and it

does not depend on previous traffic states. Furthermore, the fundamental relation can

satisfy all requirements proposed by Del Castillo (2012). We will come back to the

fundamental relation with heterogeneity in Section 2.4.2.

Fundamental relations, whether equilibrium or non-equilibrium, unique or non-unique,

are crucial in traffic flow models. One of the model assumption is that traffic is in a

state on the fundamental relation, or that it tends towards it. Meso- and macroscopic

models mostly include fundamental relations explicitly. Microscopic models usually

have some underlying assumptions on a fundamental relation which can be revealed

by careful analysis of the model or simulation. The other components of micro- meso-

and macroscopic traffic flow models will be discussed in the next sections.

2.2 Microscopic models

The earliest family in the model tree incorporating dynamics are microscopic models.

They are based on the assumption that drivers follow their leader and adjust their be-

haviour to that of the leading vehicle. Microscopic modelling has shown to be a fruitful

line of thought, which is illustrated by the large part of the model tree taken up by this

family. Microscopic models describe the longitudinal and lateral behaviour of individ-

ual vehicles. Only longitudinal behaviour is discussed here. In microscopic models

vehicles are numbered to indicate their order: n is the vehicle under consideration,
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n+1 n n−1 n−2

driving direction

Figure 2.9 Vehicle numbering in microscopic traffic flow models (and macroscopic

models in Lagrangian formulation).

n−1 its leader, n+1 its follower, etc., see Figure 2.9. The behaviour of each individ-

ual vehicle is modeled in terms of the position of the front of the vehicle xn, velocity

vn = dxn/dt, acceleration an = dvn/dt = dx2
n/dt2 or a combination of the three.

Three types of car-following models will be discussed in Sections 2.2.1 (safe-distance

models), 2.2.2 (stimulus-response models) and 2.2.3 (action point models). Section

2.2.4 discusses extensions of car-following models. Section 2.2.5 discusses the most

recent branch of microscopic models, namely cellular-automata.

2.2.1 Safe-distance models

The earliest car-following models include a car-following rule based on safe following

distance. Pipes (1953) proposes to express the position of the leader as a function of

the position of its follower:

xn−1 = xn +d +T vn + lveh
n−1 (2.8)

with T the minimum time headway (excluding vehicle length), d the distance between

two vehicles at standstill and lveh
n−1 length of the leading vehicle, see Figure 2.10. T vn

is interpreted by Pipes as the “legal distance” between vehicle n−1 and n. By differ-

entiating with respect to time, this model is reformulated as:

an =
vn − vn−1

T
(2.9)

This formulation shows that a driver accelerates (decelerates) when the front gap be-

comes larger (smaller) and that this effect is stronger if the minimum time headway T

is smaller.

Kometani & Sasaki (1961) derive a car-following model from basic Newtonian equa-

tions of motion. It is assumed that a driver acts such that he can avoid a collision even if

the leader would act ‘unpredictably’. Effectively, they replace the distance at standstill

d in Pipes’ model with a velocity-dependent term. Furthermore, their formulation in-

cludes a time delay τ . A positive τ represents that it takes some time between a change

in the behaviour of a vehicle and the actual reaction of its follower to this change.

It includes the reaction time of the driver, but can also depend on his perception and

the time it takes between noticing that action is needed/desired and actual braking or

accelerating.
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Figure 2.10 Parameters of Pipes’ safe-distance model.

Gipps (1981) refines safe-distance car-following models by assuming that ‘the driver

travels as fast as safety and the limitations of the vehicle permit’:

vn(t + τ) = min

{

vn(t)+2.5amaxτ

(

1− vn(t)

vmax

)
√

0.25− vn(t)

vmax
,

aminτ +

√

a2
minτ2 −amin

(

2
(
xn−1(t)− xn(t)− sjam

)
− vn(t)τ −

vn−1(t)2

b

)}

(2.10)

with amax maximum acceleration, amin maximum deceleration (minimum accelera-

tion), vmax the desired (maximum) velocity and sjam jam spacing. Jam spacing is the

front-to-front (or equivalently rear-to-rear) distance between two vehicles at standstill.

Therefore, if vehicle length is assumed to be equal for all vehicles (lveh
n = lveh) then

sjam = d+ lveh. Effectively, Gipps’ approach introduces two regimes: one in which the

vehicle itself limits its velocity (the top part in equation (2.10)), and one in which the

safe distance to the leader limits the vehicles velocity (the bottom part in the equation).

The model tree shows one more development in safe-distance models. In the early

years of car-following models, Newell (1961) proposed a simple safe-distance model

with delay:

vn = vn

(
xn−1(t − τ)− xn(t − τ)

)
(2.11)

with the function vn at the right hand side a fundamental relation and τ the delay time.

Later, he proposed another simple safe-distance model (Newell, 2002):

xn(t + τn) = xn−1(t)− sjam,n (2.12)

It is assumed that a vehicle follows the trajectory of its leader, translated by τn and

sjam,n. We note that both reaction time τn and jam spacing sjam,n may differ for each

vehicle and driver. Daganzo (2006) shows the equivalence of such a simple car-

following model with certain simple cellular-automata and kinematic wave models.

Moreover, Leclercq et al. (2007) show that the model (2.12) is equivalent to a dis-

cretized macroscopic model if the fundamental relation q(ρ) is triangular. To show

this relation, the macroscopic LWR model is formulated in the Lagrangian (moving)
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coordinate system. The Lagrangian formulation of macroscopic models will be dis-

cussed more extensively in Chapter 6 and further. The formulation is also applied to

develop a hybrid model that couples the microscopic Newell car-following model with

the macroscopic LWR model (Leclercq, 2007a). However, already in 2003, Bourrel &

Lesort proposed another hybrid model combining Newell’s earlier safe-distance model

(2.11) with the LWR model. Laval & Leclercq (2010) propose a car-following model

similar to that by Newell and extended it to include differences between ‘timid’ and

‘aggressive’ drivers.

2.2.2 Stimulus-response models

The second branch of car-following models consists of stimulus-response models. It

is assumed that drivers accelerate (or decelerate) as a reaction to three stimuli:

1. own current velocity vn =
dxn

dt
2. spacing with respect to leader sn = xn−1 − xn

3. relative velocity with respect to leader (receding rate) ṡ =
dsn

dt
= vn−1 − vn

It can be seen from the model tree that in the late 1950’s and early 1960’s there was a

rapid development of these models (Chandler et al., 1958; Herman et al., 1959; Helly,

1961). The efforts consolidated in the now famous GHR-model, named after Gazis,

Herman, & Rothery (1961):

an(t) = γ

(
vn−1(t)

)c1

(
sn(t − τ)

)c2
ṡn(t − τ) (2.13)

γ
(vn−1(t))

c1

(sn(t−τ))c2
is considered as the sensitivity of vehicle/driver n. γ is the sensitivity para-

meter and c1 and c2 are parameters that are used to fit the model to data. The receding

rate ṡn(t−τ) is considered as the stimulus, the acceleration an(t) as the response, hence

the name ‘stimulus-response’ model.

Since those early developments a lot of work has been done in calibrating and valida-

ting this and other similar models. However, in 1999, Brackstone & McDonald con-

cluded that stimulus-response models are being used less frequently, mainly because

of contradictory findings on parameter values. Nevertheless, the model tree shows that

in the last one or two decades many new models have been developed and it seems that

stimulus-response models have become popular again. Wilson & Ward (2011) even

argue that there are too many microsimulation models and that researchers should try

to focus on a small subset that has good qualitative properties, which will be discussed

at the end of this section. Some of the most popular more recent stimulus-response

models are discussed below.
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Bando et al. (1995) introduced the optimal velocity model (OVM) assuming that drivers

accelerate (or decelerate) to their optimal velocity, which is a function of the headway:

an(t) = γ
(
v∗
(
sn(t)

)
− vn(t)

)
(2.14)

v∗(s) = vmax

(
tanh(s− c1)+ c2

)
(2.15)

with γ the sensitivity parameter and c1 and c2 parameters of the optimal velocity func-

tion v∗(s) such that tanh(sjam − c1)+ c2 = 0. In this model, it is very clear how an

equilibrium fundamental relation, in this case the optimal velocity function v∗(s), is

incorporated in a microscopic model. Bando et al. (1998) extended their model by

introducing delay τ: in the right-hand side of (2.14) t is replaced by t − τ . The model

now takes into account that drivers do not react immediately to a stimulus, but it takes

some time (delay) before they accelerate or decelerate.

The Intelligent Driver Model (IDM) by Treiber et al. (2000) was developed to better

reproduce many different traffic states. The acceleration is described by:

a = amax

(

1−
(

v

vmax

)δ

−
(

s∗(v, ṡ)
s

)2
)

(2.16)

with amax the maximum acceleration, vmax the maximum velocity and δ the accelera-

tion exponent. Similar to Gipps’ model, the IDM includes two regimes in the desired

space gap function (Treiber & Kesting, 2010):

s∗(v, ṡ) = sjam +max

(

0,T v+
vṡ

2
√

amaxamin

)

(2.17)

with amin the maximum deceleration (minimum acceleration), sjam the jam spacing and

T the minimum time headway.

The latest offshoots in the branch of stimulus-response models are based on Three-

Phase-Theory. The acceleration delay model by Kerner & Klenov (2006) and a sto-

chastic car-following model by the same authors (2002) take into account the three

traffic regimes proposed in Three-Phase Traffic Theory (Kerner, 2009).

Already in the earliest days of stimulus-response models Chandler et al. (1958) intro-

duced a general formulation:

a(t) = f
(
v(t),s(t − τ), ṡ(t − τ)

)
(2.18)

It is interesting to note that, after reformulation, most safe-distance models also fit

in this framework. Therefore, the distinction between safe-distance and stimulus-

response models is not as clear as suggested by e.g., Brackstone & McDonald (1999);

Hoogendoorn & Bovy (2001b). Instead, safe-distance models can be classified as car-

following models in which the assumption that drivers keep a safe distance plays a

large role. Therefore, the distinction rather lies in the assumptions then in the model

equations themselves.
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Currently, Wilson (2008); Wilson & Ward (2011) use the generic formulation (2.18)

to qualitatively asses stimulus-response models. They perform stability analysis and

put forward some constraints on the function f and its parameters. Assuming no time

delay (τ = 0) the requirements are:

• An equilibrium fundamental relation can be derived using the steady-state solu-

tion of f :

∀s > 0, ∃v =V (s)> 0 such that f (v,s,0) = 0.

• Driving behaviour is ‘rational’, leading to some constraints on the derivatives:

– If velocity increases, the vehicle accelerates less (or decelerates more):

d f/dv < 0.

– If headway increases, the vehicle accelerates more (or decelerates less):

d f/ds ≥ 0.

– If relative velocity increases (that is: if approach rate decreases or receding

rate increases), the vehicle accelerates more (or decelerates less):

d f/dṡ ≥ 0.

However, Wilson & Ward (2011) do not draw any conclusions on which models are

quantitatively good, and which are not. This is partly because such conclusions do not

only depend on the model formulation but also on its parameters.

2.2.3 Action point models

The third, and last, branch of car-following models consists of action point models,

first introduced by Wiedemann (1974), (Brackstone & McDonald, 1999). However, a

decade earlier, Michaels (1965) discussed the underlying concept that drivers would

only react if they perceive that they approach a vehicle. Therefore, the approach rate

or the headway must reach some perception threshold before a driver reacts. The

main advantage of action point models is that they incorporate, in contrast to other

car-following models, that:

1. at large headways driving behaviour is not influenced by that of other vehicles,

2. at small headways driving behaviour is only influenced by that of other vehicles

if changes in relative velocity and headway are large enough to be perceived.

If driving behaviour is influenced by that of others, any of the previously introduced

safe-distance or stimulus-response models can be used to describe it. Therefore, action

point models can be regarded as a generalization of stimulus-response models.

2.2.4 Multi-class and multi-anticipation car-following models

Most car-following models described and analyzed in literature assume homogeneous

vehicle-driver units, that is: vehicles and drivers all behave identically. However, since

each vehicle is modeled and simulated individually, it is relatively straightforward to
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take into account heterogeneity. In that case model parameters such as desired (max-

imum) velocity, sensitivity and reaction time may vary over vehicles and drivers. In

fact, most simulation tools based on car-following models are multi-class, that is: they

do take into account heterogeneity. For example, originally the Intelligent Driver Mo-

del was formulated as a multi-class model with different parameters amax, amin, vmax,

sjam, and T for each vehicle (Treiber et al., 2000).

Multi-anticipation is another way to extend car-following models. In this case more

than one leading vehicle influences the behaviour of a driver. The concept was already

used in the car-following model by Helly (1961) (Brackstone & McDonald, 1999).

However, it has become widespread since Bexelius (1968) developed a multi-anticipa-

tion version of the GHR-model. More recently, multi-anticipation was incorporated in

the optimal velocity model (Lenz et al., 1999) and the Intelligent Driver Model (Treiber

et al., 2006a). Finally, multi-anticipation and multi-class have been combined to take

into account that some drivers look further ahead than others (Ossen & Hoogendoorn,

2006).

2.2.5 Cellular-automata models

Cellular-automata models are usually categorized as microscopic models, even though

they are a different, and much younger, branch in the model tree. This is because the

movement of individual vehicles is modeled. The main difference with car-following

models is that space, and sometimes time, is discretized. Moreover, the velocity is

discretized. Therefore, they are in general computationally more efficient (Knospe

et al., 2004). In cellular-automata models, the road is partitioned into cells of usually

7.5 meters long. In such a cell either a vehicle might be present or not. The model

consists of a set of, either stochastic or deterministic, rules that determine when the

vehicle will move to the next (downstream) cell. The first cellular-automata traffic

flow models was introduced by Cremer & Ludwig (1986). The model by Nagel &

Schreckenberg (1992) is regarded as the prototype cellular-automata model (Knospe

et al., 2004). Each time step each vehicle is advanced a few (or zero) cells according

to the following algorithm:

1. If maximum velocity has not been reached yet then accelerate:

ṽ → min(ṽ+1, ṽmax).

2. If headway is too small then decelerate: ṽ → min(ṽ, s̃jam −1)

3. Decelerate at random: ṽ → max(ṽ−1,0) with probability π .

4. Move: x̃ → x̃+ ṽ.

Here ṽ denotes the normalized vehicle velocity in number of cells per time step, ṽmax

the normalized maximum velocity and s̃jam the normalized jam spacing in number of

cells. x̃ is the cell number and π the deceleration probability.

More recent developments combine cellular-automata models with the optimal ve-

locity car-following model Helbing & Schreckenberg (1999) or Three-Phase-Theory
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Kerner et al. (2002). Some of the most popular cellular-automata models have been

compared by Knospe et al. (2004). They conclude that (certain) cellular-automata

models are well able to describe traffic flow on urban roads and sometimes even on

highways.

2.3 Mesoscopic models

Mesoscopic traffic flow models were developed to fill the gap between microscopic

models that describe the behaviour of individual vehicles and macroscopic models that

describe traffic as a continuum flow. Mesoscopic models describe vehicle behaviour

in aggregate terms such as in probability distributions. However, behaviour rules are

defined for individual vehicles. Within this family the branch of gas-kinetic models

appears to be the most popular nowadays. Other branches include headway distribution

models (Buckley, 1968; Branston, 1976) and cluster models (Mahnke & Kühne, 2007).

In this section we discuss gas-kinetic models (Section 2.3.1) and macroscopic models

derived from them (Section 2.3.2).

2.3.1 Gas-kinetic models

Gas-kinetic traffic flow models were developed in analogy to models describing the

motion of large numbers of small particles (atoms or molecules) in a gas. When applied

to traffic flow, these models describe the dynamics of velocity distribution functions of

vehicles. Prigogine & Andrews (1960); Prigogine (1961) first introduced gas-kinetic

models describing traffic flow by the following partial differential equation:

∂ ρ̃

∂ t
+ v

∂ ρ̃

∂x
=

(
∂ ρ̃

∂ t

)

acceleration

+

(
∂ ρ̃

∂ t

)

interaction

(2.19)

with ρ̃ the reduced phase-space density, which can be interpreted as follows. At time

t, the expected number of vehicles between location x and x+ dx that drive with a

velocity between v and v+ dv is the integral of the reduced phase-space density over

this two-dimensional area:

expected # of veh’s in [x,x+dx) with velocity in [v,v+dv)

=
∫ x+dx

x

∫ v+dv

v
ρ̃(x,v, t)dxdv ≈ ρ̃(x,v, t)dxdv (2.20)

where the approximation holds in the limit for an infinitesimal area with dx → 0 and

dv → 0. The left-hand side of (2.19) consists of a time derivative and an advection

term describing the propagation of the phase-space density with the vehicle velocity.

At the right-hand side there is an acceleration term describing the acceleration towards
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the equilibrium velocity:

(
∂ ρ̃

∂ t

)

acceleration

=− ∂

∂v

(

ρ̃
ṽ(v|x, t)− v

tacceleration

)

(2.21)

with tacceleration the acceleration time and ṽ is the desired velocity distribution. The

other term at the right-hand side is an interaction term, or collision term, describing

the interaction between nearby vehicles:

(
∂ ρ̃

∂ t

)

interaction

= (1−π)ρ̃(x,v, t)
∫

(vslow − v)ρ̃(x,vslow, t)dvslow (2.22)

with vslow the velocity of a slow vehicle, π the probability of immediate overtaking and

hence 1−π the probability of slowing down.

Paveri-Fontana (1975) improved the above gas-kinetic model by relaxing the assump-

tion that the behaviour of nearby vehicles is uncorrelated, which resulted in an adapted

interaction term. Furthermore, the model includes an acceleration term with the desired

velocity distribution ṽ independent of the local number of vehicles. In the mid 1990’s

a revival of gas-kinetic models occurred with the development of a multi-lane version

of Paveri-Fontana’s model, Helbing (1997b).Hoogendoorn & Bovy (2001a) propose

a generic gas-kinetic traffic flow model including the previously mentioned models

(Prigogine & Andrews, 1960; Paveri-Fontana, 1975; Helbing, 1997b) as special cases.

2.3.2 Continuum gas-kinetic models

Gas-kinetic models are usually not applied in simulations as such, but a continuum

traffic flow model is derived and simulations are based on this continuum model. Con-

tinuum gas-kinetic models all include some equation describing the dynamics of the

vehicle velocity and may therefore be categorized as higher-order (macroscopic) mo-

dels, see Section 2.4.3. However, in the model tree we cluster them in the mesoscopic

models family. Phillips (1979) derived a gas-kinetic higher-order model to better rep-

resent traffic flow at high densities. More recently, Treiber et al. (1999) incorporate

a term reflecting the anticipation of drivers. Another example of a higher-order mo-

del derived from a gas-kinetic model is the master model by Helbing et al. (2001).

It adds another partial differential equation to the original Payne model (see Section

2.4.3) describing the dynamics of the velocity variance. Hoogendoorn (1999) derives a

multi-class multi-lane continuum traffic flow model from a gas-kinetic model. Finally,

Tampère et al. (2003) propose a continuum gas-kinetic model that explicitly includes

a simple car-following model with two regimes.
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2.4 Macroscopic models

Macroscopic traffic flow models form the fourth, and last, family in the model tree.

They describe traffic flow as if it were a continuum flow and are often compared to, or

derived in analogy with, continuum models for compressible fluids. Individual vehicles

are not modeled, however aggregated variables such as (average) density and (average)

flow are used. In this section we discuss the two major branches of macroscopic mo-

dels namely kinematic wave models (Section 2.4.1) and higher-order models (Section

2.4.3). Furthermore, in Section 2.4.2 we discuss in more detail multi-class kinematic

wave models.

2.4.1 Kinematic wave models

Macrosopic traffic flow models were first introduced by Lighthill & Whitham (1955b)

and, independently, Richards (1956). In their kinematic wave model the dynamics of

traffic is described by a partial differential equation, which models the conservation of

vehicles:

∂ρ

∂ t
+

∂

∂x

(
q(ρ)

)
= 0 (2.23a)

and a fundamental relation:

q = q(ρ) (2.23b)

This model, often referred to as the LWR model, does not yield a unique solution.

However, by using the entropy condition, i.e. assuming flow maximization, a unique

solution is found (Ansorge, 1990; Lebacque, 1996). The entropy condition will be

discussed in more detail in Section 3.2.1.

Because of its simplicity the LWR model has received both much attention and critique.

The model tree shows that this resulted in many offshoots. The main drawback of

the LWR model is that vehicles are assumed to attain the new equilibrium velocity

immediately after a change in the traffic state, which implies infinite acceleration. This

problem is addressed by higher-order models (see Section 2.4.3) but also by variants of

the LWR wave model. Lebacque (2002); Leclercq (2007b) address it by introducing

bounded-acceleration. Another drawback of the LWR model is that breakdown (the

transition from the free flow regime to the congestion regime) always occurs at the

same density and without a drop in the capacity. This is addressed by Daganzo et al.

(1997); Laval & Daganzo (2006) by introducing lane changing in a discretized version

of the LWR model (Daganzo, 1994). The stochastic kinematic wave model proposed

by Hoogendoorn et al. (2009) uses breakdown probabilities to reflect that breakdown

might occur at different densities.
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2.4.2 Multi-class kinematic wave models

In the last decade many models that can be categorized in the branch of multi-class

kinematic wave models have been developed. This follows the earlier development of

other types of multi-class models (micro- and mesoscopic, higher-order macroscopic).

Classes are distinguished based on driving behaviour and vehicle properties, such as

(desired) velocity, vehicle length and driving style. Furthermore, classes may be dis-

tinguished based on route or destination. Similar, and usually even simpler, techniques

can be applied in that case.

Daganzo (2002) proposes a multi-class multi-lane model based on the LWR model. It

is assumed that there are two types of drivers: ‘slugs’ who drive slow and have little

incentive to overtake and ‘rabbits’ who attempt to drive fast and overtake more of-

ten. Chanut (2005) extends his earlier single-pipe model (Chanut & Buisson, 2003) to

include moving bottlenecks (e.g., trucks) which drive slowly on only one lane. There-

fore, we also this model as a multi-lane model. Other multi-class kinematic wave

models are single-pipe. This implies that there might be multiple lanes, however they

are not distinguished in the model and overtakings or differences between the lanes are

not taken into account explicitly.

The model tree shows that Wong & Wong (2002) were the first to introduce such a

single-pipe multi-class kinematic wave model. They propose to use a class-specific

version of the conservation equation for each of the U classes (2.24):

∂ρu

∂ t
+

∂qu

∂x
= 0 (2.24)

with ρu the class-specific density of class u, qu = ρuvu the class-specific flow and vu the

class-specific velocity. The class-specific velocity depends on the total vehicle density.

Effectively, the vertical axes of the density-flow and density-velocity fundamental rela-

tions are scaled differently for each class, see Figure 2.11(a). Wong & Wong show that

their model is able to reproduce the capacity drop, hysteresis and platoon dispersion.

Other authors have similarly found that multi-class models are able to reproduce phe-

nomena related to scatter in the fundamental diagram better than mixed-class models

(Treiber & Helbing, 1999; Daganzo, 2002; Ngoduy, 2011; Bellomo & Dogbe, 2011)

and references therein. They do this by applying a different fundamental relation for

each class, see Figure 2.11.

Benzoni-Gavage & Colombo (2003); Chanut & Buisson (2003) include the difference

in length between the classes in the fundamental relation. Effectively, they scale both

axes of the fundamental relation differently for each class. Chanut & Buisson show

that this leads to a three-dimensional fundamental relation, see Figure 2.8(d).

A different approach to including heterogeneity in the LWR model is taken by Leclercq

& Laval (2007). They first reformulate the model in the Lagrangian (moving) coordi-

nate system, secondly the reformulated model is discretized. The discretization allows

for a relatively simple introduction of vehicles of different classes. However, for an
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Figure 2.11 Different shapes of two-class fundamental relations. Solid lines indicate

car velocity, broken lines truck velocity.

accurate numerical solution of the model, the parameter choice is restricted severely

(e.g., for each class the average vehicle length Lu needs to be an integer times the

average length of a passenger car L1).

Ngoduy & Liu (2007) use a similar approach as Benzoni-Gavage & Colombo (2003);

Chanut & Buisson (2003) to the fundamental relation with state-dependent parameters

ρscaled
crit = ρcrit ∑

u

αu

ηu
, ρscaled

jam = ρjam ∑
u

αu

ηu
(2.25)

with αu the road share that is assigned to class u:

αu =
ρu

∑
U
u=1 ρu

(2.26)

Ngoduy & Liu refer to the Highway Capacity Manual (Transportation Research Board,

2000) to look up passenger car equivalent values ηu. The passenger car equivalent

(pce) expresses how much a vehicle adds to the flow relatively to a passenger car.

For example a light truck may count as 1.5 passenger cars, whereas a heavy truck may

count as 3 passenger cars. The Highway Capacity Manual furthermore includes that on

slopes trucks may have even higher pce-values and that the pce may also depend on the

fraction of heavy vehicles. This model was later extended to include a discontinuous

fundamental relation to reproduce the capacity drop (Ngoduy, 2010) and a stochastic

term was included (Ngoduy, 2011) to reproduce hysteresis and scatter in the observed

fundamental diagram.

The two-class model by Logghe & Immers (2008) includes a three-state fundamen-

tal relation, see Figure 2.11(b). It consists of a free flow, a congestion and a semi-

congestion state. In semi-congestion one class (cars) behaves as if it is in a congestion

regime (for increasing density, car flow decreases), while the other class (trucks) be-

haves as if it is in free flow (for increasing density, truck flow increases). The authors

claim that this model correctly represents a user-equilibrium, that is: if one vehicle (or

class) would change its behaviour, it would be off worse.

Fastlane is a recent offshoot in the branch of multi-class kinematic wave models (Van

Lint et al., 2008; Van Wageningen-Kessels et al., under review). It takes a different
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approach without rescaling the fundamental relation. Instead, an effective density is

computed and this is used as a input for the fundamental relation. The fundamental

relation now expresses the class-specific velocity as a function of the effective density,

see Figure 2.11(c). The effective density is a weighted summation of the class-specific

densities:

ρ = ∑
u

ηu(ρ)ρu (2.27)

with ηu the pce-value:

ηu(ρ) =
Lu +Tuvu(ρ)

L1 +T1v1(ρ)
(2.28)

with Lu = sjam,u = 1/ρjam,u the vehicle spacing at standstill if there would only be

vehicles of class u. Lu includes the vehicle length lveh and the distance between two

vehicles at standstill d as they were introduced for Pipes’ safe-distance model. Tu

denotes the minimum time headway of class u. The Fastlane model will be derived,

explained, analyzed and discussed in much more detail in the rest of this dissertation.

Furthermore, and in (Van Wageningen-Kessels et al., 2011b) and in Chapter 5 we show

that Fastlane is a generalization of previously introduced multi-class kinematic wave

models.

The most recent multi-class kinematic wave model is the porous flow model by Nair

et al. (2012). It considers heterogeneous traffic on a two-dimensional roadway. Small

vehicles can drive through ‘pores’: openings between other vehicles. It is developed

to model disordered traffic flow with different types of vehicles such as cars, scooters

and bikes and without lanes. In Chapter 5 we show that the model can be reformulated

in a form very similar to the models by Chanut & Buisson (2003); Benzoni-Gavage &

Colombo (2003).

2.4.3 Higher-order models

Higher-order models form the other main branch of macroscopic traffic flow mo-

dels. These models include an equation describing the acceleration (‘velocity dynam-

ics’) towards the equilibrium velocity described by the fundamental relation. In 1971

Payne derived a macroscopic traffic flow model from a simple stimulus-response car-

following model. It yielded a model consisting of the fundamental relation and two

coupled partial differential equations, hence the name higher-order model. The partial

differential equations are the conservation of vehicle equation (2.24) and an equation

describing the velocity dynamics:

∂v

∂ t
+ v

∂v

∂x
=

v∗(ρ)− v

trelax

− c2

ρ

∂ρ

∂x
(2.29)
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with v∗(ρ) the equilibrium velocity described by the fundamental relation. The para-

meters in the model are interpreted differently by different authors. For example,

Zhang (2001) interprets trelax as the relaxation time and c2 = µ/trelax is the ‘sound

speed’ with µ the anticipation coefficient.

Daganzo (1995b) has argued that higher-order models are flawed because they are not

anisotropic, implying that vehicles do not only react to there leader but also on there

follower, which results in vehicles driving backward. In general anisotropy implies

that characteristic waves are not faster than vehicles, which is discussed extensively

in Chapter 3 and 7. In the time Daganzo’s article was written, existing higher-order

models were indeed not anisotropic. Since then, many efforts have been undertaken

to resolve the problems. Probably the most well-known of them is the model by Aw

& Rascle (2000). They propose to use instead of Payne’s velocity equation (2.29) the

following velocity equation:

∂

∂ t
(v+ p(ρ))+ v

∂

∂x
(v+ p(ρ)) = 0 (2.30)

with p(ρ) a ‘pressure’ term. The (increasing) function p(ρ) can have different forms,

but p(ρ) = ρc with some constant c > 0 is proposed as the prototype. In this model,

when parameters have been chosen correctly, characteristic waves can not be faster

than vehicles. This is also the case in Zhang (1999)’s model which is an adaptation of

Payne’s model which includes hysteresis. The model by Aw & Rascle was developed

further by Greenberg et al. (2003) to include multiple lanes. A multi-class version of

the model has been proposed in the same year (Bagnerini & Rascle, 2003). Further-

more, Lebacque et al. (2007) develop a generalized higher-order model that includes

the models by Aw & Rascle (2000); Zhang (1999) as special cases.

Finally, Aw et al. (2002); Moutari & Rascle (2007) develop a hybrid model that couples

the model by Aw & Rascle with a microscopic version of it. Similarly to Leclercq

(2007a) they simplify the coupling by applying the Lagrangian formulation of the mac-

roscopic model, based on a moving (Lagrangien) coordinate system. The Lagrangian

formulation of macroscopic models is discussed in more detail in Chapter 6.

2.5 Discussion

In the previous sections many traffic flow models and their position in the model tree

have been discussed. In the model tree several trends can be identified:

• Certain branches converge to a generalized model. The generalized model can be

used to analyze qualitative properties of all models of that branch (Wilson, 2008;

Hoogendoorn & Bovy, 2001a; Del Castillo, 2012; Van Wageningen-Kessels

et al., 2011b).

• The LWR model is extended and adapted to better reproduce key phenomena



2 State-of-the-art traffic flow modelling 67

such as the capacity drop, hysteresis and scattered fundamental diagrams (Zhang,

1999; Lebacque, 2002; Wong & Wong, 2002).

• Multi-class versions of previously developed models are introduced (Hoogen-

doorn, 1999; Bagnerini & Rascle, 2003; Ossen & Hoogendoorn, 2006), and es-

pecially multi-class kinematic wave models (Wong & Wong, 2002; Benzoni-

Gavage & Colombo, 2003; Chanut & Buisson, 2003; Zhang et al., 2006; Laval

& Daganzo, 2006; Ngoduy & Liu, 2007; Logghe & Immers, 2008; Van Lint

et al., 2008; Nair et al., 2012).

• Hybrid models combine microscopic and macroscopic models (Bourrel & Le-

sort, 2003; Leclercq, 2007a; Moutari & Rascle, 2007).

In the next chapters, we combine the trends in the development of a multi-class ki-

nematic wave traffic flow model. It reproduces scattered fundamental diagrams. Fur-

thermore, we generalize the model such that it allows for a qualitative analysis of the

properties of this and similar models. Finally, we propose a reformulation (in Lagrang-

ian coordinates) which simplifies hybridization of the model. In the rest of this chapter,

we argue why we chose to further develop multi-class kinematic wave models and not

any other type of traffic flow model. Therefore, we discuss the relations between traffic

flow models and other types of mathematical models are discussed in Section 2.5.1. In

Section 2.5.2 we discuss criteria for traffic flow models and we discuss to what extend

the models satisfy these criteria.

2.5.1 Traffic flow, fluid flow and complex systems

Traffic flow models are often related to and derived in analogy with models for fluid

flow. For example, the seminal paper on macroscopic traffic flow modelling (Lighthill

& Whitham, 1955b), was published as ‘On Kinematic Waves Part 2’ together with Part

1 discussing flood movement in rivers (Lighthill & Whitham, 1955a). In turn, traffic

flow models have recently inspired researchers to model pedestrian crowds and animal

swarms in a similar way, cf. Bellomo & Brezzi (2008), other articles in that special is-

sue of Mathematical Models and Methods in Applied Sciences on Traffic, Crowd, and

Swarms and by Bellomo & Dogbe (2011). Furthermore, similarities between vehicular

traffic, pedestrian and granular flow have been recognized and conferences on Traffic

and Granular Flow are organized bi-annually, the most recent one being held in Mos-

cow in 2011 (Traffic and Granular Flow, 2011). Finally, Helbing (2008) relates traffic

flow to systems that might even seem more diverse such as those related to collective

decision making, risk management, supply systems and management strategies. Sim-

ilarities and differences between fluid flow modelling and traffic flow modelling are

discussed in more detail below.

Despite the similarities between traffic and fluid flow, dissimilarities have been stressed

as well. Papageorgiou (1998) argues that there is hardly any hope that traffic flow mo-

dels will ever have the same descriptive accuracy as models in other domains such

as Newtonian physics or thermodynamics. This is because 1) vehicles and humans
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(drivers) all behave differently, and change there behaviour over time, unlike mo-

lecules of which the behaviour follows (usually simple and constant) physical laws,

and 2) there are relatively few vehicles in the area of interest (at most a few hundred

per kilometer), unlike in for example thermodynamics with around 1023 particles per

cm3. The second reason is also used by Darbha et al. (2008); Tyagi et al. (2008);

Bellomo & Dogbe (2011) to argue that aggregating vehicles to develop a macroscopic

traffic flow model is not justified. Furthermore, in fluid mechanics the Knudsen number

is often used to choose between a continuum (macroscopic) or a particle (microscopic)

approach. The Knudsen number is the ratio of the mean free path over a representative

physical length scale. Only if it is much smaller than 1, can the fluid be approximated

as a continuum. In vehicle flow the Knudsen number would be the following distance

over a section length. Tyagi et al. (2008) argue that the Knudsen number is small

enough (10−3). However, in free flow (e.g., 100 meter following distance) on short

sections (e.g., of 100 meter) the Knudsen number is much larger than 10−3 and the

continuum approach is not justified. Still, Papageorgiou’s first observation (drivers do

not behave like molecules) shows that fluid flow and traffic flow are dissimilar in other

aspects. Therefore, comparison of ratios such as the Knudsen number or the number

of particles per region of interest can not be the only reason to justify (or falsify) a mo-

del approach. Therefore, below we discuss some other criteria that can be used when

modelling traffic flow.

2.5.2 Criteria for and assessment of traffic flow models

In the previous sections we have already discussed some criteria for a limited class

of models. Criteria for the fundamental relation (Del Castillo, 2012) are reviewed in

Section 2.1, criteria for safe-distance and stimulus-response models (Wilson, 2008;

Wilson & Ward, 2011) are reviewed in Section 2.2.2. Criteria for kinematic wave

models and multi-class kinematic wave models are discussed in Chapter 3. Criteria for

a broader range of traffic flow models include (Hoogendoorn & Bovy, 2001b; Helbing,

2001; Bellomo & Dogbe, 2011):

1. The model only has few parameters.

2. Parameters are (easily) observable and have realistic values.

3. Relevant phenomena are reproduced and predicted by the model.

4. The model allows fast numerical simulation.

The criteria are applicable to other types of models as well. However, in the following,

the criteria are discussed in more detail for traffic flow models.

Number of parameters

Traffic flow models are often criticized for having many parameters, whose values are

difficult to observe and estimate because of the dynamics of the system (Orosz et al.,
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2010). Especially microscopic models are often said to have too many parameters

(Brackstone & McDonald, 1999; Bellomo & Dogbe, 2011). Furthermore, in micro-

scopic models stochasticity is often taken into account, which increases the number of

parameters because not only the average value of the parameters has to be estimated

but also their distribution. Moreover, microscopic models for multiple lane necessarily

also include lane changing models, which increases the number of parameters further.

Even without taking into account stochasticity and lane changing, most of the micro-

scopic models have more parameters than the macroscopic models introduced in this

chapter. An extreme example is the Deterministic Acceleration Time Delay Three-

Phase Traffic Flow Model based on Three-Phase-Theory with, in its simplest form, 19

parameters (Kerner, 2009). The number of parameters in some microscopic and mac-

roscopic, mixed-class and multi-class models is compared in Figure 2.12. Therefore,

it is assumed that parameter values may vary over classes and over links, as in Table

2.1. By varying parameter values over classes heterogeneity of drivers and vehicles

is taken into account. By varying parameter values over links it is taken into account

that networks are usually not homogenous but consist of different type of roads (e.g.,

motorway and urban roads) with different characteristics (e.g., number of lanes, speed

limit). Furthermore, we assume that the parameter values are independent. The ana-

lysis may become more realistic by taking into account that some parameters are not

independent but, for example, a link with a high critical density, probably also has a

high jam density and a class with a high free flow velocity vmax on a three-lane motor-

way, probably also has a high free flow velocity on a two-lane motorway.

Figure 2.12 shows that for mixed-class models on one link the number of parameters

is 2 (simplified Newell model) to 6 (IDM, 1 class). However, if the number of classes

increases, the number of parameters increases quickly. For macroscopic models the

number of parameters increases from 4 (LWR) to 20 (Fastlane with 6 classes). For

microscopic models it increases from 6 (IDM, mixed-class) to 31 (IDM, 6 classes).

The figure furthermore shows the dependence on the number of links. If the number

of links increases, the number of parameters increases as well. The rate of increase

depends largely on the number of classes: if there are only few classes, the number of

parameters remains relatively low. We conclude from Figure 2.12 that the number of

parameters in a mixed-class microscopic model for one link may be comparable to that

of a mixed-class macroscopic model for one link. The number of parameters in more

realistic applications, however, depends largely on the number of links and the number

of classes. Still, given the number of classes, the number of parameters in macroscopic

models is, in general, lower than that in microscopic models.

Observable parameters with realistic values

Traffic flow models often include parameters that are not easily observable or even

have no physical interpretation at all. For example, the constants c1 and c2 in the

GHR model and the acceleration exponent δ in the IDM have no physical interpreta-

tion and are only used to fit the simulation results to data. Other parameters such as
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Table 2.1 Parameters of traffic flow models compared in Figure 2.12.

Model

and (if appropriate)

fundamental relation

Type of parameter

Class-independent Class-specific

Link-

independent

Link-

specific

Link-

independent

Link-

specific

Simplified Newell τ sjam

OVM c1 or c2 γu vmax,u

sjam,u

IDM δ amax,u vmax,u

amin,u Tu

sjam,u

LWR, Smulders w ρcrit

ρjam

vmax

Chanut & Buisson (2003)1 w ρcrit Lu, u 6= 1 vmax,u

ρjam

Fastlane w ρcrit Lu, u 6= 1 vmax,u

ρjam Tu

Payne, Daganzo w ρcrit

trelax ρjam

c

1 The original formulation includes other parameters, these parameters are based on the reformulation

in Chapter 5.



2 State-of-the-art traffic flow modelling 71

0 5 10 15
0

50

100

150

200

Simpl. Newell

IDM (1)

IDM (3)

IDM (6)

OVM (3)

OVM (6)

LWR, OVM (1)

Fastlane (3)

Fastlane (6)

Chanut & Buisson (3)

Chanut & Buisson (6)

Payne

number of links

n
u
m

b
er

o
f

p
ar

am
et

er
s

Figure 2.12 The number of parameters for several micro- and macroscopic models as a

function of the number of links in the network. The numbers between brackets indicate

the number of classes. Both in the LWR and in the Payne model we use Daganzo’s

fundamental relation. The multi-class kinematic wave models by Chanut & Buisson

and Fastlane include the Smulders fundamental relation.
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maximum and minimum acceleration amax and amin do have a physical interpretation

but are not easily observable. To observe those parameters one would need detailed

trajectory data including observations where this maximum (or minimum) accelera-

tion is realized. Furthermore, microscopic traffic flow models often take into account

stochasticity. This not only increases the number of parameters, but also makes them

less easily observable.

Similar arguments hold for models including a fundamental diagram. The critical and

jam density can only be observed if the data includes moments where traffic is in such

as state. However, fundamental diagram estimation is becoming easier since the ob-

servation that the relation between density and flow is linear for large densities and

its slope is constant over many observations (Cassidy & Windover, 1995; Kerner &

Rehborn, 1996; Treiber & Helbing, 2002). Furthermore, traffic flow models are some-

times criticized for having unrealistic parameter values. For example, Brackstone &

McDonald (1999) concluded that contradictory findings on parameter values c1 and c2

in the GHR model are the main reason why it is being used less frequently. Unrealistic

parameter values also play a role in macroscopic models. The relaxation time trelax in

the Payne model is derived from the reaction time of a car-following model. However,

its value has been estimated to be up to 30 seconds (Grewal & Payne, 1976).

Reproduction of phenomena

Many phenomena can be observed in traffic flow. Simple and easily observable ones

include lower velocities at smaller headways, which is reflected in fundamental rela-

tions. Another example is spill-back of congestion: vehicles in a queue take up space

and block parts of the road. Other phenomena include capacity drop and hysteresis.

Recently, much attention goes to stop-and-go waves (Kerner & Rehborn, 1996). A

stop-and-go wave is a heavily congested traffic state consisting of few vehicles that

propagates upstream. Before and after the stop-and-go wave, traffic is much less con-

gested or even in free flow. Some authors argue that all experimentally observed

features, including stop-and-go waves should be reproduced by a traffic flow model

(Helbing, 2001; Kerner, 2009; Bellomo & Dogbe, 2011). However, we believe that

it largely depends on the model application whether such more complex phenomena

need to be reproduced (Papageorgiou, 1998; Van Wageningen-Kessels et al., 2011a).

Here, a comparison with fluid models is again appropriate. In some applications, such

as the design of the propellor of a ship, it is very useful to know the details about tur-

bulence, in others, such as climate predictions only large scale effects of turbulence

need to be taken into account. Similarly, predicting the emergence and propagation of

stop-and-go waves can be useful in some situations, for example, if one wants to warn

drivers of unsafe situations such as stop-and-go waves. However, for relatively coarse

predictions on large networks (the motorways of a metropolitan city) over long periods

(one hour or more) it may not be necessary to predict individual stop-and-go waves.
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Table 2.2 The number of calculations of the traffic state for a micro and macro model

with typical numerical settings.

Micro Macro

congestion,

3 lanes

free flow,

1 lane

high

resolution

low

resolution

average density (veh/km) 300 10

segment length (m) 100 200

time step size (s) 1 1 1 6

state calculations per km×min 18000 600 600 50

Fast numerical simulation

Microscopic models are in general computationally more demanding than macroscopic

models, for two main reasons. First, the traffic state is calculated more often. In mac-

roscopic models the road is usually divided into segments of a few hundred meters.

The traffic state (density, velocity, flow) at each segment are calculated every time step

of a few seconds. In microscopic models time steps are usually smaller and vehicles

are not aggregated, instead the state (position, velocity, acceleration) of each vehicle

is calculated. Furthermore, in microscopic models the number of calculations depends

on the actual number of vehicles and therefore on the traffic state. Table 2.2 shows

that in a microscopic model the state is computed up to several hundreds times as often

as in a macrosopic model. Note that this does not necessarily mean that it is several

hundreds times as slow: each state computation might take much less or more time

than in a macroscopic model. Second, microscopic (and mesoscopic) models are often

stochastic and simulation results vary each run. This is at least partly due to stochastic

inflow at the inflow boundary. Therefore, many simulations are needed before con-

clusions can be drawn on the results. Furthermore, stochastic models are not tractable

and therefore filtering and optimal control is much more difficult, if at all possible.

Microscopic models do remain important because it depends largely on the applica-

tion whether fast numerical simulation is necessary. However, we have already argued

in the Introduction (Chapter 1) that new applications will continue to ask for faster

simulations. Therefore, we will develop even more efficient computational methods

for macroscopic models in Chapter 8.

2.6 Conclusions

In this chapter we proposed a model tree showing the genealogy of traffic flow models.

Furthermore, we introduced criteria for such models and discussed how well certain

types of models satisfy the criteria. The criteria can be in conflict with each other.

In particular, accurately reproducing phenomena is in conflict with the other criteria

because it requires more complex models with more, possibly not easily observable,
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parameters. Furthermore, more complex models may also lead to more complex, and

thus less efficient, numerical simulations. Wilson (2008) has argued that ‘we can ex-

pect over the next few years to definitively resolve the conflict between the various

traffic modelling schools’, using novel, more detailed data. However, in each applica-

tion the weights of the various criteria may be different. That is why the model tree

shows divergence and many different branches have developed.

However, when analyzing the model tree we also observe convergence of certain bran-

ches of traffic flow models to a generalized model. The generalized models are applied

to qualitatively assess models and to eliminate models with unwanted features. Having

better knowledge on traffic flow may help to eliminate models with unwanted features,

but it will not result in one model that is suitable in all applications. In fact, some

applications call for models to be combined and coupled. This has led to the second

trend in the model tree, namely the development of hybrid models combining micro-

and macroscopic models. Furthermore, within the macroscopic family we observe that

the LWR model has been adapted and extended to include more realistic features such

as capacity drop and hysteresis. Moreover, multi-class versions of macroscopic models

are under rapid development, also aiming at better reproducing certain characteristic

features of traffic flow consisting of heterogeneous vehicles and drivers.

In the next chapters we develop and analyze a model that is aimed at online real time

traffic flow prediction. However, the model may also be used in many other applica-

tion that require fast numerical simulation but do not require accurately reproducing

all phenomena such as stop-and-go waves and capacity drop. Therefore, we chose to

combine some trends in the model tree. We further develop and analyze multi-class

kinematic wave models. This type of models has few parameters compared to micro-

scopic multi-class models. It does have more parameters than mixed class kinematic

wave models but it can, in contrast to those models, reproduce scattered density-flow

plots. Furthermore, numerical simulations can be done faster than microscopic simu-

lations and we develop methods to make simulations even faster.



Chapter 3

Theoretical framework for multi-class

kinematic wave traffic flow modelling

In this chapter we develop a framework within which we develop our traffic flow mo-

del: Fastlane. The framework consists of a set of principles and a set of requirements.

The principles form the foundation on which we base the model in Chapter 4. The

principles are partly common for all continuum traffic flow models, partly specific for

multi-class kinematic wave models. The principles are used to build the model. The

requirements are used afterwards to verify that the developed model has qualitatively

desirable properties. The requirements relate to the model formulation, the fundamen-

tal relation and the model dynamics. The analysis of the model in Chapter 7 shows

that our model, in contrast to some other models, indeed satisfies all requirements.

In this and the following chapters we restrict the theory and model development, ana-

lysis and numerical methods to infinitely long homogeneous roads. In Chapter 10 we

extend all this to networks, including inflows, outflows and nodes at which roads merge

or diverge or road properties change.

The outline of this chapter is as follows. Section 3.1 discusses the principles. In Section

3.2 the requirements are introduced.

3.1 Principles

The foundation of Fastlane is three groups of principles. The first group is common for

all continuum traffic flow models. It consists of a conservation law and the continuum

assumption. The second group consists of assumptions on the common behavior of

vehicles and their interactions. They are applied in most kinematic wave models. The

third group relates to behavioral differences between groups of vehicles and drivers.

They form the basis of our multi-class modeling approach. The principles are as fol-

lows:
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Continuum model principles:

1. Vehicles are conserved.

2. Traffic flow is a continuum flow.

Kinematic wave model principles:

3. Traffic flow is a single-pipe flow.

4. Traffic is always in equilibrium state.

5. Traffic flow is always in either of two regimes: free flow or congestion.

Multi-class model principle:

6. Traffic consists of homogeneous groups (classes) of vehicles and drivers.

Principles 3, 4 and 5 have been relaxed in some continuum models to better reproduce

scattered density-flow plots. Fastlane reproduces scattered density-flow plots due to

its multi-class approach (Principle 6). The principles are discussed in the following in

more detail. We note that the principles are defined independently. Therefore, if one

relaxes one or more of the principles, the others may still be used to build a traffic flow

model.

3.1.1 Continuum model principles

Principle 1 is the single undisputed principle in traffic flow modelling. It states that

vehicles are conserved. This means that vehicles can only enter the system through

inflow at the boundaries and that they only leave the system through outflow at the

boundaries. Vehicles are not created in the system itself, nor do they disappear. To the

best of our knowledge, this principle is included in all traffic flow models.

Principle 2 assumes that vehicles can be aggregated and that the traffic state can be de-

scribed by aggregate continuum variables such as density, flow and average velocity.

All continuum models are based on this principle. Naturally, microscopic models are

not based on this principle. In Section 2.5 we discussed the controversy around model-

ling traffic as a continuum flow. We concluded that, depending on the application, the

advantages of continuum models outweigh the possibly less realistic representation of

some traffic flow phenomena.

3.1.2 Kinematic wave model principles

Principle 3 assumes that traffic behaves similar to a flow in a single pipe. Traffic

state variables such as density, flow and velocity are aggregated over all lanes and

interactions between lanes are not taken into account explicitly. Therefore, overtakings

are not taken into account explicitly. The single-pipe principle is relaxed in multi-lane

models, which can be either mixed-class or multi-class.

Principle 4 assumes that traffic is always in an equilibrium state that is described by

the fundamental relation. For example, in mixed-class continuum models, given the
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Figure 3.1 Fundamental diagram with 2 regimes: free flow and congestion.

current density, the flow and velocity do not depend on previous traffic states: it does

not matter whether vehicles accelerate or decelerate. A consequence of this principle

is that drivers adapt their velocity instantaneously to new traffic conditions such as a

change in density. This implies that fundamental relations with hysteresis (see e.g.,

(Newell, 1965; Treiterer & Myers, 1974; Zhang, 1999), Figure 2.8(b)) can not be

achieved. The principle is relaxed in the LWR model with bounded acceleration and

in higher-order models.

Principle 5 assumes that there are two traffic flow regimes, see Figure 3.1. In free flow,

if the density increases (a vehicle is added) the flow also increases. In congestion, if the

density increases the flow decreases. In between those two regimes, maximum flow is

reached. This point is often called capacity or capacity flow. The corresponding den-

sity and velocity are called critical density and critical velocity. Their values depend

on the number of vehicles, but may also depend on traffic composition (e.g., percent-

age of heavy vehicles). Principle 5 is used in almost all continuum traffic flow models,

however, it is relaxed in the three-regime multi-class model (Logghe & Immers, 2008).

This model is discussed in more detail in Chapter 5.

3.1.3 Multi-class model principle

Principle 6 assumes that vehicle-driver units may differ and do not behave identically.

They can be categorized into homogeneous classes: within one such class vehicles

and drivers behave identically. As a consequence, each class may have a different

fundamental relation. Mixed-class models such as the LWR model and many other
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kinematic wave models and higher-order models assume that there is only one class

and all vehicles and drivers behave identically. In multi-class models there may be two

or more such classes.

The distinction between classes is made based on the physical properties of the vehicle

and the driving style of the driver. This will result in classes that differ in, for example,

maximum velocity, vehicle length and headway. In principle, vehicle properties and

driving style may change over time and may depend on the traffic state. For example,

a driver that becomes tired may increase his headway, and velocity may depend on

weather conditions. Furthermore, vehicle classes can also be based on their origin,

destination and route. This becomes especially interesting when networks need to be

simulated. Throughout this dissertation classes are based on the physical properties of

the vehicle and the driving style of the driver which are assumed to be static. However,

the methods and analysis can be generalized to classes based on other criteria such as

origin, destination or route. With some effort, vehicle properties and driving style can

be made time-dependent.

3.2 Requirements

All traffic flow models should satisfy certain requirements. In Chapter 2 we dis-

cussed requirements on the fundamental relation introduced by Del Castillo (2012)

and requirements on car-following models by Wilson (2008); Wilson & Ward (2011).

Furthermore, we discussed the anisotropy criterium for continuum models (Daganzo,

1995b). For multi-class kinematic wave models, we formulate several qualitative re-

quirements. Two requirements are related to the model formulation. The other re-

quirements are related to the outcome of the model: the model must reproduce certain

phenomena. These can be split into phenomena related to the shape of the fundamen-

tal relation and phenomena related to the dynamics of the model. We argue that any

multi-class kinematic wave traffic flow model should satisfy the following qualitative

requirements:

Model formulation requirements:

1. Given ‘permissible’ class-specific densities, (class-specific) velocities and flows

are defined uniquely.

2. The model has a unique solution that maximizes flow.

Fundamental relation requirements:

3. In free flow the velocities of each class are allowed to differ.

4. In free flow the velocities of relatively fast classes are allowed to decrease with

increasing density.

5. In congestion the velocity of each class is equal.

6. If the density reaches a certain threshold (which may depend on the traffic com-

position), vehicle velocity is zero.
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Figure 3.2 Illustration of the fundamental relation requirements for a three-class mo-

del.

7. If the density of only one class increases, while all other class-specific densities

remain constant, vehicle velocities do not increase.

Model dynamics requirements:

8. Characteristics have finite velocity.

9. Characteristics do not have a larger velocity than vehicles.

The fundamental relation requirements are illustrated in Figure 3.2. All other require-

ments are discussed in more detail below.

3.2.1 Model formulation requirements

Requirement 1 states that there is one unique solution to the model equations, given

‘permissible’ class-specific densities. This implies that the model is formulated such

that the state (velocity, flow) only depends on the density and composition and not on,

for example, previous traffic states. ‘Permissible’ means that the given class-specific

densities must be nonnegative and not above the threshold above which the velocity

becomes zero (Requirement 6). It will become clear later (in Section 4.5) that Re-

quirement 1 is not trivial.

Requirement 2 also states that the model has a unique solution. But rather, this re-

quirement states that a well-posed initial value problem has a unique solution and that

this solution maximizes flow. In relation to mixed-class models this solution is often

referred to as the entropy solution. Ansorge (1990) introduced the entropy solution for

traffic flow models in analogy to the entropy solution of gas flow models. Only after

the discussion by Lebacque (1996), did traffic flow modellers become aware about it

widely. Ansorge explains that the (mixed-class) kinematic wave traffic flow model has

multiple weak solutions. For example, the solution where all vehicles in a queue re-

main at their position after a traffic light has turned green is a mathematically correct
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(weak) solution of the model (2.23). Therefore, the ride impulse or flow maximization

requirement is added to the model. This requirement selects out of all weak solutions

the physically relevant one. In the traffic light example, that is the solution in which

vehicles start driving as quickly and as fast as local conditions permit once the traffic

light has turned green. Selecting the solution that maximizes flow, implies that vehicles

drive as fast as possible given local traffic conditions.

Requirement 2 states that also in multi-class models the flow must be maximized lo-

cally and that vehicles drive as fast as possible given local traffic conditions. However,

this does not necessarily yield a unique solution. Therefore, one has to consider which

flow must be maximized. For example one may maximize the total flow in vehicles per

second. Alternatively, the flow in passenger car equivalents per second may be maxi-

mized. The multi-class kinematic wave model is complete only if it defines a flow to

be maximized.

3.2.2 Fundamental relation requirements

Requirements 3, 4 and 5 are important in multi-class models. Requirement 3 states

that if density is below critical density, velocities of each class should be allowed to

be different. It is not necessary that they are so for all possible parameter settings,

but it must be possible to set the parameters such that the class-specific velocities are

unequal. Requirement 4 states that the model must allow class-specific velocities to

be decreasing in free flow. Again, it is not necessary that velocities are decreasing for

all possible parameter settings, but it must be possible to set the parameters such that

they are. Requirement 5 states that if density is above critical density (i.e. traffic is in

congestion), velocities of all classes are equal.

We note that Requirements 3 and 5 are only relevant on multi-lane roads. On single-

lane roads, without overtaking, velocities are naturally equal. Furthermore, Require-

ments 3, 4 and 5 are in line with observed decreasing car velocity even at low densities,

unequal velocities of cars and trucks at low densities and equal velocities at high densi-

ties (Hoogendoorn, 1999, Chapter 8; Chanut, 2005). Requirement 5 is also in line with

observed low velocity variance at high densities (Kerner & Rehborn, 1996; Helbing,

1997a).

Requirement 6 may seem trivial: if there are too many vehicles, they will come to a

complete stop. However, not all fundamental relations applied in multi-class models

satisfy this requirement (see Chapters 5 and 7). Del Castillo (2012) also formulates

this as a requirement for the fundamental relation.

Requirement 7 states that if one vehicle is added to (removed from) the flow, the vehicle

velocities of all classes do not increase (decrease). This is logical: if there are more

vehicles, they do not drive faster, if there are fewer vehicles, they do not drive slower.

In the mixed-class LWR model, this holds if the density-velocity fundamental relation
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is nonincreasing. Del Castillo (2012) includes this requirement by stating that the

density-flow fundamental relation should be concave (see Section 2.1.3).

3.2.3 Model dynamics requirements

Requirements 8 and 9 relate to the direction and speed of information propagation.

Or, to put it differently, they relate to whether and how quickly vehicle-driver units

react to other vehicle-driver units. Curves along which information propagates are

often called characteristic curves, characteristic waves or simply characteristics. Along

characteristics the traffic density is constant. In mixed-class kinematic wave models,

the characteristic velocity is equal to the slope of the density-flow fundamental relation.

A more rigorous (mathematical) definition of characteristics will be given in Chapter

7. Requirements 8 and 9 put limits on the value of the characteristic velocity.

Requirement 8 states that characteristics have finite velocity. It can be interpreted as

follows: perturbations, such as a sudden braking operation of a driver, do not influence

all drivers at once. Instead, it takes some time before other drivers will react, if they

do so at all. For a model, this means that the characteristic velocity is bounded. This

implies that there are no discontinuities in the fundamental relation, or there must be

consistent rules on how to get from one branch to the other (Zhang, 2001).

Requirement 9 states that characteristic velocity (the velocity with which the charac-

teristic travels downstream) is not larger than vehicle velocity (the velocity with which

the vehicles travel downstream). This implies that the model is anisotropic. It can be

interpreted as follows: perturbations, such as a sudden braking maneuver, only influ-

ence followers of the vehicle that brakes and do not influence vehicles in front of it. For

a model, this means that the characteristic velocity is not higher than vehicle velocity.

The anisotropy requirement (Requirement 9) has received much research attention over

the past two decades. Daganzo (1995b) initiated an ongoing debate on whether or not

higher-order models are anisotropic and whether traffic flow models need to be (Aw &

Rascle, 2000; Zhang, 2001, 2003; Helbing & Johansson, 2009; Zhang, 2009; Helbing,

2009). Traffic is supposed to be anisotropic because drivers usually do not react to

their followers. Zhang (2003) argues that this does not imply that characteristics of

the model should not be faster than the average vehicle velocity. This is because on

roads where vehicles may overtake each other some vehicles may be faster than others.

Those faster-than-average vehicles may also carry information with them. This would

imply that the related characteristic is faster than the average vehicle velocity. This

issue is addressed, at least partly, by splitting the vehicles into classes with different

velocities. Still, in reality, the fastest vehicle may be faster than the average velocity of

the fastest class.
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3.3 Conclusions

Multi-class kinematic wave traffic flow models are based on principles that are com-

mon for all continuum traffic flow models. Some principles that were used in the LWR

model have been relaxed previously. We relax the principle that all vechicle-driver

units are identical and use a multi-class approach to reproduce scattered density-flow

plots. Both the Fastlane model that is introduced in the next chapter (Chapter 4) and

other multi-class models (see Chapter 5) are based on these principles.

Multi-class kinematic wave traffic flow models should satisfy qualitative requirements

related to the model formulation, the applied fundamental relation and model dynam-

ics. In Chapter 7, we show that Fastlane satisfies the requirements. Furthermore, we

develop and apply a framework for the qualitative assessment of multi-class kinematic

wave models.



Chapter 4

Model development: Fastlane

In this chapter we develop the Fastlane model. It consists of a system of equations,

including the multi-class version of the conservation of vehicles equation and a fun-

damental relation. The principles in the previous chapter (Chapter 3) are used as the

foundation of the model. Furthermore, we set some reasonable conditions on the values

of the model parameters. In Chapter 7 we show that, if these conditions are satisfied,

the model also satisfies the qualitative requirements introduced in Chapter 3.

The outline of this chapter is as follows. Section 4.1 introduces the variables and

parameters of the model. Sections 4.2 and 4.3 introduce the model equations: the

multi-class conservation of vehicles equation (Section 4.2) and the multi-class funda-

mental relation (Section 4.3). In Section 4.4 we set some ‘reasonable’ conditions for

the model parameters. We interpret the conditions and show that they do not imply too

strict limits on the parameter values. Finally, we note that the fundamental relation and

effective density function as we introduce them in Section 4.3 are not well formulated:

they do not uniquely define the velocities. Therefore, we reformulate them in Section

4.5, using the conditions from Section 4.4. At the end of this chapter (Section 4.6) we

recapitulate the model.

4.1 Variables and parameters

Before introducing the model equations, we introduce its variables and parameters.

For future reference a list of symbols, including variables and parameters is included

on page 16.

4.1.1 Variables

Fastlane is based on the principle that traffic flow can be modelled as a continuum flow

(Principle 2). Therefore, the variables describe traffic state in aggregated terms such
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as density and flow. Due to the heterogeneity principle (Principle 6) the variables are

class-specific. class-specific density, velocity and flow are defined similar to the defin-

itions for mixed-class traffic flow (Definition 2.1–2.4, see Section 2.1.1). However,

only vehicles of the class under consideration are taken into account. We define:

Definition 4.1 (class-specific flow).

qu(x, t) = lim
dt→0

Nu(x, [t, t +dt])

dt
(4.1)

with Nu(x, [t, t + dt]) the number of vehicles of class u that cross location x between

or at times t and t + dt. Since traffic flow is assumed to be a continuum flow, Nu is

supposed to be continuous and furthermore it is supposed to be continuously differen-

tiable.

Definition 4.2 (class-specific density).

ρu(x, t) = lim
dx→0

Nu([x,x+dx], t)

dx
(4.2)

with Nu([x,x+ dx], t) the number of vehicles that are present on the location between

or at x and x+dx at time t.

Definition 4.3 (class-specific vehicle velocity).

vu(x, t) =
qu(x, t)

ρu(x, t)
(4.3)

Later, we also need the class-specific spacing, which is defined analogously to the

spacing in mixed-class models (Definition 2.4):

Definition 4.4 (class-specific spacing).

su(x, t) =
1

ρu(x, t)
(4.4)

4.1.2 Parameters

Furthermore, Fastlane includes several parameters. The class-specific maximum velo-

city vu,max, critical velocity vcrit, critical density ρcrit and jam density ρjam are used in

the fundamental relation. The class-specific gross vehicle length Lu and class-specific

minimum time headway Tu are used in the space occupancy function. All these para-

meters are supposed to be nonnegative and furthermore critical density and all gross

vehicle lengths should be positive (ρcrit > 0 and Lu > 0).
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4.2 Conservation of vehicles

The multi-class conservation equation describes that vehicles of each class are con-

served (Principle 1):

∂ρu

∂ t
(t,x)+

∂qu

∂x
(t,x) = 0 (4.5)

For readability we will omit (t,x) in the following. Since we model the road as a single

pipe (Principle 3), we do not need to distinguish lanes.

Using Definition 4.3 the class-specific flow is:

qu = ρuvu (4.6)

vu = vu(ρ1, . . . ,ρU) is some function of the traffic state defined by all class-specific

densities. It is defined by the fundamental relation which will be introduced in the next

section.

4.3 Fundamental relation

We apply the equilibrium principle (Principle 4). Consequently, we assume that traffic

is always in a state described by the fundamental relation and the velocity only depends

on the current traffic state. Below we define the fundamental relation. It expresses the

velocity as a function of the effective density. The effective density is, in turn some

‘total density’ or ‘accumulated density’ based on all class-specific densities. To define

the effective density we apply the concept of pce-value. The pce-value of class u

expresses the impact on the flow of one vehicle of class u. In turn, the pce-value of

class u is based on how much road space is occupied by one vehicle of class u in

comparison to the space occupancy of one passenger car.

4.3.1 Shape of the fundamental relation

The shape of the fundamental relation is based on Principle 5 (two regimes: free flow

and congestion) and 6 (homogeneous classes of vehicle-driver units). Therefore, we

define a fundamental relation that may differ for each class. However, for a given

traffic state, either all classes are in the free flow branch, or all of them are in the

congestion branch. Furthermore, in free flow the velocities of each class may differ

(Requirement 3), in congestion they are equal (Requirement 5). The Smulders funda-

mental relation (Smulders, 1990) allows for a multi-class generalization that satisfies

these requirements. Furthermore, it is itself a generalization of other fundamental re-

lations introduced in Section 2.1.2: the Daganzo fundamental relation and the Green-

shields fundamental relation (see Section 2.1.2). We note that both the Daganzo and
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Greenshields fundamental relations do not allow for multi-class generalizations with

different velocities in free flow while still having only two regimes and being con-

tinuous. The mixed-class Smulders density-velocity fundamental relation is (see also

Figure 2.5(c)):

v = v(ρ) =







vmax −
vmax − vcrit

ρcrit

ρ (free flow, 0 ≤ ρ < ρcrit) (4.7a)

w

(
ρjam

ρ
−1

)

(congestion, ρcrit ≤ ρ ≤ ρjam) (4.7b)

The multi-class Smulders fundamental relation is shown in Figure 4.1. The congestion

branch is equal to that of the mixed-class fundamental relation. The only difference

is the value of the maximum velocity, and consequently the slope in free flow. The

multi-class fundamental relation is described by the following equations:

vu = vu(ρ) =







vu,max −
vu,max − vcrit

ρcrit

ρ (free flow, 0 ≤ ρ < ρcrit) (4.8a)

w

(
ρjam

ρ
−1

)

(congestion, ρcrit ≤ ρ ≤ ρjam) (4.8b)

with vu,max maximum velocity of class u, vcrit critical velocity, which is reached at

critical density ρcrit and jam density is ρjam. Here w is class independent a parameter

defined by:

w =
ρcritvcrit

ρjam −ρcrit

(4.9)

If all vehicles are of class 1, then effectively the model reduces to a mixed-class model

and w is the characteristic wave speed in congestion.1 However, as we will show in

Chapter 7, if the composition changes, the characterstic velocity can change as well

and is not necessarily equal to −w. Finally, we note that the fundamental relation

(4.8) is continuous: at critical density both the velocity in the free flow branch and the

velocity in the congestion branch are equal to the critical velocity vcrit.

4.3.2 Effective density

We propose a definition of the effective density. In Section 4.5, however, it turns out

that this formulation does not lead to a unique effective density. Therefore, we refor-

mulate the effective density in Section 4.5. However, the definition that we introduce

here is easier to derive and interpret.

We define the effective density as a weighted summation of the class-specific densities:

ρ = ∑
u

ηuρu (4.10)

1If ρ = ρ1 then in congestion the characteristic velocity is dq/dρ = dq1/dρ1 = d(ρ1v1)/dρ1 =
ρ1dv1/dρ1 + v1 = ρ1(wρjam/ρ2)(dρ/dρ1)+w(ρjam/ρ −1) = wρjam/ρ +w(ρjam/ρ −1) =−w.
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Figure 4.1 Multi-class version of Smulders fundamental relation. The velocities and

flows of two-classes (cars (solid line) and trucks (broken line)) are shown as a function

of the effective density.

where the pce-value ηu is the weight of class u. It depends on its relative space

occupancy:

ηu =
ωu

ω1
(4.11)

with the space occupancy:

ωu = Lu +Tuvu (4.12)

with the minimum time headway Tu and the gross vehicle length Lu. The gross vehicle

length is the physical length of the vehicle plus the gap at complete stop and con-

sequently, on a single lane road:

L1 =
1

ρjam

(4.13)

The space occupancy (4.12) is equivalent to the tail-to-tail spacing in Pipes’ safe-

distance car-following model (1953), see Section 2.2.1. Figure 2.10 and equation (2.8)

show that the tail-to-tail spacing in Pipes’ model is:

(xn−1 − ln−1)− (xn − ln) = (xn +d +T vn)− (xn − ln) = ln +d +T vn

= Lu +Tuvu (4.14)

The last equality holds if all classes u have the same minimum time headway: T = Tu

and if they furthermore have the same gross vehicle length: ln +d = Lu with lu the net

vehicle length from front to tail and d the distance between two vehicles at standstill.

Figure 4.2 shows how the space occupancy depends on the traffic state: in free flow

and at high velocities, the space occupancy is mainly determined by the minimum time

headway. Empirical studies show that the minimum values of observed time headways

of trucks are almost equal to that of cars or at most two times larger (Tilch & Helbing,

2000; Hoogendoorn et al., 2006). Therefore, the headway is similar for both cars and
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Figure 4.2 Illustration of pce-values. Top: free flow, the space occupancy of a truck

is close to the space occupancy of a car, therefore the pce-value of the truck is low.

Bottom: congestion, the space occupancy of a truck and is much larger than the space

occupancy of a car, therefore the pce-value of the truck is high.

trucks and therefore the space occupancy and pce-value are similar as well. However,

in congestion, the space occupancy is mainly determined by the vehicle length. For

example, Elefteriadou et al. (1997) uses values of 5.2 meters for passenger cars, 12.2

meters for ‘single unit vehicles’, and up to 30.5 meters for long trucks. Therefore,

trucks are longer than passenger cars, their space occupancy and thus also their pce-

value is much larger than that of cars.

4.3.3 Flow maximization

We discuss the entropy requirement (Requirement 2) as the next element of the Fastlane

model. The entropy requirement states that the solution of the model equations maxi-

mizes flow. We require the flow to be maximized to be the effective flow q:

q = ∑
u

ηuqu = ∑
u

ηuρuvu (4.15)

We will need the entropy requirement in Chapter 8 to develop a numerical method to

approximate the unique solution that maximizes the effective flow (4.15).

4.4 Parameter conditions

Even by selecting the solution that maximizes the effective flow (4.15), a unique solu-

tion to the model equations can not be found. We note that (4.8), (4.10), (4.11) and

(4.12) define the effective density implicitly, see also Figure 4.5: the effective density

(4.10) is a function of the pce-values (4.11), which is in turn a function of the space

occupancy (4.12), which is a function of the velocity (4.8), which is a function of the

effective density (4.10), etc. In fact, it appears in Section 4.5 that (4.8), (4.10), (4.11)
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and (4.12) do not define the effective density, nor the velocities uniquely. Therefore, we

redefine the effective density uniquely in Section 4.5. However, for this redefinition,

we need some conditions on the parameter values.

We propose some conditions on the parameters of the model developed in Section

4.2 and 4.3. We show that these conditions are ‘reasonable’: they do not include

too strict conditions and (almost) all realistic parameter values satisfy the conditions.

These conditions are used in the reformulation of the effective density in Section 4.5.

Furthermore, In Chapter 7 we show that if these conditions hold, the model satisfies

the qualitative requirements from Chapter 3.

4.4.1 Conditions on velocity parameters

In the following we show that the velocity parameters of the fundamental relation (4.8)

must be chosen such that for all classes u:

vcrit ≤ vu,max ≤ v1,max ≤ 2vcrit (4.16)

Condition (4.16) puts some constraints on the shape of the fundamental relation (4.8)

of each class, and on the connection between the fundamental relations of the classes.

First of all, it states that at critical density, velocities are not higher than at zero density

(vcrit ≤ vu,max for all classes u), which is reasonable to require because it implies non

increasing velocity: at critical density, the velocity can not be higher than at zero

density. Secondly, it states that class 1 is faster, or just as fast as all other classes

(vu,max ≤ v1,max for all classes u). In fact, this condition is not necessary to satisfy the

requirements. Even if the fastest class is not class 1 (vu,max > v1,max for some classes u),

the requirements may be satisfied. However, it does make the mathematical analysis

in Chapter 7 easier, without loss of generality. Finally, condition (4.16) states that the

difference between velocity at zero density and at critical density can not be ‘too large’

(v1,max ≤ 2vcrit). This part of the condition is related to the maximum flow, or capacity

and is discussed in more detail below.

We note that the critical density ρcrit is defined as the density at which the free flow

branch (4.8a) and the congestion branch (4.8b) of the fundamental relation intersect.

Condition (4.16) implies that the maximum flow (capacity) is reached at critical den-

sity. We show that if the last part of Condition (4.16) is not satisfied, maximum flow

may not be reached at critical density. This implies an unrealistic shape of the funda-

mental relation, as shown in Figure 4.3(b).

Theorem 4.1. If the class-specific densities of all classes u are zero except for class

1 and furthermore v1,max > 2vcrit, then the maximum flow is not reached at critical

density.

Proof. We consider the case with ρu = 0 for all u except for u = 1 and consequently
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0 ρcrit ρjam

vcrit

vmax

0 ρcrit ρjam

qcap = qcrit

(a) v1,max < 2vcrit

0 ρcrit ρjam

vcrit

vmax

0 ρcrit ρjam

qcrit
qcap

(b) v1,max > 2vcrit

Figure 4.3 Density-velocity (top) and density-flow (bottom) fundamental relations. If

the maximum velocity is too large when compared to the critical velocity, the maximum

flow is not equal to the flow at critical density.

ρ1 = ρ . This results in the following density-flow fundamental relation:

q = ρ1v1 = ρv1 =







v1,maxρ − v1,max − vcrit

ρcrit

ρ2 (free flow) (4.17a)

w
(
ρjam −ρ

)
(congestion) (4.17b)

This fundamental relation is shown in Figure 4.3. If the situation is as in Figure 4.3(b),

the maximum flow is the flow at the top of the parabola. If, however, the situation is as

in Figure 4.3(a), the maximum flow is the flow at critical density. The latter is the case

if the top of the parabola is not part of the free flow branch. The density at the top of

the parabola is:

ρ = v1,max
ρcrit

2(v1,max − vcrit)
(4.18)

Consequently, the top of the parabola is not part of the free flow branch if v1,max ≥
2(v1,max−vcrit), which is equivalent to v1,max ≤ 2vcrit. We conclude that the maximum

flow is not reached at critical density if v1,max > 2vcrit.
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Figure 4.4 Schematic view of the condition on the space occupancy parameters, Con-

dition (4.19). The grey areas illustrate the admissible values of 1/T1 and 1/Tu respec-

tively.

4.4.2 Conditions on parameters of space occupancy

In the following we show that the parameters of the space occupancy (4.12) must be

chosen such that for all classes u:

w ≤ L1

T1
≤ Lu

Tu
(4.19)

Condition (4.19) puts constraints on the space occupancy function (4.12). It relates the

characteristic velocity to the vehicle length and headway. The condition is illustrated

in Figure 4.4(a).

The first inequality of Condition (4.19) implies that, in certain traffic states, space

occupancy can not be larger than the spacing.

Theorem 4.2. Consider any congested traffic state (i.e. ρcrit ≤ ρ ≤ ρjam) with only

vehicles of class 1 (i.e. ρu = 0 if u 6= 1). If the first inequality of (4.19) holds, then the

space occupancy is not larger than the spacing: ω1 ≤ s.

Proof. There are only vehicles of class 1 and thus the spacing is s = 1/ρ = 1/ρ1.

We use the space occupancy function (4.12), the fundamental relation (4.8) and the

definitions of jam density (4.13) and of spacing (s = 1/ρ) to find:

ω1 − s = L1 +T1w

(
s

L1
−1

)

− s (4.20)

Rewriting gives:

ω1 − s = (L1 − s)
L1 −T1w

L1
(4.21)
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The term between brackets is nonpositive. If the first inequality of (4.19) holds, then

the fraction is nonnegative and thus the right-hand side is nonpositive. Consequently,

space occupancy is not larger than the spacing: ω1 ≤ s.

Theorem 4.2 implies that, in the congested traffic state with only vehicles of class 1,

no part of the road can be occupied by two vehicles at the same time. That is: their

space occupancies do not overlap.

The second inequality of Condition (4.19) implies that in certain traffic states the pce-

value is nondecreasing.

Theorem 4.3. Consider any congested traffic state (i.e. ρcrit ≤ ρ ≤ ρjam) with only

vehicles of class 1 (i.e. ρu = 0 if u 6= 1). If the second inequality of (4.19) holds for a

certain class u, then the pce-value of this class u is nondecreasing: dηu/dρ ≥ 0.

Proof. There are only vehicles of class 1 and thus the spacing is s = 1/ρ = 1/ρ1. We

first show that the velocity is decreasing in congestion:

dv1

dρ
=−T1w

ρjam

ρ2
≤ 0 (4.22)

We apply the pce function (4.11) and the space occupancy function (4.12) and use that

vu = v1 and dvu/dρ = dv1/dρ to compute the density derivative of the pce vale ηu:

dηu

dρ
=

(L1 +T1v1)Tu
dvu

dρ
− (Lu +Tuvu)T1

dv1

dρ

(ω1)2
=

L1Tu
dv1

dρ
−LuT1

dv1

dρ

(ω1)2

=
T1Tu

(ω1)2

[
L1

T1
− Lu

Tu

]
dv1

dρ
(4.23)

We have already shown that the velocity is decreasing (4.22). Therefore, if and only

if the second inequality of (4.19) holds, the term between square brackets in (4.23) is

nonpositive and the pce-value is nondecreasing.

Theorem 4.3 implies that, if traffic is more congested, trucks (which are longer and

have a larger minimum time headway than passenger cars) have a higher pce-value

than in free flow. This reflects that at high densities they take relatively more space

than in free flow, see Figure 4.2.

4.5 Reformulation of the effective density

The previous formulation of the effective density, consisting of equations (4.8), (4.10),

(4.11) and (4.12) defined the effective density implicitly. We reformulate the effective

density in an explicit way such that it is defined uniquely and only depends on the
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ρ = ρ(ρ1, ...,ρU ,
η1, ...,ηU)

vu = vu(ρ)

ηu = ηu(v1,vu)

quadratic equation

with 2 solutions

ρ = ρ+ or ρ = ρ−

1 meaningful

solution

ρ = ρ(ρ1, ...,ρU)

Figure 4.5 Schematic view of the procedure in Section 4.5. We reformulate the implicit

effective density (left) into a quadratic equation with two solutions (center, Section

4.5.1) and choose the correct one (right, Section 4.5.2). The reformulated function

expresses the effective density as a function of only the class-specific densities.

class-specific densities ρ1, ...,ρU . During the reformulation we show that the previous

formulation does not define the effective density uniquely, see Figure 4.5. To reformu-

late the effective density, we substitute the pce-function, the space occupancy and the

fundamental relation into the effective density. We find a quadratic equation with two

roots. We show that only one of the solutions is physically relevant. The approach is

shown schematically in Figure 4.5.

4.5.1 Two effective density branches

To do this analysis for free flow and congestion, for the most part simultaneously, we

write the effective density for both the free flow branch and the congestion branch in

the same form. The derivation is done for free flow and congestion separately. For

free flow, we substitute the free flow branch of the fundamental relation (4.8a) into the

space occupancy (4.12):

ω f
u = Lu +Tuvu = Lu +Tuvu,max −Tu

vu,max − vcrit

ρcrit

ρ = af
u +bf

uρ (4.24)

with

af
u := Lu +Tuvu,max and bf

u :=−Tu
vu,max − vcrit

ρcrit

(4.25)

Substituting (4.24) and the pce-function (4.11) into the effective density function (4.10)

gives:

ρ = ∑
u

ω f
u

ω f
1

ρu = ∑
u

af
u +bf

uρ

af
1 +bf

1ρ
ρu (4.26)

Furthermore, we substitute the congestion branch of the fundamental relation (4.8b)

into the space occupancy (4.12):

ωc
u = Lu +Tuvu = Lu −Tuw+Tuw

ρjam

ρ
= bc

u +
ac

u

ρ
(4.27)
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with

ac
u := Tuwρjam and bc

u := Lu −Tuw (4.28)

Substituting (4.24) and the pce-function (4.11) into the effective density function (4.10)

gives:

ρ = ∑
u

ωc
u

ωc
1

ρu = ∑
u

bc
u +ac

u/ρ

bc
1 +ac

1/ρ
ρu = ∑

u

ac
u +bc

uρ

ac
1 +bc

1ρ
ρu (4.29)

In the last step we multiplied both numerator and denominator with ρ . Finally, we

reformulate the effective density in a form that holds in both free flow and congestion:

ρ = ∑
u

(
au +buρ

a1 +b1ρ
ρu

)

(4.30)

with au = af
u and bu = bf

u in free flow (see (4.26)) and au = ac
u and bu = bc

u in congestion

(see (4.29)). This form (4.30) clearly shows how the effective density depends on itself.

We are going to rewrite (4.30) as a quadratic equation which has two roots. Multiplying

both sides with a1 +b1ρ gives:

(a1 +b1ρ)ρ = ∑
u

[
(au +buρ)ρu

]
(4.31)

Rearranging gives:

b1ρ2 +

(

a1 −∑
u

buρu

)

ρ −∑
u

auρu = 0 (4.32)

If b1 = 0 the quadratic equation (4.32) reduces to a linear equation with only one root:

ρ =
∑u auρu

a1 −∑u buρu
(4.33)

We note that, if Condition (4.16) holds, bf
1 = 0 implies that v1,max = vcrit = vu,max for all

user classes u. Therefore, the multi-class Smulders fundamental relation (4.8) reduces

to Daganzo’s fundamental relation and both in free flow and in congestion velocities

are equal for all classes.

If b1 6= 0 the quadratic equation (4.32) has two roots. We find these roots, ρ+ and ρ−,

by applying the quadratic formula:

ρ =







ρ+ =
a1 −∑u buρu +

√

(a1 −∑u buρu)
2 +4b1 ∑u auρu

−2b1
(4.34a)

ρ− =
a1 −∑u buρu −

√

(a1 −∑u buρu)
2 +4b1 ∑u auρu

−2b1
(4.34b)
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Figure 4.6 The values of ρ+ and ρ− as functions of the class-specific densities of class

1 and 2. For low class-specific densities, ρ+ and ρ− are shown as distinct branches.

If class-specific densities are high, the values of ρ+ and ρ− become complex and only

the real parts are shown. We note that for different values of the parameters of the

fundamental relation and the space occupancy, the shape of ρ+ and ρ− may change.

The values of ρ+ and ρ− as functions of the class-specific densities are illustrated in

Figure 4.6. This shows that the implicit set of equations (4.8), (4.10), (4.11) and (4.12)

has two solutions: ρ+ and ρ−.

4.5.2 Choosing the correct effective density branch

The next step is to find out which of the two branches ρ+ or ρ− is correct. We do this

by showing that ρ− is equal to the effective density ρ if the parameters satisfy condi-

tions (4.16) and (4.19). We also show that, if the conditions are satisfied, ρ+ is unequal

to the effective density ρ , in most traffic states. For this analysis we rewrite the para-

meter conditions (4.16) and (4.19) in terms of conditions on au and bu. Furthermore,

we define a new, state-dependent function.

The conditions on au and bu are dependent on the regime (free flow or congestion).

Lemma 4.1. If the parameters satisfy (4.16) then in free flow au and bu satisfy:

af
u ≥ 0, b

f
1 ≤ bf

u ≤ 0, and af
u +2bf

uρ ≥ 0 (4.35)

Proof. We use that all parameters are positive or nonnegative: Lu > 0, Tu ≥ 0, vu,max >

0, vcrit ≥ 0, ρcrit ≥ 0. From this we conclude that af
u is nonnegative: af

u = Lu +



96 Multi-class continuum traffic flow models: Analysis and simulation methods

Tuvu,max > 0. If (4.16) holds, then vu,max ≤ v1,max and thus bf
1 ≤ bf

u. Furthermore, if

(4.16) holds, then vu,max−vcrit ≥ 0 and thus bf
u is nonpositive: bf

u =−Tu
vu,max−vcrit

ρcrit
≤ 0.

Finally, we use that in free flow the effective density is not above critical (ρ ≤ ρcrit) to

find:

af
u +2bf

uρ ≥ af
u +2bf

uρcrit = Lu +Tuvu,max −2Tu(vu,max − vcrit)

= Lu +Tu(2vcrit − vu,max)> 0 (4.36)

The last inequality holds because Lu > 0 and because 2vcrit ≥ vu,max (see parameter

condition (4.16)).

Lemma 4.2. If the parameters satisfy (4.19) then in congestion au and bu satisfy:

ac
u ≥ 0, 0 ≤ bc

u ≤ bc
1 and ac

u +bc
uρ ≥ 0 (4.37)

Proof. We use that all parameters are positive or nonnegative: Lu > 0, Tu ≥ 0, w > 0,

ρjam > 0. From this we conclude that ac
u is nonnegative: ac

u = Tuwρjam ≥ 0. If (4.19)

holds, then Lu ≥ Tuw and thus bc
u is nonnegative: bc

u = Lu −Tuw ≥ 0. Furthermore, if

(4.19) holds, then Lu −Tuw ≤ L1 −T1w and thus bc
u ≤ bc

1. Finally, both ac
u and bc

u are

nonnegative and thus: au +buρ ≥ 0.

We define the function f which depends on the current traffic state:

f = f (ρ1, . . . ,ρU) := a1 −∑
u

buρu (4.38)

Furthermore, we define the determinant in (4.34):

d :=

(

a1 −∑
u

buρu

)2

+4b1 ∑
u

auρu (4.39)

Lemma 4.3. The determinant d (4.39) can be rewritten as:

d =

(
∑u auρu

ρ
+b1ρ

)2

(4.40)

Proof. We first rewrite f (4.38) using (4.30):

f = a1 −∑
u

buρu −
∑u auρu

ρ
+

∑u auρu

ρ
= a1 −

1

ρ ∑
u

(au +buρ)ρu +
∑u auρu

ρ

= a1 −
a1 +b1ρ

ρ ∑
u

au +buρ

a1 +b1ρ
ρu

︸ ︷︷ ︸

=ρ

+
∑u auρu

ρ
= a1 − (a1 +b1ρ)+

∑u auρu

ρ

=
∑u auρu

ρ
−b1ρ (4.41)
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We apply both forms of f (4.38), (4.41) to rewrite the determinant:

d =

(

a1 −∑
u

buρu

)2

+4b1 ∑
u

auρu = f 2 +4b1 ∑
u

auρu

=

(
∑u auρu

ρ
−b1ρ

)2

+4b1 ∑
u

auρu =

(
∑u auρu

ρ
+b1ρ

)2

(4.42)

We now show that the term between brackets in the determinant d (4.39) is nonnegative

if the parameter conditions (4.16) and (4.19) are satisfied.

Lemma 4.4. If the parameters satisfy (4.16) and (4.19) then

∑u auρu

ρ
+b1ρ ≥ 0 (4.43)

Proof. In congestion both au and b1 are nonnegative (see Lemma 4.2) and thus (4.43)

is true. For the free flow regime we apply both forms of f (4.38), (4.41) to find:

∑u auρu

ρ
+b1ρ = f +2b1ρ = a1 −∑

u

buρu +2b1ρ > 0 (4.44)

The inequality holds because from Lemma 4.1 we conclude that a1 +2b1ρ is positive

and furthermore bu is nonpositive.

Lemma 4.4 implies that if (4.16) and (4.19) are satisfied, then the effective density

takes a real value.

Theorem 4.4. If the parameters satisfy (4.16) and (4.19) then the effective density

given by ρ− (4.34b) is the correct effective density.

Proof. We apply both forms of f (4.38), (4.41) and Lemma 4.3 and 4.4 to find:

ρ− =
a1 −∑u buρu −

√

(a1 −∑u buρu)
2 +4b1 ∑u auρu

−2b1

=
a1 −∑u buρu −

∣
∣
∣

∑u auρu

ρ +b1ρ
∣
∣
∣

−2b1
=

f −| f +2b1ρ|
−2b1

=
f − ( f +2b1ρ)

−2b1

= ρ (4.45)

We conclude that ρ− gives the correct effective density ρ .

Similarly, ρ+ (4.34a) does in general not yield the correct effective density:

ρ+ =
f + | f +2b1ρ|

−2b1
=

f +( f +2b1ρ)

−2b1
=−

(
f

b1
+ρ

)

(4.46)
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4.6 Summary of Fastlane model and conclusions

The Fastlane model follows naturally from the principles in Chapter 3. It is based on

sound principles and is derived using assumptions from a simple car-following model.

These assumptions are used to include interactions between different classes via the

space occupancy and the passenger car equivalent value.

For later reference we summarize the Fastlane model equations. Fastlane consists of

the multi-class conservation of vehicles equation:

∂ρu

∂ t
(t,x)+

∂qu

∂x
(t,x) = 0 (4.47)

with class-specific flow:

qu = ρuvu (4.48)

The class-specific velocity is defined by the fundamental relation:

vu = vu(ρ) =







vu,max −
vu,max − vcrit

ρcrit

ρ (free flow: 0 ≤ ρ ≤ ρcrit) (4.49a)

w

(
ρjam

ρ
−1

)

(congestion: ρcrit ≤ ρ ≤ ρjam) (4.49b)

with congestion parameter:

w =
ρcritvcrit

ρjam −ρcrit

(4.50)

and effective density:

ρ =







a1 −∑u buρu −
√

(a1 −∑u buρu)
2 +4b1 ∑u auρu

−2b1
if b1 6= 0 (4.51a)

∑u auρu

a1 −∑u buρu
if b1 = 0 (4.51b)

with in free flow (if 0 ≤ ρ ≤ ρcrit):

au = Lu +Tuvu,max and bu =−Tu
vu,max − vcrit

ρcrit

(4.52a)

and in congestion (if ρcrit ≤ ρ ≤ ρjam):

au = Tuwρjam and bu = Lu −Tuw (4.52b)

When solving the above model equations a unique solution is selected, namely the
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solution that maximizes the effective flow:

q = ∑
u

ηuqu (4.53)

Furthermore, we introduced the following conditions on the parameter values. Funda-

mental relation parameter conditions:

vcrit ≤ vu,max ≤ v1,max ≤ 2vcrit (4.54)

Space occupancy parameter conditions:

w ≤ L1

T1
≤ Lu

Tu
(4.55)

We have interpreted the conditions and we have shown that they are reasonable.

In the next chapter (Chapter 5) we generalize the model and show that the generali-

zation also includes most other multi-class kinematic wave traffic flow models known

from literature. The generalized model will be reformulated in Chapter 6. Only after

this reformulation we are be able to show in Chapter 7 that Fastlane satisfies the re-

quirements introduced in Chapter 3.





Chapter 5

Generalized formulation of multi-class

models

We propose a generalized framework that contains all deterministic single-pipe multi-

class kinematic wave models known from literature. We have identified eight models

that have been developed in the last decade and are contained in this framework. In

particular, we exclude models that explicitly consider multiple lanes Daganzo (2002);

Chanut (2005) and models that include stochasticity (Ngoduy, 2010, 2011). The gen-

eralized model is largely the same as the Fastlane model. The models introduced

by Wong & Wong (2002); Benzoni-Gavage & Colombo (2003); Chanut & Buisson

(2003); Zhang et al. (2006); Ngoduy & Liu (2007); Logghe & Immers (2008); Nair

et al. (2012) all fit into the generalized model, though some of them need to be refor-

mulated first. Attempts to include all multi-class kinematic wave model in a general-

ized framework have been done before, most recently by Logghe & Immers (2008).

However, the generalized model that we propose includes more models than previous

generalized models. Moreover, our generalized model highlights the differences and

similarities between the models. Furthermore, we can more easily analyze the models

with respect to the qualitative requirements in Chapter 3. The analysis and comparison

of models with Fastlane is presented in Chapter 7.

The focus of this chapter is on reformulating all models such that they are contained

in our generalized framework. While introducing the models we also discuss the main

modeling assumptions, usually related to the differences between the classes. Finally,

we give an overview of the models to highlight their similarities and differences.

The outline of this chapter is as follows. In Section 5.1 we introduce the generalized

model. In Section 5.2–5.5 we discuss and reformulate models known from literature

to fit the generalized model. We start with the most complex models in Section 5.2 and

end with the most simple ones in Section 5.5. Finally, in Section 5.6, we summarize

and discuss the results.
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5.1 Generalized multi-class kinematic wave model

We propose a generalized deterministic single-pipe multi-class kinematic wave model.

It includes the multi-class conservation of vehicles equation and the definition of class-

specific flow. We recall those equations from Chapter 4 (4.5) and (4.6):

∂ρu

∂ t
+

∂qu

∂x
= 0 (5.1a)

qu = ρuvu (5.1b)

In the generalized model, the class-specific fundamental relation expresses the class-

specific velocity vu as a function of the effective density ρ:

vu = vu(ρ) (5.1c)

We note that this implies that the class-specific velocity only depends on the effective

density and that its parameters must be constant. Therefore, any fundamental rela-

tion parameters, such as maximum and critical velocity and critical and jam density,

must be independent of the traffic state. Finally, the effective density is expressed as a

function of all class-specific densities:

ρ = ρ(ρ1, . . . ,ρU) (5.1d)

Equations (5.1) form a generic deterministic multi-class single-pipe kinematic wave

model. It can be generalized even further by combining (5.1c) and (5.1d) into:

vu = vu(ρ1, . . . ,ρU) (5.2)

This generalization is not needed for any of the models known from literature. How-

ever, it may be necessary if the fundamental relation of a future model can not only be

expressed as a function of the effective density. For example, a relatively high truck

density may have a different influence on cars than it has on other large vehicles.

We now discuss all models known from literature, and show how they are contained in

the framework (5.1). In most cases this means that the model needs to be reformulated.

We first discuss the most complex models which are based on making available road

fractions to classes (Section 5.2). We continue with a short summary of the Fastlane

model (Section 5.3). We then discuss the simpler models and show that they are spe-

cific forms of Fastlane. Some models include (constant) pce-values (Section 5.4), in

others the effective density is an unweighted summation of the class-specific densities

(Section 5.5). The results are summarized in Figure 5.1 and Table 5.2. The parameter

values of the fundamental relations in Figure 5.1 are given in Table 5.1. The figure and

tables are discussed in more detail later.
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Table 5.1 Parameter values of fundamental relations in Figure 5.1.

General parameters

maximum velocity class 1 v1,max 33.3 m/s = 120 km/h

maximum velocity class 2 1 v2,max 25 m/s = 90 km/h

critical velocity vcrit 20.8 m/s = 75 km/h

critical density ρcrit 0.033 veh/m = 33 veh/km

jam density ρjam 0.2 veh/m = 200 veh/km

resulting congestion wave parameter w 4.17 m/s = 15 km/h

Logghe & Immers (2008)

maximum velocity class 2 v2,max 20.8 m/s vcrit

critical density class 1 ρ1,crit 0.04 veh/m = 40 veh/km

critical density class 2 ρ2,crit 0.05 veh/m = 50 veh/km

jam density class 1 ρ1,jam 0.2 veh/m ρjam

jam density class 2 ρ2,jam 0.18 veh/m = 180 veh/km

Ngoduy & Liu (2007)

pce-value class 2 η2 2

Fastlane, Chanut & Buisson (2003); Benzoni-Gavage & Colombo (2003)

gross vehicle length class 1 L1 5 m 1/ρjam

gross vehicle length class 2 L2 18 m

Fastlane

minimum time headway class 1 T1 1 s

minimum time headway class 2 T2 1.5 s

Nair et al. (2012)

minimum bound pore size distribution bmin 0.01 m

maximum bound pore size distribution bmax 3 m

critical pore size class 1 r1,crit 2.5 m

critical pore size class 2 r2,crit 0.8 m

parameter fund. relation unrestricted cur 0.8

parameter fund. relation restricted crs 2

vehicle area class 1 a1 8 m2

vehicle area class 2 a2 1.6 m2

scaling parameter d 1 m

1 Except for (Logghe & Immers, 2008)
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Figure 5.1 Fundamental relations of two-class models. The velocities of class 1 and

2 are expressed as function of the total densities (the number of vehicles per length

unit). Each subfigure shows 4 fundamental relations. Black lines (starting at v1,max)

are velocities of class 1. Blue lines (starting at v2,max) are velocities of class 2. Solid

lines indicate the velocity if there are no vehicles of class 2, broken lines if 25% of the

vehicles is of class 2.
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5.2 Models using road fractions

Both Logghe & Immers (2008) and Ngoduy & Liu (2007) use road fractions in their

model formulation. For each class a certain fraction of the road is available. The frac-

tion depends on the traffic composition and state. Depending on the fraction the fun-

damental relation is scaled. Using this scaled fundamental relation the class-specific

velocities are determined. In the original formulation, the fundamental relation is not

defined according to our generalized definition (5.1c). Furthermore, the model does

not include an effective density (5.1d). However, both models can be reformulated,

such that they are contained in the generalized formulation.

5.2.1 Model by Logghe & Immers

Logghe & Immers (2008) propose a two-class model including three regimes. In all

these regimes the vehicles behave according to some user-equilibrium. The authors

claim that due to the equilibrium approach slow vehicles influence fast vehicles, but not

vice versa. In free flow both classes travel at their free flow velocity. It is assumed that

there, is no interaction between drivers or vehicles, or at least they do not influence each

others velocity. The main differences between classes can be seen in semi-congestion.

In semi-congestion interaction between the vehicles does take place. However, only

the vehicles of class 1 (e.g., passenger cars) react by slowing down. The velocity of

vehicles of class 2 (e.g., trucks) is not influenced: they still travel at their free flow

velocity. In congestion, vehicles of both classes are influenced by the presence of

other vehicles and all vehicles slow down further.

In the original formulation, the velocity of each class vu is determined by scaling the

class-specific fundamental relation according to the road fraction αu that is available

for the class. The fundamental relation is a multi-class version of Daganzo’s funda-

mental relation (see Section 2.1.2) with different parameters for each class, see Fig-

ure 5.1(a). The original formulation in density-flow form can be rewritten in density-

velocity form:

vu(ρ1,ρ2) =







vu,max (free flow) (5.3a)

wu

(
ρu,jam

ρu/αu
−1

)

(congestion) (5.3b)

with parameter wu:

wu =
ρu,critvu,max

ρu,jam −ρu,crit

(5.4)

The class-specific free flow velocity, vu,max, the critical density ρu,crit and the jam den-

sity ρu,jam are constant parameters and therefore wu (5.4) is constant as well.

We now reformulate the rest of the model, based on the original article (Logghe & Im-

mers, 2008) and email communications with the first author. The reformulated model
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includes the road fraction αu and effective density ρ . It can be understood most easily

by first considering semi-congestion.

Semi-congestion In semi-congestion the road fraction available for (the slower) class

2 is:

αsc
2 =

ρ2

ρ2,crit

(5.5)

The remaining capacity of the road is available for class 1. Therefore, its road fraction

is:

αsc
1 = 1− ρ2

ρ2,crit

=
ρ2,crit −ρ2

ρ2,crit

(5.6)

Class 2 is in free flow state and travels at its maximum velocity:

v2 = vsc
2 = v2,max (5.7)

Class 1, however, is in the congestion state and its velocity is determined by the con-

gestion branch of its scaled fundamental relation (5.3b). We reformulate its congestion

branch as:

vsc
1 = vc

u(ρ1,ρ2) = w1

(
ρ1,jam

ρ
−1

)

(5.8)

with effective density:

ρ =
ρ1

α1
(5.9)

and α1 = αsc
1 . Finally, we need to define when traffic is in semi-congestion. It is in

semi-congestion if:

• the fraction of road for class 1 is too small for all vehicles of class 1 to maintain

their free flow velocity (αsc
1 ≤ ρ1/ρ1,crit), and

• the velocity of class 1 is not smaller than the free flow velocity of class 2 (vsc
1 ≥

v2,max).

In all other cases traffic is either in free flow or congestion. We note that the introduc-

tion of the semi-congestion regime implies that generalization of the model to more

than two classes is not straightforward.

Free flow. If αsc
1 > ρ1/ρ1,crit then there is enough road space for both classes to

maintain their free flow velocity. The class-specific velocities are specified by the free

flow branch of the fundamental relation (5.3a). Since the velocity does not depend on

the effective density, it is not necessary to define the effective density.
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Congestion. If αsc
1 ≤ ρ1/ρ1,crit and vsc

1 < v2,max then traffic is in congestion. For

both classes a certain road fraction is made available, such that their velocities are

equal. Furthermore, the sum of their road fractions is one:

αc
1 +αc

2 = 1 (5.10)

Substituting (5.10) into the congestion branch of the fundamental relation (5.3b) and

setting the velocities of both classes equal gives:

w1

(
ρ1,jam

ρ1/αc
1

−1

)

= w2

(
ρ2,jam

ρ2/(1−αc
1)

−1

)

(5.11)

The road fraction of class 1 is found by solving (5.11) for αc
1:

αc
1 =

w1 +w2

(
ρ2,jam

ρ2
−1
)

w1
ρ1,jam

ρ1
+w2

ρ2,jam

ρ2

(5.12)

The velocity of both classes is determined by the congestion branch of the scaled fun-

damental relation (5.3b). Again, the fundamental relation can be rewritten as (5.8)

with effective density (5.9) and road fraction α1 = αc
1 (5.12). The resulting fundamen-

tal relation for all states (free flow, semi-congestion and congestion) is shown in Figure

5.1(a). The model equations are repeated in Table 5.2 for later reference.

5.2.2 Model by Ngoduy & Liu

Ngoduy & Liu (2007) base their model on vehicle classes that are characterized by

their maximum velocities in free flow and their pce-values. In congestion all vehicles

travel at the same velocity. This model does not include semi-congestion. However,

Ngoduy & Liu include the concept of road fractions in their model.

We first introduce the original formulation by Ngoduy & Liu (2007). Later we refor-

mulate the model to be contained in the generalized model. Unlike Logghe & Immers

(2008), Ngoduy & Liu simply assume that the road fraction αu available for a class u

is directly related to the fraction of vehicles of that class:

αu =
ρu

ρ tot
(5.13)

with ρ tot =∑u ρu the total density, which is in general not equal to the effective density,

which will be defined later. For each class u they define a fundamental relation which

is scaled according to the road fraction αu available for a class u and its pce-value ηu.

The fundamental relation is a multi-class version of the Smulders fundamental relation
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(Smulders, 1990):

vu = vu(ρ̃) =







vu,max −
vu,max − vcrit

ρ̃crit

ρ̃ (free flow, 0 ≤ ρ̃ < ρ̃crit) (5.14a)

w

(
ρ̃jam

ρ̃
−1

)

(congestion, ρ̃crit ≤ ρ̃ ≤ ρ̃jam) (5.14b)

with parameter

w =
ρ̃critvcrit

ρ̃jam − ρ̃crit

(5.15)

In the original formulation density is ρ̃ an unweighted summation of all class-specific

densities:

ρ̃ = ρ tot = ∑
u

ρu (5.16)

The fundamental relation is scaled according to the road fraction αu available for a

class u and its pce-value ηu. This is done by scaling the parameters critical density

ρcrit and jam density ρjam:

ρ̃crit = ρcrit ∑
u

αu

ηu
, ρ̃jam = ρjam ∑

u

αu

ηu
(5.17)

Ngoduy & Liu refer to the Highway Capacity Manual 2000 (Transportation Research

Board, 2000) to look up pce-values ηu. The pce-values given there are constant or

piecewise constant and may depend on vehicle type, vehicle length, slope of the road

and fraction of heavy vehicles.

We reformulate the model such that the fundamental relation (5.14) expresses the class-

specific velocities as a function of some effective density with constant parameters.

The resulting fundamental relation is shown in Figure 5.1(b). Substitution of the scaled

fundamental relation parameters (5.17) into the original fundamental relation (5.14)

and rewriting the result gives the reformulated fundamental relation:

vu = vu(ρ) =







vu,max −
vu,max − vcrit

ρcrit

ρ (free flow, 0 ≤ ρ < ρcrit) (5.18a)

w

(
ρjam

ρ
−1

)

(congestion, ρcrit ≤ ρ ≤ ρjam) (5.18b)

with

w =
ρ̃critvcrit

ρ̃jam − ρ̃crit

=
ρcritvcrit

ρjam −ρcrit

(5.19)

and effective density:

ρ = η̄ρ tot (5.20)
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with η̄ the harmonic-weighted average of the class-specific pce-values:

η̄ =
∑u ρu

∑u ρu/ηu
=

ρ tot

∑u ρu/ηu
(5.21)

The model equations are repeated in Table 5.2 for later reference. Finally, we note

that the stochastic extension of this model (Ngoduy, 2011) is not contained in the

generalized formulation as it includes non-deterministic terms. Therefore, we do not

include it further in our review and analysis.

5.3 Effective density using space occupancy (Fastlane)

Fastlane (see Chapter 4) distinguishes classes based on their maximum velocity, gross

vehicle length and minimum time headway. Using these three differences between

classes and a simple car-following model, Fastlane reflects that at low densities, heavy

vehicles (e.g., trucks) have a relatively small influence and at high densities their influ-

ence is much larger. Furthermore, it is assumed that in congestion all vehicles travel at

the same velocity.

In Fastlane the fundamental relation is specified by the same fundamental relation as

the model by Ngoduy & Liu, namely the multi-class Smulders fundamental relation

(5.18). The effective density is a weighted summation of all class-specific densities:

ρ = ∑
u

ηuρu (5.22)

with pce-values:

ηu =
Lu +Tuvu

L1 +T1v1
(5.23)

We note that (5.22) and (5.23) can be reformulated such that the effective density is

expressed similar toNgoduy & Liu’s model (5.20) with η̄ not the harmonic-weighted

average but the arithmetic-weighted average pce-value:

η̄ =
∑u ηuρu

∑u ρu
=

∑u ηuρu

ρ tot
(5.24)

Recall that (5.14), (5.22) and (5.23) form an implicit set of equations. Therefore, this

part of the model was reformulated in Section 4.5 as (4.49) and (4.51). The resulting

fundamental relation is shown in Figure 5.1(c). The model equations are repeated in

Table 5.2 for later reference. In all of the following models the effective density and

pce-value is formulated as specific form of Fastlane’s effective density (5.22) and pce-

value (5.23). However, in some cases the fundamental relation takes a different shape

(Greenshields or Drake instead of Smulders).
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5.4 Effective density with constant pce-values

Chanut & Buisson (2003), Benzoni-Gavage & Colombo (2003) and Nair et al. (2012)

propose multi-class models using effectively constant pce-values. However, Nair et al.

reject the concept of pce-values for their application of disordered (non lane based)

traffic flow. They base their model on the concept of pores. We show that the resulting

model can be reformulated in the generalized framework with constant pce-values.

Chanut & Buisson and Benzoni-Gavage & Colombo develop multi-class models based

on a simpler set of assumptions, including different velocities for different classes. All

three models in this section have fundamental relations with different shapes. Chanut

& Buisson only include two-classes, while Benzoni-Gavage & Colombo and Nair et al.

include an arbitrary number of classes.

5.4.1 Model by Nair et al.

Nair et al. developed a multi-class model to describe non lane-based traffic flow (Nair

et al., 2011a,b, 2012). Such traffic situations often occur in developing countries. The

model uses the concept of pores. Pores are the areas between vehicles and between

vehicles and the roadside. Some (large) pores are accessible for almost any vehicle

class, other (small) pores are only accessible for classes with small and highly ma-

noeuvrable vehicles. A pore is said to be accessible by class u if its size r is larger than

or equal to the critical pore size of the class ru,crit (in meters). In the following we only

consider the most advanced model by Nair et al., which is proposed (Nair et al., 2012).

We now first introduce the original model formulation by Nair et al.. Later we refor-

mulate the model to be contained in the generalized model. The class-specific (lon-

gitudinal) velocity is defined as a weighted average of restricted velocity (vrs
u ) and

unrestricted velocity (vur
u ):

vu =
∫ ru,crit

0
f (r)dr vrs

u +
∫ ∞

ru,crit

f (r)dr vur
u (5.25)

The integrals denote the fraction of pores that are inaccessible
(∫ ru,crit

0 f (r)dr
)

or ac-

cessible
(∫ ∞

ru,crit
f (r)dr

)
for class u. Consequently the sum of the fractions is one:

∫ ru,crit

0
f (r)dr+

∫ ∞

ru,crit

f (r)dr = 1 (5.26)

The velocity of restricted and unrestricted vehicles is determined respectively by:

vur
u = vu,max

(

1−
∫ ru,crit

0
f (r)dr

)cur

(5.27a)

and vrs
u = vu,max

(

1−
∫ ru,crit

0
f (r)dr

)crs

(5.27b)
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with cur and crs some parameters with cur ≤ crs. Furthermore, pore spaces are assumed

to be distributed negative exponentially with mean p. Consequently, the fraction of

pores that is accessible to class u is:

∫ ru,crit

0
f (r)dr = e−pru,crit (5.28)

Finally, the mean pore space 1/p depends on the traffic state and is defined by:

p = p(ρ1, . . . ,kU) = (bmax −bmin)

(

∑
u

auku

)

+bmin (5.29)

with bmin and bmax bounds on the mean of the distribution. au is a constant, denoting

the area that vehicles of class u project on the roadway in m2 (or m2 per vehicle). ku is

the class-specific areal density in vehicle per m2.

We reformulate the model. Therefore, we first redefine the fundamental relation by

combining (5.25)–(5.28):

vu =
[

gu(1−gu)
crs−cur

+(1−gu)
]

(1−gu)
cur

vu,max (5.30)

with g the fraction of pores that is accessible to class u:

gu = e−pru,crit =
∫ ru,crit

0
f (r)dr (5.31)

Furthermore, we redefine the mean pore space p. Nair et al. use the class-specific

areal density ku in the conservation equation (5.1a). Since the velocity is defined only

in longitudinal direction, this implies a contradiction. Therefore, and to fit the model

into the generalized formulation we reformulate the mean pore space p (5.29) with the

following definitions:

ρu := dku (5.32)

and ρ := ∑
u

au

a1
ρu = ∑

u

ηuρu (5.33)

with d a scaling factor. Consequently, the pce-value ηu is constant. It is not based on

the traffic state but only on the average vehicle areas au and a1:

ηu =
au

a1
(5.34)

This yields the mean pore space 1/p, which is now defined by:

p = p(ρ) = (bmax −bmin)
(a1

d
ρ
)

+bmin (5.35)

It can be verified that (5.35) is equivalent to (5.29) by substitution of (5.32) and (5.33)

into (5.35). The resulting fundamental relation is shown in Figure 5.1(d). The model
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equations are repeated in Table 5.2 for later reference.

5.4.2 Model by Chanut & Buisson

Similar to the model by Ngoduy & Liu (2007), the original formulations of the models

by Chanut & Buisson and Benzoni-Gavage & Colombo do not include an effective

density but a total density (5.16). The fundamental relation is scaled according to the

traffic state and expresses the class-specific velocity as a function of the total density.

The model by Chanut & Buisson (2003) only includes 2 classes. These classes have

different lengths and different velocities in free flow. In the original formulation, they

define the fundamental relation very similar to Ngoduy & Liu (2007). The shape and

parameter w are defined by (5.14) and (5.15), respectively. However, they define the

scaled parameters of the fundamental relation differently:

ρ̃crit(ρ1,ρ2) = βρ̃jam(ρ1,ρ2), ρ̃jam(ρ1,ρ2) =
ρ̃

L1ρ1 +L2ρ2
(5.36)

with β ∈ [0.2,0.5] some constant. L1 = ρ̃jam(ρ1,0) and L2 = ρ̃jam(0,ρ2) are the gross

vehicle lengths of class 1 and 2 respectively.

We reformulate the model such that the fundamental relation (5.14) expresses the class-

specific velocities as a function of some effective density and with constant parameters.

The resulting fundamental relation is shown in Figure 5.1(e). The reformulated model

includes the fundamental relation (5.18) with parameter w as in (5.19). The other

parameters of the reformulated fundamental relation are:

ρjam := ρ̃jam(ρ1,0) and ρcrit := ρ̃crit(ρ1,0) = βρ̃jam(ρ1,0) (5.37)

The effective density is defined by (5.22). The pce-value is a reduced version of

Fastlane’s pce function (5.23), with Tu = 0 for all user classes u. Consequently, the

pce-values become:

ηu = Lu/L1 (5.38)

It can be verified that the above described reformulated model is indeed equivalent to

the original model by Chanut & Buisson (2003) by substitution of the unscaled para-

meters (5.37) and the effective density (5.22) with pce-values (5.38) into the reformu-

lated fundamental relation (5.18). By doing this, one will find the original fundamental

relation (5.14) with scaled parameters (5.36) and total density (5.16). The resulting

fundamental relation is shown in Figure 5.1(c). The model equations are repeated in

Table 5.2 for later reference.
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5.4.3 Model by Benzoni-Gavage & Colombo (2003)

Benzoni-Gavage & Colombo (2003) apply classes that differ with respect to vehicle

length and with respect to maximum velocities. The authors claim that with this ap-

proach overtaking is, at least partly, taken into account. Due to the vehicle class-

specific velocities, the first in first out (fifo) rule does not hold and one class (e.g., cars)

may travel faster than other classes (e.g., trucks).

Benzoni-Gavage & Colombo define the effective density as a weighted summation of

all class-specific densities. Therefore, reformulation of their model to be contained in

the generalized model is not necessary and the effective density is defined by (5.22).

pce-values are constant and depend on the gross vehicle length as in Chanut & Buis-

son’s model (5.38).

Furthermore, Benzoni-Gavage & Colombo define the class-specific fundamental rela-

tion (5.1c) as a scaled version of the fundamental relation of class 1:

vu = βuv1 (5.39)

Finally, they propose two different shapes of the fundamental relation of class 1, see

Figure 5.1(f) and 5.1(g). The first one is Greenshields’ fundamental relation (Green-

shields, 1935).

v1(ρ) = v1,max

(

1− ρ

ρjam

)

(5.40)

We note that the fundamental relation (5.39) and (5.40) is a reduced version of Smulders’

multi-class fundamental relation (5.18) with:

ρcrit = ρjam, vcrit = 0 and βu =
vu,max

v1,max
(5.41)

Alternatively, Benzoni-Gavage & Colombo propose to apply a multi-class version of

Drake’s fundamental relation (Drake et al., 1967):

v1(ρ) = v1,maxe
− 1

2

(
ρ

ρcrit

)2

(5.42)

The resulting fundamental relation is shown in Figure 5.1(c). The model equations are

repeated in Table 5.2 for later reference.

5.5 Effective density with pce-value equal to one

The last two models (Wong & Wong, 2002; Zhang et al., 2006) that we discuss include

an arbitrary number of classes. The classes only differ with respect to their velocity.

Both Wong & Wong and Zhang et al. apply an effective density that is equal to the total
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density (5.16). Again, this is a reduced version of Fastlane’s effective density (5.22)

and pce function (5.23). In this case the parameter values are Lu = L1 and Tu = 0 for all

classes u. Essentially, the effective density is equal to the effective density in Fastlane

(5.22) but with pce-values one (ηu = 1). This implies that the velocities do not depend

on the composition but only on the total number of vehicles. Zhang et al. analyze the

model without specifying the shape of the fundamental relation. They only assume

that the velocity of any class u is a factor times the velocity of class 1:

vu =
vu,max

v1,max
v1 (5.43)

Both Zhang et al. and Wong & Wong scale the fundamental relation of class 1 to define

the velocities of the other classes, such as Benzoni-Gavage & Colombo (5.39). Wong

& Wong apply Drake’s fundamental relation (5.42), see Figure 5.1(h). The model

equations are repeated in Table 5.2 for later reference.

5.6 Conclusions

We have developed a generalized traffic flow model (5.1) that contains all deterministic

single-pipe multi-class kinematic wave models known from literature. The models are

based on different principles, such as making available fractions of road to classes,

pce-values (constant or based on dynamic space occupancy) and analogy to porous

flow. The principles and assumptions of the models are highlighted in Table 5.2. The

table furthermore shows how this leads to different fundamental relations and effective

density functions.

We have shown that all models may be cast in the same generalized model containing

the following elements:

1. conservation of vehicles equation (5.1a)

2. definition of class-specific flow (5.1b)

3. class-specific fundamental relation (5.1c)

4. effective density function (5.1d)

The first two elements are equal for all models. Models can be distinguished based

on the shape of the fundamental relation and the effective density function. The fun-

damental relation usually takes a traditional shape. However, the effective density

function varies largely over the model. Finally, the models differ with respect to the

number of classes. Most models do not put any restrictions on the number of classes.

The model by Chanut & Buisson (2003) only includes 2 classes, but can be generalized

relatively straightforward to include more classes. However, the model by Logghe &

Immers (2008) also includes only 2 classes, but its generalization to more classes is

not straightforward.

With the generalized model in hand, we can now more easily assess the models qual-

itatively. Most requirements from Chapter 3 can be assessed directly. However, some
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requirements (such as the ones related to characteristic velocity) need another refor-

mulation of the generalized model first. Therefore, in the next chapter (Chapter 6) we

reformulate the generalized model in the Lagrangian coordinate system. In Chapter 7

we assess the generalized model and all specific models with respect to the qualitative

requirements in Chapter 3.
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Chapter 6

Lagrangian formulation

In Chapter 2 and 5 the mixed-class kinematic wave model and the generalized multi-

class kinematic wave model were introduced, respectively. Traditionally, the models

are formulated in the Eulerian coordinate system, which is fixed in space. Alterna-

tively, they can be formulated in the Lagrangian coordinate system, which moves with

the vehicles. In this chapter we discuss the state-of-the-art in the Lagrangian formu-

lation of traffic flow models, we extend it to multi-class models and we discuss its

advantages.

The outline of this chapter is as follows. In Section 6.1 we summarize the derivation

of the Lagrangian formulation of the kinematic wave model as it was proposed by

Leclercq et al. (2007). In Section 6.2 we propose a graphical, more intuitive derivation.

In Section 6.3 we derive the Lagrangian formulation of the multi-class kinematic wave

model. Again, this is followed by a graphical, more intuitive derivation in Section

6.4. Section 6.5 concludes this chapter with a discussion of the advantages of the

Lagrangian formulation.

6.1 Lagrangian formulation of the kinematic wave mo-

del

We recall the Eulerian formulation of the kinematic wave model (2.23):

∂ρ

∂ t
+

∂

∂x

(
q(ρ)

)
= 0 (6.1a)

q = q(ρ) (6.1b)

Location x and time t are the coordinates and the model describes how the variables

(density ρ and flow q) change over location and time. The coordinate system is shown

in Figure 6.1(a).

Leclercq et al. (2007) propose an alternative formulation using the cumulative count

function (Newell, 1993a). Daganzo (2005a); Leclercq et al. (2007); Laval & Leclercq



118 Multi-class continuum traffic flow models: Analysis and simulation methods

time t

p
o
si

ti
o
n

x
vehicle

num
ber n

n =
n1

x3

n =
n2

x2

n =
n3

x1
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(b) Lagrangian coordinate system: position x in-

creases over time for fixed vehicle number n.

Figure 6.1 Eulerian and Lagrangian coordinate system.

(2013) show the close relation between the kinematic wave model, Hamilton-Jacobi

partial differential equations and variational theory applied to traffic flow. The cumu-

lative count function (Newell, 1993a) deals with the number of vehicles n(x, t) that

have passed location x until time t. The vehicles are numbered in the order they pass a

certain location, thus n(x, t) is the number of vehicles that have passed location x until

time t. The cumulative count function and variational theory can be applied directly

to solve the kinematic wave model, which will be discussed in more detail in Chapter

8. However, Leclercq et al. (2007) exploit the cumulative count function further and

propose to transform the (Eulerian) coordinate system into a Lagrangian coordinate

system, see Figure 6.1(b). Now the coordinate system moves with the vehicles. The

same coordinate transformation is applied before to higher-order models (Greenberg,

2001; Aw et al., 2002). Recently, another alternative coordinate system has been intro-

duced. Leclercq & Bécarie (2012); Laval & Leclercq (2013) propose a formulation of

the kinematic wave model that calculates the time t at which vehicle n reaches location

x.

The coordinate transformation from Eulerian to Lagrangian (t,n) formulation implies

replacing spatial coordinate x by vehicle number n. Consequently, for a fixed vehicle

number n, its location x changes over time t. Moreover, since we are dealing with a

macroscopic (continuum) model, n is not integer but can take any (real) value. Time t

remains a coordinate and the model now describes the change of the traffic state over

vehicle number and time. Furthermore, instead of using density as a variable it is more
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Table 6.1 Comparison between Eulerian and Lagrangian formulation of the kinematic

wave model.

Euler Lagrange

coordinates (x, t) (n, t)

main variable ρ =−∂n/∂x s =−∂x/∂n

fundamental relation q(ρ) v∗(s)

conservation equation
∂ρ

∂ t
+

∂q

∂x
= 0

Ds

Dt
+

∂v∗

∂n
= 0

convenient to replace it with spacing:

s =
1

ρ
(6.2)

The other variable is velocity v∗.1 The main differences between the two formulations

of the kinematic wave model are highlighted in Table 6.1.

The kinematic wave model in Lagrangian formulation consists of a conservation equa-

tion and a fundamental relation. The fundamental relation expresses the vehicle velo-

city v∗ as a function of the spacing s:

v = v∗(s) (6.3)

Figure 2.2(d) shows such a Lagrangian fundamental relation. As an example we

reformulate the mixed-class Smulders fundamental relation (4.7):

v = v(ρ) =







vmax −
vmax − vcrit

ρcrit

ρ (free flow) (6.4a)

w

(
ρjam

ρ
−1

)

(congestion) (6.4b)

(6.4) is reformulated in its Lagrangian equivalent by applying the definition of spacing

(6.2):

v = v∗(s) =







vmax −
vmax − vcrit

s
scrit (free flow) (6.5a)

w

(
s

sjam

−1

)

(congestion) (6.5b)

with critical spacing scrit = 1/ρcrit and jam spacing sjam = 1/ρjam.

Leclercq et al. (2007) derive the Lagrangian conservation equation from its Eulerian

1We use v∗ to make a distinction between the velocity v = v(ρ) as a function of the density in the

Eulerian formulation and v∗ = v∗(s) as a function of the spacing in the Lagrangian formulation. For

readability, whenever the distinction is clear from the context, we omit the ∗.
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formulation (6.1). In Section 6.2 we propose an alternative, graphical derivation. How-

ever, we first discuss the mathematically more rigorous derivation by Leclercq et al.

(2007). They use the definition of spacing (6.2) and express spacing as the partial

derivative of the position x to vehicle number n:

s =−∂x

∂n
(6.6)

The minus sign results from the fact that vehicles are numbered opposite to the driving

direction, see Figure 6.1(b).

Furthermore, the Lagrangian time derivative is applied:

D

Dt
=

∂

∂ t
+ v

∂

∂x
(6.7)

D/Dt is the partial derivative with respect to time in Lagrangian coordinates, that is:

the derivative with respect to time t with the other coordinate (vehicle number n) fixed.

As n-coordinates move with vehicle velocity, Dr/Dt is the rate of change of some

variable r as it is observed by a driver moving with velocity v(n, t) = v(x(n), t) =

∂x/∂ t. This implies that D/Dt is a directional derivative in Eulerian coordinates: it

is the derivative in the direction of the moving observer (the driver). Both coordinates

t and x change in this direction. Conversely, ∂/∂ t is a partial derivative in Eulerian

coordinates and a directional derivative in Lagrangian coordinates.

The conservation equation in the Lagrangian coordinates can now be derived by sub-

stituting the definition of spacing (6.2) into the Eulerian conservation equation (6.1a),

applying the quotient rule and rewriting the result:

∂

∂ t
(1/s)+

∂

∂x
(v/s) = 0 ⇒ ∂ s

∂ t
− s

∂v

∂x
+ v

∂ s

∂x
= 0 (6.8)

Subsequently substituting the Lagrangian time derivative (6.7) yields:

Ds

Dt
− s

∂v

∂x
= 0 (6.9)

Finally, the definition of spacing (6.6) is substituted to find the Lagrangian conservation

equation:

Ds

Dt
+

∂v

∂n
= 0 (6.10)

To avoid further confusion, in the following we write the Lagrangian time derivative

(6.7) as ∂/∂ t, unless it is necessary to use D/Dt to distinguish between the Eulerian

and the Lagrangian time derivative.

The conservation equation in Lagrangian formulation (6.10) can be understood qual-

itatively by considering two vehicles: a leader and a follower. If the follower has a

higher velocity than the leader, the distance between the two vehicles decreases, i.e. if
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vehicles over a time ∆t, applied to derive the La-

grangian conservation equation.

Figure 6.2 Graphical derivation of Eulerian and Lagrangian conservation equation

using vehicle trajectories and control volumes.

∂v/∂n > 0 then Ds/Dt < 0. The reverse is also true: if the follower is slower than the

leader the distance will increase.

6.2 Graphical derivation

The above derivation of the Lagrangian conservation equation (6.10) might be difficult

to understand intuitively and has the disadvantage that it relies on the Eulerian formu-

lation. We propose an alternative derivation that does not rely on the Eulerian formu-

lation. Instead, it is similar to the (graphical) derivation of the Eulerian conservation

equation. Furthermore, it uses similar concepts as Greens theorem and the divergence

theorem (Stewart (1999) or any other textbook on partial differential equations). In

the following, we first discuss the graphical derivation of the Eulerian conservation

equation before turning to our graphical derivation of the Lagrangian conservation

equation.

6.2.1 Graphical derivation of the Eulerian formulation

The Eulerian conservation equation can be derived using vehicle trajectories in a con-

trol volume as illustrated in Figure 6.2(a). The number of vehicles entering the control
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volume (inflow) equals the number of vehicles leaving it (outflow). This can be written

as:

∫ x2

x1

ρ(t1,x)dx

︸ ︷︷ ︸

inflow from left

+
∫ t2

t1

q(t,x1)dt

︸ ︷︷ ︸

inflow from below

=
∫ x2

x1

ρ(t2,x)dx

︸ ︷︷ ︸

outflow to right

+
∫ t2

t1

q(t,x2)dt

︸ ︷︷ ︸

outflow to above

(6.11)

We decrease the control volume to an infinitesimal volume: x2 = x1 +∆x → x1 and

t2 = t1 +∆t → t1. Because the volume is small, we may assume density ρ and flow

q are constant. Consequently,
∫ x2

x1
ρ(t,x)dx → ρ(t,x)∆x and

∫ t2
t1

q(t,x)dt → q(t,x)∆t.

Furthermore, rewriting (6.11) yields:

ρ(t1 +∆t,x)−ρ(t1,x)

∆t
+

q(t,x1 +∆x)−q(t,x1)

∆x
= 0 (6.12)

We now recall the definition of the partial derivatives of f = f (y,z):

∂

∂y
f (y,z) = lim

∆y→0

f (y+∆y,z)− f (y,z)

∆y
,

∂

∂ z
f (y,z) = lim

∆z→0

f (y,z+∆z)− f (y,z)

∆z

(6.13)

We apply this definition (6.13) to the infinitesimal control volume and find the Eulerian

conservation equation (6.1a).

6.2.2 Graphical derivation of the Lagrangian formulation

The Lagrangian conservation equation can be derived using a similar procedure. In

this case, the control volume is not rectangular as in Figure 6.2(a) but it is a platoon of

∆n vehicles that is followed over a time ∆t, as in Figure 6.2(b). (However, the platoon

is rectangular in the (t,n)-plane.) The road length taken by this platoon changes over

time as it travels forward. On one hand, the original length at time t1 is increased by

the distance traveled by the first vehicle n1. On the other hand, it is decreased by the

distance traveled by the last vehicle n2 = n1 +∆n. (Note again the order of vehicles:

vehicle n2 is behind vehicle n1.) This can be written as:

∫ n2

n1

s(t2,n)dn

︸ ︷︷ ︸

final length

=
∫ n2

n1

s(t1,n)dn

︸ ︷︷ ︸

initial length

+
∫ t2

t1

v(t,n1)dt

︸ ︷︷ ︸

distance first veh

−
∫ t2

t1

v(t,n2)dt.

︸ ︷︷ ︸

distance last veh

(6.14)

Again, by decreasing the control volume to an infinitesimal volume we may assume

spacing s and velocity v are constant within this volume. Consequently,
∫ n2

n1
s(t,n)dn→

s(t,n)∆n and
∫ t2

t1
v(t,n)dt → v(t,n)∆t. Furthermore, rewriting (6.14) yields:

s(t2,n)− s(t1,n)

∆t
+

v(t,n2)− v(t,n1)

∆n
= 0. (6.15)



6 Lagrangian formulation 123

We take an infinitesimal volume, that is: we let ∆n → 0 and ∆t → 0 in (6.15). Fur-

thermore, we use the definition of the partial derivative (6.13) to find the Lagrangian

conservation equation (6.10).

The Lagrangian conservation equation that we derive in this graphical way, is exactly

the same partial differential equation as was derived using the mathematically more

rigorous approach in Section 6.1. However, we believe that the graphical derivation is

easier to understand and interpret intuitively.

6.3 Multi-class kinematic wave model

We derive the Lagrangian formulation of the generic multi-class kinematic wave model

(5.1) from its Eulerian formulation. The derivation in this section is mathematically

rigorous and relies on the Eulerian formulation. In the next section (Section 6.4) we

propose a graphical, more intuitive, derivation of the multi-class conservation equation.

Let us first recall the Eulerian formulation of the model (5.1):

∂ρu

∂ t
+

∂qu

∂x
= 0 (6.16a)

qu = ρuvu = ρuvu(ρ) (6.16b)

ρ = ρ(ρ1, . . . ,ρU) (6.16c)

6.3.1 Reformulation of fundamental relation and effective density

The derivation of the Lagrangian formulation starts with the multi-class Lagrangian

fundamental relation:

vu = v∗u(s) (6.17)

As an example, the multi-class Smulders fundamental relation (4.49) can be reformu-

lated as:

vu = v∗u(s) =







vu,max −
vu,max − vcrit

s
scrit (free flow) (6.18a)

w

(
s

sjam

−1

)

(congestion) (6.18b)

In the fundamental relation we apply the Lagrangian equivalent of the effective density,

namely the effective spacing:

s =
1

ρ
(6.19)
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The effective spacing can be interpreted as the ‘average’ spacing of all vehicles. Ana-

logously, the class-specific spacing is defined:

su =
1

ρu
(6.20)

The class-specific spacing su can be interpreted as the distance between the fronts of

two vehicles of class u. This implies that there may be vehicles of other classes in

between.

We show how an effective density function can be reformulated into its Lagrangian

equivalent. As an example, we take a weighted average of the class-specific densities

with constant pce-values ηu (4.10):

ρ = ∑
u

ηuρu (6.21)

The effective spacing in Lagrangian formulation is derived by applying the definition

of class-specific and effective spacing (6.19):

s =
1

∑u ηu/su
(6.22)

6.3.2 Reformulation of multi-class conservation equation

Before we reformulate the multi-class conservation equation into Lagrangian coor-

dinates we need some definitions and preliminaries. We define class 1 as the refer-

ence class for the coordinate system. This implies that only vehicles of class 1 are

numbered. Therefore, coordinate n refers to the number of vehicles of class 1 that

have passed location x until time t. Furthermore, the coordinate system moves with the

vehicles of class 1, i.e. with velocity v1. Therefore, the Lagrangian time derivative in

the multi-class model is defined by:

D

Dt
=

∂

∂ t
+ v1

∂

∂x
(6.23)

Finally, the class-specific spacing of class 1 can be expressed as the partial derivative:

s1 =−∂x

∂n
(6.24)

To find the Lagrangian multi-class conservation equation for the other classes, (6.20) is

substituted into the Eulerian conservation equation (6.16a), the quotient rule is applied

and the result is rewritten:

∂

∂ t

(
1

su

)

+
∂

∂x

(
vu

su

)

= 0 ⇒ ∂ su

∂ t
− su

∂vu

∂x
+ vu

∂ su

∂x
= 0 (6.25)
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Subsequently, substituting the multi-class Lagrangian time derivative (6.23) yields:

Dsu

Dt
− su

∂vu

∂x
+(vu − v1)

∂ su

∂x
= 0 (6.26)

Finally, (6.24) is substituted to find the Lagrangian multi-class conservation equation:

Dsu

Dt
+

su

s1

∂vu

∂n
+

v1 − vu

s1

∂ su

∂n
= 0 (6.27)

We note that for class 1 the conservation equation (6.27) reduces to an equation very

similar to the Lagrangian mixed-class conservation equation (6.10):

Ds1

Dt
+

∂v1

∂n
= 0 (6.28)

Yet an alternative formulation of the conservation equation in Lagrangian coordinates

is proposed in (Yuan et al., 2011; Yuan, 2013):

Dsu

Dt
+

∂vu

∂nu
= 0 (6.29)

with Lagrangian time derivative:

D

Dt
=

∂

∂ t
+ vu

∂

∂xu
(6.30)

The main difference is that in this model a different coordinate system is introduced for

each class. The coordinate systems are coupled via the fundamental relation and the

effective density function. Yuan et al. (2011); Yuan (2013) argue that this formulation

may lead to more efficient simulations if there are only few vehicles in the reference

class.

Finally, the flow to be maximized needs to be defined. In Fastlane this is the effective

flow:

q = ∑
u

ηuqu = ∑
u

ηu
vu

su
(6.31)

6.4 Graphical derivation

The above derivation of the Lagrangian multi-class conservation equation (6.27) is

mathematically rigorous and similar to the original derivation of the Lagrangian mixed-

class conservation equation (see Section 6.1). However, the derivation is not very

intuitive and relies on its Eulerian formulation. Therefore, we propose a graphical,

more intuitive derivation of (6.27).

The graphical derivation of the Lagrangian multi-class conservation equation is a com-

bination of the graphical derivation of both the Eulerian and Lagrangian mixed-class
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Figure 6.3 Vehicle trajectories and control volume for the graphical derivation of the

Lagrangian multi-class conservation equation. The solid lines represent trajectories

of vehicles of class 1, the broken lines represent trajectories of vehicles of class u. The

number of vehicles of class u that flows into the control volume equals the outflow of

class u.
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conservation equations. The control volume consists of a platoon of ∆n vehicles of

class 1. The platoon is followed for a certain time ∆t, see Figure 6.3. The conservation

equation for class 1 (6.28) is derived similarly to the Lagrangian mixed-class conser-

vation equation (see Section 6.2). The only difference is that spacing s is replaced by

spacing of class 1 s1 and velocity v is replace by velocity of class 1 v1. For the conser-

vation equations of all other classes, the platoon of vehicles of class 1 acts as a control

volume. Similar to the graphical derivation of the Eulerian mixed-class conservation

equation, vehicles of class u enter and leave the platoon.

Let us first assume that the vehicles of class u are not faster than those of class 1.

Later, we relax this assumption. Vehicles of class u enter the control volume from the

left and from above. Furthermore, vehicles of class u leave the control volume at the

right and below. We assume that over each of those inflow and outflow boundaries

of the control volume, the traffic state is constant. This assumption is reasonable if

the control volume is small. Later, we will take an infinitesimal control volume and

thus the assumption is justified. Each of the inflows in and outflows out of the control

volume is discussed separately:

Inflow left Vehicles that enter the control volume from the left are originally (at t1)

in the platoon. The length of the platoon is the spacing of class 1 s1 times the

number of vehicles of class 1 in the platoon: s1(t1)∆n. The number of vehicles of

class u that flows into the control volume at time t1 is the platoon length divided

by their spacing: s1(t1)∆n/su(t1).

Inflow above Vehicles that enter the control volume from above are overtaken by the

first vehicle of class 1 in the platoon between t1 and t2. Those vehicles also

pass the line at t1 with length (v1(n1)− vu(n1))∆t. Since su is the spacing of

class u, the number of vehicles that flows into the control volume from above is

(v1(n1)− vu(n1))∆t/su(n1).

Outflow right Vehicles that leave the control volume at the right are in the platoon at

t2. Similar to the inflow from the left, the number of vehicles that flows out of

the control volume at time t2 is s1(t2)∆n/su(t2).

Outflow below Vehicles that leave the control volume below are overtaken by the last

vehicle of class 1 in the platoon between t1 and t2. Similar to the inflow from

above, the number of vehicles that flows out of the control volume below is

(v1(n2)− vu(n2))∆t/su(n2).

The inflow into the control volume equals the outflow and thus:

s1(t1)

su(t1)
∆n

︸ ︷︷ ︸

inflow left

+
v1(n1)− vu(n1)

su(n1)
∆t

︸ ︷︷ ︸

inflow above

=
s1(t2)

su(t2)
∆n

︸ ︷︷ ︸

outflow right

+
v1(n2)− vu(n2))

su(n2)
∆t

︸ ︷︷ ︸

outflow below

(6.32)
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Dividing both sides by ∆t∆n and rearranging gives:

s1(t1)

su(t1)
− s1(t2)

su(t2)

∆t
+

v1(n1)− vu(n1)

su(n1)
− v1(n2)− vu(n2)

su(n2)

∆n
= 0 (6.33)

Until now we assumed that the vehicles of class u are not faster than those of class 1.

If, however, they are faster, the vehicles enter the platoon from the left and from below

and leave it from the right and above. Applying the same procedure, the same result

(6.33) is found. Finally, applying the definition of the derivative (6.13) to (6.33) gives

the Lagrangian conservation equation.:

D

Dt

(
s1

su

)

+
∂

∂n

(
v1 − vu

su

)

= 0 (6.34)

We note that this Lagrangian conservation equation (6.34) takes a different form than

the one we derived before (6.27). However, (6.34) can be rewritten as (6.27). There-

fore, we first apply the quotient rule to (6.34) and find:

su
Ds1

Dt
+ su

∂v1

∂n
− s1

Dsu

Dt
− su

∂vu

∂n
− (v1 − vu)

∂ su

∂n
= 0 (6.35)

By substituting the conservation equation for class 1 (6.28) we find that the first two

terms drop out. Furthermore, dividing by −s1 gives the conservation equation (6.27).

6.5 Discussion

We have introduced the Lagrangian formulation of both the mixed-class and the multi-

class kinematic wave model. For both models the Lagrangian formulation was derived

from the Eulerian formulation and graphically. Though the derivation from the Eu-

lerian formulation is mathematically more rigorous, the graphical derivation is more

intuitive and easier to understand.

The Lagrangian formulation of both models is valuable because this formulation yields

considerable benefits over the Eulerian formulation, which are illustrated in the re-

mainder of this dissertation. The advantages are related to:

1. efficiency of simulation (for traffic state prediction)

2. efficiency of traffic state estimation and traffic control

3. model analysis

4. coupling with microscopic models

5. adaptations and extensions of the model

The first three advantages have to do with the nonlinearity of the model. In the Eu-

lerian formulation, the flow as a function of the density plays an important role. At low

densities, the flow is an increasing function of the density, whereas, at high densities it



6 Lagrangian formulation 129

is a decreasing function. However, the role of the flow in the Eulerian formulation is

taken over by the velocity in the Lagrangian formulation. The velocity is a nonincreas-

ing function of the spacing. Therefore, the Lagrangian formulation is ‘less nonlinear’.

This advantage is used in applications such as traffic state estimation using Kalman

filtering (Yuan et al., 2012). The same advantage of the Lagrangian formulation is

exploited in efficient simulation methods (see Chapter 8 and 9) and in mathematical

analysis of the multi-class model (see Chapter 7). The other two advantages are dis-

cussed below.

Leclercq (2007a) shows how the Lagrangian formulation simplifies the coupling be-

tween microscopic and macroscopic models. Microscopic and macroscopic models

can be used in one simulation for example to have detailed results at locations or times

when this is desired, while still benefitting from the low computational costs for the

macroscopic model at other locations and times. Since both microscopic models and

macroscopic models in Lagrangian formulation have vehicle number n and time t as

coordinates, their coupling is simpler than when the Eulerian formulation of the mac-

roscopic model was applied.

Certain extensions and adaptations of the kinematic wave model can be introduced

in the Lagrangian formulation with less effort than in the Eulerian formulation. For

example, the bounded acceleration model by Lebacque (2002) (see also Section 2.4.1)

bounds the acceleration of vehicles by ∂v/∂ t+v∂v/∂x≤ amax with amax the maximum

acceleration. The term v∂v/∂x is needed to bound the acceleration of vehicles instead

of bounding the rate of change in velocity at a location fixed in space. However, in

the Lagrangian formulation the acceleration of vehicles is bounded by simply setting:

Dv/Dt ≤ amax (Leclercq, 2009). Similarly, moving bottlenecks can be introduced in

the kinematic wave model by applying the Lagrangian formulation (Leclercq et al.,

2004).

In the next three chapters the Lagrangian formulation of the kinematic wave model

plays an important role. In Chapter 7 it will be applied to analyze the generalized

multi-class kinematic wave model. It turns out that especially for the analysis of the

anisotropy requirement (Requirement 9, Chapter 3) the Lagrangian formulation of the

model is very useful. In Chapter 8 and 9 numerical methods to solve the continuous

model equations are introduced. It turns out that methods based on the Lagrangian for-

mulation are more efficient, both in terms of accuracy and computing time. Finally, in

Chapter 10 the Lagrangian formulation of the kinematic wave model for homogeneous

roads will be extended to include inhomogeneities such as on and off ramps.





Chapter 7

Model analysis

In Chapter 3 we introduced the requirements for multi-class traffic flow models. All

requirements are important qualitative properties of multi-class kinematic wave traffic

flow models. Therefore, a multi-class kinematic wave model should satisfy the re-

quirements. The requirements are related to the model formulation, the fundamental

relation and the model dynamics. In Chapter 4 we introduced Fastlane and in Chapter

5 we summarized all multi-class kinematic wave models known from literature. In this

chapter we assess whether the models satisfy the requirements. For part of this assess-

ment, we apply the generalized formulation from Chapter 5 and its reformulation in

Lagrangian coordinates introduced in Chapter 6.

We recall the requirements from Section 3.2:

Model formulation requirements:

1. Given ‘permissible’ class-specific densities, (class-specific) velocities and flows

are defined uniquely.

2. The model has a unique solution that maximizes flow.

Fundamental relation requirements:

3. In free flow the velocities of each class are allowed to differ.

4. In free flow the velocities of relatively fast classes are allowed decrease with

increasing density.

5. In congestion the velocity of each class is equal.

6. If the density reaches a certain threshold (which may depend on the traffic com-

position), vehicle velocity is zero.

7. If the density of only one class increases, while all other class-specific densities

remain constant, vehicle velocities do not increase.

Model dynamics requirements:

8. Characteristics have finite velocity.

9. Characteristics do not have a larger velocity than vehicles.

We assess all multi-class models from Chapter 5 with respect to these requirements.

The results are presented in Table 7.1 and discussed in more detail hereafter.



132 Multi-class continuum traffic flow models: Analysis and simulation methods

The outline of this chapter is as follows. We first discuss shortly the model formula-

tion Requirements 1 and 2. With the results from Chapter 5 the models are relatively

straightforward to assess with respect to the first four fundamental relation require-

ments (3–6). Therefore, in Section 7.1 we first do this part of the assessment. To assess

the models with respect to the other requirements more effort is needed. Moreover,

these requirements (7–9) turn out to be closely related. They are discussed in more

detail in Section 7.2. In Section 7.3 we assess the generalized model with respect to

Requirement 7–9. We do this using the model formulation in Lagrangian coordinates

introduced in Chapter 6. This analysis results in a set of conditions on the fundamental

relation and the effective density function. The conditions are applied in Section 7.4

to assess all models one by one with respect to Requirements 7–9. Finally, in Section

7.5 we summarize the results and discuss how the framework developed in this chapter

may be applied to other (future) models.

7.1 Review of Requirements 1–6

We assess the multi-class models with respect to Requirements 1–6. We do not re-

peat the model equations here but refer to Table 5.2 for an overview of all multi-class

models and Figure 5.1 for examples of their fundamental relations. Furthermore, we

assume that parameters have ‘feasible’ values. Some parameters are positive: class-

specific maximum velocity vu,max > 0, (class-specific) jam density ρjam > 0, ρu,jam > 0,

and parameters w = ρcritvcrit/(ρjam −ρcrit)> 0, wu = ρu,critvu,crit/(ρu,jam −ρu,crit)> 0,

class-specific vehicle length Lu > 0, constant pce-values ηu > 0. Some parameters

are nonnegative: (class-specific) critical velocity vu,crit ≥ 0, vcrit ≥ 0, (class-specific)

critical density ρu,crit ≥ 0, ρcrit ≥ 0, class-specific critical pore size ru,crit ≥ 0, (class-

specific) minimum time headway Tu ≥ 0. Finally, maximum velocities are not smaller

than critical velocities (vmax ≥ vcrit, vu,max ≥ vu,crit, vu,max ≥ vcrit) and jam densities are

not smaller than critical densities (ρjam ≥ ρcrit, ρu,jam ≥ ρu,crit).

7.1.1 Model formulation requirements

Requirement 1 states that velocities and flows must be defined uniquely when class-

specific densities are given. The generalized multi-class model satisfies this require-

ment. Since all other models are contained in the generalized model, they also satisfy

the requirement.

Requirement 2 states that there is a unique solution to the model equations that maxi-

mizes the flow. In multi-class models it is necessary to define which type of flow (total

flow (in vehicles/s), effective flow (in pce/s), or even another type of flow) must be

maximized. Both Zhang et al. (2006); Chanut & Buisson (2003) include the entropy

condition in a discussion on solving a Riemann problem, without explicitly mention-

ing which type of flow is maximized. Logghe & Immers (2008) include the entropy
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condition by stating that in their model vehicles maximize their velocity. In Fastlane

we include that the effective flow q = ∑u ηuqu must be maximized. Benzoni-Gavage

& Colombo (2003) discuss the entropy condition in even much more detail. Other

authors (Wong & Wong, 2002; Ngoduy & Liu, 2007; Nair et al., 2012) discuss flow

maximization only in the context of numerical methods.

7.1.2 Fundamental relation Requirements 3–6

We refer to Figure 5.1 and Table 5.2 for the fundamental relations of all models. Re-

quirement 3 states that the model must allow for unequal velocities in free flow. All

models except the ones by Wong & Wong; Zhang et al. satisfy this requirement.

Requirement 4 states that the class-specific velocities must be allowed to be decreasing

in free flow. The model by Logghe & Immers does not satisfy this requirement because

velocities in free flow are constant. All other models do satisfy this requirement.

Requirement 5 states that in congestion velocities of all classes must be equal. The mo-

dels with the Smulders fundamental relation (i.e. the models Ngoduy & Liu, Fastlane,

and the model by Chanut & Buisson) satisfy this requirement. In the models by Nair

et al.; Benzoni-Gavage & Colombo; Wong & Wong; Zhang et al. the class-specific

velocities are unequal in all regimes. If both classes in the model by Logghe & Immers

are in congestion, the class-specific velocities are equal. However, if only class 1 is in

congestion (i.e. traffic is in semi-congestion) then the velocities are unequal.

Requirement 6 states that there must be a (jam) density for which the velocities are

zero. It depends on the fundamental relations vu(ρ) whether a model satisfies this

requirement. The Daganzo, Smulders and Greenshields fundamental relations satisfy

the requirement. Therefore, the models by Logghe & Immers (2008); Ngoduy & Liu

(2007); Chanut & Buisson (2003) and Fastlane satisfy the requirement. The model

by Benzoni-Gavage & Colombo (2003) with Greenshields fundamental relation also

satisfies it. However, the fundamental relation applied by Nair et al. (2012) and the

Drake fundamental relation applied by Benzoni-Gavage & Colombo (2003); Wong &

Wong (2002) do not reach zero velocities at high densities and thus do not satisfy the

requirement. Zhang et al. (2006) do not specify a fundamental relation and the model

can therefore not be assessed with respect to this requirement.

7.1.3 Velocities in the models by Logghe & Immers and Nair et al.

Finally, we make some observations of the velocities in the models by Logghe & Im-

mers and Nair et al.

In the model by Logghe & Immers in some traffic states in semi-congestion the velocity

of class 1 is higher if there are more vehicles of class 2, even if the total density (in

number of vehicles per meter) remains the same. This can be observed in Figure 5.1(a)
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because the velocity of class 1 with 25% vehicles of class 2 (broken line) is above the

velocity of class 1 with 25% vehicles of class 2 (solid line) at total densities just above

the critical density of class 1 (ρ1,crit). As an example we show more rigorously that

this is the case with the parameters as in Table 5.1, i.e.: for class 1 maximum velocity

v1,max = 33.3 m/s, critical density ρ1,crit = 0.04 veh/m, jam density ρ1,jam = 0.2 veh/m

and for class 2 maximum velocity v2,max = 20.8 m/s and critical density ρ2,crit = 0.05

veh/m. We consider two slightly different traffic states, both semi-congestion. We

analyze the velocities using the equations as presented in Table 5.2.

In the first case, the class-specific density of class 1 to be ρ1 = 0.03 veh/m and one

third of the total number of vehicles of class 2: ρ2 = 0.015 veh/m. Therefore, the road

fraction that is available to class 1 is: αsc
1 =

ρ2,crit−ρ2

ρ2,crit
= 0.7. This leads to the effective

density ρ = ρ1

αsc
1
= 0.043 veh/m. We find the velocity of class 1:

v1 = w1

(
ρ1,jam

ρ
−1

)

=
ρ1,critv1,max

ρ1,jam −ρ1,crit

(
ρ1,jam

ρ
−1

)

= 30.4 m/s (7.1)

We note that this is indeed semi-congestion because
ρ1

ρ1,crit
= 0.075 > αsc

1 and v1 >

v2,max.

In the second case we consider a different traffic state with the same total density, but

with no vehicles of class 2. We show that this leads to a lower velocity for class 1. The

total density in the above example was 0.03+ 0.015 = 0.045 veh/m. In this case, we

take ρ1 = 0.045 veh/m and ρ2 = 0. Consequently, αsc
1 = 1 and ρ = ρ1 = 0.045 veh/m.

We find the velocity of class 1:

v1 = w1

(
ρ1,jam

ρ
−1

)

=
ρ1,critv1,max

ρ1,jam −ρ1,crit

(
ρ1,jam

ρ
−1

)

= 28.7 m/s (7.2)

We conclude that in the second case, with the same total density, but with less vehicles

of class 2 the velocity of class 1 is lower (v1 = 28.7 m/s) than in the first case (v1 = 30.4

m/s). This is counterintuitive as it implies that if the percentage of trucks (class 2) is

higher, the cars (class 1) travel faster.

In the model by Nair et al. something similar happens. As Figure 5.1(d) shows, if

the percentage of vehicles of class 2 increases, the velocity of both classes increase.

However, in this model, class 2 does usually not denote trucks but for example scoot-

ers. Since scooters are smaller than cars, pores remain large even at relatively high

scooter densities. Therefore, also velocities are high at high scooter densities, which is

reasonable in this context.

7.2 Review of requirements 7–9

In this section we formulate mathematically Requirement 7, 8 and 9 which are related

to nonincreasing velocity, finite characteristic velocity and anisotropy, respectively.
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This allows us to assess whether the generic and other multi-class models satisfy the

requirements. We are only interested in the requirements for ‘permissible’ traffic states.

With permissible we mean that the class-specific densities and class-specific velocities

must all be nonnegative. If one or more of them is negative, this implies a traffic state

that will not appear in reality and is thus not permissible. In the rest of this chapter,

we only discuss permissible traffic states, however, for readability we do not always

mention it.

For later reference we first summarize the Lagrangian formulation of the generalized

multi-class kinematic wave model (6.17), (6.19), (6.20) and (6.27) from the previous

chapter. The model consists of the following three equations:

∂ su

∂ t
+

su

s1

∂vu

∂n
+

vu − v1

s1

∂ su

∂n
= 0 (7.3a)

vu = v∗u(s) = v∗u
(

1
ρ

)

= vu(ρ) (7.3b)

s = 1
ρ = 1

ρ(ρ1, . . . ,ρU)
= 1

ρ

(
1

s1
, . . . ,

1

sU

) (7.3c)

Later, we need the conservation equation (7.3a) in matrix vector notation. Therefore,

we reformulate it as:

∂~s

∂ t
+J(~s)

∂~s

∂n
=~0 (7.4)

with~s the vector of class-specific spacings:

~s =






s1
...

sU




 (7.5)

and Jacobian matrix:

J =






a1,1 · · · a1,U
...

. . .
...

aU,1 · · · aU,U




 (7.6)

with the entries in the Jacobian matrix J defined by:

ai, j =







si

s1

∂v∗i
∂ si

+
v1 − vi

s1
for i = j (on the diagonal) (7.7a)

si

s1

∂v∗i
∂ s j

for i 6= j (off the diagonal) (7.7b)
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In (7.7) we find the elements ai, j of the Jacobian J(~s) by applying:

∂v∗i
∂n

=
∂v∗i
∂ s1

∂ s1

∂n
+ . . .+

∂v∗i
∂ s j

∂ s j

∂n
+ . . .+

∂v∗i
∂ sU

∂ sU

∂n
(7.8)

For readability we write vu instead of v∗u in the following whenever it is clear from the

context that we mean the velocity as a function of the spacing s.

7.2.1 Requirements for mixed-class models

We first discuss the requirements in the context of mixed-class models. In the next

subsection we extend the concepts to multi-class models.

Requirement 7 states that the velocity v is a nonincreasing funtion of the density ρ . In

a mixed-class model this implies that the density-velocity fundamental relation v(ρ)

must be nonincreasing. The requirement can also be formulated in Lagrangian co-

ordinates. In Chapter 6 the density-velocity fundamental relation was reformulated

in Lagrangian coordinates. This results in the spacing-velocity fundamental relation

v∗(s), with v∗ the velocity and s = 1/ρ the spacing. If v(ρ) is nonincreasing, its de-

rivative is nonpositive: dv/dρ ≤ 0. The sign of the derivative of the spacing-velocity

fundamental relation v∗(s) is opposite to that of v(ρ):

dv∗

ds
=

dv

dρ

dρ

ds
=

dv

dρ

d

ds

(
1

s

)

=− 1

s2

dv

dρ
(7.9)

Consequently, the density-velocity fundamental relation is nonincreasing (and thus Re-

quirement 7 is satisfied) if and only if the spacing-velocity fundamental relation is

nondecreasing.

Requirements 8 and 9 state that the model must have finite characteristic velocities

and that it is anisotropic. We recall from Chapter 3 that also anisotropy relates to the

characteristic velocity. In a mixed-class model the characteristic velocity c(ρ) equals

to the slope of the density-flow fundamental relation:

c(ρ) =
dq

dρ
(7.10)

Or, equivalently, the characteristic velocity with respect to the Lagrangian coordinate

system (t,n) is equal to the slope of the spacing-velocity fundamental relation:

c∗(s) =
dv∗

ds
(7.11)

A mixed-class model has finite characteristic velocities if the derivative dq/dρ (or

equivalently dv∗/ds) exists and is finite. This is the case if its fundamental relation

is continuous and continuously differentiable. A model with finite (or real) character-

istic velocities is sometimes referred to as hyperbolic. Because this term is not used
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consistently in the traffic flow literature, we avoid it here.

Anisotropy means that characteristics are not faster than vehicles: information does

not travel faster than vehicles. A mixed-class model is anisotropic if its characteris-

tic velocity is not larger than its vehicle velocity. In Eulerian coordinates this implies

c ≤ v. In Lagrangian coordinates, the characteristic velocity c∗ is the velocity of the

characteristics with respect to the coordinates. Since the coordinates move with the

velocity of the vehicles, the model is anisotropic if the characteristics do not ‘over-

take’ the coordinates. That is, the model is anisotropic if the characteristic velocity is

nonnegative: c∗ ≥ 0.

7.2.2 Requirements for multi-class models

We now extend Requirements 7–9 to multi-class models and define them mathemati-

cally. In a multi-class model, Requirement 7 implies that all class-specific velocities

must be nonincreasing functions of all class-specific densities. That is: if one vehicle

of a certain class is added (and the densities of all other classes remain the same) the

velocities do not increase.

Definition 7.1 (Nonincreasing velocity). The multi-class traffic flow model with fun-

damental relation vi = vi(ρ1, . . . ,ρU) has nonincreasing velocities if and only if for all

permissible traffic states and all classes i and j

∂vi

∂ρ j
≤ 0 (7.12)

For the other two requirements (8 and 9) we need some more details on weak hyper-

bolicity, eigenvalues and characteristic velocities. In a multi-class model there are as

many characteristics as classes. Their velocities are equal to the eigenvalues λu of the

Jacobian (see LeVeque, Section 2.9 or any standard work on differential equations the-

ory). Therefore, the model has finite characteristic velocities if all eigenvalues of the

Jacobian are real and finite. This is equivalent to real and finite characteristic velocity

c (or c∗) in mixed-class models. However, this does not imply that the derivative of

the multi-class fundamental relation dqu/dρ must be real and finite, because in general

the eigenvalues of the Jacobian are not equal to the derivative of the fundamental rela-

tion. We first analyze whether the model has real characteristic velocities. A model is

weakly hyperbolic if the eigenvalues of the Jacobian are real, but not necessarily finite.

Definition 7.2 (Weak hyperbolicity). The multi-class traffic flow model with conserva-

tion equation (7.4) is weakly hyperbolic if and only if for all permissible traffic states

the eigenvalues of the Jacobian (7.6) are real.

The second step is to analyze whether the characteristic velocities are furthermore

finite.
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Definition 7.3 (Finite characteristic velocity). The multi-class traffic flow model with

conservation equation (7.4) has finite characteristic velocities if and only if for all

permissible traffic states the eigenvalues of the Jacobian (7.6) are real and finite.

In the Lagrangian formulation the Jacobian is defined by (7.6) and its eigenvalues are

the characteristic velocities with respect to the Lagrangian coordinate system. The

Lagrangian coordinate system travels with the same velocity as the vehicles of class

1. Therefore, the model is anisotropic if the vehicles of class 1 are the fastest vehicles

and if furthermore the eigenvalues of the Jacobian are nonnegative: λu ≥ 0.

Definition 7.4 (Anisotropy). If class 1 is the fastest class in all permissible traffic

states, then the multi-class traffic flow model with conservation equation (7.4) is an-

isotropic if and only if for all permissible traffic states the eigenvalues of the Jacobian

(7.6) are nonnegative.

We note that a model can only have finite characteristic velocities (real and finite ei-

genvalues) if it is weakly hyperbolic (real eigenvalues). Furthermore, a model can only

by anisotropic (nonnegative eigenvalues) if it is weakly hyperbolic. Finally, in the next

section (Section 7.3) it will turn out that nonincreasing velocity is a sufficient (but not

necessary) condition for weak hyperbolicity. The relations between weak hyperbolici-

ty, nonincreasing velocity, finite characteristic velocities and anisotropy are shown in

Figure 7.1. The details are discussed in Section 7.3.

The vehicle velocities and eigenvalues of the Jacobian and therefore also the char-

acteristic velocities depend on the traffic state. Therefore, a model may satisfy the

requirements for certain values of the class-specific densities and not for others. How-

ever, we require that a traffic flow model satisfies the requirements for all permissible

traffic states.

7.3 Assessment of generalized model

In this section we prove that the generalized model, under certain conditions, satisfies

Requirement 7, 8 and 9. We use Figure 7.1. We first consider the conditions for which

the model has nonincreasing velocities vu (Requirement 7), i.e. for which the model is

in the upper circle of the diagram. Secondly, we consider the conditions for which the

model is weakly hyperbolic. It turns out that all models that have nonincreasing velo-

cities are weakly hyperbolic. This implies that all models that are in the upper circle

of the diagram are weakly hyperbolic. Thirdly, we consider the conditions for which

the model has finite characteristic velocities (Requirement 8). It turns out that a model

satisfies this requirement if the velocity is nonincreasing and if furthermore the funda-

mental relation and the effective density function are bounded and continuous. This is

shown in Figure 7.1 by the lower left circle. Fourthly, we consider the conditions for

which the model is anisotropic (Requirement 9). It turns out that a model is anisotropic
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finite
characteristic

velocity
|λu|< ∞

anisotropic
λu ≤ 0

nonincreasing

velocity
∂vi

∂ρ j
≤ 0

X

weakly hyperbolic
λu ∈R

Figure 7.1 Categorization of Requirements 7, 8 and 9 for multi-class traffic flow mo-

dels. If all requirements are satisfied, the model is in the center area with the check-

mark (X).

if two conditions holds. First, the velocities vu are nonincreasing. Secondly, there is

a class that is not slower than any other class in any permissible traffic state. This is

shown in Figure 7.1 by the lower right circle. We note that weak hyperbolicity (real

eigenvalues) is not a requirement itself. However, it is a necessary (but not sufficient)

condition for all Requirements 7, 8 and 9.

In this section we show that Requirement 7, 8 and 9 are satisfied if the following

conditions hold:

Condition 7.1 (Nonincreasing effective density-velocity fundamental relation). The

class-specific velocity vi expressed as a function of the effective density ρ is nonin-

creasing. That is, for all classes i:

∂vi

∂ρ
≤ 0 (7.13)

Condition 7.2 (Nondecreasing effective density). The effective density ρ is a nonde-

creasing function of the class-specific densities:

dρ

dρ j
≥ 0 (7.14)

Condition 7.3 (Continuous fundamental relation). The fundamental relation is either

continuously differentiable or it is bounded and continuous. Furthermore, the effective

density function is either continuously differentiable or it is bounded and continuous.

As we will see later, the condition that the fundamental relation or the effective density

function is bounded and continuous is a sufficient, but not necessary, condition. We
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will show that if it is bounded and continuous, it can be approximated by a continuously

differentiable fundamental relation or effective density function.

Condition 7.4 (Fastest class). There is one class j that is not slower than any other

class i in all traffic states. That is for some class j, for all classes i:

v j ≥ vi (7.15)

In the remainder of this section we will discuss the relation between Requirement 7–9,

Definition 7.1–7.4 and Condition 7.1–7.4. We show that the generic multi-class model

satisfies the nonincreasing velocity requirement (Requirement 7, see Definition 7.1)

if both Condition 7.1 and 7.2 hold. Furthermore, if Conditions 7.1 and 7.2 hold, the

model is weakly hyperbolic (see Definition 7.2). Weak hyperbolicity is a necessary

condition for both the finite characteristic velocity requirement (Requirement 8, see

Definition 7.3) and the anisotropy requirement (Requirement 9, see Definition 7.4).

For Requirement 8 to be satisfied, also Condition 7.3 hold must hold. For Requirement

9 to be satisfied, also Condition 7.4 hold must hold.

7.3.1 Nonincreasing velocities

We show the generalized model has non increasing velocities in Condition 7.1 and 7.2

are satisfied. It may be possible to directly assess whether the class-specific velocity

is a nonincreasing function of the class-specific densities, i.e. whether (7.12) holds for

all classes i and j. However, the velocity can be written as a function of the effective

density and the effective density as a function of all class-specific densities. Therefore,

we formulate the following theorem.

Theorem 7.1. The generalized multi-class model has nonincreasing velocities, i.e. it

satisfies (7.12), if both Condition 7.1 and Condition 7.2 are satisfied.

Proof. The left-hand side of (7.12) can be rewritten as:

∂vi

∂ρ j
=

∂vi

∂ρ

dρ

dρ j
(7.16)

If Condition 7.1 and 7.2 are satisfied, then the right-hand side is nonpositive and thus

(7.12) holds.

7.3.2 Preliminaries for characteristic velocities

If there are U classes, the Jacobian J (7.6) is a U by U matrix. In the general case

with large number of vehicle classes (U > 4) the eigenvalues λi of the Jacobian can not

be computed analytically. However, we are able to determine whether they are real,
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finite and nonnegative. Therefore, we need the following preliminaries, which implies

that the characteristic velocities are real, finite and nonnegative. The first one is an

application of a generalized Taylor series approximation and was proven by (Hille &

Phillips, 1957):

Preliminary 7.1. Any bounded continuous function has a series approximation that

converges to the value of the function itself.

The other preliminaries are results from basic linear algebra (see e.g., (Strang, 1988)):

Preliminary 7.2. The matrices A and SAS−1 have the same eigenvalues for any in-

vertible matrix S of appropriate size.

Preliminary 7.3. The eigenvalues of a real and symmetric matrix are real.

Preliminary 7.4 (Gershgorin’s circle theorem). Suppose A is an n× n matrix. Each

eigenvalue of A lies in one of the circles Ci, . . . ,Cn, where Ci has its center at the

diagonal entry ai,i and its radius ri = ∑ j 6=i |ai, j| is equal to the absolute sum of the rest

of the row.

The last preliminary is about Gaussian elimination. Gaussian elimination is the pro-

ces in which a matrix A is converted into an upper triangular matrix. This is done

by subtracting the first row of the matrix ai,1/a1,1 times from all rows i. The first

entry of the rows become zero by this process: a2,1 − (a2,1/a1,1)× a1,1 = 0, a3,1 −
(a3,1/a1,1)× a1,1 = 0, etc. Subsequently, the second row is subtracted from the third

to last row ai,2/a2,2 times. Again, this leads to zeros, now in the second columns:

a3,2 − (a3,2/a2,2)× a2,2 = 0, a4,2 − (a4,2/a2,2)× a2,2 = 0, etc. Then the third row is

subtracted from the fourth to the last row leading to zeroes in the third column, etc.

Once the second last row has been subtracted from the last row, the matrix has been

converted into an upper triangular matrix.

Preliminary 7.5. Suppose A is a symmetric matrix. Pivots are the entries at the main

diagonal after applying Gaussian elimination. If all pivots are nonnegative, then all

eigenvalues are nonnegative.

Furthermore, we define two matrices that will be applied later. First, the diagonal

matrix D has zeros everywhere except on the main diagonal. The elements at the main

diagonal are defined by:

di =

√

1

si

∂ s

∂ si

/
∂vi

∂ s
(7.17)

Secondly, the matrix M is defined by

M = DJD−1 (7.18)

with J the Jacobian (7.6).
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7.3.3 Weak hyperbolicity

We show that the generalized model is weakly hyperbolic if the velocities are non-

increasing, i.e. if (7.12) holds for all classes i and j. In other words: nonincreasing

velocity is a sufficient condition for weak hyperbolicity, but it is not a necessary condi-

tions, see Figure 7.1. Therefore, we first show that (7.12) is equivalent to the condition

that the Lagrangian fundamental relation does not decrease. Secondly, we show that

the eigenvalues of matrix M (7.18) are real if the Lagrangian fundamental relation does

not decrease. Finally, we show that the model is weakly hyperbolic if the matrix M

has real eigenvalues.

Lemma 7.1. The Eulerian fundamental relation does not increase (i.e. (7.12) holds) if

and only if the Lagrangian fundamental relation does not decrease:

∂vi

∂ s j
≥ 0 (7.19)

Proof. We rewrite the left-hand side of (7.19):

∂vi

∂ s j
=

∂vi

∂ρ j

dρ j

ds j
=

∂vi

∂ρ j

d

ds j

(
1

ρ j

)

=− ∂vi

∂ρ j

1

(ρ j)2
(7.20)

The last term (1/(ρ j)
2) is positive. Therefore, the signs of

∂vi

∂ s j
and

∂vi

∂ρ j
are opposite

and we conclude that (7.12) and (7.19) are equivalent.

Lemma 7.2. If (7.19) holds for all classes i and j, then matrix M (7.18) has real

eigenvalues.

Proof. We show that matrix M is real and symmetric. By substituting the elements of

the Jacobian J (7.6) and the diagonal matrix D (7.17) into matrix M (7.18) we find its

elements:

mi, j =
di

d j
ai, j =







ai,i =
si

s1

∂vi

∂ si
+

v1 − vi

s1

for i = j

(on the diagonal)

(7.21a)

√
√
√
√
√

1
si

∂ s
∂ si

/
∂vi

∂ s

1
s j

∂ s
∂ s j

/
∂v j

∂ s

si

s1

∂vi

∂ s j
=

√
sis j

s1

√

∂v j

∂ si

∂vi

∂ s j

for i 6= j

(off the diagonal)

(7.21b)

From (7.21a) we conclude that the elements on the main diagonal of M are real be-

cause the Jacobian J with elements ai, j is real. In the last equality of (7.21b) we use

that (∂v j/∂ s)(∂ s/∂ si) = ∂v j/∂ si. If (7.19) holds, then both fractions under the last

square root sign of (7.21b) are nonnegative and thus mi, j is real. From (7.21b) we

furthermore conclude that mi, j = m j,i and thus matrix M is symmetric. Now, we have

shown that matrix M is real and symmetric. We apply Preliminary 7.3 to conclude that

the eigenvalues of M are real.
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Theorem 7.2 (Weak hyperbolicity). The generalized multi-class model with conserva-

tion equation (7.4) is weakly hyperbolic if both Condition 7.1 and 7.2 are satisfied.

Proof. From Theorem 7.1 we conclude that the velocity is nonincreasing and thus

(7.12) holds for all classes i and j. Using Lemma 7.1 and 7.2 we conclude that the

eigenvalues of M are real. From Preliminary 7.2 we conclude that by construction the

eigenvalues of the Jacobian J (7.6) are equal to the eigenvalues of matrix M. Con-

sequently, the eigenvalues of the Jacobian J are real. Using the definition of weak

hyperbolicity (Definition 7.2) we conclude that the model is weakly hyperbolic.

We remark that M may also have real eigenvalues if (7.12) does not hold for all classes

i and j. Therefore, the model may also be weakly hyperbolic if (7.12) does not hold

for all classes i and j. We do not provide an assessment procedure for this case, partly

because nonincreasing velocity is a reasonable requirement itself.

7.3.4 Finite characteristic velocities

We show that the model has finite characteristic velocities if it is weakly hyperbolic

and if furthermore both the fundamental relation and the effective density function are

bounded and continuous. (Condition 7.3). In other words, weak hyperbolicity is a

necessary but not sufficient condition for finite characteristic velocities, see Figure 7.1.

Theorem 7.3. The generalized multi-class model with conservation equation (7.4) has

finite characteristic velocities if Condition 7.1, 7.2 and 7.3 hold.

Proof. From Theorem 7.2 and Definition 7.2 we conclude that the model has real ei-

genvalues and is weakly hyperbolic. What remains is to show that the eigenvalues are

furthermore finite. Condition 7.3 states the fundamental relation vu = vu(ρ) and the ef-

fective density function ρ = ρ(ρ1, . . . ,ρU) are continuously differentiable or bounded

and continuous. If they are continuously differentiable, the derivatives ∂vi/∂ρ and

∂ρ/∂ρ j exist (are finite). Therefore, also the partial derivatives ∂vi/∂ρ j and ∂vi/∂ s j

exist (are finite). If the fundamental relation and effective density function are not

continuously differentiable, but they are bounded and continuous, then we apply Pre-

liminary 7.1. From Preliminary 7.1 we conclude that the fundamental relation and the

effective density function can be approximated arbitrarily closely by a continuously

differentiable function with finite partial derivatives ∂vi/∂ s j. Furthermore, spacings

are nonzero (su 6= 0) and thus all entries of matrix A (7.7) are finite: |ai, j|< ∞. We ap-

ply Preliminary 7.4 (Gershgorin’s circle theorem) to conclude that also the eigenvalues

of the Jacobian J are finite. From Definition 7.3 we conclude that the model has finite

characteristic velocities.
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7.3.5 Anisotropy

We show that the generalized model is anisotropic if it is weakly hyperbolic and if fur-

thermore there is a fastest class (Condition 7.4). In fact, we only show that if the model

has nonincreasing velocities vu (is in the upper circle of Figure 7.1) and if furthermore

there is a fastest class, the model is anisotropic. As the figure shows, the model may

also be anisotropic if the velocity is increasing. However, we do not consider that case

because non increasing velocity is a reasonable requirement itself.

In this subsection, we first show that if there is a fastest class, the model may be refor-

mulated such that class 1 is the fastest class. Therefore, in Lagrangian coordinates the

coordinate system moves with the velocity of the fastest class. Consequently, the mo-

del is anisotropic if the characteristic velocities are nonnegative, i.e. if the eigenvalues

of the Jacobian J are nonnegative.

Lemma 7.3. The generalized multi-class model that satisfies Condition 7.4 may be

rewritten such that in all traffic states class 1 is not slower than any class i:

v1 ≥ vi (7.22)

Proof. Assume that class j is the fastest class, i.e. it is not slower than any other class

in any permissible traffic state. The classes can be reordered such that class j becomes

class 1. Now, class 1 is the fastest class. Only after this reordering the generalized

model (in Eulerian coordinates) is reformulated in Lagrangian coordinates.

Lemma 7.4. Matrix M defined by (7.18) has nonnegative eigenvalues if (7.19) holds

for all classes i and j and if furthermore (7.22) holds for all classes i.

Proof. From Lemma 7.2 we conclude that M is real and symmetric. The rest of this

proof consists of applying Gaussian elimination and showing that M has nonnegative

pivots. Next, from Preliminary 7.5 we conclude that M has nonnegative eigenvalues.

The first step of Gaussian elimination consists of subtracting mi,1/m1,1 times row 1

from each row i. This gives zeros on column 1, except for row 1. Applying this

subtraction and using the definitions of matrix A (7.7) and of matrix M (7.21) gives

matrix M̃ with:

if i = 1 (row 1):

m̃1, j = m1, j =

√
s1s j

s1

√

∂v j

∂ s1

∂v1

∂ s j
=

√

s j

s1

∂v j

∂ s1

∂v1

∂ s j
(7.23a)

if j = 1, i 6= 1 (column 1, except for row 1):

m̃i,1 = 0 (7.23b)
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if i = j, i 6= 1 (diagonal, except for row 1):

m̃i,i = mi,i −
mi,1m1,i

m1,1
= ai,i −

di

d1
ai,1

d1
di

a1,i

a1,1
=

si

s1

∂vi

∂ si
+

v1 − vi

s1
− si

s1

∂vi

∂ si

=
v1 − vi

s1
(7.23c)

if i 6= 1, j 6= 1, i 6= j (everywhere else, i.e. not row 1, not column 1, not on the diagonal):

m̃i, j = mi, j −
mi,1m1, j

m1,1
=

di

d j
ai, j −

di

d1
ai,1

d1
d j

a1, j

a1,1
= ai, j −

ai,1a1, j

a1,1
= 0 (7.23d)

Both in (7.23c) and (7.23d) we use that i 6= 1 and j 6= 1 and apply (7.7b) to find:

ai,1a1, j

a1,1
=

si

s1

∂vi

∂ s1

s1

s1

∂v1

∂ s j

s1

s1

∂v1

∂ s1

=
si

s1

∂vi

∂ s j
(7.24)

For clarity, we write the matrix M̃ as derived in (7.23) in matrix form:

M̃ =














∂v1

∂ s1

√
s2

s1

∂v2

∂ s1

∂v1

∂ s2
. . .

√
sU

s1

∂vU

∂ s1

∂v1

∂ sU

v1 − v2

s1
/0

. . .

/0
v1 − vU

s1














(7.25)

In this case, one step of Gaussian elimination is enough to get an upper triangular

matrix with zeroes below the main diagonal. The pivots are the elements at the main

diagonal of M̃. The pivots are nonnegative if the Lagrangian fundamental relation

does not decrease (i.e. (7.19) holds) for class i = 1 and j = 1, and if furthermore the

class 1 is the fastest class (i.e. (7.22) holds for all classes i). From Preliminary 7.5 we

conclude that the eigenvalues of M are nonnegative.

Theorem 7.4. The generalized multi-class model with conservation equation (7.4) is

anisotropic if Condition 7.1, 7.2 and 7.4 hold.

Proof. Lemma 7.3 shows that the model can be rewritten such that class 1 is the fastest

class and thus the coordinate system moves with the velocity of the fastest class. It

remains to show that the characteristics are not faster than the coordinates. In other

words, we need to show that the eigenvalues of the Jacobian J are nonnegative. In the

proof of Theorem 7.2 we show that the eigenvalues are real and that they are equal to

the eigenvalues of the matrix M. Using Lemma 7.4 we conclude that the eigenvalues of
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M and thus also of the Jacobian J are nonnegative. Using the definition of anisotropy

(Definition 7.4) we conclude that the model is anisotropic.

We conclude that the generalized multi-class traffic flow model has nonincreasing ve-

locity (Requirement 7) and is weakly hyperbolic if the fundamental relation is nonin-

creasing (Condition 7.1) and if the effective density function is nondecreasing (Condi-

tion 7.2). The model has finite characteristic velocities (Requirement 8) if furthermore

the fundamental relation is continuously differentiable, i.e. if ∂vi/∂ρ j exists for all

classes i and j (Condition 7.3). Finally, the model is anisotropic (Requirement 9) if

it is weakly hyperbolic and if furthermore there is a fastest class (Condition 7.4). We

note that the conditions for hyperbolicity and anisotropy discussed in this section, are

only sufficient conditions: they are not necessary. In other words, there may be models

which do not satisfy the conditions but are still hyperbolic or anisotropic. However, in

the next section, it turns out that the sufficient conditions are useful to assess the multi-

class models discussed in Chapter 5 with respect to the requirements on characteristic

velocities.

7.4 Assessment of multi-class models

All multi-class models that are discussed in Chapter 5 are assessed. It is verified

whether they satisfy Requirement 7, 8 and 9. Therefore, we use the Condition 7.1–7.4

introduced in the previous section. Like in the assessment of the other requirements

(Section 7.1) we do not repeat the model equation here but refer to Table 5.2 for an

overview of all multi-class models and Figure 5.1 for examples of their fundamental

relations. Furthermore, we assume that the parameters have feasible values.

7.4.1 The model by Logghe & Immers

We show that the model by Logghe & Immers satisfies all requirements related to

nonincreasing velocity, finite characteristic velocity and anisotropy.

Lemma 7.5. The fundamental relation of the model by Logghe & Immers defined and

reformulated in Section 5.2.1 satisfies Condition 7.1.

Proof. Condition 7.1 states that the class-specific velocity vi is a nonincreasing func-

tion of the effective density ρ . The derivative of the velocity function is:

∂vu

∂ρ
=







0 (free flow) (7.26a)

−w1

ρ1,jam

(ρ)2
< 0 (congestion) (7.26b)

We conclude that the model by Logghe & Immers satisfies Condition 7.1.
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Lemma 7.6. The effective density function of the model by Logghe & Immers defined

in Section 5.2.1 satisfies Condition 7.2.

Proof. Condition 7.2 states that the effective density ρ is a nondecreasing function of

the class-specific densities ρi. We determine the derivative of the effective density ρ to

the class-specific densities ρ1 and ρ2 separately. The derivative of the effective density

to ρ1 is:

dρ

dρ1
=







undefined (free flow) (7.27a)
ρ2,crit

ρ2,crit −ρ2
> 0 (semi congestion) (7.27b)

w1ρ1,jam +
w2ρ2,jam

ρ2

w1 +w2

(
ρ2,jam

ρ2
−1
) > 0 (congestion) (7.27c)

The inequalities hold because in semi-congestion ρ2 ≤ ρ2,crit and in congestion ρ2 ≤
ρ2,jam. The derivative of the effective density to ρ2 is:

dρ

dρ2
=







undefined (free flow) (7.28a)
ρ2,crit

(
ρ2,crit −ρ2

)2
ρ1 > 0 (semi congestion) (7.28b)

w1ρ1,jamw2ρ2,jam
(
w1ρ2 +w2(ρ2,jam −ρ2)

)2
ρ1 > 0 (congestion) (7.28c)

The inequalities hold because in semi-congestion ρ2 ≤ ρ2,crit and in congestion ρ2 ≤
ρ2,jam. We conclude that Condition 7.2 holds.

Theorem 7.5. The model by Logghe & Immers defined in Section 5.2.1 has nonin-

creasing velocity and finite characteristic velocity and is anisotropic.

Proof. From Lemma 7.5 and 7.6 and Theorem 7.1 we conclude that the velocities

are nonincreasing. By furthermore applying Theorem 7.2 we conclude that the model

is weakly hyperbolic. Both the fundamental relation vu(ρ) and the effective density

function are bounded continuous function and thus Condition 7.3 holds. We conclude

from Theorem 7.3 that the characteristics have finite velocity. Finally, the class with

the largest maximum velocity vu,max is not slower than the other class in any traffic

state, i.e. Condition 7.4 holds. From Theorem 7.4 we conclude that the model is

anisotropic.

7.4.2 The model by Ngoduy & Liu

The model by Ngoduy & Liu satisfies all requirements related to nonincreasing ve-

locity, finite characteristic velocity and anisotropy conditionally. We show that the
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conditions are satisfied if for all classes i and j the pce-values are constant:

dηi

dρ j
= 0 (7.29)

and if furthermore for all classes i and j:

ηi ≤ 2η j (7.30)

Lemma 7.7. The fundamental relation of the model by Ngoduy & Liu defined and

reformulated in Section 5.2.2 satisfies Condition 7.1.

Proof. Condition 7.1 states that the class-specific velocity vi is a nonincreasing func-

tion of the effective density ρ . The derivative of the velocity function is:

∂vu

∂ρ
=







−vu,max − vcrit

ρcrit

< 0 (free flow) (7.31a)

−w
ρjam

(ρ)2
< 0 (congestion) (7.31b)

We conclude that the model by Ngoduy & Liu satisfies Condition 7.1.

Lemma 7.8. The effective density function of the model by Ngoduy & Liu defined in

Section 5.2.2 with constant pce-values (i.e. (7.29) holds) satisfies the nondecreasing

effective density Condition 7.2 if and only if (7.30) holds for all classes i and j.

Proof. Condition 7.2 states that the effective density ρ is a nondecreasing function of

the class-specific densities ρi. We determine the derivative of the effective density ρ

to the class-specific density ρi and show that it is only nonnegative if (7.30) holds for

all classes i and j. We apply respectively the effective density function ρ = η̄ρ tot, the

chain rule, the harmonic average pce-value η̄ = ρ tot

∑u ρu/ηu
, the quotient rule and again

the harmonic average pce-value and the quotient rule to find the derivative:

dρ

dρi
= ρ tot dη̄

dρi
+ η̄

dρ tot

dρi

= ρ tot d

dρi

(
ρ tot

∑u ρu/ηu

)

+ η̄
dρ tot

dρi

= ρ tot

(

∑u
ρu

ηu

) dρ tot

dρi
−ρ tot d

dρi

(

∑u
ρu

ηu

)

(

∑u
ρu

ηu

)2
+ η̄

dρ tot

dρi

= η̄

(

2
dρ tot

dρi
− η̄

d

dρi

(

∑
u

ρu

ηu

))

= η̄







2∑
u

dρu

dρi
− η̄ ∑

u

ηu
dρu

dρi
−ρu

dηu

dρi

(ηu)2







(7.32)
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Since the pce-values are constant (dηu/dρi = 0), the second term in the numerator

drops out. Furthermore, dρi/dρi = 1 and for all u 6= i the derivative is dρu/dρi = 0.

Finally, we find:

dρ

dρi
= η̄

(

2− η̄

ηi

)

(7.33)

The derivative (7.33) is nonnegative if and only if ηi ≤ 2η̄ . We conclude that Condition

7.2 is satisfied if and only if (7.30) holds for all classes i and j.

Lemma 7.8 shows that the difference between pce-values can not be ‘too large’. If one

of them is more than 2 times larger than any other, the effective density decreases.

Theorem 7.6. The model by Ngoduy & Liu defined in Section 5.2.2 has nonincreasing

velocity, finite characteristic velocities and is furthermore anisotropic if for all classes

i and j (7.29) and (7.30) hold.

Proof. From Lemma 7.7 and 7.8 and Theorem 7.1 we conclude that the velocities

are nonincreasing if (7.29) and (7.30) hold for all classes i and j. By furthermore

applying Theorem 7.2 we conclude that the model is weakly hyperbolic. Furthermore,

both the fundamental relation vu(ρ) and the effective density function ρ(ρ1, . . . ,ρU)

are bounded and continuous functions and Condition 7.3 holds. We conclude from

Theorem 7.3 that the characteristics have finite velocity. Finally, the class with the

largest maximum velocity vu,max is not slower than the other classes in any permissible

traffic state, i.e. Condition 7.4 holds. From Theorem 7.4 we conclude that the model

is anisotropic.

We note that we can not conclude that the model does not satisfy the requirements if

(7.29) or (7.30) does not hold for all classes i and j. For example, even if the pce-values

have discontinuities, the model may be anisotropic. However, this would imply infinite

characteristic velocities, which is unrealistic. Finally, Ngoduy & Liu show that their

model is strictly hyperbolic and anisotropic if there are only two-classes. They claim

that it is ‘rather complex’ to verify analytically strict hyperbolicity if there are more

than 2 classes because it is cumbersome or even impossible (for more than 4 classes)

to obtain eigenvalues. We have shown that the analysis can be done without exactly

knowing the eigenvalues.

7.4.3 Fastlane

We show that Fastlane satisfies all requirements related to nonincreasing velocity, fi-

nite characteristic velocity and anisotropy if the parameter conditions introduced in

Section 4.4 are satisfied. Let us first recall Lemma 4.1 and 4.2 (Section 4.5) and the
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reformulation of the parameter conditions introduced in those Lemma’s, for all classes

u:

au ≥ 0, bf
1 ≤ bf

u ≤ 0, 0 ≤ bc
u ≤ bc

1, af
u +2bf

uρ ≥ 0 and ac
u +bc

uρ ≥ 0

(7.34)

The effective density-velocity fundamental relation of Fastlane is equal to that of the

model by Ngoduy & Liu. Therefore, we can apply Lemma 7.7 to show that also in

Fastlane the class-specific velocity is a non increasing function of the effective density

(∂vu/∂ρ ≤ 1) and thus satisfies Condition 7.1.

Lemma 7.9. The effective density function of Fastlane with b1 = 0 satisfies Condition

7.2.

Proof. Condition 7.2 states that the effective density ρ is a nondecreasing function of

the class-specific densities ρi. We determine the derivative of the effective density ρ to

the class-specific density ρi and show that it is nonnegative. Therefore, we substitute

the function f = a1 −∑u buρu (4.38) into the effective density function ρ (4.51b):

ρ =
∑u auρu

f
(7.35)

The derivative of the effective density is:

dρ

dρi
=

f ∑u

d

dρi
(auρu)−

d f

dρi
∑
u

auρu

f 2
=

f ai +bi ∑u auρu

f 2
(7.36)

We now substitute the other form of the function f = ∑u auρu

ρ −b1ρ (4.41) and b1 = 0

to find:

dρ

dρi
=

(
∑u auρu

ρ
−b1ρ

)

ai +bi ∑u auρu

f 2
=

∑u auρu (ai +biρ)

f 2ρ
≥ 0 (7.37)

In congestion, the inequality holds because all terms are positive, see (7.34). In free

flow, we apply the second inequality in (7.34) to find bi = 0. All other terms are

nonnegative and thus the inequality also holds in free flow. We conclude that if b1 = 0

then Condition 7.2 holds.

Lemma 7.10. The effective density function of Fastlane with b1 6= 0 satisfies Condition

7.2.

Proof. Condition 7.2 states that the effective density ρ is a nondecreasing function of

the class-specific densities ρi. We determine the derivative of the effective density ρ to



7 Model analysis 151

the class-specific density ρi and show that it is nonnegative. We substitute the function

f = a1 −∑u buρu (4.38) into the effective density function ρ (4.51a) and reorder:

ρ =
f −
√

f 2 +4b1 ∑u auρu

−2b1
(7.38)

We use d f/dρi =−bi to find the derivative of the effective density is:

dρ

dρi
=

1

−2b1







d f

dρi
+

2 f
d f

dρi
+4b1ai

2
√

f 2 +4b1 ∑u auρu







=
1

−2b1

(

−bi +
2 f bi +4b1ai

2
√

f 2 +4b1 ∑u auρu

)

=
bi

2b1

(

1−
f +2ai

bi
b1

√

f 2 +4b1 ∑u auρu

)

(7.39)

We now substitute the other form of the function f = (∑u auρu)/ρ −b1ρ (4.41) in the

f under the square-root sign and observe that the square root term can be written as an

absolute term:

dρ

dρi
=

bi

2b1







1−
f +2ai

bi
b1

√
(

∑u auρu

ρ −b1ρ
)2

+4b1 ∑u auρu







=
bi

2b1



1−
f +2ai

bi
b1

∣
∣
∣

∑u auρu

ρ +b1ρ
∣
∣
∣



 (7.40)

We substitute (∑u auρu)/ρ −b1ρ = f (4.41) in the denominator, rewrite and find:

dρ

dρi
=

bi

2b1

(

1−
f +2ai

bi
b1

| f +2b1ρ|

)

=
bi

2b1

| f +2b1ρ|− f +2ai

bi
b1

| f +2b1ρ| (7.41)

We note that the sign of (7.41) is equal to the sign of the numerator. This is be-

cause the signs of all bu are equal (see (7.34)) and thus the first term is nonnegative

(bi/(2b1) ≥ 0). We distinguish between congestion and free flow and analyze these

states separately.

In congestion for all classes u, au ≥ 0 and bu ≥ 0. Therefore, f = (∑u auρu)/ρ +b1ρ ≥
0 and f + 2b1ρ ≥ 0. Substituting these inequalities in the numerator of the partial

derivative of the effective density (7.41) gives:

| f +2b1ρ|− f +2
ai

bi
b1 = 2b1ρ +2

ai

bi
b1 = 2b1

(

ρ +
ai

bi

)

≥ 0 (7.42)

We conclude that in congestion the partial derivative ∂ρ/∂ρu is nonnegative for all

classes u
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In free flow the sign of the term between the absolute-signs can be either positive or

nonnegative: f + 2b1ρ ≤ 0 or f + 2b1ρ > 0. In the first case 2b1ρ ≤ − f and the

numerator of (7.41) becomes:

| f +2b1ρ|− f +2
ai

bi
b1 = −( f +2b1ρ)− f +2

a1

bi
b1

= 2



−( f +2b1ρ)
︸ ︷︷ ︸

≥0

+b1ρ +
ai

bi
b1





≥ 2b1

(

ρ +
ai

bi

)

(7.43)

We now substitute af
i and bf

i as defined in (4.52a) which gives:

| f +2b1ρ|− f +2
ai

bi
b1 ≥ 2b1

(

ρ −ρcrit

Li +T1vi,max

Ti(vi,max − vcrit)
︸ ︷︷ ︸

≥1

)

≥ 0 (7.44)

The last inequality holds because in free flow ρ ≤ ρcrit. In the second case ( f +2b1ρ >

0) we have 2b1ρ >− f and the numerator in (7.41) becomes:

| f +2b1ρ|− f +2
b1

bi
ai = 2b1

(

ρ +
ai

bi

)

≥ 0 (7.45)

The inequality holds as we have already shown in (7.44). We conclude that if b1 6= 0

Condition 7.2 holds both in free flow and in congestion.

Theorem 7.7. Fastlane has nonincreasing velocity and finite characteristic velocity

and is anisotropic.

Proof. Fastlane has the same fundamental relation v(ρ) as the model by Ngoduy &

Liu. From Lemma 7.7 we conclude that Condition 7.1 is satisfied. From this, com-

bined with Lemma 7.9 and 7.10 and Theorem 7.1 we conclude that the velocities are

nonincreasing. By furthermore applying Theorem 7.2 we conclude that the model is

weakly hyperbolic. Both vu(ρ) and ρ(ρ1, . . . ,ρU) are bounded continuous functions

and thus Condition 7.3 holds. We conclude from Theorem 7.3 that the characteris-

tics have finite velocity. Finally, the class with the largest maximum velocity vu,max is

not slower than the other classes in any traffic state, i.e. Condition 7.4 holds. From

Theorem 7.4 we conclude that the model is anisotropic.

We note that if the parameters do not satisfy the conditions introduced in Section 4.4

(and repeated in 7.34), the model may not satisfy the requirements related to nonin-

creasing velocity, hyperbolicity and anisotropy. However, we do not consider that case,

partly because the conditions are reasonable.
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7.4.4 The model by Nair et al.

We show that the model by Nair et al. has nonincreasing velocity and finite character-

istic velocity. We do not draw any conclusion on anisotropy of the model.

Lemma 7.11. The fundamental relation of the model by Nair et al. defined and refor-

mulated in Section 5.4.1 satisfies condition 7.1.

Proof. Condition 7.1 states that the class-specific velocity vi is a nonincreasing func-

tion of the effective density ρ . The derivative of the velocity function is:

∂vu

∂ρ
=

[(
1− crsgu(1−gu)

−1
)
(1−gu)

crs−cur−1 − (1+ cur)
]

(1−gu)
1+cur ∂gu

∂ρ
vu,max

=

[
1−gu − crsgu

1−gu
︸ ︷︷ ︸

≤1

(1−gu)
crs−cur−1

︸ ︷︷ ︸

≤1

−(1+ cur)
︸ ︷︷ ︸

≥1

]

(1−gu)
1+cur ∂gu

∂ρ
vu,max ≥ 0

(7.46)

The inequality holds because both (1− gu)
1+cur

and vu,max are positive and the term

between square brackets and the partial derivative ∂gu/∂ρ are nonpositive:

∂gu

∂ρ
=−pru,crite

−pru,crit
∂ p

∂ρ
=−pru,crite

−pru,crit(bmax −bmin)
a1

d
≤ 0 (7.47)

We conclude that the model by Nair et al. satisfies Condition 7.1.

Lemma 7.12. The effective density function of the model by Nair et al. defined in

Section 5.4.1 satisfies Condition 7.2.

Proof. Condition 7.2 states that the effective density ρ is a nondecreasing function of

the class-specific densities ρi. The pce-values are constant and thus:

dρ

dρi
=

d

dρi
∑
u

ηuρu = ηi > 0 (7.48)

We conclude that Condition 7.2 holds.

Theorem 7.8. The model by Nair et al. defined in Section 5.4.1 has nonincreasing

velocity, is weakly hyperbolic and has finite characteristic velocities.

Proof. From Lemma 7.11 and 7.12 and Theorem 7.1 we conclude that the velocities

are nonincreasing. By furthermore applying Theorem 7.2 we conclude that the model

is weakly hyperbolic. Finally, both the fundamental relation and the effective density

function are continuously differentiable functions. We conclude from Theorem 7.3

that the characteristics have finite velocity.
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We can not draw any conclusion on anisotropy because of the following. The model

is developed to reproduce disordered traffic flow. In this type of traffic flow one class

(e.g., cars) is the fastest class at low densities and another class (e.g., scooters) is the

fastest class at high densities. Therefore, there is no fastest class and Condition 7.4

does in general not hold for the model by Nair et al.. To study the anisotropy of the

model one would need to consider each case with a different fastest class separately,

e.g., the case where cars are fastest needs to be analyzed separately from the case where

scooters are fastest.

7.4.5 Other multi-class models

We show that the models by Chanut & Buisson, Benzoni-Gavage & Colombo and

Wong & Wong satisfy all requirements related to nonincreasing velocity, finite charac-

teristic velocity and anisotropy.

The model by Chanut & Buisson satisfies the non increasing velocity condition (Con-

dition 7.1) because its fundamental relation is equal to that in the model by Ngoduy &

Liu, see Lemma 7.7.

Lemma 7.13. The fundamental relation of the model by Benzoni-Gavage & Colombo

defined and reformulated in Section 5.4.3 with Greenshields’ fundamental relation sat-

isfies Condition 7.1.

Proof. Condition 7.1 states that the class-specific velocity vi is a nonincreasing func-

tion of the effective density ρ . The derivative of the velocity function is:

∂vu

∂ρ
=−vu,max

ρjam

< 0 (7.49)

We conclude that the model by Benzoni-Gavage & Colombo with Greenshields’ fun-

damental relation satisfies Condition 7.1.

Lemma 7.14. The fundamental relation of the model by Benzoni-Gavage & Colombo

defined and reformulated in Section 5.4.3 with Drake’s fundamental relation and the

model byWong & Wong satisfy Condition 7.1.

Proof. Condition 7.1 states that the class-specific velocity vi is a nonincreasing func-

tion of the effective density ρ . The derivative of the velocity function is:

∂vu

∂ρ
=− ρ

(ρcrit)2
vu,maxe

− 1
2

(
ρ

ρcrit

)2

≤ 0 (7.50)

We conclude that the model by Benzoni-Gavage & Colombo with Drake’s fundamental

relation and the model by Wong & Wong satisfy Condition 7.1.
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Theorem 7.9. The models by Chanut & Buisson, Benzoni-Gavage & Colombo and

Wong & Wong defined and reformulated in Section 5.4.2, 5.4.3 and 5.5, respectively,

have nonincreasing velocity and finite characteristic velocities and are anisotropic.

Proof. The model by Chanut & Buisson has the same fundamental relation v(ρ) as

the model by Ngoduy & Liu. Furthermore, all models have the same effective den-

sity function as the model by Nair et al.. From Lemma 7.7, 7.13, 7.14 and 7.12 and

Theorem 7.2 we conclude that the velocities are nonincreasing. By furthermore ap-

plying Theorem 7.2 we conclude that the model is weakly hyperbolic. The effective

density function and Drake’s fundamental relation are continuously differentiable. The

other fundamental relations are bounded and continuous. We conclude from Theorem

7.3 that the characteristics have finite velocity. Finally, in all models the class with

the largest maximum velocity vu,max is not slower than the other classes in any traffic

state, i.e. Condition 7.4 holds. From Theorem 7.4 we conclude that the models are

anisotropic.

We note that Benzoni-Gavage & Colombo proof that their model is hyperbolic and

anisotropic. However, they use a different approach in their proof.

The model by Zhang et al. is the only one that we do not assess based on the cri-

teria for nonincreasing velocity, finite characteristic velocity and anisotropy. This is

because they do not specify a fundamental relation. However, the authors claim that

their model is strongly hyperbolic. Strong hyperbolicity means that eigenvalues are

real and distinct. This is a rather strong requirement for traffic flow models because

of the following. Zhang et al. have shown that the interlacing property holds for their

multi-class model. The interlacing property means that the characteristic velocities

have velocities in between the vehicle velocities. Consequently, in Eulerian coordi-

nates, the eigenvalues have values between the vehicle velocities:

λU ≤ vU ≤ . . .≤ λ1 ≤ v1 or vU ≤ λU ≤ . . .≤ v1 ≤ λ1 (7.51)

If eigenvalues are distinct, this implies that not all vehicle velocities can be equal. This

is in contradiction with Requirement 5 stating that class-specific velocities are equal

in congestion. However, as we have already seen, the model by Zhang et al. does

not satisfy Requirement 5. Because of the contradiction between Requirement 5 and

strong hyperbolicity, we only require weak hyperbolicity.

7.5 Conclusions

We developed and applied a framework to assess multi-class kinematic wave traffic

flow models. The models are assessed with respect to the requirements that are pro-

posed in Chapter 3. To assess the models with respect to the requirements related to
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nonincreasing velocity, finite characteristic velocity and anisotropy, we use the gener-

alized model formulation (Chapter 5) and the Lagrangian coordinate system (Chapter

6). The Lagrangian coordinate system is useful to analyze the characteristic velocities.

This analysis is necessary to assess anisotropy. It is a major advantage of the frame-

work that it is not necessary to know the eigenvalues of the model exactly. In other

approaches such as applied by Ngoduy & Liu (2007) the eigenvalues are calculated

exactly. However, this is difficult if there are 3 or 4 classes and impossible is there are

even more classes.

The results of the assessment of the models are summarized in Table 7.1. The table

shows that Fastlane and the model by Chanut & Buisson (2003) are the only ones that

satisfy all requirements unconditionally. Three models (Wong & Wong, 2002; Ngoduy

& Liu, 2007; Nair et al., 2012), only include flow maximization as a requirement for

the numerical method, not for the continuous model itself. The model by Logghe &

Immers (2008) does not allow decreasing velocities in free flow. The model by Ngoduy

& Liu (2007) only satisfies all requirements under rather strict conditions on the pce-

values: they must be constant and not ‘too far’ apart. In all other models the classes

travel at different velocities in congestion. Furthermore, in the models by Nair et al.

(2012); Wong & Wong (2002) and the model by Benzoni-Gavage & Colombo (2003)

with Drake fundamental relation the velocity is not equal to zero for a certain (finite)

jam density. We did not assess anisotropy of the model by Nair et al. (2012). Zhang

et al. (2006) do not specify a fundamental relation and therefore we can only assess it

with respect to a few requirements. Finally, we found some unexpected results in the

models by Logghe & Immers; Nair et al.. In both models the velocity of the ‘small’

class (cars in the model by Logghe & Immers, scooters in the model by Nair et al.)

can increase if some vehicles of the other class (trucks in the model by Logghe &

Immers, cars in the model by Nair et al.) are replaced by vehicles of the ‘small’ class.

This may be reasonable in the foreseen application of the disordered model byNair

et al.. However, it is not reasonable for motorways with lanes, which is the application

Logghe & Immers developed their model for.

The framework to assess multi-class models can be applied to assess any other multi-

class kinematic wave traffic flow model. The assessment consists of the following

steps:

1. Analyze the model formulation with respect to the following:

• If the model is formulated such that it is contained in the generalized multi-

class model (5.1) or (5.1a), (5.1b) and (5.2) the velocities and flows are

uniquely determined by the class-specific densities (Requirement 1)

• If the model is not formulated in such a way, reformulate the model such

that it is contained in the generalized multi-class model. If this is possible

the velocities and flows are uniquely determined by the class-specific den-

sities (Requirement 1) and the model can be analyzed further.

• Check whether the model prescribes which type of flow needs to be maxi-
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mized (Requirement 2).

2. Analyze the fundamental relation vu(ρ) or vu(ρ1, . . . ,ρU) with respect to the

following:

• In free flow classes may have unequal velocities (Requirement 3).

• In free flow velocities may decrease (Requirement 4).

• In congestion the velocities are class independent (Requirement 5).

• There is a finite jam density at which the velocity of all classes is zero

(Requirement 6).

3. Analyze the fundamental relation vu(ρ) and the effective density function

ρ(ρ1, . . . ,ρU) with respect to the following:

• If
∂vi

∂ρ
≤ 0 and

dρ

dρ j
≥ 0 for all classes i and j the model has nonincreasing

velocity (Requirement 7).

• If Requirement 7 is satisfied and if furthermore vu(ρ) for all classes u and

ρ(ρ1, . . . ,ρU) are bounded and continuous functions, or if they are continu-

ously differentiable, the model has finite characteristic velocities (Require-

ment 8).

Alternatively, if this is not possible because the fundamental relation and the

effective density function can not be separated, analyze the fundamental relation

vu(ρ1, . . . ,ρU) with respect to the following:

• If
∂vi

∂ρ j
≤ 0 for all classes i and j the model has nonincreasing velocity

(Requirement 7).

• If Requirement 7 is satisfied and if furthermore vu(ρ1, . . . ,ρU) is a bounded

and continuous function for all classes u, or if it is continuously differenti-

able, the model has finite characteristic velocities (Requirement 8).

4. Analyze whether there is one class that is not slower than any other class in any

permissible traffic state. If Requirement 7 and 8 are satisfied and if furthermore

there is such a class, the model is anisotropic (Requirement 9).

We note that the conditions for the last three requirements are sufficient, but not ne-

cessary conditions. For example, a model may be anisotropic even if it does not have

finite characteristic velocities. Finally, this framework for the assessment of multi-class

models, can also be applied in the development of new models.
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Table 7.1 Assessment results of multi-class models.
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1 Velocity and flow uniquely defined X X X X X X X X X

2 Flow maximization X m X m X X X m X

3 Unequal velocity in free flow X X X X X X X X X

4 Decreasing velocity in free flow - X X X X X X X X

5 Equal velocity in congestion X X X - X - - - -

6 Zero velocity at jam density X X X - X X - - n

7 Nonincreasing velocity X c X X X X X X n

8 Finite characteristic velocity X c X X X X X X n

9 Anisotropy X c X n X X X X n

X satisfied, - not satisfied, c satisfied conditionally, m only in numerical method, n not

assessed.



Chapter 8

Numerical methods for mixed-class

models

Numerical methods are used to approximate the solution of the kinematic wave model.

This is needed because in most realistic cases it is impossible to solve the problems

analytically. When a macroscopic model is applied, usually the space and time do-

mains are divided into intervals: road segments (grid cells) and time steps. For each

time step and at grid cell the model equations are solved approximately using numeri-

cal methods. The result is the density in each grid cell, at each time step. Alternatively,

the Lagrangian model formulation is used and space is not divided into grid cells, but

the vehicles are divided into groups. A numerical method is then applied to compute

the position of each group at each time step.

The outline of this chapter is as follows. In the first part of this chapter we discuss

both approaches based on the Eulerian formulation (Section 8.1) and the Lagrangian

formulation (Section 8.2). Time stepping methods are discussed in Section 8.3. Fur-

thermore, we introduce a numerical method based on variational theory in Section 8.4.

In the second part of this chapter we assess the accuracy of the numerical methods.

Therefore, we introduce two novel accuracy measures in Section 8.5. The measures

are especially relevant in traffic flow applications and overcome disadvantages of com-

monly used accuracy measures. In Section 8.6 we discuss and compare the accuracy

of the methods based on the novel accuracy measures. The methods for mixed-class

kinematic wave models introduced in this chapter are extended to multi-class models

and to networks in the next two chapters.

8.1 The minimum supply demand method

The first numerical methods for the kinematic wave model are based on its Eulerian

formulation. Currently, the minimum supply demand method is widely used. In 1994

Daganzo introduces the cell transmission model as a spatially and temporally discrete
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discretization. The discretization uses the num-

ber of vehicles in each cell (ρ∆x) and the num-

ber of vehicles travelling from one cell to the

next (min(δ∆t,σ∆t)).

x

tn

sk
i ∆n

sk
i−1∆n

sk+1
i ∆n

vk
i−1∆t

vk
i ∆t

(b) Lagrangian formulation: upwind discretiza-

tion. The discretization uses the road length

taken by each vehicle group (s∆n) and the dis-

tance travelled by each group (v∆t).

Figure 8.1 Discretization of the LWR model in Eulerian and Lagrangian formulation.
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version of the LWR model. Lebacque (1996) describes the cell transmission model as

a Godunov method. This results in the minimum supply demand method for the LWR

model. The road is partitioned into cells (segments) of length ∆x, time is partitioned

into time steps of length ∆t, see Figure 8.1(a). Within a cell and during a time step the

density, flow and velocity are assumed to be constant. Each time step k a fraction of

the vehicles in the cell is transmitted to the adjacent downstream cell. The new density

ρk+1
j = ρ( j∆x,(k+1)∆t) of each cell j is calculated as follows:

ρk+1
j = ρk

j +
∆t

∆x

(

qk

j− 1
2

−qk

j+ 1
2

)

(8.1a)

with qk

j− 1
2

the inflow into and qk

j+ 1
2

the outflow out of cell j:

qk

j− 1
2

= min
(

δ k
j−1,σ

k
j

)

(8.1b)

δ k
j the demand:

δ k
j =

{
qk

j (free flow)

qcrit (congestion)
(8.1c)

σ k
j the supply:

σ k
j =

{
qcrit (free flow)

qk
j (congestion)

(8.1d)

and qk
j = q(ρk

j ) the flow derived from the fundamental relation. Demand δ k
j can be

interpreted as the number of vehicles per time unit that want to flow from cell j to

cell j + 1 during the time step k. Supply σ k
j can be interpreted as the number of

vehicles per time unit that can be fitted in the j+ 1-th cell during time step k. Their

values are plotted in Figure 8.2 together with the fundamental relation. Figure 8.9

shows simulation results for simple test problems. The test problem and the results are

discussed in more detail in Section 8.6.

The minimum supply demand method is widely used in traffic flow simulations based

on the LWR model. It is a Godunov method, it is mass (or vehicle) conserving, it finds

the entropy (i.e. flow maximizing) solution and it is first order accurate (Lebacque,

1996; LeVeque, 2002). First order methods are often applied to conservation equations.

In general they are a good choice if the solution contains discontinuities, such as in

traffic flow (LeVeque, 2002). The accuracy of the method is discussed in more detail

in Section 8.6. Finally, the method is stable and converges to the analytical solution if

the step sizes ∆x and ∆t satisfy:

µ :=
∆t

∆x
max

∣
∣
∣
∣

dq

dρ

∣
∣
∣
∣
≤ 1 (8.2)
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In fluid dynamics literature µ is often referred to as the Courant-Friedrichs-Lewy

(CFL) number (Courant et al., 1967). The condition (8.2) is called the CFL-condition.

Most (realistic) density-flow fundamental relations are steepest at zero density and thus

the maximum slope in absolute terms is equal to the maximum velocity:

max‖dq/dρ‖= vmax. Consequently, the CFL-condition can be interpreted as follows:

within a time step, a vehicle can not cross more than one cell boundary.

8.2 Lagrangian formulation and upwind method

Together with the introduction of the Lagrangian formulation of the LWR model Le-

clercq et al. (2007) introduces an upwind discretization method for this model. Before

discussing the upwind discretization, we first note that the minimum supply demand

method switches between an upwind and a downwind spatial discretization (8.1b). I.e.

if traffic is in free flow the state in cell j depends on its own state and the state of the

upwind (upstream) cell j−1:

ρk+1
j = ρk

j +
∆t

∆x

(
qk

j−1 −qk
j

)
(8.3)

However, in congestion the state in cell j depends on its own state and the state of the

downwind (downstream) cell j+1:

ρk+1
j = ρk

j +
∆t

∆x

(
qk

j −qk
j+1

)
(8.4)

If not all cells j−1, j, and j+1 are in the same regime (free flow or congestion), then

a combination of both upwind and downwind discretization is applied.

The Lagrangian upwind method does not switch between upwind and downwind dis-

cretization. In the Eulerian formulation the switching between upwind and down-

wind is necessary because characteristics move either downstream (in free flow) or

upstream (in congestion). In Lagrangian coordinates, however, characteristics always

move downwind: in the direction of increasing n. This implies that drivers (or vehicle

groups) only react to leading vehicles (or vehicle groups) and not on followers. There-

fore, the upwind method is simpler and each time step takes less computing time than

the minimum supply demand method. This results in more efficient simulations that

are faster and/or more accurate. In Section 8.6 the accuracy of both methods will be

compared in more detail.

The Lagrangian upwind method is as follows. In the Lagrangian formulation vehicle

number n is an independent variable. Consequently, in the discretization, vehicles are

partitioned into groups of ∆n vehicles, see Figure 8.1(b). Just as n, ∆n is not necessarily

integer, it can take any real, positive value. Again, time is partitioned into time steps of

size ∆t. Each time step k, each vehicle group i is moved downstream. Or, if traffic is in

complete stop, the vehicle group remains at its position. Its new position is calculated
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with an upwind method:

sk+1
i = sk

i +
∆t

∆n

(
vk

i−1 − vk
i

)
(8.5)

with vk
i = v(sk

i ) the velocity derived from the fundamental relation. We note that

this method is much simpler than the equivalent method (minimum supply demand

method) in Eulerian coordinates (8.1). Figure 8.9 shows simulation results for simple

test problems. The test problem and the results are discussed in more detail in Section

8.6.

The upwind method (8.5) has similar properties as the minimum supply demand me-

thod: it is a Godunov method, it is mass (or vehicle) conserving, it finds the entropy (or

flow maximizing) solution and it is first order accurate (Leclercq et al., 2007; LeVeque,

2002). The CFL-number is µ∗ and the condition for stability and convergence is:

µ∗ :=
∆t

∆n
max

∣
∣
∣
∣

dv

ds

∣
∣
∣
∣
≤ 1 (8.6)

Most (realistic) spacing-velocity fundamental relations are steepest at jam spacing. For

example, in the Smulder fundamental relation:

max

∣
∣
∣
∣

dv

ds

∣
∣
∣
∣
=

vcrit

scrit − sjam

=
vcrit

1/ρcrit −1/ρjam

= wρjam =
w

sjam

(8.7)

Consequently, the CFL-condition can be interpreted as follows. It limits the distance

a vehicle groups can travel downstream within one time step. In fact, the distance

between its new position (xk+1
i ) and the old position of the leading vehicle group (xk

i−1)

is at least the characteristic velocity in jam times the time step size: w∆t. To put

it precisely: xk
i−1 − xk+1

i ≥ w∆t. This implies that even the fastest characteristics in

the (t,n) plane, namely the characteristics related to jam, are traced with the upwind

method. For readability, in the following the CFL-number for the upwind method µ∗

is referred to as µ , whenever it is not necessary to make a distinction between the

CFL-number for the minimum supply demand method and the upwind method.

Finally, the discretization method can be simplified. With this simplification one dir-

ectly computes the position xk
i of each vehicle group i at each time step k without

intermediately calculating its spacing. Therefore, the spacing is discretized with an

upwind approximation:

si =
xi−1 − xi

∆n
(8.8)

and the velocity is approximated with an explicit time discretization:

vk =
xk+1 − xk

∆t
(8.9)
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Substituting (8.8) into (8.5) and subsequently multiplying with ∆n gives:

xk+1
i−1 − xk+1

i = xk
i−1 − xk

i +∆t
(
vk

i−1 − vk
i

)
(8.10)

Furthermore, substituting (8.9) and reordering gives:

xk+1
i = xk

i +∆tvk
i (8.11)

The velocity during the k-th time step vk
i is determined using the fundamental relation

and (8.8). This method can be interpreted as follows: the new position of group i is its

old position plus the distance it travels during the k-th time step: ∆tvk
i .

The upwind scheme (8.11) is applied by Leclercq et al. (2007) to show the equivalence

between the LWR model and the simplified car-following model by Newell (2002)

under the following conditions:

• the fundamental relation q(ρ) is triangular

• the CFL-condition (8.6) is satisfied as an equality

• the vehicle group size ∆n = 1

• time parameter τ (which may be interpreted as reaction time) equals time step

size τ = ∆t

Therefore, the Lagrangian coordinate system does not only lead to more efficient nu-

merical methods, it also makes the coupling between macroscopic and microscopic

regions in a hybrid model easier (Leclercq, 2007a).

8.3 Time stepping methods

The minimum supply demand method (8.1) and the upwind method (8.5) apply an

explicit time stepping method. This means that the state variables such as density,

spacing, velocity and flow at the cell boundaries are assumed to be constant during time

step k and equal to their values at its beginning: time t = k∆t. Their values only change

at the end of the time step, at t = (k+ 1)∆t. Implicit time stepping methods assume

that the values of the state variables may change during the time step. Chronopoulos

et al. (1993) propose to apply them to higher-order traffic flow models. They show that

larger time steps can be taken and computation time can be reduced. However, this

comes at the cost of some accuracy, as we show later.

We apply implicit time stepping methods using the mixed-class model in Eulerian and

Lagrangian formulation of the LWR model. It turns out that implicit time stepping

methods are best to be applied in combination with the Lagrangian model formulation.

Extension of the method to multi-class models and networks are out of the scope of this

dissertation. We expect that these extensions are possible, but far from straightforward.

It will become computationally more demanding to deal with multiple classes and

inhomogeneities. This may outweigh the main advantage of taking larger time steps.
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Figure 8.3 Information flow in numerical method with implicit time stepping.

8.3.1 Implicit time stepping in the minimum supply demand method

We recall the minimum supply demand method in Eulerian coordinates with explicit

time stepping (8.1). With implicit time stepping the minimum supply demand method

becomes:

ρk+1
j − ∆t

∆x

(

qk+1

j− 1
2

−qk+1

j+ 1
2

)

= ρk
j (8.12)

with qk+1

j− 1
2

the inflow into and qk+1

j+ 1
2

the outflow out of cell j. The inflow and the outflow

depend on the actual traffic regimes (free flow or congestion) of the cells j−1, j and

j + 1 at time t = (k+ 1)∆t. Therefore, there is no straightforward way to solve this

equation, unless one knows beforehand the regime in each cell at t = (k+ 1)∆t. This

is shown schematically in Figure 8.3(a). In (Van Wageningen-Kessels et al., 2009) we

discuss this approach under the assumption that either the whole computational domain

is in free flow, or it is in congestion. The computations are shown to be more efficient

than with explicit time stepping. However, generalization to cases with both congestion

and free flow is not straightforward. Therefore, the implicit minimum supply demand

method is difficult to apply in practice and we do not show any simulation results.

8.3.2 Implicit time stepping in the upwind method

We recall the upwind method in Lagrangian coordinates with explicit time stepping

(8.5). With implicit time stepping the upwind method becomes:

sk+1
i − ∆t

∆n

(
vk+1

i−1 − vk+1
i

)
= sk

i (8.13)

There is a natural order to solve (8.13) for all groups i = 1,2, . . . , I, namely from the
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first vehicle group (i = 1) to the last group (i = I). The procedure is shown schemat-

ically in Figure 8.3(b). The solution procedure is as follows. Once the new spacing

of the i− 1-th vehicle is known, the fundamental relation can be used to compute its

velocity. The velocity and the spacing of the i-th group are the remaining unknowns.

Substituting the fundamental relation (4.7) and the definition of spacing (6.2) shows

that the following equation is to be solved for sk+1
i :

sk
i =







sk+1
i − ∆t

∆n

[

vk+1
i−1 −

(

vmax −
vmax − vcrit

ρcrit sk+1
i

)]

(free flow) (8.14a)

sk+1
i − ∆t

∆n

[

vk+1
i−1 −w

(

ρjamsk+1
i −1

)]

(congestion) (8.14b)

We note that both sk
i and vk+1

i−1 are known. We now discuss how (8.14) can be solved in

free flow and in congestion.

Let us first assume that the new traffic is in free flow state, i.e. sk+1
i ≥ scrit Rewriting

(8.14a) yields that the following quadratic equation needs to be solved:

(
sk+1

i

)2 −
(

sk
i −

∆t

∆n

(
vmax − vk+1

i−1

)
)

sk+1
i − ∆t

∆n

vmax − vcrit

ρcrit

= 0 (8.15)

(8.15) has two solutions, only one of which is permissible:

sk+1
i =

1

2

[
(

sk
i − ∆t

∆n

(
vmax − vk+1

i−1

))

+

√
(

sk
i − ∆t

∆n

(
vmax − vk+1

i−1

))2

+4 ∆t
∆n

vmax−vcrit

ρcrit

]

(8.16)

The other solution of (8.15) is equal to (8.16) but it has a minus sign in front of the

square root. Therefore, it is nonpositive and the resulting spacing sk+1
i is not permissi-

ble.

Let us now assume that traffic is in congestion state, i.e. sjam ≤ sk+1
i < scrit. Rewriting

(8.14b) yields the new spacing:

sk+1
i =

sk
i +

∆t
∆n

(

vk+1
i−1 +w

)

1+ ∆t
∆n

wρjam

(8.17)

In general, it is not known beforehand whether the new traffic state will be free flow

or congestion and thus whether (8.16) or (8.17) should be applied. Therefore, one

computes the new spacing using both (8.16) and (8.17). If the solution found with

(8.16) is indeed in free flow then this is the correct solution. If the solution found with

(8.17) is indeed in congestion then this is the correct solution. Due to numerical errors,

it may be that (8.16) gives a free flow solution and (8.17) gives a congestion solution.

Or (8.16) does not give a free flow solution and (8.17) does not give a congestion

solution. In such cases it is advisable to set the new spacing to critical spacing: sk+1
i =
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scrit.

Once the new spacing sk+1
i is known, the new velocity vk+1

i can be computed and the

procedure starts again to compute the new spacing of the following vehicle group sk+1
i+1 .

Figure 8.9 shows simulation results for simple test problems. The test problem and the

results are discussed in more detail in Section 8.6.

8.3.3 Discussion

The implicit methods have the same conservation and entropy properties as the expli-

cit time stepping methods. This is because the spatial discretization did not change.

Furthermore, it is still a first order accurate Godunov method. However, the main dif-

ference between explicit and implicit time stepping methods relates to their numerical

stability. When implicit time stepping is applied, much larger time steps can be taken,

without losing numerical stability. In fact, the CFL-condition (8.6) does not need to

be satisfied (LeVeque, 2002). Because larger CFL-numbers µ are allowed, larger time

steps can be applied. Therefore, less time steps are necessary and thus the computa-

tion time decreases. However, this comes at the cost of some accuracy, which will be

discussed in more detail in Section 8.6.

There is an important difference between the implicit time stepping methods for the

minimum supply demand method and the upwind method. In the minimum supply

demand method method, the new traffic state in all grid cells has to be computed at

once, see Figure 8.3(a). In contrast, in the upwind method, the new traffic state of

the vehicle groups can be computed group by group, see Figure 8.3(a). Therefore, the

solution procedure for the upwind method with implicit time stepping is simpler than

the procedure for the minimum supply demand method with implicit time stepping. In

the simulations (Section 8.6) we only show results for implicit time stepping with the

upwind method.

8.4 Variational theory and variational method

In 1993a Newell introduces the cumulative count function N(x, t) in a reformulation

of the kinematic wave model. N(x, t) is the number of vehicles that have passed loca-

tion x at between start time t0 and time t. This idea is further developed by Daganzo

(2005a,b) as he applies variational theory to solve the kinematic wave model. We do

not recapitulate their derivation, instead in Appendix B a graphical and more intuitive

interpretation of variational theory applied to the kinematic wave model is given.

Leclercq et al. (2008); Leclercq (2009) show that the variational theory leads to ex-

act solutions under certain conditions. For example, the fundamental relation must

be piecewise linear, its parameter values must be related in a certain way and the ini-

tial traffic state must be piecewise constant. They use variational theory to assess the
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Figure 8.4 Piecewise linear spacing-velocity fundamental relations.

accuracy of the minimum supply demand method and the upwind method with trian-

gular fundamental relation. We extend their accuracy analysis to include piecewise lin-

ear fundamental relations consisting of three parts in (Van Wageningen-Kessels et al.,

2010).

We apply variational theory as an alternative numerical method. We do not require

that the continuous model contains a piecewise linear fundamental relation. However,

the variational theory method needs a piecewise linear fundamental relation. There-

fore, the fundamental relation is approximated by a piecewise linear one. This will

inevitably lead to inaccuracies in the solution. Those inaccuracies will be assessed in

Section 8.6. We note that both in the minimum supply demand method and the upwind

method, the fundamental relation is satisfied exactly in any point in the time space

domain. However, with these methods, there are other sources of inaccuracy such as

numerical diffusion, which will be discussed in more detail later.

8.4.1 Piecewise linear fundamental relation

Figure 8.4 shows piecewise linear fundamental relations. In Lagrangian formulation

the piecewise linear fundamental relation is:

v(s) = min
m

(vm +(s− sm)wm) =







(s− sjam)w1 if s ≤ scrit

vcrit +(s− scrit)w2 if scrit < s ≤ s3

v3 +(s− s3)w3 if s3 < s ≤ s4

...

vM−1 +(s− sM−1)wM−1 if sM−1 < s ≤ sM

vmax if s > sM

(8.18)
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with wm the characteristic velocities in the Lagrangian coordinate system. They cor-

respond to the slope of the m-th linear part of the fundamental relation:

wm =
vm+1 − vm

sm+1 − sm
if m 6= M and wM = 0 (8.19)

With only three linear parts, the fundamental relation (8.18) reduces to:

v(s) =







(s− sjam)w1 if s ≤ scrit

vcrit +(s− scrit)w2 if scrit < s ≤ s3

vmax if s > s3

(8.20)

with

w1 =
vcrit

scrit − sjam

and w2 =
vmax − vcrit

s3 − scrit

(8.21)

Figure 8.7 shows how a Smulders fundamental relation can be approximated with a

piecewise linear fundamental relation consisting of three linear parts.

8.4.2 Variational method

Variational theory is applied to solve an initial value kinematic wave problem. First,

the fundamental relation is approximated with a piecewise linear fundamental rela-

tion. In the following we consider a piecewise linear fundamental relation consisting

of three parts. Furthermore, we assume that w1 = cw2 with c a positive integer. Le-

clercq (2009) shows that only if the fundamental relation is piecewise linear and c = 2,

the solution is exact. The results can be generalized to piecewise linear fundamental

relations with arbitrary many parts and other wave velocities, though the solution may

be less accurate. Secondly, the initial value problem is converted into a minimization

problem on a network. The network consists of nodes and waves with velocities w1,

w2 and w3, see Figure 8.5. The waves intersect at nodes with n = i∆n and t = k∆t,

therefore w1 = ∆n/∆t. At the nodes the position x̃k
i of the n = i∆n-th vehicle at time

t = k∆t is calculated using:

x̃k
i = min

(

x̃k−1
i−1 +∆tr1, x̃k−c

i−1 + c∆tr2, x̃k−1
i +∆tr3

)

(8.22)

with:

rm = vm − smwm =







r1 =−sjamw1

r2 = vcrit − scritw2

r3 = vmax

(8.23)

We note that the parameters rm are the velocity values at the intersections of the slope

of the fundamental relation and the velocity axis, see Figure 8.4(b). The variational
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Figure 8.5 Network to solve the kinematic wave problem using variational theory. It

consists of edges with slopes w1 = 2w2, w2 and w3 = 0 and nodes. The solution is

calculated at the node ◦ using information from three nodes on its left •.

method (8.22) solves the kinematic wave problem with piecewise linear fundamental

relation (8.20) and c = 2 exactly, see Appendix B. In the first few time steps of a

simulation, information before the initial time (t = 0) is needed to calculate x̃k−c
i−1 +

c∆tr2 in (8.22). Therefore, not only the initial traffic state, but also the traffic state at

t =−∆t, t =−2∆t, . . . , t = (1−c)∆t is required. In our simulations, we simply assume

that the traffic state at t < 0 is equal to the initial traffic state at t = 0. However, more

advanced and accurate methods may be thought of.

Figure 8.10 shows that the variational theory method does not converge to the exact

solution if the resolution increases. This is because the fundamental relation is not

piecewise linear. However, the figure also indicates that the variational method does

converge to the exact solution of the analogous problem with piecewise linear funda-

mental relation. This result is discussed in more detail in Section 8.6.

8.5 Test setup and accuracy measures

Traffic flow simulation results are assessed based on their accuracy. Zhang (2001)

has pointed out the importance of validating the numerical method before validating

the model against observations. Therefore, the numerical solution of a simple test

problem should be compared with the analytical solution of the continuous model. We

introduce a simple test problem and accuracy measures. They are applied in the next
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section to assess the accuracy of the numerical methods introduced in the previous

sections.

8.5.1 Test setup

We asses the accuracy of the numerical methods with three simple test cases. They

consist of a homogeneous infinitely long road with, initially, a high density region with

both downstream and upstream low densities. The initial conditions and the traffic state

after some time is shown in Figure 8.6. In the first test case, traffic is in free flow and

the following initial conditions hold:

ρ(x,0) =

{

ρcrit if −L ≤ x ≤ 0

0 otherwise
(8.24)

with the initial length of the high critical region L = 10 km. In the second test case,

traffic is in congestion and the following initial conditions hold:

ρ(x,0) =

{

ρjam if −L ≤ x ≤ 0

ρcrit otherwise
(8.25)

with the initial length of the jam density region L = 2 km. In the third test case, there

is a queue with jam density which dissolves. This test problem represents a traffic light

turning green. The following initial conditions hold:

ρ(x,0) =







0 if x > 0

ρjam if −L ≤ x ≤ 0

ρupstream if x <−L

(8.26)

with the initial length of the jam density region L = 2 km and the initial upstream

density ρupstream = 1
2
ρcrit. In all test cases the Smulders fundamental relation (4.7) is

applied. The parameters are as previously used for class 1 in Fastlane, see Chapter 5.

All model parameters are given in Table 8.1.

We chose this test setup because it includes the most important aspects of traffic flow

on a homogeneous road: free flow and congestion, vehicles driving into a queue and

leaving it and spill back of congestion. Furthermore, the Smulders fundamental rela-

tion is a realistic generalization of other fundamental relations and is also applied in

Fastlane. Still, the setup is rather simple and the location and velocity of shock waves

can be computed analytically see Figure 8.6. In the free flow test case there is a shock

wave with velocity equal to characteristic velocity at density just below critical density:

wcrit =
dq

dρ
(ρcrit) = 2vcrit − vmax (8.27)
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Figure 8.6 Density profiles in test cases. Solid line: initial density. Dashed line:

density at time t > 0.
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Figure 8.7 Smulders fundamental relation (solid line) and its piecewise linear approx-

imation (broken line).

Table 8.1 Model parameters.

maximum velocity vmax 33.3 m/s = 120 km/h

critical velocity vcrit 20.8 m/s = 75 km/h

critical density ρcrit 0.033 veh/m = 33 veh/km

jam density ρjam 0.2 veh/m = 200 veh/km

(resulting congestion wave parameter w 4.17 m/s = 15 km/h)

In the queue test case there is a shock wave with velocity depending on the initial

density upstream of the queue:

wupstream =
qupstream

ρjam −ρupstream
=

ρcrit

2ρjam −ρcrit

vmax + vcrit

2
(8.28)

In the base case the numerical parameters are chosen such that the CFL condition

(8.2), (8.6) is satisfied as an equality. We apply: time step size ∆t = 3 s, grid cell size

∆x = 100 m and vehicle group size ∆n = 2.55 vehicle. To study the influence of the

resolution, the time step size ∆t, the grid cell size ∆x and vehicle group size ∆n are

varied such that the CFL-number remains µ = 1. The time step size is varied between

∆t = 0.5 and ∆t = 24 s. To study the influence of the CFL-number, the time step size ∆t

is varied, but the grid cell size ∆x and vehicle group size ∆n are not. The CFL-number

varies between µ = 0.05 and µ = 10.

8.5.2 Accuracy measures

Zhang (2001) stresses the importance of assessing the accuracy based on criteria that

are relevant in traffic flow, such as phase (or regime) transitions and wave velocities.

We propose two new accuracy measures that are indeed especially relevant in traffic

flow. Furthermore, they can be applied in validating the numerical method against the

continuous model and in validation simulation results against observations. Here we

focus on validating the numerical method against the continuous model.

Common accuracy criteria use ‘average’ differences between velocities or densities at
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Figure 8.8 Exact and computed densities, with their centroids, phase error and diffu-

sion error. Exact: solid line and solid circle, computed: dashed line and open circle.

many points in space and time. An example is the root mean square error (RMSE). At

a certain time step k the RMSE of the densities ρk
j is:

Ermse =

√
√
√
√

1

J

J

∑
j=1

(

ρk
j − ρ̂k

j

)2

(8.29)

with ρ̂k
j the exact density in the j-th grid cell at time step k.

We propose two new accuracy measures based on types of accuracy that are especially

relevant in traffic flow applications. It is important to predict correctly the location of a

queue or congestion and especially whether it will spill back as far as an on or off ramp

or not. Furthermore, large jumps in velocities or densities are common in solutions of

the kinematic wave model. Therefore, these discontinuities should be preserved by the

numerical method as well. The new accuracy measures are based on the considerations

above. The phase error measures whether information travels at the correct velocity,

the diffusion error measures how well discontinuities are preserved.
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Phase error

The phase error is about the accuracy of information velocity, see Figure 8.8(b). It

shows a high density region, its exact location and its computed location at some fixed

time. The computed location is downstream of the exact location. The phase error is

measured as the distance (in meters) between the centroids of the areas below the exact

and the computed density. An example density profile and its centroid are shown in

Figure 8.8(a). The x-position centroid can be computed as follows:

x̂C =

∫ xb
xa

xρ(x)dx
∫ xb

xa
ρ(x)dx

=
1

2

(xb − xa)
2ρ1 +(xc − xb)

2ρ2 +(xd − xc)
2ρ1

(xb − xa)ρ1 +(xc − xb)ρ2 +(xd − xc)ρ1
(8.30)

Similarly, the x-position of the centroid of the area below the computed density xC is

computed. If the minimum supply demand method is applied the centroid is at:

xC =
∑

J
j=1 ∆xρ jx j

∑
J
j=1 ∆xρ j

=
∑

J
j=1 ρ jx j

∑
J
j=1 ρ j

(8.31)

with j = 1 the most upstream cell in the area of interest, i.e. x1 > xa. j = J is the

most downstream cell in the area of interest, i.e. xJ < xd . If the upwind method or the

variational method is applied the centroid is at:

xC =
∑

I
i=1 ∆nxi

∑
I
i=1 ∆n

=
∑

I
i=1 xi

I
(8.32)

with i = 1 the first vehicle in the area of interest, i.e. x1 < xd . i = I is the last vehicle

in the area of interest, i.e. xI > xa. The difference between the x-positions of the exact

and the computed centroid is the phase error:

Ephase = xC − x̂C (8.33)

Diffusion error

The diffusion error relates to discontinuous solutions becoming smooth, see Figure

8.8(c). It shows a high density region, its exact density profile and its computed density

profile at some fixed time. The computed profile is smooth, while the exact profile

shows discontinuities (shocks). Just as with the phase error we use the position of the

centroid to measure the diffusion error. We now compute the distance between the

centroids in vehicles per meter, i.e. the vertical instead of the horizontal distance in

Figure 8.8(c). The exact centroid density is computed as follows:

ρ̂C =

∫ xb
x1

(
ρ(x)

)2
dx

2
∫ xb

x1
ρ(x)dx

=
1

2

(xb − x1)(ρ1)
2 +(xc − xb)(ρ2)

2 +(xd − xc)(ρ1)
2

(xb − x1)ρ1 +(xc − xb)ρ2 +(xd − xc)ρ1
(8.34)
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If the minimum supply demand method is applied the centroid density is:

ρC =
∑

J
j=1 ∆x(ρ j)

2

2∑
J
j=1 ∆xρ j

=
∑

J
j=1(ρ j)

2

2∑
J
j=1 ρ j

(8.35)

If the upwind method or the variational method is applied the centroid density is:

ρC =
∑

I
i=1 ∆nρi

2∑
I
i=1 ∆n

=
∑

I
i=1 ρi

2I
(8.36)

The difference between the densities of the exact and the computed centroid is the

diffusion error:

Ediff = ρC − ρ̂C (8.37)

Finally, Figure 8.8(d) shows a density profile with both a phase error and a diffusion

error. The figure illustrates that the two errors can be measured independently.

In the next section, the phase error and the diffusion error are used to asses the numer-

ical methods from the previous sections.

8.6 Accuracy

Both the minimum supply demand method and the upwind method are first order ac-

curate. That means that the global error is proportional to the grid cell size ∆x or the

vehicle groups size ∆n respectively. However, this does not imply that the accuracy of

both methods is similar. We show the differences in accuracy between the minimum

supply demand method and upwind method with explicit and implicit time stepping

and the variational theory by comparing simulation results of the simple test problem

introduced in Section 8.5. We compare the simulation results to each other and to the

exact solution. For the comparison we apply the novel accuracy measures. Further-

more, we discuss which factors (such as resolution and CFL-number) influence the

accuracy.

8.6.1 Simulation results

The numerical solutions of the test cases are shown in Figure 8.9–8.11. The accuracy

of the simulation results is shown in Figure 8.12 and 8.13.

Figure 8.9 shows density plots as a function of time and space. The density is computed

with the different numerical methods: minimum supply demand, upwind with explicit

time stepping, upwind with implicit time stepping and variational theory. It shows

how the exact and numerical density profiles develop over time. The results of the
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(d) Variational method.

Figure 8.9 Density plots of free flow test case with different numerical methods. The

vertical broken line indicates the time for which cross sections are shown in Figure

8.10. The other broken lines indicate sharp boundaries in the analytical solution.
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Continued Figure 8.9 Density plots of congestion test case with different numerical

methods. The vertical broken line indicates the time for which cross sections are shown

in Figure 8.10. The other broken lines indicate sharp boundaries in the analytical

solution.
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Continued Figure 8.9 Density plots of queue test case with different numerical meth-

ods. The vertical broken line indicates the time for which cross sections are shown

in Figure 8.10. The other broken lines indicate sharp boundaries in the analytical

solution.
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(c) Upwind method with implicit time step-
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(d) Variational method.

Figure 8.10 Density profiles of free flow test case at t = 600 s, computed with different

numerical methods and different resolutions. (See next pages for congestion and queue

test case results.)
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(g) Upwind method with implicit time step-

ping.
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(h) Variational method

Continued Figure 8.10 Density profiles of congestion test case at t = 600 s, computed

with different numerical methods and different resolutions. (See next page for queue

test case results.) We note that in the upwind method with explicit time stepping and

with the variational method, the results may seem less accurate with large time steps

and vehicle group sizes. However, this is due to the fact that there are no intermediate

results to plot for example around -5 km. This effect is also visible in the free flow and

queue test case, though less pronounced.
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(k) Upwind method with implicit time step-

ping.
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(l) Variational method

Continued Figure 8.10 Density profiles of queue test case at t = 600 s, computed with

different numerical methods and different resolutions.
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0 5 10 15 20
0

1
2
ρcrit

ρcrit

location (km)

d
en

si
ty

(v
eh

/m
)

(b) Free flow test case, µ = 1.5.
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(c) Congestion test case, µ = 1.
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(d) Congestion test case, µ = 1.5.
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(e) Queue test case, µ = 1.
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(f) Queue test case, µ = 1.5.

Figure 8.11 Density profiles obtained with different numerical methods and CFL-

numbers. The upwind explicit method is omitted from the profiles with large CFL-

number (µ = 1.5), Figures (b), (d) and (f)) because it is very unstable and would

obscure the figures.
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(b) Diffusion error in free flow test case.
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(c) Phase error in congestion test case.
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(d) Diffusion error in congestion test case.
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(e) Phase error in queue test case.
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(f) Diffusion error in queue test case.

Figure 8.12 Accuracy of numerical methods measured with different measures, for

varying CFL-number.
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(a) Phase error in free flow test case.
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(b) Diffusion error in free flow test case.
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(c) Phase error in congestion test case.
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(d) Diffusion error in congestion test case.
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(e) Phase error in queue test case.
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(f) Diffusion error in queue test case.

Figure 8.13 Accuracy of numerical methods measured with different measures, and

their change over time.
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congestion test case show a lot of diffusion if the minimum supply demand method

or the upwind method with implicit time stepping is applied: the high density region

does not have sharp boundaries as the other methods, but the solution is smooth. The

queue test case results show that with these methods the queue dissolves more quickly

than in the exact solution. The diffusion and phase error are analyzed in more detail

below. Most of the analysis is done for one specific time instant t = 600 s, which is also

indicated in the figures. At that moment, the exact solution can be computed relatively

easily, while errors can already be observed in the numerical solution.

Figure 8.10 shows density profiles of the exact and numerical solution at time t = 600

s. The density is computed with different numerical methods and resolutions. The

figures show that at a high resolution the solution with the minimum supply demand

method and the upwind method converges to the exact solution. The numerical solu-

tion obtained with the variational method, does not converge to the exact solution.

However, it converges to the exact solution of the same initial value problem with the

piecewise linear fundamental relation.

Figure 8.11 shows density profiles of the exact and numerical solution at time t = 600

s. The density is computed with different numerical methods and CFL-numbers. The

figure shows reasonable solutions if the upwind method with implicit time stepping

is applied or if the CFL condition is satisfied exactly (µ = 1). However, if µ = 1.5

the solutions obtained with the upwind method with explicit time stepping show insta-

bilities. This also occurs in the free flow test case with the minimum supply demand

method. Other tests (not shown here) show that for the other test cases the minimum

supply demand method is also unstable if larger CFL-numbers are applied. The lack

of instability with relatively small CFL-numbers (but above one) may be explained

by the following. If the CFL condition is satisfied, characteristics can not cross more

than one grid cell boundary within one time step. If the CFL-number is not satisfied,

characteristics may cross more than one cell boundary, but only if their velocity is

‘high enough’. If the CFL-number is relatively small (e.g., µ = 1.5), the character-

istics need a relatively high velocity do so, i.e. characteristic velocity c > (2/3)vmax.

This does not, or not sufficiently, occur in the congestion and the queue test case and

the minimum supply demand method does not show instabilities.

Figure 8.11 furthermore shows the centroids of the density profiles of the exact and

numerical solution computed with µ = 1. It shows that the phase error (i.e. the dis-

tance between the exact centroid and the numerically computed centroid in horizontal

direction) is small, except for the variational method applied to the free flow test case.

In the free flow test case, the diffusion error (the distance between the centroids in ver-

tical direction) is small for all numerical methods except for the variational method. In

both other test cases the diffusion error of the minimum supply demand method and

the upwind method with implicit time stepping is relatively large. The phase error and

diffusion error of the minimum supply demand method and both upwind methods are

studied in more detail in the following. The accuracy measures based on the centroids

of the solution, give rather extreme results. This is due to the nature of the solution
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with discontinuities instead of smooth transitions in the free flow regime. In turn, these

are due to the fact that the variational method uses a piecewise linear fundamental re-

lation that is only an approximation of the fundamental relations in the other methods.

Therefore, we will not further study the accuracy of this method.

Figure 8.12 shows the phase error and diffusion error for different numerical methods

and their dependence on the CFL-number. For the minimum supply demand method

and the upwind method with explicit time stepping only the results with µ ≤ 1 are

shown because if the CFL condition is not satisfied, the method becomes unstable.

Other test results (not shown here) show that the errors of the upwind method with im-

plicit time stepping increase almost linearly as function of the CFL-number for CFL-

numbers above µ = 1.5, at least until µ = 4. The phase errors in the congestion test

case are negligibly small: less than a quarter of a grid cell (∆x/2 = 50 m) or the total

length of 2 vehicle groups in congestion (2sjam∆n = 25 m). The apparent oscillations

in the phase error in the congestion test case and the queue test case can also be ex-

plained by considering the length of a vehicle group. This length is about the same

size as the size of the oscillations. Therefore, we expect that the oscillations are due to

the averaging of the position over multiple vehicle in the procedure to find the phase

error. In the free flow test case the diffusion is much smaller than in the other two test

cases. Those results with very small errors will not be discussed further. All other

results (i.e. phase error in free flow and queue test case and diffusion error in free

flow and congestion test case) show that the errors of both upwind methods are similar

for small CFL-numbers. They increase with the CFL-number for the upwind method

with implicit time stepping, they decrease in the methods with explicit time stepping.

The diffusion error is even zero in the upwind method with explicit time stepping and

µ = 1.

Figure 8.13 shows the phase error and diffusion error for different numerical methods

and how they evolve over time, from t = 0 to t = 600 s. Again the phase error in the

congestion test case and the diffusion error in the free flow test case are negligibly small

and therefore not discussed further. The upwind method with implicit time stepping

has the largest errors, but it is similar to the errors of the minimum supply demand

method, except for the phase error in the queue test case. Explicit time stepping has

the smallest error. It is much smaller than that of the other methods and it increases

only slowly, except for the phase error in the free flow test case. The diffusion error of

the other methods increases quickly in the first part of the simulation, but the increase

rate decreases over time.

8.6.2 Discussion

The test results confirm that the minimum supply demand method and both upwind

methods are converging if the CFL condition is satisfied: µ ≤ 1. The variational

method with µ = 1 converges to the solution of the same problem with piecewise

linear fundamental relation. The upwind method with explicit time stepping and µ = 1
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gives the most accurate simulation results, both in terms of phase error as diffusion

error. The phase error increases (almost) linearly over time. From this we conclude

that the error in characteristic velocity is constant. The accuracy of the minimum sup-

ply demand method and the upwind method with explicit time stepping is lower if the

CFL-number is lower. This implies that decreasing the time step size ∆t without de-

creasing the grid cell size ∆x or the vehicle groups size ∆n, leads to a lower accuracy.

It depends on the numerical method and on the actual traffic state how large this effect

is. However, even for very small CFL-numbers (µ = 0.05), the upwind method with

explicit time stepping is more accurate than the other methods. Therefore, we conclude

that this method is preferred if the CFL condition is satisfied. Only if, for some reason,

the CFL condition can not be satisfied, the upwind method with implicit time stepping

is preferred. This method is less accurate if µ ≤ 1. However, it remains stable even if

µ > 1.

8.7 Conclusions

In this chapter, we introduced the upwind method applied to the mixed-class kinematic

wave model in Lagrangian formulation. This method is simpler than the minimum

supply demand method commonly applied to the kinematic wave model in Eulerian

formulation. This is because switching between upwind and downwind discretization

is unnecessary in the Lagrangian formulation. Furthermore, we introduced an alterna-

tive time stepping method (implicit time stepping) which allows for larger time steps

and a numerical method based on variational theory.

We introduced two novel accuracy measures: diffusion and phase error. The new

accuracy measures take into account just that type of accuracy that is important in

traffic flow applications. The accuracy measures were applied to assess the accuracy

of the numerical methods. They can also be applied to assess the accuracy of a model

against empirical data. This allows for a more fair comparison of traffic flow models

than the currently usual approach of comparing models against empirical data using,

for example, the RMSE. However, for this application it may be necessary to develop

the measures further. For example, it would be useful to automatically match a high

density region in data with the corresponding high density region in the simulation.

Our test results show that the upwind method with explicit time stepping is the most

accurate method. All methods introduce phase errors and diffusion errors. The vari-

ational method leads to stepwise changes in the velocity in free flow due to the change

in the fundamental relation to a piecewise linear fundamental relation. The accuracy in

terms of phase error and diffusion is much worse than of the other methods. Therefore,

we do not discuss this method further,

The requirement of small time steps is the main drawback of the upwind method with

explicit time stepping and also of the minimum supply demand method. This is be-

cause the CFL-condition needs to be satisfied and it results in higher computing times.
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If an application demands for very low computing times, the upwind method with im-

plicit time stepping is an alternative. With this method, larger time steps can be taken

which results in lower computing times.

Regarding the choice of a numerical method we conclude the following:

1. Inaccuracies consist of phase error and diffusion error, the amount of inaccuracy

depends on traffic state, numerical method and CFL-number.

2. The upwind method with explicit time stepping gives the most accurate results.

3. If an explicit time stepping method is used:

(a) µ = 1 gives the most accurate results. If µ = 1 is impossible (e.g., due to the

layout of the road), choose µ < 1 because µ > 1 will lead to instabilities.

(b) Only decreasing the time step size (i.e. decreasing the CFL-number) will

lead to less accurate simulation results.

4. If an implicit time stepping method is used, larger time steps may be taken (even

with µ > 1), but the larger the time step, the less accurate the simulation result.

5. Decreasing both time step size and grid cell size or vehicle group size such that

the CFL-number does not change, will lead to more accurate simulation results.

We have only compared the accuracy of the methods using simulations. It would be

interesting to see whether the computation times are influenced by the methods as we

expect (e.g., lower computation times with the upwind method than with the mini-

mum supply demand method). Future research includes an extension of the variational

method with piecewise linear fundamental relation consisting of more than three parts.

It will increase the number of velocity steps in free flow and therefore increase the

accuracy. The accuracy of the other numerical methods can be studied further by ap-

plying other, more realistic, test cases. In such cases, it may not be possible to obtain

the exact solution. The results show that the solution with the upwind method and

explicit time stepping and high resolution is very accurate. Therefore, that solution

can be applied as a reference solution. Furthermore, phase error and diffusion error

can also be based on velocity and spacing instead of density. This will lead to bet-

ter accuracy estimates in test cases with a small low-density region that needs to be

traced. Finally, the accuracy measures introduced here can also be applied to assess

traffic flow models. In that case they are used to compare measurements with model

results. That way, models are assessed on criteria that are more relevant in traffic flow

modeling than simply the RMSE.

In the next two chapters the upwind method with explicit time stepping is extended to

multi-class models (in particular Fastlane) and to networks including nonhomogeneous

roads, on ramps, off ramps etc.





Chapter 9

Numerical methods for multi-class

models

In the previous chapter we introduced numerical methods for mixed-class kinematic

wave models. In this chapter we extend the methods to multi-class kinematic wave

models. We limit our scope to explicit time stepping methods, because of two rea-

sons. The explicit methods are easiest to extend to multi-class models. Furthermore,

based on the results from the previous chapter we expect accurate simulations can be

done with these methods. A multi-class minimum supply demand method was intro-

duced by Chanut & Buisson (2003). However, they do not include dynamic pce-values.

Furthermore, Ngoduy (2010) introduces an alternative numerical method which uses

eigenvalues. However, it is difficult to approximate the eigenvalues accurately if there

are many (more than 3 or 4) vehicle classes.

We introduce and compare a minimum supply demand method and an upwind method

for the generalized multi-class kinematic wave model, with dynamic pce-values. The

minimum supply demand method is based on the Eulerian formulation of the model,

the upwind method on its Lagrangian formulation. We show that the (dis)advantages

of both methods are similar to the (dis)advantages of their mixed-class counterparts.

The outline of this chapter is as follows. In Section 9.1 we introduce a minimum supply

demand method for the generalized multi-class kinematic wave model. In Section 9.2

the upwind method is introduced. In Section 9.3 we compare both methods using a

simple test problem. We conclude this chapter with a short discussion in Section 9.4.

9.1 Multi-class minimum supply demand method

A minimum supply demand method is developed for the generic multi-class model.

Each time step k the following steps are taken to calculate the new state in each grid

cell j.
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Preparation Determine flow over grid cell boundary qk

u, j− 1
2

by taking minimum of

supply and demand.

Actual time step Determine new class-specific densities ρk+1
u, j by adding inflow and

subtracting outflow.

New values other variables Apply the effective density function, the fundamental re-

lation and the pce function to determine the new pce-values ηk+1
u, j , class-specific

flow qk+1
u, j and effective flow qk+1

j .

The steps are discussed in more detail in the rest of this section. Figure 9.1 shows sim-

ulation results of a simple test problem. The test problem and the results are discussed

in more detail in Section 9.3.

9.1.1 Preparation

In the preparation part of the time step the flow over the cell boundaries is determined

using the class-specific demand and supply, all in vehicles per time unit. The total

demand and supply is calculated equivalently to the mixed-class demand (8.1c) and

supply (8.1d):

δ k
j =

{
qk

j (free flow)

qcrit (congestion)
and σ k

j =

{
qcrit (free flow)

qk
j (congestion)

(9.1)

with the qk
j effective flow in pce vehicles per time unit. Therefore, also the unit of

the demand and supply is pce vehicles per time unit. The total supply and demand is

divided among the vehicle classes using the class-specific shares λu:

λ k
u, j =







ηk
u, jv

k
u, j

∑u ηk
u, jv

k
u, j

if ρk
u,i = 0 for all classes u (9.2a)

ηk
u, jρ

k
u, j

ρk
j

if vk
u,i = 0 for all classes u (9.2b)

ηk
u, jq

k
u, j

qk
j

otherwise (9.2c)

This implies that in most cases (9.2c) the share is simply the fraction of the effective

flow taken up by class u. However, if the effective flow is zero (and thus ρk
u,i = 0 for

all classes u or vk
u,i = 0 for all classes u), all shares λu would be zero and ∑u λu 6=

1. Therefore, if the effective flow is zero, the share is a fraction determined by the

velocities (9.2a) or densities (9.2b). Using the shares, the total supply and demand is

distributed among the vehicle classes as follows:

δ k
u, j = λ k

u, jδ
k
j and σ k

u, j = λ k
u, j−1σ k

j (9.3)
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The unit of class-specific demand and supply is pce-vehicles per time unit. We note

that the share in the previous cell j − 1 is used to calculate the class-specific supply

in cell j. This is because the total supply needs to be distributed over all vehicles that

want to cross the cell boundary between cell j−1 and cell j, and not over the vehicles

that are already in cell j. Finally, for each cell, the class-specific flow from the previous

cell i−1 to cell i is determined as the minimum of the supply and the demand:

qk

u, j− 1
2

=
1

ηk
u, j

min
(

σ k
u, j,δ

k
u, j−1

)

(9.4)

9.1.2 Actual time step

The new class-specific density is determined in the actual time step, similar to the new

density in the mixed-class minimum supply demand method (8.1b):

ρk+1
u, j = ρk

u, j +
∆t

∆x

(

qk

u, j− 1
2

−qk

u, j+ 1
2

)

(9.5)

We note that with this approach, the effective flow (in pce equivalent vehicles per time

unit) is maximized. Therefore, the numerical method finds the entropy solution of the

continuous model.

9.1.3 Computation of variable values

In the last part of the time step, the values of other variables such as the pce-values

and the class-specific and effective flow are calculated. For example, for Fastlane, the

effective density function (4.51), the fundamental relation (4.49) and the pce function

(4.11) are applied. This part of the time step shows the importance of the reformulation

of the effective density function as introduced in Section 4.5. It is used to determine

the new pce-value ηk
u, j, without using a numerical approximation based on the implicit

formulation in Section 4.3.

We note that the method does not guarantee that the new effective density does not ex-

ceed jam density. This is because the supply and demand are based on the share, which

is in turn based on the old pce-values. However, during the time step, the densities and

thus also the pce-values change. With the new pce-values, the effective density may

in fact exceed jam density. A simple solution to this problem is to set the effective

density to jam density (ρ = ρjam), whenever it exceeds jam density. The class-specific

densities ρu are not changed and thus vehicles are conserved.

Finally, in the last part of the time step, the class-specific and the effective flow are

determined by:

qk
u, j = vk

u, jρ
k
u, j and qk

j = ∑
u

ηk
u, jq

k
u, j (9.6)
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9.2 Multi-class upwind method

An upwind method is developed for the generic multi-class model. In each time step k

the following steps are taken to calculate the new state for each vehicle group i:

Actual time step Determine new spacing of class 1 sk+1
1,i and spacing ratio (s1/su)

k+1
i

of all other classes u.

New values other variables Determine the new spacing of all classes u 6= 1 and the

class-specific densities. Apply the effective density function and the fundamen-

tal relation to determine the new class-specific velocity vk+1
u,i .

New positions Calculate the new positions of all vehicle groups.

The steps are discussed in detail in the rest of this section. Figure 9.1 shows simulation

results of a simple test problem. The test problem and the results are discussed in more

detail in Section 9.3.

9.2.1 Actual time step

We recall from Chapter 6 the conservation equations in the Lagrangian coordinate

system (6.28) and (6.34):

∂ s1

∂ t
+

∂v1

∂n
= 0 (9.7a)

∂

∂ t

(
s1

su

)

+
∂

∂n

(
v1 − vu

su

)

= 0 for all classes u 6= 1 (9.7b)

An upwind method is applied to discretize the equations. Therefore, vehicles of class

1 are grouped into groups of ∆n vehicles. The discretization of the conservation equa-

tion for class 1 (9.7a) is similar to the discretization of the mixed-class conservation

equation (8.5):

sk+1
1,i = sk

1,i +
∆t

∆n

(

vk
1,i−1 − vk

1,i

)

(9.8a)

with k the time step index, ∆t the time step size, i the vehicle groups index (only

referring to vehicles of class 1) and ∆n the vehicle group size: the number of vehicles

of class 1 per group. We note that the number of vehicles of other classes in one

group may vary, i.e. the fraction ρk
u,i/∑u ρk

u,i depends both on the vehicle group i and

the time step k. The discretization of (9.7b) uses the same indices and time step and

vehicle group sizes and is as follows:

(
s1

su

)k+1

i

=

(
s1

su

)k

i

+
∆t

∆n

(

vk
1,i−1 − vk

u,i−1

sk
u,i−1

−
vk

1,i − vk
u,i

sk
u,i

)

(9.8b)
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9.2.2 New value of other variables

Once sk+1
1,i and (s1/su)

k+1
i are known, the new spacing of the other classes u can be

computed:

sk+1
u,i =

sk+1
1,i

(s1/su)
k+1
i

(9.9)

The new densities of each class u follows directly:

ρk+1
u,i = 1/sk+1

u,i (9.10)

Subsequently, the effective density function is applied to find the new effective den-

sity. Finally, the new class-specific velocities follow from the multi-class fundamental

relation.

9.2.3 New positions

Equivalently to the derivation of (8.11), the discretized conservation equation of class

1 (9.8a) can be simplified to:

xk+1
1,i = xk

1,i +∆tvk
1,i (9.11)

This is useful because in most applications the location of each vehicle group is needed,

and not only its (class-specific) spacing, density or velocity.

9.2.4 Discussion

Just as in the mixed-class case, the upwind method applied in Lagrangian coordinates

is much simpler than the minimum supply demand method applied in Eulerian coordi-

nates. Because of the lack of switching between upwind and downwind discretization

the upwind method is computationally less demanding. In the next section we compare

the accuracy of the multi-class minimum supply demand and upwind method based on

simulation results.

9.3 Accuracy of numerical methods

We compare the accuracy of the multi-class minimum supply demand and upwind

method with a simple test case, similar to the queue test case in Chapter 8. The only

difference is that we now apply Fastlane with multiple vehicle classes.
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Table 9.1 Model parameters.

Fundamental relation parameters

maximum velocity class 1 v1,max 33.3 m/s = 120 km/h

maximum velocity class 2 v2,max 25 m/s = 90 km/h

critical velocity vcrit 20.8 m/s = 75 km/h

critical density ρcrit 0.033 veh/m = 33 veh/km

jam density ρjam 0.2 veh/m = 200 veh/km

gross vehicle length class 1 L1 1/ρjam 5 m

gross vehicle length class 2 L2 18 m

minimum time headway class 1 T1 1 s

minimum time headway class 2 T2 1.5 s

(resulting congestion wave parameter w 4.17 m/s = 15 km/h)

9.3.1 Test setup

The test setup is as follows. There are two-classes with different maximum velocity

vu,max, gross vehicle length Lu and minimum time headway Tu. Initially, the fraction

of vehicles of class 2 is the same everywhere and equal to γ = ρ2/(ρ1 + ρ2) = 0.1.

The test case represents a traffic light turning green. This leads to the following initial

conditions:

ρ(x,0) =







0 if x > 0

ρjam if 0 ≤ x ≤ Lqueue

ρupstream if x < Lqueue

(9.12a)

ρ2(x,0) = γ (ρ1(x,0)+ρ2(x,0)) (9.12b)

with the initial length of the jam density region L = 2000 m and the initial upstream

effective density ρupstream = 1
2
ρcrit. The multi-class Smulders fundamental relation

(4.49) is applied, with the same parameters as previously used in Fastlane, see Chapter

5. All model parameters are given in Table 9.1. The same numerical parameters as in

the base case in Chapter 8 are applied. That is, the grid cell size ∆x = 100 m, vehicle

group size ∆n = 2.5 vehicles and time step size ∆t = 3 s. Therefore, the CFL-condition

is satisfied exactly (µ = 1).

We do not compute the analytical solution of the test problem. However, we use the

solution obtained with the upwind method with a high resolution (∆n = 0.42 vehicles,

∆t = 0.5 s, µ = 1) as a reference solution. We have shown in the previous chapter

that with a high resolution the accuracy of this solution is high and therefore it can be

applied as a reference solution.

9.3.2 Simulation results

The numerical solutions of the test case are shown in Figure 9.1 and 9.2. Figure 9.1

shows the effective density, but also the class-specific velocities and the fraction of
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Figure 9.1 Simulation results with multi-class minimum supply demand method and

multi-class upwind method.
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Continued Figure 9.1 Simulation results with multi-class minimum supply demand

method and multi-class upwind method.
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Figure 9.2 Accuracy of multi-class numerical methods with different measures, and

their change over time.
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vehicles of class 2. The results with the minimum supply demand method are more

diffusive than the results with the upwind method. Just as in the mixed-class case,

congestion, and especially the queue, spills back further upstream with the upwind

method than with the minimum supply demand method. The phase error and diffusion

error and their evolution over time are shown in Figure 9.2. The errors are largest

about halfway the simulation. On one hand, the errors have had some time to develop

themselves. On the other hand, the queue is still relatively long. The figure shows that

both the accuracy of the upwind method is higher than that of the minimum supply

demand method. However, after the queue has dissolved (at around t = 950 s) the

accuracy of both methods is similar. Except for the size, there is not much difference

between the error in the effective density and the class-specific densities of class 1 and

2.

9.4 Conclusions

The minimum supply demand method based on the Eulerian formulation of the kine-

matic wave model and the upwind method based on its Lagrangian formulation are

extended to multi-class models. Similar conclusions as for the mixed-class model

and numerical methods hold. The upwind method is computationally less demanding

because there is no switching between downwind and upwind discretization. The com-

putational results with the upwind method are more accurate: both the phase error and

diffusion error are smaller.

Future research includes a more detailed study of the accuracy of the upwind method

for the generalized multi-class kinematic wave model. Therefore, more test cases

should be studied with a larger variety of characteristic waves, for example by in-

cluding other traffic compositions. The numerical solution may be compared with the

analytical solution, instead of with a reference solution that is also obtained numer-

ically. Furthermore, the accuracy of the method applied to models with more than

two-classes can be studied, as well as the accuracy when the method is applied to other

models than the Fastlane model. The method may also be applied to compare the

simulation results of multi-class kinematic wave models. The computational time of

the upwind method can be reduced by combining it with implicit time stepping or the

variational method. Finally, an alternative numerical method based on the other for-

mulation of the conservation equation in Lagrangian coordinates (6.29) (Yuan et al.,

2011; Yuan, 2013) can be studied further. This method is expected to be more accurate

if there are only few vehicles of class 1. The accuracy can be evaluated in more detail

using the same methods as presented in this chapter.

We conclude that the upwind method based on the Lagrangian coordinate formulation

of the generalized multi-class model leads to more efficient simulations on homoge-

neous roads than the minimum supply demand method. In the next chapter we extend

the upwind method to inhomogeneous roads and networks.



Chapter 10

Networks

The final step in the development of our traffic flow model and accompanying numeri-

cal method is the introduction of nodes. Previously, we only considered long homoge-

neous roads. In this chapter we discuss how to deal with inflow and outflow boundaries

and inhomogeneities. Inhomogeneities are, for example, changes in the fundamental

relation due to changes in the number of lanes or speed limit, off ramps (diverges) and

on ramps (merges). In our model links are homogenous road stretches connected by

nodes. Boundaries and inhomogeneities are located at nodes. Therefore, we refer to

models for inflow and outflow boundaries, inhomogeneities, merges and diverges as

node models.

Most discussions on boundaries and inhomogeneities in traffic flow models assume

that the model is formulated in Eulerian coordinates, e.g., (Newell, 1993b; Daganzo,

1995a; Jin & Zhang, 2003; Lebacque, 1996; Helbing & Treiber, 1999; Tampère et al.,

2011; Flötteröd & Rohde, 2011). Most articles discuss both a continuous node model

and its discretization based on the minimum supply demand method. In fact, also

the continuous node models use concepts from the minimum supply demand method.

Tampère et al. (2011) propose a generic node model for nodes with multiple incoming

and outgoing links, see Figure 10.1(a). Their article includes simple, but consistent

and realistic, models for merges with two incoming links (Figure 10.1(d)) and diverges

with two outgoing links (Figure 10.1(c)). They discuss how to include realistic rules for

overtaking at diverges and priority at merges. Furthermore, they propose a method to

include capacity constraints of the node itself. We shortly review the model and built on

it for our multi-class node model and node model in Lagrangian formulation. Because

the main application of our model is simulation of motorways, we restrict ourselves to

nodes that are present on this type of roads. It implies that we only consider nodes with

at most three links (one-to-one, one to two and two to one nodes). Furthermore, we do

not consider capacity constraints of the node itself. The methods may be extended to

intersection models for other nodes with more links or restrictions on the capacity of

the node itself.

Ngoduy (2010) proposes a node model for a multi-class kinematic wave model. How-
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ever, he assumes that vehicles are always able to overtake, for example to take a dif-

ferent outgoing link. Furthermore, his merge model violates the invariance principle,

which implies that traffic flow over the node depends heavily on the flows over the

incoming links. Lebacque & Khoshyaran (2005) have shown that this is an unreason-

able assumption. As an example, consider the case with low flows (in total below the

capacity of the outgoing link) from both incoming links. If the flow from one incoming

link is halved, the flow from the other incoming link to the outgoing link is also halved,

according to Ngoduy’s model.

The main challenge for node modelling in Lagrangian formulation is that nodes move

with respect to the coordinate system, which moves with the vehicles. Therefore, one

may develop node models similar to the ones that are used in microscopic models.

However, the continuous link model describes the ‘average’ vehicle behaviour. There-

fore, also the node model and its discretization should describe the average vehicle

behaviour and thus we do not resort to microscopic node models describing the be-

havior of individual vehicles. We consider macroscopic node models and introduce

node models in Lagrangian formulation in analogy to those in Eulerian formulation.

We develop such models and show that they are, in most cases as accurate as node

models in Eulerian formulation. It even turns out that part of the node model and its

discretization is simpler in Lagrangian than in Eulerian formulation.

The outline of this chapter is as follows. In Section 10.1 we discuss mixed-class node

models in Eulerian formulation and the minimum supply demand method for these

models, based on (Tampère et al., 2011). We extend the method to multi-class models

in Section 10.2. In Section 10.3 we discuss mixed-class node models in Lagrangian

formulation and in Section 10.4 the discretization of Lagrangian node models. The

methods are applied in simulations in Section 10.5. Furthermore, in that section the

accuracy of the minimum supply demand method for nodes and the upwind method for

nodes are compared. Finally, we conclude with Section 10.6. It includes a few remarks

on extensions of the mixed-class upwind method for nodes to multi-class models.

10.1 Node model and minimum supply demand method

Nodes have one or multiple incoming and one or multiple outgoing links, see Figure

10.1 for some examples. Our goal is to describe how, in a mixed-class kinematic wave

model, the flux over the node can be computed, given the traffic state at the incoming

and outgoing links. We will do this for different types of nodes, with one or two

incoming and one or two outgoing links. The results can be generalized to nodes with

more links, but this generalization is not in all cases straightforward.

Node models in Eulerian formulation use concepts from the minimum supply demand

method. The demand of the incoming links and the supply of the outgoing links is

computed. The flux over the node is the minimum of both, possibly corrected for some

complicating factors if there are multiple incoming or outgoing links. Therefore, we
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Figure 10.1 Different types of nodes. Only (b), (c) and (d) are discussed in detail in

this chapter.

skip the step of describing the continuous node model and immediately turn to the

discretized node model. Our goal is to present a method to calculate the flux from the

last cell of the incoming link(s) to the first cell of the outgoing link(s). The last cell

of an incoming link is denoted with a, the first cell of an outgoing link is denoted b.

Each time step k the demand at last cell of the incoming link δ k
a and the supply at the

first cell of the outgoing link σ k is calculated. This is done similarly to the minimum

supply demand method for homogeneous roads (8.1c) and (8.1d):

δ k
a =

{

qk
a

(qcap)a

and σ k
b =

{

(qcap)b (free flow)

qk
b (congestion)

(10.1)

with qk
a the current flow in incoming cell a and qk

b the current flow in the outgoing

cell b. (qcap)a and (qcap)b are their respective capacities. In most cases the flux (the

flow over the node during one time step) is not simply the minimum of the supply and

demand, because some other influences have to be taken into account. In the rest of

this section we discuss what influences the flux and how to calculate it.

10.1.1 Boundary conditions

At inflow and outflow nodes, boundary conditions are applied. We assume the flow at

the inflow boundary is known, either from measurements or for example from origin-

destination matrices. At the outflow boundary, we assume that either the flow is known,

or there is free flow downstream.

Imposing a flow boundary condition directly leads to an ill posed problem in some

situations (Helbing & Treiber, 1999). In this context ill posed means that there is no

solution to the boundary value problem that both satisfies the boundary condition and
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solves the conservation of vehicles equations within the computational domain. For

example, if the density is very high near the inflow boundary, the problem becomes

ill posed if the boundary condition prescribes a flow above the actual flow just down-

stream of the boundary. Similar problems occur when imposing velocity or density

boundary conditions in this way. Furthermore, when prescribing both inflow and out-

flow, it may not be possible to guarantee conservation of vehicles.

Therefore, the minimum supply demand method is used in order to impose the bound-

ary condition flow whenever possible, but preventing the problem from becoming ill

posed. Additional cells (ghost cells) are added just upstream the inflow boundary and

just downstream the outflow boundary. The boundary is then treated as a one-to-one

node, see Figure 10.1(b). In the upstream ghost cell the demand is set equal to the

prescribed boundary flow. If there is a prescribed boundary flow at the downstream

boundary, the supply in the downstream ghost cell is set equal to this flow. If it is as-

sumed that there is free flow downstream, the supply in the ghost cell is set to any value

equal to or above the capacity of the last link. Finally, the node flux is the minimum of

the supply in the cell downstream of the node and the demand in the cell upstream of

the node.

10.1.2 Spatio-temporal changes in the fundamental relation

At a node the fundamental relation can change, for example due to a change in road

layout such as a reduction of the number of lanes. Furthermore, it can change tempo-

rarily, for example due to weather or an accident. This can be included in the model

by making the fundamental relation time and space-dependent:

q(ρ) = q(ρ, t,x) (10.2)

The grid cell boundaries and the time steps are aligned with, respectively, the nodes

and the moments at which the fundamental relation changes. The node is then treated

as a one-to-one node, see Figure 10.1(b). The flow is not only density-dependent, but

also depends on the location (grid cell j) and the time (time step k):

qk
j = q(ρk

j ,k∆t, j∆x) (10.3)

Subsequently, downstream supply and upstream demand are calculated using (10.1)

and the node flux is the minimum of both.

10.1.3 Diverges

Diverges are nodes with one incoming and multiple outgoing links, see Figure 10.1(c).

A simple example is an off ramp. At a diverge turn fractions are assumed to be known.

The turn fraction αb to outgoing link b is the fraction of all vehicles arriving at the node
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that want to go to link b. Turn fractions are, for example, derived from routes or origin

destination matrices, they can be measured directly, or they are based on the capacity

of the outgoing links. Turn fractions may be time-dependent but for readability we

omit the dependence on time in the equations.

In the diverge node model, the turn fractions are used to distribute the demand over the

outgoing links. Here we restrict ourselves to two outgoing links, see Figure 10.1(c).

The grid cell boundaries are aligned with the node. The flux from the last cell of

the incoming link to the first cell of both outgoing links is calculated. The procedure

proposed here is also discussed in e.g., (Tampère et al., 2011). The total demand δ and

the supplies of the outgoing cells σb1
and σb2

are calculated using (10.1). We assume

that vehicles exit in a first in first out (FIFO) sequence and vehicles may be delayed by

their leaders irrespective of their destination. Therefore, if the inflow into one outgoing

cell is constrained by the available supply, also the inflow into the other outgoing cell is

constrained. Consequently, the flux over the node is not only restricted by the demand

and supply, it is also restricted by the turn fractions:

fb1
= αb1

f ≤ σb1
, fb2

= αb2
f ≤ σb2

, f = fb1
+ fb2

≤ δa (10.4)

with f the total flux and fb1
and fb2

the flux to cell b1 and b2, respectively. Combining

(10.4) into one equation yields the flux to link b1:

fb1
= αb1

f = αb1
min

(
σb1

αb1

,
σb2

αb2

, δa

)

(10.5)

The flux to link b2 can be found similarly and both fluxes are rewritten:

fb1
= min(βb1

, βb2
, 1)αb1

δa, fb2
= min(βb1

, βb2
, 1)αb2

δa (10.6a)

with reduction factors:

βb1
=

σb1

αb1
δa

, βb2
=

σb2

αb2
δa

(10.6b)

To summarize, the diverge node model consists of (10.6) together with the demand and

supply as defined in (10.1).

10.1.4 Merges

Merges are nodes with multiple incoming and one outgoing link, see Figure 10.1(d). A

simple example is an on ramp. In the case of a merge some extra modeling decisions

need to be made. They are related to which of the incoming roads gets priority. Cassidy

& Ahn (2005); Bar-Gera & Ahn (2010) show that at a merge, drivers give priority

following some fixed merge ratio. The merge ratio might be time-dependent (e.g.,

high in the morning peak, low in the afternoon peak), but does not depend on the

actual flow. The fixed merge ratio can result from specific traffic regulations imposed
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(priority rules), which are sometimes enforced by geometrical measures (e.g., lane

markings). Unless such local priority rules are explicitly known, there are different

methods for estimating priority ratios. They are for example based on the capacity of

the incoming links or directly on flow measurements. Since we focus on an appropriate

macroscopic representation and not on the underlying microscopic drive behavior, we

assume the merge priority ratios to be known and we describe how they can be used

in merge modeling. We summarize the discrete model in Eulerian coordinates that

was presented before in slightly different versions by several authors such as Daganzo

(1995a); Lebacque (1996, 2005); Tampère et al. (2011).

We only discuss how to model a merge with two incoming links, see Figure 10.1(d).

Again, grid cell boundaries are aligned with the node. The flux from the last cell of

both incoming links to the first cell of the outgoing link is calculated. Demand and

supply are calculated using (10.1). The merge priority ratio for link a1 is γa1
∈ [0,1].

A high merge priority ratio means that vehicles from incoming link a1 usually get

priority over vehicles from link 2. The merge priority ratio for link a2 is γa2
= 1− γa1

.

The merge priority ratio is used to distribute the available supply of link 3 over the

incoming links. This may lead to an underutilization of the outgoing links. This is

for example the case if the demand from incoming link a1 is satisfied but the demand

from incoming link a2 is not, while furthermore the supply is not fully utilized either.

In such a case, the remaining supply is assigned to the incoming link of which the

demand is not satisfied, a1 in the example. Tampère et al. (2011) show that this leads

to the following fluxes over the merge node:

fa1
= min

(
βa1

σb, δa1

)
, fa2

= min
(
βa2

σb, δa2

)
(10.7a)

with reduction factors:

βa1
= max

(

γa1
, 1− δa2

σb

)

, βa2
= max

(

γa2
,

(

1− δa1

σb

))

(10.7b)

To summarize, the merge node model consists of (10.7) together with the demand and

supply as defined in (10.1).

10.2 Multi-class node models

We extend the node models from the previous section to multi-class node models. For

application in the minimum supply demand method for nodes, only the last cell of the

incoming link(s) and the first cell of the outgoing link(s) are used in this procedure.

The methods proposed here can be applied to Fastlane but also to any other multi-class

model that is contained in the generalized model in Chapter 5.
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10.2.1 One-to-one node

In the case of a one-to-one node (with e.g., a change in the fundamental relation or a

boundary node), the effective demand and supply are equal to the mixed-class demand

and supply (10.1). Subsequently, the class-specific demands, supplies and fluxes are

calculated as in the multi-class minimum supply demand method for homogeneous

roads, see Section 9.1.

10.2.2 Diverge node

In the case of a diverge, the turn fractions may be different for each vehicle class. The

effective total demand δa and effective cell specific supplies σb1
and σb2

are calcu-

lated as in the multi-class minimum supply demand method for homogeneous roads

(9.1). The effective demands and supplies are distributed over classes similar to the

distribution for a homogeneous road (9.3):

δu,a = λu,aδa, σu,b1
= λu,aσb1

, σu,b2
= λu,aσb2

(10.8)

with the share as in (9.2). Subsequently, the class-specific demand is distributed over

the outgoing cells using turn fractions, similar to the distribution for mixed-class:.

δu,b1
= αu,b1

δu,a, δu,b2
= αu,b2

δu,a (10.9)

with turn fraction αu,b1
the fraction of vehicles of class u that wants to go to link b1.

αu,b2
= a−αu,b1

is the remaining fraction of vehicles of class u, they will go to link

b2. We now calculate the class flux to link b1 without assuming FIFO:

f ∗u,b1
=

1

ηu,a
min(δu,b1

,σu,b1
) =

αu,b1

ηu,a
min

(

δu,
σu,b1

αu,b1

)

(10.10)

The next step is to introduce FIFO for the different directions. This implies that

vehicles can not overtake a vehicle of the same class in order to go to a different

outgoing link (just as in the mixed-class node model). However, vehicles can overtake

vehicles of other classes, which is a reasonable assumption if velocities are unequal.

The class-specific flux to cell b1 is similar to the mixed-class flux (10.5):

fu,b1
=

αu,b1

ηu,a
min

(

δu,
σu,b1

αu,b1

,
σu,b2

αu,b2

)

(10.11)

The class-specific flux to cell b2 can be found similarly and both fluxes are rewritten:

fu,b1
= min

(
βu,b1

, βu,b2
, 1
) αu,b1

ηu,a
δu, fu,b2

= min
(
βu,b1

, βu,b2
, 1
) αu,b2

ηu,a
δu (10.12)
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with reduction factors:

βu,b1
=

σu,b1

αu,b1
δu

, βu,b2
=

σu,b2

αu,b2
δu

(10.13)

In some cases it may be an unreasonable assumption the class-specific flows are un-

constrained by the class-specific flows of other classes. This is for example the case if

velocity differences are negligible and there is little possibility to overtake. In such a

case the method may be more accurate if FIFO for the different classes is also included

in the node model by introducing more reduction factors.

10.2.3 Merge node

The node model for a multi-class merge is relatively straightforward. First, the ef-

fective fluxes fa1
and fa2

from cell a1 and cell a2, respectively, to the outgoing cell

are calculated just as in the mixed-class case (10.7a), (10.7b). The effective fluxes are

then distributed over the classes using the shares as in the multi-class minimum supply

demand method for homogeneous roads (9.2):

fu,a1
= λu,a1

fa1
, fu,a2

= λu,a2
fa2

(10.14)

We note that this model uses the assumption that the merge priority rules are equal for

all classes. It could be studied further whether this is a reasonable assumption.

10.3 Nodes in the Lagrangian formulation

We introduce a continuous node model in Lagrangian formulation. It uses sinks and

sources. It is found that the continuous model is not suitable to discretize directly.

Therefore, in the next section, we propose an alternative discretization of the Lagrang-

ian node model.

10.3.1 Sink and source terms

Sinks and sources form the basis of the Lagrangian node model. We derive a conserva-

tion equation with sinks and sources in the Lagrangian coordinate system. Therefore,

we first introduce its Eulerian formulation which is easier to understand intuitively.

The conservation of vehicles equation in Eulerian formulation is rewritten to include a

sink/source term:

∂ρ

∂ t
+

∂q

∂x
= g(t,x) (10.15)
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The term g(t,x) = gsource(t,x)− gsink(t,x) denotes the net time and space-dependent

inflow in vehicles per second and per meter. However, we assume that the source is

located at a fixed point in space. That is, the length of the ramp is not taken into account

but it is set to zero. This is consistent with the node models in the previous sections.

Assuming an infinite long road with a ramp or boundary at xnode the source g(t,x) can

now be written as:

g(t,x) = qinflow(t,xnode)h(x) (10.16)

with qinflow(t,xnode) the inflow from the ramp or boundary in vehicles per second. At a

merge or inflow boundary, there is a net source and qinflow > 0, at a diverge or outflow

boundary, there is a net sink and qinflow < 0. In (10.16), h (with unit m−1) can be any

function with
∫ ∞

x=−∞ h(x)dx = 1. For example, in the following we use the delta-Dirac

function which can loosely be thought of as:

h(x) = δ (x) =

{
0 for x 6= 0,

∞ for x = 0,
with

∫ ∞

x=−∞
δ (x) dx = 1. (10.17)

For a rigorous definition of the delta-Dirac function we refer to any calculus or analysis

textbook. Alternatively, if one wants to take into account the physical length of the on-

ramp h(x) can for example be defined as a block function.

10.3.2 Sink and source terms in Lagrangian formulation

We derive the Lagrangian conservation equation with source term in a way similar to

the derivation of the Lagrangian conservation equation in Section 6.1. An alternative

graphical derivation is proposed in the next subsection. The graphical derivation is

more intuitive, but mathematically less rigorous. In the derivation we apply the same

definitions as in Section 6.1. We recall the definition of spacing:

s =
1

ρ
(10.18)

the Lagrangian time derivative:

D

Dt
=

∂

∂ t
+ v

∂

∂x
(10.19)

and the spacing expressed as partial derivative:

s =−∂x

∂n
(10.20)

Substituting the definition of spacing (10.18) into the Eulerian conservation equation
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with source term (10.15) and applying the quotient rule gives:

∂

∂ t

(
1

s

)

+
∂

∂x

(v

s

)

= g(t,x) ⇒ − 1

s2

∂ s

∂ t
+

1

s

(

s
∂v

∂x
− v

∂ s

∂x

)

= g(t,x) (10.21)

Multiplying both sides with s2 and substituting the Lagrangian time derivative (10.19)

gives:

∂ s

∂ t
− s

∂v

∂x
+ v

∂ s

∂x
= s2g(t,x) ⇒ Ds

Dt
− s

∂v

∂x
= s2g(t,x) (10.22)

Finally, (10.20) is substituted to find the Lagrangian conservation equation with source

term:

Ds

Dt
+

∂v

∂n
= s2g(t,x) (10.23)

10.3.3 Graphical derivation and interpretation of sink and source

terms

We derive the Lagrangian conservation equation with source term (10.23) in an alter-

native, graphical way. The graphical derivation is similar to the graphical derivation of

the conservation equation in Lagrangian coordinates in Section 6.2.2.

In Figure 10.2 a (t,x) plane with some vehicle trajectories is shown. The box is a

platoon of vehicles followed over time ∆t. Initially (at told), the platoon contains ∆nold

vehicles. During the time interval ∆nsource vehicles enter the road, e.g., via an on ramp.

Finally (at tnew), the platoon contains ∆nnew =∆nold+∆nsource vehicles. The number of

vehicles that has entered the platoon is determined by the inflow rate per meter g(x, t),

the initial length of the platoon sold∆nold and the duration ∆t:

∆nsource = g(x(n), t)sold∆nold∆t (10.24)

We note that the source term g has the dimension (m ·s)−1. This implies that the source

is not located at one point in space, but it has a certain length. The final length of the

platoon snew∆nnew =
∫ nlast

nfirst
s(tnew,n)dn is determined by its initial length sold∆nold =

∫ nlast
nfirst

s(told,n)dn and the distances travelled by the first vehicle in the platoon vfirst∆t =
∫ tnew

told s(t,nfirst)dt and the last vehicle in the platoon vlast∆t =
∫ tnew

told s(t,nlast)dt:

snew∆nnew = sold∆nold + vfirst∆t − vlast∆t (10.25)

Substituting nlast = nfirst +∆nsource and rearrangement gives:

snew(∆nold +∆nsource) = sold∆nold + vfirst∆t − vlast∆t

⇒ (snew − sold)∆nold +(vlast − vfirst)∆t =−snew∆nsource (10.26)
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Figure 10.2 A control volume that follows a platoon of ∆n vehicles over a time ∆t. The

dark trajectories indicate vehicles entering the platoon, for example via an on ramp.

This graph is applied to derive the Lagrangian conservation equation with source term.

Substituting the source term (10.24) and dividing both sides by ∆nold∆t gives:

(snew − sold)∆nold +(vlast − vfirst)∆t =−snewg(x(n), t)sold∆nold∆t

⇒ snew − sold

∆t
+

vlast − vfirst

∆nold
=−snewsoldg(x(n), t) (10.27)

Finally, we take an infinitesimal control volume, i.e. we let both ∆n1 → 0 and ∆t → 0.

Furthermore, we apply the definition of the derivative (6.13) and find the Lagrangian

conservation equation with source term (10.23).

10.3.4 Discretization of sinks and sources in upwind method

The Lagrangian conservation equation with source term (10.23) may be discretized

using an upwind method similar to the approach for homogeneous roads (8.5) which

is introduced hereafter. In the next section we show that this approach has some disad-

vantages and we propose an alternative approach. Applying the upwind method gives:

sk+1
i = sk

i +
∆t

∆n

(
vk

i−1 − vk
i

)
+∆t(sk

i )
2gk

i (10.28)
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with ( fsource)
k
i the inflow in (m · s)−1 at the position of the i-th vehicle group at time

t = k∆t. Using (10.24) the source term ( fsource)
k
i can be approximated with:

(gsource)
k
i ≈

(∆nsource)
k

∆nk∆tsk
i

(10.29)

Combining (10.28) and (10.29) gives:

sk+1
i = (1+ωk)sk

i +
∆t

∆n

(
vk

i−1 − vk
i

)
(10.30)

with ωk = (∆nsource)
k/∆nk which can be interpreted as a source fraction. It is the

relative growth of the number of vehicles in the vehicle group due to the source. For

example, at an on ramp the source fraction may be ω = 0.1 indicating that for each 10

vehicles passing the on ramp on the main road, 1 vehicle enters the road from the on

ramp. At an off ramp the source fraction may be ω = −0.2 indicating that for each 5

vehicles arriving at the off ramp, 1 takes the off ramp, the others continue on the main

road.

10.4 Discretization of nodes in upwind method

With the proposed discretization (10.30) of the conservation equation with source term,

two problems occur: 1) the number of vehicles in the vehicle group changes, and 2) if

the fundamental relation changes during a time step, for example because the number

of lanes changes as the group passes a ramp, this is not accounted for in the discret-

ization. The first issue is related to the first term on the right hand side of (10.30):

if the source fraction ωk = (∆nsource)
k/∆nk is nonzero, the number of vehicles in the

group changes. This can be solved with a proper approach for vehicle discretization.

The second issue relates to time discretization. Our solution of both issues is discussed

below.

10.4.1 Vehicle discretization

With the simple upwind discretization proposed above (10.30), the number of vehicles

in one vehicle group changes at nodes. Therefore, the upwind method (8.5) is applied

on the homogeneous parts of the road, but we develop another discretization method

for the nodes. To keep the number of vehicles in one vehicle group constant there are

two options at nodes:

1. Collect all vehicle groups and form new groups. The new groups may include

vehicles from multiple vehicle groups on all incoming links. See Figure 10.3(a).

2. Keep the vehicle groups as they are. Only full vehicle groups travel over the

node. They may have to wait for other full vehicle groups. See Figure 10.3(b).
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Figure 10.3 Different types of vehicle and time discretization illustrated with traject-

ories over a merge node and a node with a change in the fundamental relation. Colors

and line styles indicate trajectories on different links (incoming and outgoing).

The first option is computationally intensive and more difficult to implement. However,

the results are expected to be more accurate. The inaccuracies of the second method

are expected to be small. In Section 10.5 we analyze the accuracy of this method.

10.4.2 Time discretization

Regarding the time discretization similar approaches can be taken. Here the issue is

that when a vehicle group reaches a node, this is usually not exactly at the beginning

of a time step. Therefore, it crosses the node during a time step. Which implies that

conditions for this vehicle groups and surrounding vehicle groups change during the

time step. For example, the fundamental relation changes or a new leading vehicle

group enters the road from an on ramp. Again there are two possible approaches:

1. Add an intermediate time step whenever a vehicle group reaches a node during a

time step. The conditions change from this intermediate time step onward. See

Figure 10.3(c).

2. Wait until the beginning of the new time step to apply new conditions. Old

conditions hold until the end of the time step in which the node is reached. See

Figure 10.3(d).

Again, the first option is computationally intensive and more difficult to implement.

The results are expected to be more accurate but the inaccuracies of the second method

are expected to be small. In Section 10.5 we analyze the accuracy of this method.

In the remaining of this section both for the vehicle discretization and the time dis-

cretization we apply the second (less accurate but simpler) approach. This implies that

only full vehicle groups cross nodes and they are not disaggregated. Any new condi-

tions only apply from the beginning of the time step after the node was crossed. We

discuss how to apply this to different types of nodes. Furthermore, in the next section

we apply the methods in simulations and show that the results are accurate enough.
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10.4.3 One-to-one node

We have already discussed how a node with a change in the fundamental relation can

be discretized: after a vehicle group has reached the node, the new conditions only

hold from the beginning of the next time step. Similarly, if there is a temporal change

in the fundamental relation, it only takes effect from the beginning of the next time

step. Therefore, the new position of a vehicle group is computed as follows:

xk+1
i = xk

i +∆tvk
i (10.31)

with vk
i = v(sk

i ) the velocity obtained from the spacing sk
i and the fundamental relation

with parameters that hold at location x = xk
i at time t = ∆tk.

10.4.4 Inflow node

At an inflow boundary we assume the number of vehicles arriving at the inflow bound-

ary per time unit δinflow is prescribed. In the discretization, the number of vehicles

waiting to enter the network Nwaiting is counted:

Nk+1
waiting = Nk

waiting +
∫ (k+1)∆t

t=k∆t
δinflow(t)dt (10.32)

As soon as the cumulative inflow has reached the size of a vehicle group (i.e. if

Nk+1
waiting ≥ ∆n), a vehicle group is formed at the inflow boundary and released at the

beginning of the next time step k+1. The distance between the position of the previ-

ously last group xk
i−1 and the location of the inflow node xinflow is used to calculate the

spacing: sk
i = (xk

i−1 − xinflow)/∆n. In turn, the spacing is used to calculate the velocity

vk
i (using the fundamental relation) and the new position (using (10.31)). Furthermore,

the number of waiting vehicles is decreased: Nk+1
waiting := Nk+1

waiting −∆n.

This discretization implies the following assumption on the inflow demand. In the

case of a high inflow demand δinflow or (heavy) congestion just downstream of the

inflow boundary, not all arriving vehicle groups may be able to enter the computational

domain. In this approach, those groups are ‘stored’ and will enter the domain as soon

as it is possible. This implies that even after a decrease in the demand, the actual inflow

may remain at capacity flow for a while. For example, this happens in one of the test

cases in Section 10.5. In our view, this is a realistic inflow model, but other choices

may be made as well. For example, the ‘stored’ groups may be removed after a change

in the demand. This will result in an immediate change in the actual inflow.

10.4.5 Outflow node

The outflow is restricted by a given downstream supply (see Section 10.1.1). The sup-

ply constraint can be active (σoutflow ≤ qcap) or inactive (σoutflow > qcap). The spacing
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of the most downstream vehicle group i at the beginning of time step k is computed

using the (in)active supply constraint:

sk
i =







∞ if σoutflow > qcap (10.33a)

soutflow with σoutflow =
v(soutflow)

soutflow

if σoutflow ≤ qcap (10.33b)

In the second case, the outflow is constrained. We assume that the downstream region

(since σoutflow ≤ qcap) is in congestion and thus (10.33b) has a unique solution. This

spacing is in turn used together with the fundamental relation to calculate the velocity

vk
i , which then leads to the new position of vehicle group i using (10.31).

10.4.6 Diverge node

At a diverge (one to two node) the turn fraction α is used to determine to which out-

going link a vehicle group will travel. Therefore, each time step either all vehicles go

to one link, or they all go to the other link. As a result, on the time scale of one time

step the turn fraction realized by the discrete model is always 0 or 1. However, the

goal is to reproduce the turn fraction on a larger time scale of many (say, at least 10 or

20) time steps. Therefore, each time step the actual turn fraction of the last M vehicle

groups is calculated:

αMα
1 =

number of groups out of the last Mα groups that travelled to link b1

Mα
(10.34)

If this is below the prescribed turn fraction αb1
the next group i travels to link b1,

otherwise the next group travels to link b2. Once it is known to which outgoing link

a vehicle group will travel, the distance between the position of the last group in the

outgoing link at xk
i−1 and the current position xk

i is used to calculate the spacing: sk
i =

(xk
i−1 − xk

i−1)/∆n. In turn, the spacing is used to calculate the velocity vk
i (using the

fundamental relation) and the new position (using (10.31)).

For this method to work properly, the value of Mα has to be chosen appropriately.

The appropriate value of Mα depends largely on the value of the turn fraction, on how

accurately it needs to be reproduced and on possible changes in the turn fraction and

how quickly the simulation should react. For example, if the turn fraction is 1/2 and

does not change, Mα = 1 would suffice, just as any other odd valued Mα . However,

if the turn fraction can be written as an irreducible fraction with a large denominator,

Mα needs to be large. For example, if α1 = 23/100 we need Mα = 99 to reach this

turn fraction numerically. However, if it would suffice to have a realized turn fraction

of αMα
1 = 1/4, then Mα = 3 would suffice. Furthermore, the value of Mα should not

be too large in order to allow for quick adaptation if the turn fraction α1 changes over

time.

We note that it is not necessary to take explicitly into account the FIFO rule and the

delay by vehicles going to another (congested) link. Unlike in the minimum supply
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demand method, the approach proposed above takes this delay into account naturally.

Furthermore, it is relatively straightforward to replace the turn fractions by routes.

In that case each vehicle groups that enters the network gets assigned a certain route

which describes which link to take at the diverges. This adaptation is much more

complicated to apply in the minimum supply demand method. In Section 10.5 we

show the influence of the choice of Mα on the realized turn fractions in a simple test

problem.

10.4.7 Merge node

In the discretization approach we use the merge priority ratio γ to determine whether

or not a vehicle group from one of the two incoming links can continue on the outgo-

ing link. Therefore, first it is determined which of the two most downstream vehicle

groups should get priority over the other. Without loss of generality, let us assume that

the vehicle group from incoming link a1 (ia1
) has priority over the vehicle group from

the other incoming link (ia2
). We will discuss later how to determine which group has

priority. Secondly, the available space upstream and downstream of the node is distrib-

uted over the most downstream vehicle groups in the incoming links. The distribution

is illustrated in Figure 10.4 and described in more detail hereafter.

The available space d (in meters × number of lanes) upstream and downstream of the

node is computed:

da1
= (xnode − xk

ia1
)La1

, da2
= (xnode − xk

ia2
)La2

, db = (xk
ib
− xnode)Lb (10.35)

with xk
ia1

the position of the most downstream group at incoming link a1, xk
ia2

the posi-

tion of the most downstream group at incoming link a2, and xk
ib

the position of the most

upstream group at the outgoing link, see Figure 10.4(a). The available space (10.35) is

now distributed over the incoming vehicle groups ia1
and ia2

. Therefore, the following

rationale is applied:

1. Each vehicle group gets at least all the available space at its own link.

2. The vehicle group with priority gets at least critical spacing, if the available space

permits.

3. The vehicle group without priority gets all remaining space.

This leads to the following:

sk
i,a1

=
max

(
da1

, min
(
∆nscrit,a1

, da1
+db

))

∆nLa1

(10.36a)

sk
i,a2

=
(da1

+da2
+db −∆nLa1

si,a1
)

∆nLa2

(10.36b)

with scrit,a1
the critical spacing (per lane) at the incoming link with priority a1. Thirdly,
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Figure 10.4 Available space per incoming and outgoing link and its distribution over

both incoming vehicle groups during one time step. The distribution depends on the

proximity to the node of the most downstream vehicle group at the incoming link with

priority (here link a1) and the most upstream group at the outgoing link. For readability

we assume that each link has only one lane and the same fundamental relation.

the spacings (10.36) are used to calculate the velocities vk
i,a1

and vk
i,a2

(using the funda-

mental relation) and the new positions xk+1
i,a1

and xk+1
i,a2

(using (10.31)).

Finally, we discuss how to determine which of the vehicle groups gets priority (group

ia in the example above). This is calculated using the actual merge ratio over the last

Mγ groups passing the node:

γ
Mγ

1 =
number of groups out of the last Mγ groups that came from link 1

Mγ
(10.37)

If this actual merge ratio is below the prescribed merge ratio (γ
Mγ

1 < γ1), the group

from link a1 gets priority, otherwise the group from link a2 gets priority. The value of

Mγ can be chosen on similar grounds as the value of Mα : not too small to allow for

an accurate approximation of the desired turn fraction, and not too large to allow for

quick adaptations. In Section 10.5 we show the influence of the choice of Mγ on the

realized merge rates in a simple test problem.
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Figure 10.5 Test layout initial and boundary conditions.

10.5 Simulations and results

We perform simulations to compare the node discretization methods both in the mini-

mum supply demand method and the upwind method. The simulation results for both

methods are compared to each other but also to the analytical solution. Because we

compare to the analytical solution we only do simulations of simple test problems

for which the analytical solution can be obtained relatively easily using shock wave

theory. Therefore, we do not include numerical methods for multi-class nodes in the

comparison.

10.5.1 Test setup

We study four different test cases with different road layouts. The tests are designed

such that the numerical solution of all types of nodes and initial and boundary con-

ditions can be studied separately. In all tests the model parameters are taken equal to

the model parameters in Chapter 8. Table 8.1 shows these parameters of the funda-

mental relation per lane. At locations where there are multiple lanes the fundamental

relation parameters are scaled accordingly. Furthermore, the numerical parameters are

the same as in the base case in Chapter 8 and 9: grid cell size ∆x = 100 m and time

step size ∆t = 3 s. The vehicle group size depends on the number of lanes. It is chosen

such that the CFL-condition is satisfied exactly, which implies ∆n = 5 vehicles in two

test cases (initial and boundary conditions and spatio-temporal change in fundamental

relation) and ∆n = 7.5 in the other two test cases (diverge and merge). To study the

influence of the resolution, we repeat the simulations with higher resolution: time step

size ∆t = 0.6 s and vehicle groups size such that the CFL-condition is satisfied exactly

(µ = 1). We discuss the setup of each of the test cases below.
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Figure 10.6 Test layout change in fundamental relation.

Initial and boundary conditions

The first test is designed to assess the numerical implementation of initial and boundary

conditions, see Figure 10.5. It consists of a three lane road with inflow boundary at

x = X0 = −1000 m and outflow boundary at x = X2 = 1000 m. There is one jump in

the initial conditions at x = X1 = 0 m and one jump in the outflow boundary conditions

at t = T1 = 500 s. The inflow boundary conditions are constant. The simulation starts

at t = T0 = 0 s. The following values are used:

ρ(x,T0) =

{
3
2
ρcrit = 0.05veh/m if x < X1

12ρcrit = 0.4veh/m if x ≥ X1

(10.38a)

δinflow(X0, t) = ρ(X0)v(ρ(X0)) = 1.35veh/s (10.38b)

σoutflow(X2, t) =

{

ρ(X2)v(ρ(X2)) = 0.83veh/s if t < T1

qcap = 2.08veh/s if t ≥ T1

(10.38c)

The values of the initial and boundary conditions are chosen such that the downstream

part of the domain (x ≥ X1) is initially congested and the outflow is restricted during

the first part of the simulation (until t = T1). This results in a congested area that

travels upstream and reaches the inflow boundary conditions. Furthermore, because of

congestion just downstream of the inflow boundary, the actual inflow is lower than the

inflow demand. Therefore, even after the congestion has solved, the inflow will remain

high (at capacity) for some time. Figure 10.9 shows the analytical solution, together

with the numerical solutions, which will be discussed later.

Change in fundamental relation

The second test is designed to assess the numerical implementation of a change in the

fundamental relation, see Figure 10.6. It consists of a three lane road. However, part

of one lane (between x = X0 = 0 m and x = X1 = 1000 m) is not used during a certain
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Figure 10.7 Test layout diverge.

time period (between t = T1 = 100 and t = T2 = 400 s). The initial density is constant:

ρ(x,T0) =
9
4
ρcrit = 0.075 veh/m. The road length upstream and downstream of the

lane drop are high such that the boundary conditions do not influence the solution. The

simulation starts at t = T0 = 0 s.

The value of the initial condition is chosen such that the three lanes can accommodate

all demand and there is no congestion. However, congestion is created when the num-

ber of lanes changes to two. Congestion spills back and dissolves again after all three

lanes become available again. Figure 10.10 shows the analytical solution, together

with the numerical solutions, which will be discussed later.

Diverge

The third test is designed to assess the numerical implementation of a diverge, see

Figure 10.7. It consists of a two lane road with a one lane off ramp that bifurcates from

the main road at x = X0 = 0 m. The turn fraction changes during the simulation:

αramp(t) =

{

0.7 if T1 < t ≤ T2

0.3 otherwise
(10.39)

with T1 = 60 s and T2 = 300 s. The initial density is as follows:

ρmain(x,T0) =

{
3
2
ρcrit = 0.05veh/m if x < X1

0.0285veh/m if x > X1

(10.40)

ρramp(x,T0) = 0.0143veh/m (10.41)

The road upstream and downstream of the ramp and the ramp itself are long such

that the boundary conditions do not influence the solution. The simulation starts at

t = T0 = 0 s.

The initial densities are chosen such that the density does not change as long as the turn

fraction is constant. Furthermore, during the first simulation period (until t = T1 = 200
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s) the whole computational domain is in free flow. However, after the change in the

turn fraction at t = T1, the off ramp can not accommodate the demand anymore and

congestion sets in. Congestion spills back on the main road, also blocking vehicles that

do not want to take the off ramp. After the turn fraction has returned to its original value

at t = T2 = 1000 s, the congestion dissolves again. Figure 10.11 shows the analytical

solution, together with the numerical solutions, which will be discussed later.

For the upwind discretization of the node we need to choose a value Mα (see Section

10.4.6). We try four different values: ‘very small’ Mα = 2, ‘small’ Mα = 5, ‘normal’

Mα = 10, ‘large’ Mα = 20.

Merge

The fourth, and last, test is designed to assess the numerical implementation of a merge,

see Figure 10.8. It consists of a two lane road with a one lane on ramp that merges at

x = X1 = 0 m. Initially, there is a high density region on the ramp just upstream of the

merge until x = X0 =−6000 m. Further upstream, the initial density is low. The merge

ratio is γmain = 0.6. The initial densities are as follows:

ρmain(x,T0) =

{

1.2ρcrit = 0.04veh/m if x < X1

2ρcrit = 0.067veh/m if x > X1

(10.42a)

ρramp(x,T0) =

{

0.9ρcrit = 0.03veh/m if x < X0

0.1ρcrit = 0.0033veh/m if x > X0

(10.42b)

The main road upstream and downstream of the merge and the ramp itself are long

such that the boundary conditions do not influence the solution.

For the upwind discretization of the node we need to choose a value Mγ (see Section

10.4.7). We try four different values: ‘very small’ Mγ = 2, ‘small’ Mγ = 5, ‘normal’

Mγ = 10, ‘large’ Mγ = 20.
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The initial density is chosen such that the total flow over the upstream main road and

the flow over the ramp is larger than the capacity of the downstream main road. There-

fore, congestion will set in upstream of the merge. However, the inflow from the ramp

is lower than the initial ramp flow. It is chosen such that the congestion will dissolve

again. Figure 10.12 shows the analytical solution, together with the numerical solu-

tions, which will be discussed later.

10.5.2 Simulation results

All simulation results are shown in Figure 10.9–10.15. The same patterns can be ob-

served in the results of the tests with normal numerical settings (initial and boundary

conditions (Figure 10.9), change in fundamental relation (Figure 10.10), diverge (Fig-

ure 10.11) and merge (Figure 10.12 and 10.13). Both the solution with the minimum

supply demand method and the upwind method are in general in accordance with the

analytical solution. Furthermore, most results with high resolution (not shown) are

closer to the analytical solution, which indicates that the numerical solution converges

to the analytical solution. However, high resolution does not lead to more accurate

results in the merge test case with upwind method. This is discussed in more detail

later.

In the solution obtained with the minimum supply demand method there is some nu-

merical diffusion. We have already discussed this type of numerical inaccuracy in

Chapter 8 for homogeneous links. We conclude that it is not specific to the numerical

methods for nodes.

In the solution obtained with the upwind method some oscillations can be seen: at the

boundaries and in some regions within the domain, e.g., region ‘A’ in Figure 10.9(b),

regions ‘D’ and ‘E’ in Figure 10.10(b) and most regions in Figure 10.11(b), 10.11(d),

10.12(b), 10.12(d). Closer observation shows that the oscillations emerge at the inflow

boundary and at positions where there is a change, such as a change in the fundamental

relation or a merge. They travel either upstream or downstream with the characteris-

tics. However, the waves that form the boundaries between 2 regions travel with the

correct velocity. For example, the upstream front of congestion is (almost) at the same

location in the numerical solution as in the analytical solution. This indicates that ‘on

average’ the flow in the region that exhibits oscillations is equal to the analytical flow.

Furthermore, Figure 10.13 shows that increasing the resolution, leads to narrower and

less pronounced oscillations. This indicates that the oscillations are a numerical arte-

fact. However, with high resolution the numerical wave velocities do not improve:

the slope of the numerically computed boundary between region F and G and, respec-

tively, F and H remains unequal to the slope of the dashed line indicating the analytical

boundary. Finally, we note that these oscillations are very similar to the oscillations

that can be observed in the simulation of moving bottlenecks in the Eulerian coordinate

system, such as in (Laval & Daganzo, 2006).
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Figure 10.10 Simulation results spatio-temporal change in fundamental relation. Col-

ors indicate vehicle velocity.
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Figure 10.11 Simulation results diverge. Colors indicate vehicle velocity.
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Figure 10.12 Simulation results merge. Colors indicate vehicle velocity.
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Figure 10.13 Simulation results merge, upwind method with Mγ = 10, high resolution

(∆t = 0.6 s, ∆n = 1 veh). Colors indicate vehicle velocity, see legend of Figure 10.12.
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Figure 10.14 Turn fractions realized in the diverge test problem, with different numer-

ical methods and numerical turn fraction parameters Mα .



10 Networks 227

minimum supply demand upwind

0 200 400 600 800
0

0.5

1

time (s)

re
al

iz
ed

m
er

g
e

ra
ti

o

(a) Very small Mα = 2.

0 200 400 600 800
0

0.5

1

time (s)

re
al

iz
ed

m
er

g
e

ra
ti

o

(b) Small Mα = 5.

0 200 400 600 800
0

0.5

1

time (s)

re
al

iz
ed

m
er

g
e

ra
ti

o

(c) Normal Mα = 10.

0 200 400 600 800
0

0.5

1

time (s)

re
al

iz
ed

m
er

g
e

ra
ti

o

(d) Large Mα = 20.

Figure 10.15 Merge ratios realized in the merge test problem, with different numerical

methods and numerical merge ratio parameters Mγ .
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In the diverge and the merge test problem we also study the realized turn fraction

and merge ratio, respectively. The results are shown in Figure 10.14 and 10.15. The

realized turn fraction and merge ratio with the minimum supply demand method are

equal to the prescribed values. However, with the upwind method, the realized values

depend on the number of previous groups that is taken into account when determining

which outgoing link the next group will take (Mα ) or determining which incoming

link will get priority (Mγ ). The figures show that with high values (Mα = 20, Mγ = 20)

there is a delayed response. This also influences the time it takes before congestion

is dissolved. With low values (Mα = 2, Mγ = 2) the realized turn fractions and merge

ratios are not accurate. Intermediate values of Mα = 5, Mα = 10, Mγ = 5 and Mγ = 10

give the most accurate results.

10.6 Discussion and conclusions

In this chapter we have studied node models and their numerical implementations.

Node models in Eulerian coordinates for mixed-class kinematic wave models form the

basis of our node models in Lagrangian coordinates and multi-class node models. The

derivation of the node model in Lagrangian coordinates includes an intuitive interpre-

tation of the sink and source terms. The multi-class node models are discretized based

on the minimum supply demand method. The discretization of the node models in

Lagrangian coordinates is based on the upwind method. Until now only simple nodes,

with at most two incoming and two outgoing links have been studied, including inflow

and outflow boundaries. The methods may be extended to more generic nodes.

Simulations show that the discretized node models yield accurate results and largely

agree with analytical results. However, oscillations are created in the upwind node dis-

cretization. They do not influence wave velocities of the primary waves (e.g., velocity

with which congestion spills upstream and with which it dissolves again). However,

they may be interpreted wrongly, for example as stop and go waves. Therefore, meth-

ods should be developed to smooth out the oscillations or to prevent their creation.

The discretization may be improved further by including intermediate time steps and

or disaggregating and re-aggregating vehicle groups as described in Section 10.4.1 and

10.4.2. Alternatively, ideas about hybrid models and their micro-macro and macro-

micro interfaces may be applied to improve the discretization methods (Bourrel &

Lesort, 2003; Burghout et al., 2005; Leclercq, 2007a; Laval & Leclercq, 2008). For

example, applying the Green-Riemann formula can be applied in a similar way as in

(Leclercq, 2007a) to discretize the nodes differently and find a more accurate solution.

Finally, Jin & Zhang (2013) propose a new approach to diverges which lead to more

accurate solutions in the Eulerian coordinate system. Their approach may be extend to

the Lagrangian coordinate system.

Advantages of the upwind method for nodes include the more natural introduction

of rules for turn fractions and priority taking at merges. Furthermore, extensions of
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the method to include routes are more straightforward than with the minimum supply

demand method. Moreover, upwind methods for nodes are needed for simulation tools

which apply the upwind method on links. In Chapter 8 and 9 we have shown that

the upwind method for homogeneous roads has many advantages compared to the

minimum supply demand method. Therefore, further development of the node models

and their upwind discretization proposed in this chapter is valuable.

Other future research includes node models for multi-class kinematic wave models. We

have described the discretization of simple multi-class nodes in Eulerian coordinates.

Our colleagues are working on similar models for more generic nodes (Smits et al.,

2012) and on the discretization of multi-class nodes in Lagrangian coordinates (Yuan

et al., 2012, in press). These methods may be tested using similar simulation studies

as presented in this chapter.





Chapter 11

Conclusions

The goal of this last chapter is to summarize the main findings of the dissertation and to

give an outlook for future research. The context of this dissertation is the development

and analysis of a traffic flow model suitable for traffic management of networks with

heterogeneous vehicles and drivers. After the literature review we conclude that a

multi-class kinematic wave model is suitable for this goal. Furthermore, the application

calls for efficient simulation methods, which are developed as well.

The outline of this chapter is as follows. In Section 11.1 we summarize our main

findings and conclusions. We discuss applications, including scientific recommenda-

tions and practical implications in Section 11.2. Finally, Section 11.3 outlines future

research directions.

11.1 Main findings and conclusions

In this section we summarize our main findings and conclusions. We follow the

structure of this dissertation by first discussing the findings related to the model tree,

secondly, the model development and analysis, thirdly, the Lagrangian coordinate sys-

tem and finally we discuss the findings related to the numerical methods.

11.1.1 Traffic flow modelling

In Chapter 2 we introduced a model tree, see also Appendix A. The tree shows how

traffic flow models have developed into four families since they were first introduced

in the 1930’s. The family of fundamental relations does not include traffic dynamics,

whereas the micro- meso- and macroscopic models describe how traffic states evolve

over time.

Furthermore, the model tree shows the state of the art in traffic flow modelling and

current trends, including:
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• Convergence of certain branches towards a generalized model. The generalized

model can be used to analyze qualitative properties of all models within that

branch (Wilson, 2008; Hoogendoorn & Bovy, 2001a; Del Castillo, 2012; Van

Wageningen-Kessels et al., 2011b).

• Extensions and adaptations of the kinematic wave model to better reproduce

key phenomena such as capacity drop, hysteresis and scattered fundamental dia-

grams (Zhang, 1999; Lebacque, 2002; Wong & Wong, 2002).

• Introduction of multi-class versions of previously developed models (Hoogen-

doorn, 1999; Bagnerini & Rascle, 2003; Ossen & Hoogendoorn, 2006), and es-

pecially multi-class kinematic wave models (Wong & Wong, 2002; Benzoni-

Gavage & Colombo, 2003; Chanut & Buisson, 2003; Zhang et al., 2006; Laval

& Daganzo, 2006; Ngoduy & Liu, 2007; Logghe & Immers, 2008; Van Lint

et al., 2008; Nair et al., 2012).

• Combining microscopic and macroscopic models into hybrid models (Bourrel &

Lesort, 2003; Leclercq, 2007a; Moutari & Rascle, 2007).

In this dissertation we add a new model to the tree that combines these trends. Further-

more, we conclude that the development of a multi-class kinematic wave model can

yield a model with the required computational efficiency.

11.1.2 Multi-class traffic flow modelling

Chapter 3, 4, 5 and 7 are devoted to multi-class kinematic wave traffic flow modelling.

They consist of the development and application of a theoretical framework for multi-

class kinematic wave traffic flow modelling. The framework is introduced in Chapter

3 and consists of a set of principles and a set of requirements. We conclude that the

principles applied in the LWR model can be adapted in order to be applied to multi-

class models. The principles are used in the development of our multi-class kinematic

wave traffic flow model Fastlane in Chapter 4. Fastlane uses the concept of passenger

class equivalent (pce) values. We show that a simple safe-distance car-following model

can be applied to make the pce-values state dependent. We conclude that this leads to

a consistent model.

Fastlane is further generalized in Chapter 5. We show that only a few adaptations

are necessary to generalize the model such that any single-pipe multi-class kinematic

wave traffic flow model known from literature (Wong & Wong, 2002; Benzoni-Gavage

& Colombo, 2003; Chanut & Buisson, 2003; Zhang et al., 2006; Ngoduy & Liu, 2007;

Logghe & Immers, 2008; Van Lint et al., 2008; Van Wageningen-Kessels et al., under

review; Nair et al., 2012) is contained in the generalized model. We conclude that all

models (implicitly) contain the following four elements:
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• Class specific conservation of vehicles equations.

• Definition of class specific flow.

• Class specific fundamental relations expressing the class specific velocity as a

function of the effective density.

• An effective density function.

The effective density function aggregates all class specific densities into one variable.

We find that the (implicit) specifications of the effective density functions vary largely

amongst the existing models. This is in contrast to the fundamental relations, which

mostly follow traditional shapes.

Finally, the requirements are used to assess multi-class kinematic wave traffic flow

models in Chapter 7. Therefore, we use the Lagrangian formulation of the generalized

model which is introduced in Chapter 6, see Section 11.1.3. The requirements relate to

qualitative properties of the models such as nonincreasing density-velocity fundamen-

tal relations and anisotropy. We find that there are only two models that satisfy all our

requirements unconditionally: the model by Chanut & Buisson (2003) and Fastlane.

We conclude that other models do not satisfy the requirements or only satisfy them if

certain parameters are chosen appropriately. Finally, a step-by-step-plan is introduced

to assess any future multi-class kinematic wave model with respect to the requirements.

11.1.3 Lagrangian coordinates

Chapter 6 is the core chapter of this thesis. It reformulates the generalized multi-class

kinematic wave model into the Lagrangian coordinate system. This coordinate system

moves with the vehicles, unlike the traditional Eulerian coordinate system which is

fixed in space.

We show that the main advantage of the Lagrangian coordinate system relates to the

direction of information. In any kinematic wave traffic flow model it is assumed that

vehicles and drivers only react on their leaders and not on their followers. Therefore,

characteristics carrying information travel either with the vehicles, or from one vehicle

to its follower. In the Lagrangian coordinate system this leads to characteristics with

nonpositive velocities, while in the Eulerian coordinate system characteristics may

have positive velocity (in free flow) or negative velocity (in congestion). We conclude

that this advantage of the Lagrangian coordinate system can be exploited in two ways:

• It enables the eigenvalue analysis which is needed to qualitatively assess multi-

class kinematic wave models (Chapter 7).

• It leads to more efficient numerical methods (Chapter 8–10).

11.1.4 Numerical methods and accuracy measures

In Chapter 8–10 we develop numerical methods to solve the (continuous) model equa-

tions that are introduced in the first part of this dissertation. In Chapter 8 we discuss
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four different numerical methods for mixed-class models:

• The minimum supply demand method.

• The upwind method with explicit time stepping.

• The upwind method with implicit time stepping.

• The variational method.

The first method is applied to the model in Eulerian coordinates, the other methods to

the model in Lagrangian coordinates.

To measure the accuracy of the numerical methods, we develop two novel measures:

diffusion error and phase error. The diffusion error measures how much smoother the

numerical solution is when compared to the exact solution. The phase error compares

velocities in the numerical solution with velocities in the exact solution. For example,

it compares the velocity with which congestion spills back upstream in the numerical

solution with its velocity in the exact solution. We find that the solution of the upwind

method with explicit time stepping is more accurate than the other solutions. The

traditional minimum supply demand method leads to relatively large diffusion and

phase errors. The upwind method with implicit time stepping is less accurate but

allows for much larger time steps, which may be an advantage if computational time is

very important. The variational method can lead to very accurate solutions, but only in

certain settings mainly involving a piecewise linear fundamental relation. Therefore,

we study the upwind method with explicit time stepping further.

The upwind method with explicit time stepping (or upwind method, for short) and

the minimum supply demand method are extended for multi-class models in Chapter

9. Similarly to the numerical methods for mixed-class models, we conclude that the

multi-class upwind method is more accurate than the multi-class minimum supply de-

mand method.

The upwind method and the minimum supply demand method are extended for net-

works in Chapter 10. Therefore, we develop numerical methods for (simple) nodes.

From simulation results we conclude that nodes are more accurately discretized using

the minimum supply demand method than with the upwind method. However, we also

show that certain elements in node models, such as turn fractions and routes, can be

included in the upwind method more naturally.

11.2 Applications and practical implications

In this section we make recommendations for the scientific community and discuss

practical implications of our results.

The Fastlane model is an advanced multi-class kinematic wave traffic flow model. It

allows for a fast and accurate simulation of traffic flow on road networks. Therefore, it

should result in much better traffic flow predictions than the ones resulting from most
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simulation tools that are currently applied in practice. Fastlane is especially suitable

in situations where heterogeneity of vehicles and drivers plays a large role, such as

in and around logistics hubs. Furthermore, the model is well suited to be applied in

traffic management in such areas (Schreiter, 2013) and the model in combination with

its Lagrangian formulation is well suited for efficient traffic state estimation (Yuan,

2013).

If the Fastlane model does not satisfy the criteria of a scientist or practitioner in search

for a model, the step-by-step plan for qualitative model assessment provides an ef-

ficient tool for model selection. It shows how any single-pipe multi-class kinematic

wave model can be analyzed quickly for certain desirable qualitative properties. Only

if the model has these properties may it be worthwhile to further study the applicabil-

ity of the model. This assessment can be performed before the (usually costly) steps

of model calibration and validation. Furthermore, the same plan can be applied dur-

ing the development of any new multi-class kinematic wave model. It shows whether

a model (under development) has desirable qualitative properties. Therefore, it can

indicate whether the model is worthy of further development or whether it should be

changed such that it gains the desirable properties. The plan may also indicate that only

under certain conditions (e.g. parameter values) the model has qualitatively desirable

properties.

Once it is established that a certain model has qualitatively desirable properties, the

next steps are to calibrate and validate the model and numerical methods. In the cal-

ibration and validation, our novel accuracy measures are preferred over traditional

measures such as the root mean square error. In the novel methods, the estimations

or predictions are compared with analytical or high quality numerical solutions (in the

validation of the numerical method) or with (high quality) measured traffic states (in

the case of model calibration and validation). Moreover, the accuracy measures can

be applied to compare estimations and predictions of any type of traffic flow model,

yielding better insight in the applicability of the model. Futhermore, the novel accu-

racy measures also have potential practical implications: they might be applied in the

assessment of data quality and traffic state estimation and prediction methods that are

used in practice.

Finally, scientist and practitioners who apply traffic flow models can take advantage of

the novel numerical methods based on the Lagrangian coordinate system. The efficient

numerical methods can be applied in simulation tools for which computation time

and accuracy are both important. They can be applied for simulation of motorway

networks, both in combination with mixed-class and multi-class methods. The novel

numerical methods yield more accurate and faster simulation results, which makes the

model better applicable, both in real time and off-line. Moreover, they can be applied

within the Fastlane model, but they would also result in superior simulation results if

applied in combination with other models such as the ones that are currently applied

in practice.
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11.3 Future research

In the final section of this dissertation we suggest future research directions. We dis-

tinguish the following research themes: 1) identification of research needs and further

generalization of traffic flow models using the model tree, 2) model development and

analysis, 3) efficient numerical methods and 4) further application and development of

models formulated in the Lagrangian coordinate system.

11.3.1 Model tree to identify research needs

The family tree shows trends and current developments, but it also shows branches

in which developments are not as fast as in others. In this context we identify three

main trends: 1) multi-class models, 2) hybrid models and 3) generalized models. For

example, most branches include multi-class models. However, not all models have

been extended to include multiple classes. The tree shows that there are little or no

multi-class versions of for example cellular-automata models. Moreover, hybrid mo-

dels have been proposed but can be developed much further. Hybrid models are able

to combine advantages of different types of models. Examples of new models include

mesoscopic models combined with micro- or macroscopic models. Existing hybrid

models can be extended to include multiple vehicle classes. Another type of hybrid

models can combine mixed-class and multi-class models. Finally, current generalized

models include many models, but not all. Further generalizations may be needed to

efficiently compare models. These gaps may be filled by future models.

11.3.2 Model development and analysis

We have outlined a consistent set of requirements. However, one can dispute the list

of fundamental relation requirements. For example, it is argued that it is not strictly

necessary that a multi-class model allows free flow velocities to be decreasing. A

scientific debate on the requirements for multi-class kinematic wave models, and in

fact any type of traffic flow model would be useful. Once there is agreement on the

minimal requirements for such models, model developers can focus on the type of

models with the desirable properties. Furthermore, a (new) set of requirements may be

applied in the assessment of a broader range of traffic flow models.

The models are assessed with respect to the requirements using the generalized multi-

class kinematic wave model. It also provides a framework for the development of

new models. The generalized model allows to focus on either improvements in the

fundamental relation or on improvements in the effective density function. Moreover,

any model that is developed within the framework can (relatively easily) be assessed

qualitatively using the step-by-step plan. Furthermore, a valuable extension of the

generalized model is a multi-lane version of the model, which would then also include
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the models by Daganzo (2002); Chanut (2005); Laval & Daganzo (2006). Finally, the

requirements for node models (Tampère et al., 2011; Flötteröd & Rohde, 2011) can be

extended to include multi-class nodes.

Further improvements of the Fastlane model can be studied. Currently, the space oc-

cupancy is a linear function of only the velocity. Parameters are gross vehicle length

and minimum time headway. Other space occupancy functions can be thought of, for

example based on more advanced car-following models instead of Pipes’ safe-distance

model (1953). Especially in free flow, the safe-distance model, and thus also the space

occupancy function, is disputable. Including another space occupancy function may

lead to a more realistic model. Other possible extensions of the Fastlane model include

a capacity drop and the introduction of multiple lanes.

In the development of Fastlane a logical next step is to calibrate and validate the model

using experimental traffic data (Schreiter, 2013). Furthermore, other calibrated (multi-

class kinematic wave) traffic flow models may be compared to Fastlane. This would

then yield insight into how our assumptions and modelling choices lead to (signifi-

cantly) different simulation results.

In the calibration and validation of Fastlane, or any other traffic flow model, our novel

accuracy measures can be applied. However, currently, they can only be applied in

situations where it is relatively easy to identify centroids of the density or velocity pro-

file. Therefore, a ‘bump’ in the profile needs to be identified in a reference solution and

linked to a bump in the approximate solution. This may be difficult in more realistic

settings. Developments of techniques which are able to do this or which circumvent

the problem may be useful.

11.3.3 Numerical methods

We have developed efficient numerical methods based on the Lagrangian coordinate

system. An alternative method could be based on an alternative Lagrangian model

formulation Yuan et al. (2011); Yuan (2013). Methods based on this formulation are

supposed to be more efficient in cases with only few vehicles of the reference class.

The advantages and disadvantages are explored by Yuan et al. but could be studied

further using methods that we propose. Futhermore, our results indicate that implicit

time stepping and the variational method may lead to very low computation times, at

the loss of some accuracy. The applicability of those methods can be studied further

(Van Wageningen-Kessels et al., 2010).

Our upwind method for nodes needs some improvements. In Section 10.6 we have

outlined a few approaches to improve its accuracy. Furthermore, the upwind method

for nodes may be extended in order to be applied to multi-class models. Currently, a

lot of research is done in this field and ideas can be taken from e.g., Flötteröd & Rohde

(2011); Tampère et al. (2011); Smits et al. (2012); Yuan et al. (in press). Furthermore,

the modelling of nodes in the Lagrangian formulation is equivalent to the modelling
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of moving bottlenecks in the Eulerian formulation. (And vice versa: the modelling

of moving bottlenecks in the Lagrangian formulation is equivalent to the modelling of

nodes in the Eulerian formulation.) Therefore, inspiration for efficient node models in

the Lagrangian formulation may be found in the literature on bottleneck models in the

Eulerian formulation.

11.3.4 Lagrangian coordinate system

We have exploited one advantage of the Lagrangian coordinate system in the model

analysis and numerical methods. The same advantages may be exploited in the con-

text of other types of (traffic flow) models. For example, a Lagrangian formulation of

higher-order models has been proposed (Aw et al., 2002). However, to our knowledge,

no numerical methods have been developed based on this model formulation. Further-

more, the Lagrangian coordinate system may be applied to pedestrian flow models.

This is especially challenging because pedestrians usually walk on two-dimensional

surfaces, while vehicles are restricted to lanes (one-dimensional). For this application

Lagrangian flow models used in fluid flow problems may serve as a source of inspira-

tion (LeVeque, 2002).

Recently, a third coordinate system for the LWR model has been introduced (Leclercq

& Bécarie, 2012; Laval & Leclercq, 2013). In their T -model the goal is to calculate

the time at which a certain vehicle reaches a certain location. We expect that this

coordinate system has similar advantages as the Lagrangian coordinate system. The

model introduced by Laval & Leclercq (2013) can be developed further using similar

approaches as presented in this dissertation, such as including multiple classes.

An other advantage of the Lagrangian coordinate system is its natural relation with

microscopic traffic flow models. In a hybrid model the coupling between the mic-

roscopic and the macroscopic region is relatively simple. At the boundaries vehicle

groups are aggregated (from micro to macro) or disaggregated (from macro to micro).

Leclercq (2009) shows how the capacity drop can be included in the Lagrangian for-

mulation of the LWR model. Both the capacity drop and bounded acceleration are

more straightforward to include in the Lagrangian than in the Eulerian formulation

because of the direct relation between the vehicle velocity and the coordinate system.

These ideas can be further extended to include vehicle and driver heterogeneity.
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Family tree of traffic flow models

See next page for the genealogical tree of traffic flow models. Grey lines indicate

descent, black dots indicate publications, black lines indicate that the model has (or

multiple very similar models have) been published multiple times.
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Appendix B

Variational theory applied to the

kinematic wave model

In this appendix we show how variational theory can be applied on the network in Fig-

ure 8.5. The network consists of nodes and waves with velocities w1, w2 = w1/2 and

w3 = 0. The waves intersect at nodes with n = i∆n and t = k∆t, therefore w1 = ∆n/∆t.

At the nodes the position x̃k
i of the n = i∆n-th vehicle at time t = k∆t is calculated with

the minimization problem (8.22), (8.23). We show that the minimization problem in-

deed solves the kinematic wave problem on an infinitely long homogeneous road with

the piecewise linear fundamental relation consisting of three linear parts (8.20), see

Figure 8.4(b) and piecewise constant initial conditions. For completeness we repeat

the minimization problem:

x̃k
i = min

(

x̃k−1
i−1 +∆tr1, x̃k−2

i−1 +2∆tr2, x̃k−1
i +∆tr3

)

(B.1)

with:

rm = vm − smwm =







r1 =−sjamw1

r2 = vcrit − scritw2

r3 = vmax

(B.2)

The fundamental relation is:

v(s) = min
m

(vm +(s− sm)wm) =







(s− sjam)w1 if s ≤ scrit

vcrit +(s− scrit)w2 if scrit < s ≤ s3

vmax if s > s3

(B.3)

with

w1 =
vcrit

scrit − sjam

and w2 =
vmax − vcrit

scrit − s3
(B.4)
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Figure B.1 The travel distance of a moving observer from point A to point B can be

computed exactly using Lemma B.1. The diagonal parallel lines are ‘x-trajectories’: at

these lines, the position x is constant. The lemma states that the distance is independent

of the path. In the proof of Lemma B.1 we use that the travel distance from A to B is

equal to the distance from A to C plus the distance from C to B.

and v1 = 0, s1 = sjam, v2 = vcrit, s2 = scrit and vM = vmax.

We first observe that the distance traveled by a moving observer is related to the num-

ber of overtakings. Secondly, we relate the number of overtakings to a certain cost. The

third step is to show that this can be applied on a homogeneous road with homogeneous

traffic conditions to compute the velocity and position of vehicle groups. Finally, we

relax the assumption of homogeneous traffic conditions and show that piecewise con-

stant initial conditions are sufficient.

Lemma B.1. Consider a homogeneous road with homogeneous traffic conditions, i.e.

the traffic state (spacing s, velocity v) is the same everywhere in the (t,n) plane. The

distance traveled by a moving observer in the (t,n) plane from point A = (t0,n0) to

point B = (t1,n1) = (t0 +dt,n0 +dn) equals:

D = vdt − sdn (B.5)

Before we give the proof we refer to Figure B.1 for an illustration of the Lemma.

Furthermore, we remark that such a moving observer is not a real traveller or vehicle.

It can move in the (t,n) plane without any restrictions.

Proof. We note that the distance traveled by the moving observer is independent of

the path. Furthermore, it is equal to the net number of x-trajectories that overtake the

moving observer. Let us assume the moving observer first travels from point A to point

C = (t1,n0) and then to point B. The net number of x-trajectories that overtake the

moving observer between point A and point C is vdt. The net number of x-trajectories

that overtake the moving observer between point C and point B is −sdn. Consequently,
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Figure B.2 Fundamental relation with costs rm and velocity of moving observer r̃m.

the net number of x-trajectories that overtake the moving observer between point A and

point B is vdt − sdn and thus the distance it travels is D = vdt − sdn.

Let us define the average velocity of the moving observer by r̃. Using Lemma B.1 the

distance traveled by the moving observer is:

dtr̃ = D = vdt − sdn (B.6)

Furthermore, we define r̃1, r̃2 and r̃3 as the average velocities of three moving observers

travelling over the network in Figure 8.5:

• r̃1 is the average velocity of moving observer 1, traveling from xk−1
i to xk

i

• r̃2 is the average velocity of moving observer 2, traveling from xk−2
i−1 to xk

i

• r̃3 is the average velocity of moving observer 3, traveling from xk−1
i−1 to xk

i

Applying (B.6), w1 = ∆n/∆t and w2 = w1/2, we find:

r̃1 = v− s
∆n

∆t
= v− sw1, r̃2 = v− s

∆n

2∆t
= v− s

w1

2
= v− sw2, r̃3 = v (B.7)

Lemma B.2. Consider a homogeneous road with homogeneous traffic conditions. In

all permissible traffic states (i.e. with s ≥ sjam) the velocity of the moving observer is

not larger than the associated costs defined by (B.2):

r̃1 ≤ r1, r̃2 ≤ r2, r̃3 ≤ r3 (B.8)

Furthermore:

if s1 ≤ s ≤ s2 then r̃1 = r1, if s2 ≤ s ≤ s3 then r̃2 = r2, if s ≥ s3 then r̃3 = r3 (B.9)

Proof. We recall that the cost rm is the velocity at the intersection with the velocity
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axis of the m-th linear part of fundamental relation, see Figure B.2. Furthermore, from

(B.7) we conclude that the velocity of moving observer 1 can be obtained similarly, see

also Figure B.2(a). This velocity depends on the traffic state (s,v). It is the intersection

with the velocity axis of a straight line with slope w1 that also goes through (s,v).

From Figure B.2(a) it can be observed that r̃1 = r1 if s1 ≤ s ≤ s2 and that r̃1 > r1 in

all other permissible traffic states. A similar procedure is applied to conclude that the

velocities of moving observer 2 and 3 also satisfy (B.8) and (B.9), see Figure B.2(b)

and B.2(c)

Lemma B.3. Consider a homogeneous road with homogeneous traffic conditions.

(B.1) yields the correct vehicle positions at the nodes (k, i) of the network in Figure

8.5.

Proof. We distinguish between the following traffic states: s1 ≤ s ≤ s2, s2 < s < s3 and

s ≥ s3. In the first case (s1 ≤ s ≤ s2) Lemma B.2 gives:

x̃k
i = min







x̃k−1
i−1 +∆tr1 = x̃k−1

i−1 +∆tr̃1 = x̃k
i

x̃k−2
i−1 +2∆tr2 ≥ x̃k−2

i−1 +2∆tr̃2 = x̃k
i

x̃k−1
i +∆tr3 ≥ x̃k−1

i +∆tr̃3 = x̃k
i

(B.10)

Similarly, in the second case (s2 < s < s3) Lemma B.2 gives:

x̃k
i = min







x̃k−1
i−1 +∆tr1 ≥ x̃k−1

i−1 +∆tr̃1 = x̃k
i

x̃k−2
i−1 +2∆tr2 = x̃k−2

i−1 +2∆tr̃2 = x̃k
i

x̃k−1
i +∆tr3 ≥ x̃k−1

i +∆tr̃3 = x̃k
i

(B.11)

And in the third case (s ≥ s3) Lemma B.2 gives:

x̃k
i = min







x̃k−1
i−1 +∆tr1 ≥ x̃k−1

i−1 +∆tr̃1 = x̃k
i

x̃k−2
i−1 +2∆tr2 ≥ x̃k−2

i−1 +2∆tr̃2 = x̃k
i

x̃k−1
i +∆tr3 = x̃k−1

i +∆tr̃3 = x̃k
i

(B.12)

We now relax the assumption of homogeneous traffic conditions.

Theorem B.1. (B.1) solves the kinematic wave problem with piecewise linear funda-

mental relation (B.3) and piecewise constant initial condition exactly at the nodes (k, i)

of the network in Figure 8.5.

Proof. The exact solution of the kinematic wave problem (using kinematic wave the-

ory) shows that the spacing is constant between the nodes (k − 1, i − 1) and (k, i),

between (k−2, i−1) and (k, i) and between (k−1, i) and (k, i). This is because char-

acteristics may travel at three different velocities: w1, w2 and w3. The slope of the

lines connecting the nodes is equal to these velocities. Therefore, Lemma B.3 can be

applied and thus (B.1) solves the kinematic wave problem exactly.
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