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Abstract

Bottom-up, fully unsupervised segmentation remains a

daunting challenge for computer vision. In the cosegmen-

tation context, on the other hand, the availability of mul-

tiple images assumed to contain instances of the same ob-

ject classes provides a weak form of supervision that can

be exploited by discriminative approaches. Unfortunately,

most existing algorithms are limited to a very small num-

ber of images and/or object classes (typically two of each).

This paper proposes a novel energy-minimization approach

to cosegmentation that can handle multiple classes and a

significantly larger number of images. The proposed cost

function combines spectral- and discriminative-clustering

terms, and it admits a probabilistic interpretation. It is op-

timized using an efficient EM method, initialized using a

convex quadratic approximation of the energy. Compara-

tive experiments show that the proposed approach matches

or improves the state of the art on several standard datasets.

1. Introduction

The objective of image segmentation is to divide a pic-
ture into K ≥ 2 regions that are deemed meaningful ac-
cording to some objective criterion, homogeneity in some
feature space or separability in some other one for example.
Segmentation in the absence of any supervisory information
remains a daunting challenge. On the other hand, when su-
pervisory information is available, in the form of labelled
training data (full images or, in interactive settings, smaller
groups of pixels), accurate segmentations can be achieved
(e.g., [1]).The aim of cosegmentationmethods is to simulta-
neously divide a set of images assumed to contain instances
of K different object classes into regions corresponding to
these classes. Note that in this context, an “object” may re-
fer to what is usually called a “thing” (a car, a cow, etc.)
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but might also be a texture (grass, rocks), or other “stuff”
(a building, a forest) [2]. Strong supervision with hand-
labelled data is typically not available in this setting. On the
other hand, the presence of common object classes in mul-
tiple images provides a weak form of supervision that can
be exploited by discriminative algorithms. Cosegmentation
methods capable of handling large numbers of images and
classes could play a key role in the development of effec-
tive automated object discovery techniques and part-based
approaches to object detection for example. Unfortunately,
most existing algorithms have only been demonstrated in
rather restricted settings, involving only a pair of images at
a time [3, 4], and/or only two foreground and background

classes [5, 6, 7].

Kim et al. [8] have recently proposed the first method
(to the best of our knowledge) explicitly aimed at handling
multiple object classes and images. They maximize the
overall temperature of image sites associated with a heat
diffusion process and the position of sources corresponding
to the different object classes. They use a greedy procedure
guaranteed to achieve a local minimum within a fixed factor
of the global optimum thanks to submodularity properties
of the diffusion process (see [8] for details). We present in
this paper an effective energy-based alternative that com-
bines a spectral-clustering term [9] with a discriminative
one [5], and can be optimized using an efficient expectation-
minimization (EM) algorithm. Our energy function is not
convex and, like [8], we can only hope to find a local min-
imum. Fortunately, a satisfactory initialization can be ob-
tained by constructing a convex quadratic relaxation closely
related to the cost function proposed in the two-class case
by Joulin et al. [5].

The proposed approach has been implemented and tested
on several datasets including video sequences. It easily han-
dles multiple object classes and input images, and compares
favorably to [8] and a simple multi-class extension of [5] in
a comparative evaluation on two standard benchmarks. Fur-
thermore, unlike the methods proposed by Kim et al. [8] and
Joulin et al. [5], ours admits a probabilistic interpretation,
with the potential to be easily combined with other compo-
nents of an end-to-end recognition system. To summarize,
the main contributions of this paper are:
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• a simple and flexible energy-based formulation of true
multi-class image cosegmentation that admits a prob-
abilistic interpretation;

• a convex quadratic approximation of our energy
which generalizes the cost function of [5] to the multi-
class setting and affords a satisfactory initialization to
the EM process; and

• an efficient algorithm that handles large numbers of
input images and matches or improves the state of the
art on two standard datasets.

2. Proposed model

Cosegmentation can be thought of as a multi-label pixel
classification task. It is modeled in this paper as the min-
imization over the pixel labels of an energy function that
combines local appearance and spatial consistency terms
(as in spectral clustering [9]) with class-level discriminative
ones (as in discriminative clustering [5, 10]) and an entropy
regularizer aimed at balancing the size of the output regions.

Image representation. We assume that we are given a set
I of images, and that each image i is sampled on a (coarse)
gridNi ofNi pixels. We denote byN =

∑

i∈I Ni the total
number of pixels. We associate with each pixel n its color
cn, its position pn within the corresponding image, and an
additional feature xn ∈ X , that may be a SIFT vector or
color histogram for example. The first two of these features
are used to encode the local spatial layout and appearance of
each image, and the third one is used to discriminate among
different object classes in different images.

Let us denote by K the number of object classes. As is
common in the cosegmentation setting,K is assumed in the
following to be fixed and known a priori. We denote by y
the N ×K matrix such that:

ynk =

{

1 if the nth pixel is in the kth class,

0 otherwise.

Given the set I of images, our goal is thus to find y without
any other prior information.

As noted above, the idea of cosegmentation is to di-
vide each image into K visually and spatially consistent
regions while maximizing class separability across images.
The first problem leads to unsupervised spectral-clustering
methods such as normalized cuts [9] with little or no shar-
ing of information between different images. The second
one leads to multi-class discriminative clustering methods
with information shared among images. Following Joulin
et al. [5], we propose to combine the two approaches. How-
ever, generalizing their two-class (foreground/background)
model to the multi-class setting leads to a completely dif-
ferent approach to discriminative clustering. Our overall
energy function is the sum of spectral- and discriminative-
clustering terms, plus a regularizer enforcing class-size bal-
ance. We now detail these three terms.

2.1. Spectral clustering

In cosegmentation algorithms, visual and spatial consis-
tency is usually enforced using binary terms based on total
variation [4] or the Laplacian of similarity matrices [5, 8].
While the former work well in interactive segmentation
tasks [11], they do not admit the interpretation in terms of
graphical spectral clustering of the latter [9]. Since our ap-
proach is closely related to a graphical model, we follow Shi
and Malik [9], and use a similarity matrix W i to represent
the local interactions between pixels of the same image i.
This matrix is based on feature positions pn and color vec-
tors cn, which leads to high similarity for nearby pixels with
similar colors. Concretely, for any pair (n,m) of pixels in
i,W i

nm is given by:

W i
nm = exp(−λp‖pn − pm‖

2

2
− λc‖cn − cm‖

2)

if ‖pn − pm‖1 ≤ 2 and 0 otherwise. We fix λp = 0.001
and λc = 0.05 since it has been reported that these values
work well in practice [5]. We denote by W the N × N
block-diagonal matrix obtained by putting the blocksW i ∈
IRNi×Ni on its diagonal, and by L = IN −D−1/2WD−1/2

the Laplacian matrix, where IN is theN -dimensional iden-
tity matrix and D the diagonal matrix composed of the row
sums of W [9]. Following [5, 9], we thus include the fol-
lowing quadratic term into our objective function:

EB(y) =
µ

N

∑

i∈I

∑

n,m∈Ni

K
∑

k=1

ynkymkLnm, (1)

where µ is a free parameter. This term encourages an inde-

pendent segmentation of the images into different groups,
based solely on local features.

2.2. Discriminative clustering

The goal of discriminative clustering is to find the pixel
labels y that minimize the value of a regularized discrimina-
tive cost function [10]. More precisely, given some labels y
and some feature map φ : X 7→ IRd, a multi-class discrim-
inative classifier finds the optimal parameters A ∈ IRK×d

and b ∈ IRK that minimize

EU (y,A, b) =
1

N

N
∑

n=1

ℓ(yn, Aφ(xn) + b) +
λ

2K
‖A‖2F , (2)

where ℓ : IRK × IRK 7→ IR is a loss function, yn is the
n-th column of yT , and ‖A‖F is the Frobenius norm of A.
A discriminative-clustering method minimizes the response
of the classifier over the set Y of labels, i.e, it solves:

min
y∈{0,1}N×K , y1K=1N

min
A∈IRK×d,b∈IRK

EU (y,A, b).

Different choices for the loss function ℓ lead to different
algorithms. In the two-class case, Joulin et al. [5] use the
square loss, which has the advantage of leading to a convex



problem that can be solved efficiently, but is not adapted to
the multi-class setting (this is related to the masking prob-

lem, see Section 4.2 in Hastie et al. [12]). In this paper we
use instead the soft-max loss function defined as:

ℓ(yn, A, b) = −
K
∑

k=1

ynk log

(

exp(aTk φ(xn) + bk)
∑K

l=1
exp(aTl φ(xn) + bl)

)

,

where aTk is the k-th row of A, and bk the k-th entry of b.
This loss is well adapted to the multi-class setting, and it
encourages a soft assignement of the pixels to the different
classes [12].

Mapping approximation. Using a kernelized version of
the soft-max cost function instead of a linear one is attrac-
tive since features that may not be linearly separable in X
might easily be separated in IRd [13]. However, explic-
itly introducing the kernel matrix κ with entries κnm =
φ(xn)

Tφ(xm) in either the primal or dual formulation of
the minimization of EU requires the evaluation of O(N2)
kernel values at each step of the optimization [14], which
may be prohibitively expansive. In the case where κ is
known but φ is not, a common trick is to construct an incom-
plete Cholesky decomposition [13] of κ—that is, calculate
a matrix ψ ∈ IRN×d such that ψψT ≈ κ, then directly use
Eq. (2), where φ(xn) has been replaced by ψn, where ψ

T
n is

the n-th row of ψ.
This is the method used in this paper for efficiency. Since

our features are histograms, we use the χ2-kernel defined by

κnm = exp

(

− λh

D
∑

d=1

(xnd − xmd)
2

xnd + xmd

)

,

where λh > 0 (in the experiments, we use λh = 0.1). With
a slight abuse of notation, we still use φ(xn) = ψn to denote
the approximated mapping in the rest of this presentation.

2.3. Cluster size balancing

A classical problem with spectral- and discriminative-
clustering methods is that assigning the same labels to all
the pixels leads to perfect separation. A common solu-
tion is to add constraints on the number of elements per
class [10, 15]. Despite good results, this solution introduces
extra parameters and is hard to interpret. Another solution
is to encourage the proportion of points per class and per
image to be close to uniform. An appropriate penalty term
for achieving this is the entropy of the proportions of points
per image and per class:

H(y) = −
∑

i∈I

K
∑

k=1

(

1

N

∑

n∈Ni

ynk

)

log

(

1

N

∑

n∈Ni

ynk

)

. (3)

As shown later, there is a natural interpretation that allows
us to set the parameter in front of this term to 1.

Weakly supervised segmentation. Cosegmentation can be
seen as a “very weakly” supervised form of segmentation,

where one knows thatK object classes occur in the images,
but not which ones of the K do occur in a given image.
Indeed, our entropy term encourages (but does not force)
every class to occur in every image. Our framework is easily
extended to weakly supervised segmentation, where tags are
attached to each image i, specifying the set Ki of object
classes appearing in it: This simply requires replacing the
sum over indices k varying from 1 to K in Eq. (3) by a
sum over indices k in Ki. For any pixel n in image i, this
naturally encourages ynk to be zero for any k nor inKi.

2.4. Probabilistic interpretation

Combining the three terms defined by Eqs. (1)–(3) we
finally obtain the following optimization problem:

min
y∈{0,1}N×K ,

y1K=1N

[

min
A∈IR

d×K ,

b∈IR
K

EU (y,A, b)

]

+ EB(y)−H(y). (4)

Let us show that the labels y can be seen as latent vari-
ables in a directed graphical model [16]. First, for each
pixel n, we introduce a variable tn in {0, 1}|I| indicat-
ing to which image n belongs, as well as a variable zn in
{1, . . . ,M} giving for each pixel n some observable in-

formation, e.g., some information about its true label or its
relation with other pixels. The resulting directed graphical
model (x→ y → z ← t) defines the label y as a latent vari-
able of the observable information z given x. Given some
pixel n, this model induces an “explain away” phenomenon:
the label yn and the variable tn compete to explain the ob-
servable information zn. This model can be seen as an ex-
tension of topic models [17, 18] where the labels y repre-
sent topics which explain the document z given the words

x, independently of the group of documents t from which
z has been taken. More precisely, we suppose a bilinear
model:

P (znm = 1 | tni = 1, ynk = 1) = ynkG
ik
mtni,

where
∑N

m=1
Gik

m = 1, and we show in the supplemen-
tary material that the problem defined by Eq. (4) is equiva-
lent to the mean-field variational approximation of the fol-
lowing (regularized) negative conditional log-likelihood of
Y = (y1, . . . , yN ) given X = (x1, . . . , xN ) and T =
(t1, . . . , tn) for our model:

min
A∈IR

d×K ,b∈IR
K ,

G∈IR
N×K|I|,

GT
1N=1, G≥0

−
1

N

N
∑

n=1

log
(

p(yn | xn, tn)
)

+
λ

2K
‖A‖2

2
.

The introduction of the variable z makes our model suit-
able for a a semi-supervised setting where z would encode
“must-link” and “must-not-link” constraints between pix-
els. This may prove particularly useful when superpixels
are used, since it is equivalent to adding “must-link” con-
straints between pixels belonging to the same superpixel (in
this case,M is the total number of superpixels).



3. Optimization

We now present a non-convex relaxation of our combi-
natorial problem, which leads to an optimization scheme
based on an expectation-maximization (EM) procedure,
which can be initialized by efficiently solving a convex op-
timization problem closely related to [5].

3.1. EM algorithm

We use a continuous relaxation of our combinatorial
problem, replacing the set of possible y values by the con-
vex set Y = {y ∈ [0, 1]N×K | y1K = 1N}. In this setting,
ynk can be interpreted as the probability for the n-th point to
be in the k-th class. Our cost function is a difference of con-
vex functions, which can be optimized by either difference-
of-convex (DC) programming [19] or a block-coordinate de-
scent procedure. We choose the latter, and since our energy
is closely related to a probabilistic model, dub it an EM pro-
cedure with a slight abuse of notation.

M-step. For some given value of y, minimizingEU (y,A, b)
in terms of (A, b) is a (convex) softmax regression problem
which can be solved efficiently by a quasi-Newton method
such as L-BFGS [20].

E-step. For given A and b, the cost function of Eq. (4) is
convex in y ∈ Y , and can thus be minimized with a simple
projected gradient descent method on Y . This first-order
optimization method is slower than the second-order one
used in the M-step, and it is the bottleneck of our algorithm,
leading us to use superpixels for improved efficiency.

Superpixels. We oversegment every image i into Si super-
pixels. For a given image i, this is equivalent to forcing
every pixel n in Ni in a superpixel s to have the same label
yn = ys. Denoting by |s| the number of pixels contained
in a superpixel s, each term of our cost function depending
directly on y is reduced to:

{

EU (y) = 1

N

∑

s∈S ys(AΦs + |s|b),
EB(y) = µ

2

∑

i∈I

∑

s,t∈S2

i
yskytkΛst,

where EU (y) is the part of EU (y,A, b) depending on y,
Φ(s) =

∑

n∈s φ(xn), and Λst =
∑

n∈s

∑

m∈t Lnt. The
entropy has the form:

H(y) = −
∑

i∈I

K
∑

k=1

(

1

N

∑

s∈Si

|s|ysk

)

log

(

1

N

∑

s∈Si

|s|ysk

)

.

Since the problem defined by Eq. (4) is not jointly con-
vex in (A, b) and y, a reasonable initial guess is required.
In the next section, we propose a convex approximation of
our cost function that can be used to compute such a guess.
Moreover we show that this approximation is closely re-
lated to the the cost function proposed by Joulin et al. [5].
This allows us to use a modified version of their algorithm
to initialize ours.

3.2. Quadratic relaxation

Cosegmentation is caracterized by the lack of prior infor-
mation on the classes present in the images. A reasonable
initial guess for our model parameters is thus to assume a
uniform distribution y0n of the classes over each pixel n, and
to predict a pixel’s class using a linear model whose param-
eters are independent of the corresponding feature value,
which is easily shown to be equivalent to

ℓ(y0n, 0) =
K
∑

k=1

1

K
log(K).

We thus propose to approximate our cost function by its
second-order Taylor expansion around y0 (see the supple-
mentary material for the calculation):

J(y) =
K

2

[

tr(yyTC) +
2µ

NK
tr(yyTL)−

1

N
tr(yyTΠI)

]

, (5)

where ΠI = IN − Λ, and Λ is the N × N block diago-
nal matrix where there is a block equal to 1

Ni
1Ni

1TNi
for

each image i. Note that the projection matrix ΠI centers
the data for each image independently. Finally, the matrix
C in Eq. (5) is equal to:

C =
1

N
ΠN (I − Φ(NλIK +ΦTΠNΦ)−1ΦT )ΠN ,

where the projection matrix ΠN = I − 1

N 1N1TN centers the
data across all images. Note that C is closely related to the
solution of the ridge regression (or Tikhonov regularization)
of y over Φ [5].

The first two terms in Eq. (5) add up to the cost function
of Joulin et al. [5] (up to a multiplicative constant). The last
term is a non-convex quadratic penalization encouraging a
uniform distribution over classes on each image. We replace
it (during initialization only) by linear constraints that force
the pixels in any class k to represent at most 90% of the
pixels in each image i, and at least 10% of the pixels in all
other images:

∑

n∈Ni

ynk ≤ 0.9Ni ;
∑

j∈I\i

∑

n∈Nj

ynk ≥ 0.1(N −Ni).

These constraints generalize those in [5] to the multi-class
case, and using them has the added benefit of allowing us
to use a slightly modified version of their publicly avail-
able software.1 However, the output of this code is the
N × N matrix Y = yyT and not y, thus a rounding step
is necessery to initialize our algorithm. The standard ap-
proach to this kind of problem is to use either k-means or a
Gaussian mixture model (GMM) over the eigenvectors as-
sociated with the K highest eigenvalues [21] for this pur-
pose.

1http://www.di.ens.fr/ joulin/



images class Ours [8] [5] [7]

30 Bike 43.3 29.9 42.3 42.8

30 Bird 47.7 29.9 33.2 -

30 Car 59.7 37.1 59.0 52.5

24 Cat 31.9 24.4 30.1 5.6

30 Chair 39.6 28.7 37.6 39.4

30 Cow 52.7 33.5 45.0 26.1

26 Dog 41.8 33.0 41.3 -

30 Face 70.0 33.2 66.2 40.8

30 Flower 51.9 40.2 50.9 -

30 House 51.0 32.2 50.5 66.4

30 Plane 21.6 25.1 21.7 33.4

30 Sheep 66.3 60.8 60.4 45.7

30 Sign 58.9 43.2 55.2 -

30 Tree 67.0 61.2 60.0 55.9

Average 50.2 36.6 46.7 40.9

Table 1. Binary classification results on MSRC. Best results in

bold.

Practical issues. Initializing our algorithm with the con-
vex approximation proposed in this section usually leads
to good results, but sometimes fails completely, due to the
masking problem mentioned earlier. Therefore, we also
start our EM procedure with five random intializations. We
compare the final values of our cost function obtained from
these initializations, and pick the solution associated with
the lowest value as our result. An effective rounding proce-
dure is also a key to good performance. Thus, we perform
both the k-means and GMM rounding procedures, run one
M-step for each of the corresponding initializations, and run
the rest of the algorithm with the one yielding the lowest
value of the cost function.

4. Implementation and results

4.1. Experimental setup

We use the watershed algorithm [22] to find superpix-
els. The rest of our algorithm is coded in MATLAB. Since
a good initialization is crucial, we use a modified version
of [5] to initialize our method as explained in Section 3.2.
The complexity of our algorithm isO(NK), and its running
time (including [5]) typically varies from 30mn to one hour
for 30 images, depending on the number of superpixels (this
could be improved using a C implementation and exploiting
the fact that parts of our algorithm are easily parellelized).

We present qualitative multi-class cosegmentation re-
sults on various datasets in the rest of this section. We
also present quantitative comparisons with Kim et al. [8]2,
Mukherjee et al. [7] and Joulin et al. [5] on two standard
benchmarks, MSRC-v23 and iCoseg [23].4 We use the pub-
licly available versions of [5, 8] and set their free parameters
so as to maximize their performance for the sake of fairness.
Likewise, we set the free parameter µ of our algorithm by
trying µ = 10k for k ∈ {0, . . . , 4}, and keeping the value

2http://www.cs.cmu.edu/∼gunhee/r seg submod.html
3http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
4http://chenlab.ece.cornell.edu/projects/touch-coseg/

Figure 2. This figure shows how increasing the number of classes

leads to a better segmentation. Columns 2 to 3 respectively show

results for K = 2 and K = 3 (best seen in color).

leading to the best performance (taking µ = 0.1 works well
in all our experiments in practice).

The images in iCoseg only have two labels, and MSRC
is not well suited to a multi-class evaluation because of its
“clutter” class that does not correspond to a well-defined vi-
sual category. We have thus used the main “object” category
for eachMSRC image as foreground, and the rest of the pix-
els as background, and limited our quantitative evaluation to
the binary case. Segmentation performance is measured by
the intersection-over-union score that is standard in PAS-

CAL challenges and defined as maxk
1

|I|

∑

i∈I
GTi∩Rk

i

GTi∪Rk
i

,

where GTi is the ground truth and R
k
i the region associated

with the k-th class in the image i.

4.2. MSRC twoclass experiments

Qualitative results obtained on the MSRC-v2 database
with two classes are shown in Figure 1. Table 1 gives a
quantitative comparison with [5, 8, 7].5 Note that the al-
gorithm proposed in [7] fails to converge on 5 out of 14
classes. Our algorithm achieves the best performace for 12
out of 14 object classes. We use SIFT for discriminative
clustering here because of the high appearance variability
of MSRC.

This experiment calls for some additional comments:
First, it is interesting to note that our method works best
for faces, despite the high background variability compared
to sheep or cow for example. Second, for classes with very
high variability (e.g., cat, dog, or chair), the three coseg-
mentation algorithms perform rather poorly, as expected.
Third, it appears that the low performance on the bike class
is caused by too-coarse superpixels. Finally, the poor per-
formance of our algorithm on the plane category is mostly
due to the fact that the background is (essentially) always
the same, and is composed of two kinds of “stuff”, i.e.,
grass and sky, as shown in Figure 2. Therefore, with only
two classes, our algorithm simply separates sky+plane from
grass, which motivates the need for multi-class cosegmen-
tation as demonstrated in the next section.

4.3. Multiclass experiments

We present in this section our experiments with mul-
tiple object categories using the recently released iCoseg

5There is no error bar since we test on the maximum number of images
per class.



dataset images class K Ours multiclass Joulin et al. [5] Kim et al. [8] Joulin et al. [5]

25 Baseball player 5 62.2 53.5 51.1 24.9

5 Brown bear 3 75.6 78.5 40.4 28.8

15 Elephant 4 65.5 51.2 43.5 23.8

11 Ferrari 4 65.2 63.2 60.5 48.8

33 Football player 5 51.1 38.8 38.3 20.8

iCoseg 7 Kite Panda 2 57.8 58.0 66.2 58.0

17 Monk 2 77.6 76.9 71.3 76.9

11 Panda 3 55.9 49.1 39.4 43.5

11 Skating 2 64.0 47.2 51.1 47.2

18 Stonehedge 3 86.3 85.4 64.6 62.3

30 Plane 3 45.8 39.2 25.2 25.1

MSRC 30 Face 3 70.5 56.4 33.2 66.2

Average 64.8 58.1 48.7 43.9

Table 2. Results on iCoseg and MSRC using more than two segments. Here, K indicates the number of segments used for our algorithm.

database, along with two MSRC classes. iCoseg provides
a setting closely related to video segmentation in the sense
that, for a given class, the images are similar to key frames
in a video, with similar lighting and background. As in the
case of the plane in Figure 2 (first two columns), this makes
binary segmentation very difficult (sometimes meaningless)
since multiple object classes may be merged into a single
one. As shown by Figure 2 (right), adding more classes
helps.

The number of meaningful “objects” present in the im-
ages varies from one problem to the next, andK must be set
by hand. In practice, we have tried values between 2 and 5,
and Figure 3 shows that this gives reasonably good results
in general. Quantitative results are given in Table 2. Since,
as argued earlier, MSRC and iCoseg are not well adapted
to benchmarking true multi-class cosegmentation, we re-
port the maximum of the intersection-over-union scores ob-
tained for the K classes against the “object” region in the
ground-truth data.

As before, we use SIFT features for the two MSRC
classes used in this experiment. Due to little change in
illumination, we use instead color histograms for iCoseg,
which are in general more appropriate than SIFT ones in
this setting.6 We compare our algorithm with both our mul-
ticlass implementation of Joulin et al. [5] and their original
implementation (with K = 2) using the same features as
ours. We also compare our method to Kim et al. [8] with
K between 2 and 5, and keep the K value with the best
performance.

We obtain the best performance for 10 of the 12 classes,
including the MSRC plane category for which our two-
class algortihm only obtained 21.6% in our previous exper-
iment. Note that we do not claim that using multiple classes
solves the binary cosegmentation problem. Indeed, we do
not know which one of the K classes corresponds to the
“foreground” object. On the other hand, our experiments
suggest that this object is indeed rather well represented by

6SIFT features lead to better performance in some of the cases (for
example, the performance rises to 85.2% for the brown bear class and to
75.9% for pandas), but for a fair comparison we keep the same features
for the entire dataset.

one of the classes in most of our test cases, which may be
sufficient to act as a filter in an object discovery setting for
example [24].

Of course, our method, like any other, makes mistakes,
sometimes giving completely wrong segmentations. Fig-
ure 4 shows a few examples.

Figure 4. Some failure cases.

Figure 5. Weakly supervised segmentation results with known tags

and SIFT features.

Figure 6. Interactive segmentation results with color histogram

features.

4.4. Extensions

Let us close this section with a few proof-of-concept ex-
periments involving simple extensions of our framework.

Weakly supervised segmentation. We start with the case
where each image is tagged with the object classes it con-
tains. As explained in Section 2, this can be handled by a



simple modification of our entropy-based regularizer. Fig-
ure 5 shows qualitative results obtained using 60 sheep and
plane images in theMSRC database, labelled with tags from
the set {sheep, plane, grass, sky}. The performance is es-
sentially the same as when the two sets of images are seg-
mented separately, but the grass is now identified uniquely
in the 60 images.

Interactive segmentation. The weakly supervised version
of our method is itself easily generalized to an interactive
setting, as in GrabCut [1], where the user defines a bound-
ing box around the object of interest. For us, this simply
amounts to picking a foreground or background label for
each pixel inside the box, and a background label for all the
pixels outside. Figure 6 shows a few qualitative examples
obtained using this method. Again, these are just for proof
of concept, and we do not claim to match the state of the art
obtained by specialized methods developed since the intro-
duction of [1].

Video segmentation. Our experiments with iCoseg sug-
gest that our method is particularly well suited to keyframes
from the same video shot, since these are likely to fea-
ture the same objects under similar illumination. This is
confirmed with our experiments with two short video clips
taken from the Hollywood-2 and Grundmann datasets [25,
26]. We pick five key frames from each video and coseg-
ment them using color features without any temporal infor-
mation such as frame ordering or optical flow. As shown
by Figure 7, reasonable segmentations are obtained. In par-
ticular, the main characters in each video are identified as
separate segments.

5. Conclusion
We have presented a true multi-class framework for im-

age cosegmentation, and shown that it compares favorably
with the state of the art. We have also presented preliminary
extensions to related problems such as weakly supervised
or interactive cosegmentation, and the joint segmentation
of video key frames. Next on our agenda are incorporat-
ing motion information in the analysis of video clips and
using cosegmentation as a front end to an object recogni-
tion/detection system.
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Figure 1. Results on binary classification. There are three set of images by row. The images are taken from MSRC and the features are

SIFT.

Figure 3. Results for the cosegmentation with multiple classes. There are three experiments by row with respectively. The images are taken

from iCoseg and the features are color histograms.

Figure 7. Results on two videos. The first row represent the input images, the second one is the segmentation obtained with our algorithm.


