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Abstract

Regularized kernel discriminant analysis (RKDA) performs linear discriminant analysis in the fea-
ture space via the kernel trick. Its performance depends on the selection of kernels. In this paper,
we consider the problem of multiple kernel learning (MKL) for RKDA, in which the optimal kernel
matrix is obtained as a linear combination of pre-specified kernel matrices. We show that the kernel
learning problem in RKDA can be formulated as convex programs. First, we show that this problem
can be formulated as a semidefinite program (SDP). Based on the equivalence relationship between
RKDA and least square problems in the binary-class case, we propose a convex quadratically con-
strained quadratic programming (QCQP) formulation for kernel learning in RKDA. A semi-infinite
linear programming (SILP) formulation is derived to further improve the efficiency. We extend
these formulations to the multi-class case based on a key result established in this paper. That is,
the multi-class RKDA kernel learning problem can be decomposed into a set of binary-class kernel
learning problems which are constrained to share a common kernel. Based on this decomposition
property, SDP formulations are proposed for the multi-class case. Furthermore, it leads naturally
to QCQP and SILP formulations. As the performance of RKDA depends on the regularization pa-
rameter, we show that this parameter can also be optimized in a joint framework with the kernel.
Extensive experiments have been conducted and analyzed, and connections to other algorithms are
discussed.

Keywords: model selection, kernel discriminant analysis, semidefinite programming, quadrati-
cally constrained quadratic programming, semi-infinite linear programming

1. Introduction

Formulation of machine learning problems as convex programs has been one of the recent trends
in machine learning research. Such formulations offer global solutions and avoid some difficulties
encountered by traditional learning algorithms (Lanckriet et al., 2003, 2004b; d’Aspremont et al.,
2007). Kernel methods (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004) work
by embedding the input data into some high-dimensional feature space, and they are generally
formulated as convex optimization problems. The key fact underlying the success of kernel methods
is that the embedding into feature space can be determined uniquely by specifying a kernel function
that computes the dot product between data points in the feature space. In other words, the kernel

c©2008 Jieping Ye, Shuiwang Ji and Jianhui Chen.



YE, JI AND CHEN

function implicitly defines the nonlinear mapping to the feature space, and expensive computations
in the high-dimensional feature space can be avoided by evaluating the kernel function. Thus, one
of the central issues in kernel methods is the selection of kernels.

To automate kernel-based learning algorithms, it is desirable to integrate the tuning of kernels
into the learning process. This problem has been addressed from different perspectives recently.
Lanckriet et al. (2004b) pioneered the work of multiple kernel learning (MKL) in which the optimal
kernel matrix is obtained as a linear combination of pre-specified kernel matrices. It was shown
(Lanckriet et al., 2004b) that the coefficients in MKL can be determined by solving convex programs
in the case of support vector machines (SVM) (Vapnik, 1998; Cristianini and Taylor, 2000). This
MKL problem was formulated as support kernel machines (SKM) in Bach et al. (2004), and the
sequential minimal optimization (SMO) algorithm (Platt, 1999) was proposed to solve it. Recently,
this SKM was reformulated as semi-infinite linear program (SILP) which was shown to be scalable
to large data sets and a large number of kernels (Sonnenburg et al., 2006; Rakotomamonjy et al.,
2007). Micchelli and Pontil (2005, 2007) studied the problem of finding an optimal kernel from a
prescribed convex set of kernels by regularization. To deal with problems with structured output,
MKL for joint feature map was proposed in Zien and Ong (2007). While most existing work focuses
on learning kernels for SVM, Fung et al. (2004) proposed to learn kernels for discriminant analysis.
Based on ideas from MKL, this problem was reformulated as SDP in Kim et al. (2006). In general,
approaches based on learning linear combination of kernel matrices offer the additional advantage
of facilitating heterogeneous data integration from multiple sources. Such formulations have been
applied to combine various biological data, for example, amino acid sequences, hydropathy profiles,
and gene expression data, for enhanced biological inference (Lanckriet et al., 2004a).

Ong et al. (2005) showed that the learning of kernels can be accomplished by defining a repro-
ducing kernel Hilbert space on the space of kernels itself, and the resulting optimization problem is
an SDP. This formulation was recast into second order cone program (SOCP) (Lobo et al., 1998)
in Tsang and Kwok (2006). Hoi et al. (2007) showed that the kernel matrix can be learned in a
nonparametric manner by solving SDP. The kernel learning problem in the context of multiple tasks
was considered in Jebara (2004). Some recent extensions of kernel learning produced nonstationary
combinations (Lewis et al., 2006) and potentially infinite number of kernels (Argyriou et al., 2006).

This paper addresses the issue of kernel learning for regularized kernel discriminant analysis
(RKDA) (Mika et al., 1999; Baudat and Anouar, 2000; Mika et al., 2001, 2003). Our proposed
methods belong to the MKL framework, and they can thus be used for heterogeneous data integra-
tion. We systematically extend the kernel learning problem for RKDA in several directions. First,
we extend the formulation in Kim et al. (2006) by proposing a simplified SDP formulation. Based
on this simplified form and the equivalence relationship between KRDA and least square problems
in the binary-class case, we propose a convex quadratically constrained quadratic programming
(QCQP) formulation for this problem. To improve the efficiency of our formulations, we further
develop a semi-infinite linear programming (SILP) formulation. While most existing work on ker-
nel learning only deals with binary-class problems, we show that all of our formulations can be
extended naturally to the multi-class setting. In particular, we show that the kernel learning problem
for multi-class RKDA can be decomposed into a set of binary-class kernel learning problems that
are constrained to share a common kernel. It is worth noting that the optimal kernel is the same
for the original and the decomposed formulations, though the optimal transformation matrices may
not coincide. In other words, the decomposed form is equivalent to the original one for the purpose
of kernel learning. We further develop an approximate scheme to reduce the computational cost of
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multi-class SDP formulation. Finally, we propose to optimize the regularization parameter along
with the kernels in a joint framework. This joint optimization framework is derived from and similar
to the work in De Bie et al. (2003); Lanckriet et al. (2004b).

The key contributions of this paper can be highlighted as follows:

• We propose a simplified SDP formulation for the RKDA kernel learning problem in the
binary-class case. Based on this simplified form and the equivalence relationship between
RKDA and least square problems in the binary-class case, we derive QCQP and SILP formu-
lations for this problem.

• We show that the multi-class RKDA kernel learning problem can be decomposed into k
binary-class kernel learning problems where k is the number of classes. This leads to two
(exact and approximate) SDP formulations in the multi-class case. Based on this decomposi-
tion property, we show that the QCQP and SILP formulations for binary-class problems can
be extended naturally to the multi-class case.

• We show that all the proposed formulations can be recast to optimize the regularization param-
eter simultaneously. This joint learning framework further automates the learning algorithms.

• We conduct extensive experiments using a collection of benchmark data sets to compare sev-
eral relevant algorithms under a unified experimental setup. To demonstrate the effectiveness
of the proposed formulations for heterogeneous data integration, we apply these formulations
to combine multiple data sources derived from gene expression pattern images (Tomancak
et al., 2002).

The rest of this paper is organized as follows: We derive the SDP, QCQP, and SILP formulations
for the binary-class case in Section 2. Section 3 extends these formulations to the multi-class case.
The joint optimization of regularization parameter is presented in Section 4. Section 5 presents the
experimental evaluation, and this paper concludes with discussion and conclusion in Section 6.

Notation
x ∈ IRn denotes an n-dimensional vector. Similarly, A ∈ IRm×n denotes a matrix with m rows

and n columns. I is used to denote the identity matrix of an appropriate dimension and em denotes
the vector of all ones of length m. For a square symmetric matrix S, S � 0 means it is positive
semidefinite. We also use the short-hand x ≥ 0 to denote that each component of the vector x is
non-negative.

2. Convex Formulations for Binary-class Problems

We use X to denote the input or instance space, which is a subspace of IRd , and Y = {−1,+1} to
denote the output or class label set. An input-output pair (x,y), where x ∈ X and y ∈ Y , is called an
example. An example is called positive (negative) if its class label is +1(−1). We assume that the
examples are drawn randomly and independently from a fixed, but unknown, underlying probability
distribution over X ×Y .

A symmetric function K : X ×X → R is called a kernel function (Schölkopf and Smola, 2002)
if it satisfies the finitely positive semidefinite property. That is, for any x1, · · · ,xm ∈ X , the Gram
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matrix G ∈ IRm×m, defined by Gi j = K(xi,x j) is positive semidefinite. Any kernel function K im-
plicitly maps the input set X to a high-dimensional (possibly infinite) Hilbert space HK equipped
with the inner product (·, ·)HK

through a mapping φK from X to HK :

K(x,z) = (φK(x),φK(z))HK
.

In kernel-based classification, the algorithms learn a classifier f : X →{−1,+1} whose decision
boundary between the two classes is affine in the feature space HK :

f (x) = sgn(wT φK(x)+b),

where w ∈ HK is the vector of feature weights, b ∈ IR is the intercept, and sgn(u) = +1, if u > 0,
and −1 otherwise.

Let {x+
1 , · · · ,x+

m+
} and {x−1 , · · · ,x−m−} denote the collections of data points from the positive and

negative classes, respectively. The total number of data points in the training set is m = m+ + m−.
For a given kernel function K, the basic idea of RKDA in the binary-class case is to find a direction
in the feature space HK onto which the projections of the two sets {φK(x+

i )}m+

i=1 and {φK(x−i )}m−
i=1

are well separated. Define the centroids of the two classes as follows:

µ+
K =

1
m+

m+

∑
i=1

φK(x+
i ),

µ−K =
1

m−

m−

∑
i=1

φK(x−i ),

and the two sample class covariance matrices as follows:

S+
K =

1
m+

m+

∑
i=1

(φK(x+
i )−µ+

K )(φK(x+
i )−µ+

K )T ,

S−K =
1

m−

m−

∑
i=1

(φK(x−i )−µ−K )(φK(x−i )−µ−K )T .

Specifically, in RKDA the separation between the two classes is measured by the ratio of the vari-
ance (wT (µ+

K − µ−K ))2 between the classes to the variance wT
(

m+/mS+
K +m−/mS−K

)

w within the
classes. Thus, RKDA maximizes the following objective function:

F1(w,K) =
(wT (µ+

K −µ−K ))2

wT
(

m+/mS+
K +m−/mS−K +λI

)

w
, (1)

where λ > 0 is the regularization parameter. The optimal weight vector

w∗ ≡ argmax
w

{F1(w,K)}

that maximizes the objective function in Equation (1) for a fixed kernel function K and a fixed
regularization parameter λ is given by

w∗ = (m+/mS+
K +m−/mS−K +λI)−1(µ+

K −µ−K ).
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The maximum value
F∗

1 (K) ≡ max
w

{F1(w,K)}

of the objective function in Equation (1) achieved by the optimal weight vector w∗ is given by

F∗
1 (K) = (µ+

K −µ−K )T (m+/mS+
K +m−/mS−K +λI

)−1
(µ+

K −µ−K ). (2)

It follows from the Representer Theorem (Schölkopf and Smola, 2002) that the optimal weight
vector in RKDA is in the span of the images of the training points in the feature space. In other
words, there exists a vector

α∗ = [α+
1 , · · · ,α+

m+
,α−

1 , · · · ,α−
m− ]T ∈ IRm

such that

w∗ =
m+

∑
i=1

α+
i φK(x+

i )+
m−

∑
i=1

α−
i φK(x−i ) = φK(X)α∗,

where φK(X) is the data matrix in the feature space given by

φK(X) =
[

φK(x+
1 ), · · · ,φK(x+

m+
),φK(x−1 ), · · · ,φK(x−m−)

]

.

The optimal vector α∗ is given by Kim et al. (2006) as

α∗ =
1
λ
(I − J(λI + JGJ)−1JG)a,

where I is the identity matrix, a is an m-dimensional vector given by

a = [1/m+, · · · ,1/m+,−1/m−, · · · ,−1/m−]T ∈ IRm, (3)

the matrix J is defined as:

J =

(

1√
m+

(I − 1
m+

em+eT
m+

) 0

0 1√
m−

(I − 1
m−

em−eT
m−)

)

,

G is restricted to be a linear combination of the p given kernel matrices G1, · · · ,Gp as

G ∈ G =

{

G =
p

∑
i=1

θiGi

∣

∣

∣

∣

∣

p

∑
i=1

θi = 1 , θi ≥ 0 ∀i

}

,

and em+ and em− are vectors of all ones of length m+ and m−, respectively.
The optimal value F∗

1 (K) in Equation (2) is thus given by

F∗
1 (K) = (µ+

K −µ−K )T (m+/mS+
K +m−/mS−K +λI

)−1
(µ+

K −µ−K )

= (µ+
K −µ−K )T w∗ = (µ+

K −µ−K )T φK(X)α∗ = aT φK(X)T φK(X)α∗

=
1
λ

aT G(I − J(λI + JGJ)−1JG)a. (4)

It was shown in Kim et al. (2006) that the optimal Gram matrix G based on the kernel function K that
maximizes F∗

1 (K) given in Equation (4) can be obtained by solving a semidefinite program (SDP)
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(Vandenberghe and Boyd, 1996; Boyd and Vandenberghe, 2004). General-purpose optimization
packages such as SeDuMi (Sturm, 1999) use the interior-point methods (Nesterov and Nemirovskii,
1994) to solve SDP. However, for problems of moderate size in machine learning, this overhead
of optimal kernel learning is large, and its computation time can easily exceed that of the learning
algorithm itself.

We propose a new SDP formulation for this problem in the next subsection. The proposed
SDP formulation has a simplified form. Experimental results presented in Section 5 show that
the proposed formulation is comparable to the one in Kim et al. (2006). More importantly, this
simplified formulation lays the foundation for the extensions to multi-class problems in Section 3
and the joint optimization of regularization parameter in Section 4.

2.1 Simplified SDP Formulation

In the rest of this paper, we work on the centered version of kernel matrices. This is equivalent to
centering the data as preprocessed in linear discriminant analysis (LDA) and principal component
analysis (PCA). More precisely, given a set of p kernel matrices G1, · · · ,Gp, the proposed algorithms
learn an optimal kernel matrix G̃ ∈ G̃ , where

G̃ =

{

G̃ =
p

∑
i=1

θiG̃i

∣

∣

∣

∣

∣

p

∑
i=1

θi ri = 1, θi ≥ 0

}

,

G̃i = PGiP, ri = trace(G̃i), and P ∈ IRm×m is the centering matrix defined as

P = I − 1
m

emeT
m, (5)

and em is the vector of all ones of size m.
Consider the maximization of the following objective function:

F2(w,K) =
(wT (µ+

K −µ−K ))2

wT (ΣK +λI)w
, (6)

where ΣK is defined as follows:

ΣK = m+ S+
K +m− S−K +

m+m−
m

(µ+
K −µ−K )(µ+

K −µ−K )T

=
m+

∑
i=1

(φK(x+
i )−µK)(φK(x+

i )−µK)T +
m−

∑
i=1

(φK(x−i )−µK)(φK(x−i )−µK)T

= φK(X)PφK(X)T , (7)

P is defined in Equation (5), and

µK =
1
m

(

m+

∑
i=1

φK(x+
i )+

m−

∑
i=1

φK(x−i )

)

is the global centroid of the data in the feature space. Note that the scaling factor 1/m has been
omitted in the definition of ΣK in Equation (7). It turns out that for fixed K and λ, Equations (1)
and (6) are equivalent in terms of the computation of the optimal weight vector w. We show in the
following theorem that optimizing F2(w,K) in Equation (6) with respect to the kernel function leads
to a simplified SDP formulation.

724



DISCRIMINANT KERNEL LEARNING

Theorem 2.1 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix G̃ ∈
G̃ that maximizes the objective function in Equation (6) can be found by solving the following
semidefinite programming problem:

min
θ,t

t (8)

subject to

(

I + 1
λ ∑p

i=1 θiG̃i a
aT t

)

� 0,

θ ≥ 0,

θT r = 1,

where a is defined in Equation (3), θ = [θ1, · · · ,θp]
T , and r =

[

trace(G̃1), · · · , trace(G̃p)
]T

.

Proof The optimal weight vector

w∗ ≡ argmax
w

{F2(w,K)}

is given by
w∗ = (ΣK +λI)−1(µ+

K −µ−K ).

The maximum value of the objective function in Equation (6) achieved by w∗ is given by

F∗
2 (K) ≡ F2(w

∗,K) = (µ+
K −µ−K )T (ΣK +λI)−1(µ+

K −µ−K ).

It follows from Appendix A that

w∗ =
1
λ

φK(X)
(

I −P(λI +PGP)−1 PG
)

a,

and

F∗
2 (K) = (µ+

K −µ−K )T w∗ = aT φK(X)T w∗

=
1
λ

aT
(

G−GP(λI +PGP)−1 PG
)

a.

Since the vector a defined in Equation (3) is of zero mean, that is, Pa = a, we have

F∗
2 (K) =

1
λ

aT P
(

G−GP(λI +PGP)−1PG
)

Pa

=
1
λ

aT (G̃− G̃(λI + G̃)−1G̃
)

a, (9)

where G̃ is derived from G with both rows and columns centered as

G̃ = PGP.

Since

G̃− G̃(λI + G̃)−1G̃ = G̃− G̃(λI + G̃)−1(G̃+λI −λI)

= λG̃(λI + G̃)−1

= λ(G̃+λI −λI)(λI + G̃)−1

= λ−λ2(λI + G̃)−1,
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the optimal value F∗
2 (K) in Equation (9) can be simplified as

F∗
2 (K) = aT a−λaT (λI + G̃)−1a. (10)

It follows that the optimal kernel learning problem in RKDA, which maximizes F ∗
2 (K) in Equa-

tion (10) for a fixed regularization parameter λ, is equivalent to minimizing

λaT (λI + G̃)−1a = aT
(

I +
1
λ

G̃

)−1

a, (11)

subject to the constraint that G̃ ∈ G̃ .
Mathematically, the optimal kernel learning problem can be formulated as follows:

min
θ

aT

(

I +
1
λ

p

∑
i=1

θiG̃i

)−1

a

subject to θ ≥ 0,

θT r = 1.

We can write the inequality

aT
(

I +
1
λ

G̃

)−1

a ≤ t

equivalently as the linear matrix inequality (LMI) (Boyd and Vandenberghe, 2004)
(

I + 1
λ G̃ a

aT t

)

� 0,

via the Schur complement lemma (Golub and Van Loan, 1996; Lanckriet et al., 2004b). We com-
plete the proof by a simple change of variable.

2.2 QCQP Formulation

The optimization problem proposed by Kim et al. (2006) and the one in Theorem 2.1 are both SDP
problems, which are computationally very expensive to solve, even with the recent advances in
interior point methods. In this subsection, we show that this kernel learning problem can be refor-
mulated equivalently as a quadratically constrained quadratic program (QCQP) (Boyd and Vanden-
berghe, 2004), which can then be solved more efficiently than SDP.

It is known that discriminant analysis and least square problems are equivalent in the binary-
class case (Mika, 2002). Consider the regularized least squares problem, which minimizes the
following objective function:

F3(w,K) = ||(φK(X)P)T w−a||2 +λ||w||2. (12)

The following lemma relates this problem to the problem of optimal kernel learning.

Lemma 2.1 The optimal kernel function K solving the optimization problem in Equation (11) is
also the minimizer of the objective function in Equation (12).
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Proof The optimal w∗ that minimizes the objective function in Equation (12) for a fixed K and λ is
given by

w∗ =
(

λI +φK(X)PφK(X)T )−1 φK(X)Pa

=
1
λ

φK(X)
(

I −P(λI +PGP)−1 PG
)

a.

The optimal value of the objective function in Equation (12) is therefore given by

F∗
3 (K) = aT

(

I +
1
λ

G̃

)−1

a,

where G̃ = PGP. This completes the proof of this lemma.

Based on this equivalence result, we can formulate the kernel learning problem as a QCQP
problem, as summarized in the following theorem.

Theorem 2.2 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix, in
the form of a convex linear combination of the given p kernel matrices, that minimizes the objective
function in Equation (12) can be found by solving the following convex QCQP problem:

max
β,t

−1
4

βT β+βT a− 1
4λ

t

subject to t ≥ 1
ri

βT G̃iβ, for i = 1, · · · , p, (13)

where ri = trace(G̃i).

Proof We consider the dual formulation of the minimization of F3(w,K) in terms of w. Denote

η = (φK(X)P)T w−a.

It follows that
F3(w,K) = ||η||2 +λ||w||2.

Define the Lagrangian function of the following optimization problem:

min
w,η

F3(w,K) = ||η||2 +λ||w||2

subject to η = (φK(X)P)T w−a

as follows:
L(η,w,β) = ||η||2 +λ||w||2 −βT ((φK(X)P)T w−a−η),

where β is the vector of Lagrangian dual variables. Taking the derivatives of L(η,w,β) with respect
to η and w and setting them equal to zero, we get

∂L(η,w,β)

∂η
= 2η+β = 0,

∂L(η,w,β)

∂w
= 2λw−φK(X)Pβ = 0.
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It follows that

η = −β
2
, and w =

φK(X)Pβ
2λ

.

Thus, we obtain the following Lagrangian dual function:

g(β) = min
w,η

L(η,w,β) = −1
4

βT
(

I +
1
λ

PGP

)

β+βT a.

The optimal β∗ is computed by maximizing g(β) as

β∗ = argmax
β

g(β) = argmax
β

{

−1
4

βT
(

I +
1
λ

PGP

)

β+βT a

}

.

Since strong duality holds, the optimal kernel is given by solving the following optimization prob-
lem:

min
G̃∈G̃

max
β

{

−1
4

βT
(

I +
1
λ

G̃

)

β+βT a

}

.

We can rewrite the above optimization problem as

min
θ:θ≥0,θT r=1

max
β

{

−1
4

βT

(

I +
1
λ

p

∑
i=1

θiG̃i

)

β+βT a

}

(14)

= max
β

min
θ:θ≥0,θT r=1

{

−1
4

βT

(

I +
1
λ

p

∑
i=1

θiG̃i

)

β+βT a

}

= max
β

min
θ:θ≥0,θT r=1

{

− 1
4λ

p

∑
i=1

θiβT G̃iβ−
1
4

βT β+βT a

}

= max
β

{

−1
4

βT β+βT a− 1
4λ

max
θ:θ≥0,θT r=1

(

p

∑
i=1

θiβT G̃iβ

)}

= max
β

{

−1
4

βT β+βT a− 1
4λ

max
i

(

1
ri

βT G̃iβ
)}

. (15)

The exchange of minimization and maximization in deriving the second equation from the first holds
since the objective function is convex in θ and concave in β, the minimization problem is strictly
feasible in θ and the maximization problem is strictly feasible in β. Therefore, Slater’s condition
(Boyd and Vandenberghe, 2004) follows and strong duality holds (Lanckriet et al., 2004b; Boyd and
Vandenberghe, 2004). By simply changing the last term in Equation (15) to t and moving it to the
constraint, we prove this theorem.

Note that general-purpose optimization software packages like SeDuMi (Sturm, 1999) and
MOSEK (Andersen and Andersen, 2000) employ the interior point methods, and they solve the
primal and dual problems simultaneously. Thus, the coefficients, θ1, · · · ,θp, can be obtained di-
rectly from the dual variables.

The formulation in Equation (13) is a quadratically constrained quadratic program (QCQP),
which is a special form of second order cone program (SOCP) (Lobo et al., 1998; Alizadeh and
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Goldfarb, 2003) and SDP. Theoretical results on interior point method (Nesterov and Nemirovskii,
1994) show that QCQP can be solved more efficiently than SDP, and it is therefore more scalable
to large-scale problems. Similar ideas have been used in Lanckriet et al. (2004b) to learn a non-
negative linear combination of kernel matrices.

2.3 SILP Formulation

Semi-infinite programming (SIP) (Hettich and Kortanek, 1993) refers to optimization problems
that seek the maximum of the function F(z) subject to a system of constraints on z, expressed
as g(z, t) ≤ 0, for all t in some set B. When both the objective and constraints are linear (and hence
convex), it is known as semi-infinite linear programming (SILP). We show in this section that the
kernel learning problem for RKDA can be formulated as an SILP problem, as summarized in the
following theorem.

Theorem 2.3 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix, in
the form of a convex linear combination of the given p kernel matrices, that maximizes the objective
function in Equation (12) can be found by solving the following SILP problem:

max
θ,γ

γ (16)

subject to θ ≥ 0,

θT r = 1,
p

∑
i=1

θiSi(β) ≥ γ, for all β, (17)

where Si(β) is defined as

Si(β) =
ri

4
βT β+

1
4λ

βT G̃iβ− riβT a, for i = 1, · · · , p, (18)

r = (r1, · · · ,rp)
T , and ri = trace(G̃i).

Proof It follows from the definition of Si(β) in Equation (18) that the optimization problem in
Equation (14) can be expressed equivalently as

max
θ

min
β

p

∑
i=1

θiSi(β) (19)

subject to θ ≥ 0,

θT r = 1.

Assume β∗ is the optimal solution to the problem in Equation (19) and define γ∗ = ∑p
i=1 θiSi(β∗) as

the minimum objective value achieved by β∗. We have

p

∑
i=1

θiSi(β) ≥ γ∗, for all β.

By defining

γ = min
β

p

∑
i=1

θiSi(β)
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and substituting γ into the objective, we prove this theorem.

Note that the optimization problem in Equation (16) is an SILP since both θ and γ are linearly
constrained, and there are an infinite number of constraints, one for each possible value of β. As
in Sonnenburg et al. (2006), we propose to use the column generation technique to solve this SILP
problem. In this technique, the optimal θ and γ are computed for a restricted subset of constraints
in Equation (17) and this problem is called the restricted master problem. Constraints that are
not satisfied by current θ and γ are added successively to the restricted master problem until all
constraints are satisfied. For fast convergence of the algorithm, it is desirable to add constraint that
maximizes the violation for current θ and γ. That is, the β value that solves

βθ = argmin
β

p

∑
i=1

θiSi(β), (20)

is desired. If ∑p
i=1 θiSi(βθ) ≥ γ, then all the constraints are satisfied, and θ and γ reach their opti-

mal values. Otherwise, this constraint is added to the restricted master problem and the iteration
continues.

It follows from the definition of Si(β) in Equation (18) that the problem in Equation (20) can be
written as

min
β

{

1
4

βT β+
1

4λ
βT

(

p

∑
i=1

θiG̃i

)

β−βT a

}

. (21)

For a fixed θ, the problem in Equation (21) is an unconstrained convex quadratic program whose
solution can be obtained analytically. To avoid computing matrix inverse, we obtain β by solving
the following system of linear equations:

(

1
2

I +
1

2λ

p

∑
i=1

θiG̃i

)

β = a.

After β is computed, the corresponding constraint is added to the restricted master problem to ob-
tain the intermediate θ and γ. Note that the restricted master problem is a linear program. Thus,
the proposed algorithm for solving the SILP problem proposed in Theorem 2.3 alternates between
solving a linear system and a linear program. In contrast, the SILP formulation proposed in Sonnen-
burg et al. (2006) for SVM kernel learning involves solving a constrained quadratic program (QP)
and a linear program. They shown that the constrained QP coincides with a single kernel SVM
formulation, and thus existing software for solving SVM can be used directly.

The alternating algorithm for solving the proposed SILP problem belongs to a family of algo-
rithms for solving general SIP problems called the exchange methods, in which the constraints are
exchanged at each iteration. It follows from Theorem 7.2 in Hettich and Kortanek (1993) that these
methods are guaranteed to converge. Similar to the convergence criterion used in Sonnenburg et al.
(2006), the algorithm returns when

∣

∣

∣

∣

∣

1− ∑p
i=1 θ(t−1)

i Si(β(t))

γ(t−1)

∣

∣

∣

∣

∣

≤ ε, (22)

where θ(t−1)
i , for i = 1, · · · , p, and γ(t−1) are the optimal solutions to the restricted master problem at

the (t−1)-th iteration, β(t) is the β value that maximizes the constraint violation at the t-th iteration,
and ε is a user-specified tolerance parameter. We set ε = 5×10−4 in our experiments.
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2.4 Time Complexity Analysis

We analyze the time complexity of the proposed formulations for the binary-class case. It follows
from the analysis in Lanckriet et al. (2004b) that the proposed SDP and QCQP formulations have
the worst-case time complexity of O

(

(p+n)2n2.5
)

and O
(

pn2 +n3
)

, respectively, where p is the
number of candidate kernels and n is the number of training samples. The algorithm to solve the
proposed SILP formulation alternates between solving a linear program (LP) and a linear system of
equations. The LP formulation involved has a simple structure and its computation time is small,
especially when p is much smaller than n. Note that the number of constraints in the LP depends on
the number of iterations. Our experiments show that the algorithm converges within a small number
of iterations. Thus, the time complexity of the SILP formulation is dominated by the time in solving
the linear system which has a complexity of O

(

n3
)

. Overall, the SILP formulation has a worst-case
time complexity of O

(

n3Ite
)

where Ite is the number of iterations.
All formulations discussed in Lanckriet et al. (2004b), Kim et al. (2006) and Sonnenburg et al.

(2006) are constrained to binary-class problems. We show in the next section that our formulations
in this section can be extended naturally to the multi-class case.

3. Convex Formulations for Multi-class Problems

In the multi-class case, we are given a data set that consists of m samples {(xi,yi)}m
i=1, where xi ∈ IRd ,

and yi ∈ {1,2, · · · ,k} denotes the class label of the i-th sample, and k > 2. Similar to the binary-class
case, let X = [x1, · · · ,xm] be the data matrix.

In the multi-class RKDA formulation, the maximization of the following objective function is
commonly used (Ye, 2005):

F4(W,K) = trace
(

(

W T (ΣK +λI)W
)−1

W T BKW
)

, (23)

where W is the transformation matrix, and BK , the so-called between-class scatter matrix is defined
as

BK = φK(X)HHT φK(X)T ,

H = [h1,h2, · · · ,hk], and hi is a vector whose j-th entry is given by

hi( j) =







√

n
n j
−
√

n j

n if the j-th data point belongs to the i-th class

−
√

n j

n otherwise.
(24)

The optimal W is given by computing the eigenvectors of the following matrix:

(ΣK +λI)−1 BK .

Since the weight vectors are in the span of the images of the data points in the feature space, we can
express W as W = φK(X)A for some matrix A ∈ IRm×`, where A = [α1, · · · ,α`]. Then

F4(W,K) = trace
(

(

AT (GPG+λG)A
)−1

AT GHHT GA
)

.

Define two matrices SK
t and SK

b as follows:

SK
t = GPG+λG,

SK
b = GHHT G.
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Since the null space of SK
t lies in the null space of SK

b (Ye and Xiong, 2006), there exists a nonsin-
gular matrix Z such that

ZT SK
t Z =

(

I 0
0 0

)

,

ZT SK
b Z =

(

Σb 0
0 0

)

,

where Σb is diagonal with the diagonal entries sorted in non-decreasing order. The optimal A∗ is
given by

A∗ = Zq = [z1, · · · ,zq] ,

where Zq consists of the first q columns of Z, and q = rank(SK
b ). It follows that the optimal value of

F4(W,K) achieved by the optimal A∗ is given by

F∗
4 (K) = trace(Σb) = trace

(

(

SK
t

)−1
SK

b

)

. (25)

Here we have assumed that SK
t = GPG + λG is nonsingular. We could use the pseudo-inverse to

deal with the singular case, and all the following arguments still follow.
Thus, in the multi-class case, the optimal kernel function K can be computed by maximizing

F∗
4 (K) in Equation (25), which is however highly nonlinear and difficult to solve. In the following,

we present an equivalent formulation as the one in Equation (25), which is more tractable computa-
tionally.

3.1 SDP Formulation

Consider the maximization of the following objective function:

F5(W,K) =
k

∑
i=1

(wT
i φK(X)hi)

2

wT
i (ΣK +λI)wi

, (26)

where
W = [w1, · · · ,wk]

is the transformation matrix, and hi is defined in Equation (24). The following lemma shows that
the optimal kernel function K coincides for F4 and F5.

Lemma 3.1 Let F4 and F5 be defined as in Equation (23) and Equation (26), respectively. Let W ∗

and K∗ be the optimal solution to the following optimization problem:

max
K

max
W

F4(W,K), (27)

and let W̃ ∗ and K̃∗ be the optimal solution to the following optimization problem:

max
K

max
W

F5(W,K). (28)

Then K∗ = K̃∗.
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Proof Since W = φK(X)A, we have wi = φK(X)αi and

F5(W,K) =
k

∑
i=1

(αT
i Ghi)

2

αT
i (GPG+λG)αi

=
k

∑
i=1

(αT
i Ghi)

2

αT
i SK

t αi
.

The computation of αi and α j for i 6= j is independent of each other when the kernel function K and
λ are fixed. The optimal α∗

i is given by

α∗
i =

(

SK
t

)−1
Ghi.

It follows that the maximum value of F5(W,K) achieved by the optimal A∗ = [α∗
1, · · · ,α∗

k ] is given
by

F∗
5 (K) =

k

∑
i=1

(Ghi)
T (SK

t

)−1
Ghi.

Based on the properties of matrix trace, we have

F∗
5 (K) =

k

∑
i=1

(Ghi)
T (SK

t

)−1
Ghi

=
k

∑
i=1

trace
(

(Ghi)
T (SK

t

)−1
Ghi

)

=
k

∑
i=1

trace
(

(

SK
t

)−1
Ghi(Ghi)

T
)

= trace

(

(

SK
t

)−1
k

∑
i=1

(

Ghih
T
i GT )

)

= trace
(

(

SK
t

)−1 (
GHHT GT )

)

= trace
(

(

SK
t

)−1
SK

b

)

= F∗
4 (K).

This completes the proof.

It is interesting to note that, in general, the optimal W ∗ and W̃ ∗ for the optimization problems in
Equations (27) and (28) are different. However, it has been shown recently that, when the value of
the regularization parameter is approaching zero, multi-class regularized least squares is equivalent
to multi-class discriminant analysis under a mild condition (Ye, 2007). Empirical evidences show
that when the value of the regularization parameter is small, which is usually the case in practice,
their performance is similar.

The objective function in Equation (26) is closely related to its binary counterpart in Equa-
tion (6). Note that a variant of the Fisher discriminant ratio (FDR) (Kim et al., 2006) can be written
as:

F2(w,K) =
(wT φK(X)a)2

wT (ΣK +λI)w
.
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Thus, F5(W,K) in Equation (26) can be interpreted as the weighted summation of the FDRs between
the samples in the i-th class and the rest where i = 1, · · · ,k. The weights can be computed from the
definition of H in Equation (24) as follows:

hi =





















...
√

n
ni
−
√ ni

n

...
−
√ ni

n
...





















= (n−ni)

√

ni

n



















...
1
ni
...

− 1
n−ni
...



















= (n−ni)

√

ni

n
a(i),

where a(i) is obtained from Equation (3) by taking the samples from the i-th class as positive and the
rest as negative. It follows that the weight for the i-th binary classification problem is: (n−ni)

2ni/n.
Following the results from the last section for the binary-class case, the optimal kernel learning

problem for multi-class RKDA can be formulated as follows:

min
t1,··· ,tk,θ

k

∑
j=1

t j

subject to

(

I + 1
λ ∑p

i=1 θiG̃i h j

hT
j t j

)

� 0, for j = 1, · · · ,k,

θ ≥ 0,

θT r = 1. (29)

Unfortunately, the SDP problem given in Equation (29) is computationally prohibitive due to
the presence of positive semidefinite constraints. To alleviate this computational problem, we put
all the constraints in a single larger constraint. This imposes stronger constraints than those on
the original problem, but the computational cost can be reduced dramatically. It is based on the
following lemma.

Lemma 3.2 Let M ∈ IRm×m be any positive definite matrix, a1, · · · ,ak ∈ IRm, t1, · · · , tk ∈ IR. Then














M a1 a2 · · · ak

aT
1 t1 0 · · · 0

aT
2 0 t2 · · · 0
...

...
...

...
...

aT
k 0 0 · · · tk















� 0 (30)

implies
(

M a j

aT
j t j

)

� 0, for all j. (31)

Proof For a symmetric and positive semidefinite matrix, it is known that all of its principal sub-
matrices are also symmetric and positive semidefinite. Matrices in Equation (31) are all principal
submatrices of the matrix in Equation (30). This can be seen by removing 2 to j and j +2 to k +1
rows and columns of the block matrix in Equation (30). This completes the proof of the lemma.

We summarize the main result of this section in the following theorem:
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Theorem 3.1 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix, in
the form of linear combination of the given p kernel matrices, that maximizes the objective function
in Equation (26) can be found by solving the SDP problem in Equation (29). This problem can be
approximated by the following more restricted formulation:

min
t1,··· ,tk,θ

k

∑
j=1

t j

subject to















I + 1
λ ∑p

i=1 θiG̃i h1 h2 · · · hk

hT
1 t1 0 · · · 0

hT
2 0 t2 · · · 0
...

...
...

...
...

hT
k 0 0 · · · tk















� 0,

θ ≥ 0,

θT r = 1, (32)

where ri = trace(G̃i). The optimal solution to the formulation in Equation (32) satisfies the con-
straints in Equation (29).

The formulation in Equation (32) is an approximation to the exact formulation in Equation (29). We
use the approximate formulation in our experiments in Section 5, and empirical results show that it
achieves comparable performance with other exact formulations.

3.2 QCQP Formulation

Although the approximate SDP formulation in the last section is scalable in terms of the number
of classes, interior point algorithms for solving SDP have an inherently large time complexity,
and thus it cannot be applied to large-scale problems. In this subsection, we propose a QCQP
formulation which is more efficient than its SDP counterpart. The derivations here are similar to
those in Section 2.2.

In order to formulate the multi-class RKDA kernel learning problem into a QCQP problem, we
first consider the minimization of the following objective function:

F6(W,K) =
k

∑
i=1

(

||(φK(X)P)T wi −hi||2 +λ||wi||2
)

, (33)

where W = [w1, · · · ,wk]. It is clear that for a fixed K and λ, the computation of wi and w j for i 6= j
is independent of each other. By extending the results from Lemma 2.1 and Lemma 3.1, it is easy
to show that the optimal kernel function K minimizing the objective function in Equation (26) coin-
cides the minimizer of F6(W,K) in Equation (33). Motivated by this equivalence result, we derive
an efficient QCQP formulation for the multi-class RKDA kernel learning problem, as summarized
in the following theorem.

Theorem 3.2 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix, in
the form of a convex linear combination of the given p kernel matrices, that minimizes the objective
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function in Equation (33) can be found by solving the following convex QCQP problem:

max
β1,··· ,βk,t

k

∑
j=1

βT
j h j −

1
4

k

∑
j=1

βT
j β j −

1
4λ

t

subject to t ≥ 1
ri

k

∑
j=1

βT
j G̃iβ j, i = 1, · · · , p. (34)

where ri = trace(G̃i).

Proof We first consider the dual formulation of the minimization of F6(W,K) in terms of W for
fixed K and λ. Denote

ηi = (φK(X)P)T wi −hi.

It follows that

F6(w,K) =
k

∑
i=1

||ηi||2 +λ
k

∑
i=1

||wi||2.

Define the Lagrangian function of this problem as follows:

L({ηi}k
i=1,w,{βi}k

i=1) =
k

∑
i=1

||ηi||2 +λ
k

∑
i=1

||wi||2 −
k

∑
i=1

βT
i

(

(φK(X)P)T wi −hi −ηi
)

,

where the βi’s are the vectors of Lagrangian dual variables. Taking the derivatives of L with respect
to ηi and wi for all i, and setting them equal to zero, we get

∂L
∂ηi

= 2ηi +βi = 0,

∂L
∂wi

= 2λwi −φK(X)Pβi = 0.

Thus, we have

ηi = −βi

2
, and wi =

φK(X)Pβi

2λ
,

and we obtain the following Lagrangian dual function:

g(β1, · · · ,βk) = min
wi,ηi,i=1,··· ,k

L({ηi}k
i=1,w,{βi}k

i=1)

=
k

∑
i=1

(

−1
4

βT
i

(

I +
1
λ

PGP

)

βi +βT
i hi

)

. (35)

The optimal β∗
1, · · · ,β∗

k can be computed by maximizing g(β1, · · · ,βk) in Equation (35) as

(β∗
1, · · · ,β∗

k) = argmax
β1,··· ,βk

{

k

∑
i=1

(

−1
4

βT
i

(

I +
1
λ

PGP

)

βi +βT
i hi

)

}

.

Since strong duality holds, the optimal kernel matrix G̃ is given by solving the following optimiza-
tion problem:

min
G̃∈G̃

max
β1,··· ,βk

{

k

∑
i=1

(

−1
4

βT
i

(

I +
1
λ

G̃

)

βi +βT
i hi

)

}

.
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Similar to the binary-class case, the above optimization problem can be written as

min
θ:θ≥0,θT r=1

max
β1,··· ,βk

{

k

∑
j=1

(

−1
4

βT
j

(

I +
1
λ

p

∑
i=1

(

θiG̃i
)

)

β j +βT
j h j

)}

(36)

= max
β1,··· ,βk

min
θ:θ≥0,θT r=1

{

k

∑
j=1

(

−1
4

βT
j

(

I +
1
λ

p

∑
i=1

θiG̃i

)

β j +βT
j h j

)}

= max
β1,··· ,βk

min
θ:θ≥0,θT r=1

{

−1
4

k

∑
j=1

βT
j β j −

1
4λ

p

∑
i=1

θi

(

k

∑
j=1

βT
j G̃iβ j

)

+
k

∑
j=1

βT
j h j

}

= max
β1,··· ,βk

{

k

∑
j=1

βT
j h j −

1
4

k

∑
j=1

βT
j β j −

1
4λ

max
θ:θ≥0,θT r=1

{

p

∑
i=1

θi

(

k

∑
j=1

βT
j G̃iβ j

)}}

= max
β1,··· ,βk

{

k

∑
j=1

βT
j h j −

1
4

k

∑
j=1

βT
j β j −

1
4λ

max
i

(

1
ri

k

∑
j=1

βT
j G̃iβ j

)}

.

By constraining

max
i

(

1
ri

k

∑
j=1

βT
j G̃iβ j

)

≤ t

and putting t in the objective function, we prove the formulation in Equation (34).

3.3 SILP Formulation

The QCQP formulation in Theorem 3.2 has a worse-case time complexity of O(pk2n2 + k3n3),
which is cubic in terms of the number of classes and the number of data points. We show in this
subsection that the RKDA kernel learning problem in the multi-class case can be formulated as an
SILP problem, as summarized in the following theorem.

Theorem 3.3 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix, in
the form of a convex linear combination of the given p kernel matrices, that minimizes the objective
function in Equation (33) can be found by solving the following SILP problem:

max
θ,γ

γ (37)

subject to θ ≥ 0,

θT r = 1,
p

∑
i=1

θiSi(β) ≥ γ, for all β,

where Si(β) is defined as

Si(β) =
k

∑
j=1

(

ri

4
βT

j β j +
1

4λ
βT

j G̃iβ j − riβT
j h j

)

, for i = 1, · · · , p, (38)

r = (r1, · · · ,rp)
T , and ri = trace(G̃i).
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Formulation SDP QCQP SILP
Complexity O

(

(p+n)2(k +n)2.5
)

O(pk2n2 + k3n3) O(n3Ite)

Table 1: Time complexity of the proposed multi-class RKDA kernel learning formulations: p is
the number of candidate kernels, n is the number of training samples, k is the number of
classes, and Ite is the number of iterations in SILP.

Proof The proof follows the same procedure as in Theorem 2.3 by starting from Equation (36) and
changing the definition of Si(β) from Equation (18) to Equation (38).

Note that the only difference between formulations in Theorem 2.3 and Theorem 3.3 lies in the
definitions of Si(β). To find the β j, for j = 1, · · · ,k, that maximize the constraint violation in the
multi-class case, we need to solve the following k systems of linear equations:

(

1
2

I +
1

2λ

p

∑
i=1

θiG̃i

)

β j = h j, for j = 1, · · · ,k.

Note that the coefficient matrix is the same for all of the k linear systems. Thus the LU decomposi-
tion (Golub and Van Loan, 1996) needs to be computed only once, and only the forward/backward
substitution needs to be performed k times to obtain the solutions.

3.4 Time Complexity Analysis

In this subsection, we analyze the time complexity of the proposed formulations in the multi-class
case. By following similar analysis in the binary-class case, we can show that the proposed (approx-
imate) SDP and QCQP formulations have worse-case time complexity of O

(

(p+n)2(k +n)2.5
)

and
O(pk2n2 + k3n3), respectively. For the SILP formulation in the multi-class case, the k linear sys-
tems involved in each iterative step share the same coefficient matrix, and they can be solved in
O(n3) time. Thus, the overall complexity is still O(n3Ite) where Ite is the number of iterations. The
complexity of multi-class RKDA kernel learning formulations is summarized in Table 1.

4. Joint Kernel and Regularization Parameter Learning

The formulations presented in the last two sections focus on the estimation of the kernel matrix only,
while the regularization parameter λ is pre-specified. In some cases, the performance of RKDA
algorithm depends critically on the value of λ. In this section, we show that all the formulations
proposed in this paper can be reformulated equivalently, and this new formulation leads naturally
to the estimation of the regularization parameter λ in a joint framework. The detailed derivations in
this section are similar to those presented in Sections 2 and 3.

4.1 Joint Learning for Binary-class Problems

One key advantage of the kernel learning formulation in Equation (8) in comparison with the one in
Kim et al. (2006) is that the regularization parameter λ can also be estimated in a joint optimization
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framework. In particular, all the formulations (SDP, QCQP, and SILP) for the binary-class RKDA
kernel learning problems, presented in Theorems 2.1–2.3, can be recast to optimize the regulariza-
tion parameter simultaneously. The next three subsections provide details of these reformulations.

4.1.1 SDP FORMULATION

For the estimation of regularization parameter, we consider a slightly modified version of the regu-
larized least squares formulation, which is equivalent to the standard formulation in Equation (12).
The modified version minimizes the following objective function:

F7(w,K,τ) = τ||(φK(X)P)T w−a||2 + ||w||2, (39)

where τ = 1/λ. We will first consider the case when τ is fixed. We will then extend to the general
case when τ is optimized jointly.

The optimal w∗ that minimizes the objective function in Equation (39) for a fixed K and a fixed
τ is given by

w∗ =

(

1
τ

I +φK(X)PφK(X)T
)−1

φK(X)Pa

= τφK(X)

(

I −P

(

1
τ

I +PGP

)−1

PG

)

a.

The optimal value of the objective function in Equation (39) is given by

F∗
7 (K,τ) = aT

(

1
τ

I + G̃

)−1

a, (40)

where G̃ = PGP.
We can observe from Equation (40) that the identity matrix appears in exactly the same form as

other kernel matrices. We can thus treat the regularization parameter as one of the coefficients for
the kernel matrix and optimize them simultaneously. This leads to the following formulation:

mint,θ̃ t

subject to

(

∑p
i=0 θ̃iG̃i a

aT t

)

� 0,

θ̃ ≥ 0,
p

∑
i=0

θ̃itrace(G̃i) = 1, (41)

where θ̃ = [θ0,θ1, · · · ,θp]
T , θ0 = 1

τ = λ, and G̃0 = I.

4.1.2 QCQP FORMULATION

In order to cast the formulation in Theorem 2.2 to optimize the regularization parameter, we again
start from the modified least square problem in Equation (39). By following the same procedure as
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in Theorem 2.2, the optimization problem in Equation (15) can be expressed as

min
θ:θ≥0,θT r=1

max
β

{

−1
4

βT

(

1
τ

I +
p

∑
i=1

θiG̃i

)

β+βT a

}

= max
β

min
θ̃: θ̃≥0, θ̃T r=1

{

−1
4

βT

(

p

∑
i=0

θ̃iG̃i

)

β+βT a

}

, (42)

where θ0 = 1
τ , and G̃0 = I. This can be formulated to optimize the regularization parameter as one

of the coefficients for the kernel matrix as follows:

max
β,t

βT a− 1
4

t

subject to t ≥ 1
ri

βT G̃iβ, i = 0, · · · , p. (43)

This problem is a quadratically constrained linear program.

4.1.3 SILP FORMULATION

The SILP formulation proposed in Theorem 2.3 for the binary-class problem can also be reformu-
lated to optimize λ jointly. It follows from Equation (42) that this joint learning problem can be
formulated as follows:

max
θ̃,γ

γ (44)

subject to θ̃ ≥ 0,

θ̃T r = 1,
p

∑
i=0

θiSi(β) ≥ γ, for all β,

where Si(β) is defined as

Si(β) =
1
4

βT G̃iβ− riβT a, for i = 0, · · · , p,

r = (r0, · · · ,rp)
T , ri = trace(G̃i), θ̃ = [θ0,θ1, · · · ,θp]

T , θ0 = 1
τ = λ, and G̃0 = I.

4.2 Joint Learning for Multi-class Problems

All formulations for the multi-class RKDA kernel learning problems presented in Section 3 can be
recast to optimize the regularization parameter jointly. The next three subsections provide details of
these reformulations.
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4.2.1 SDP FORMULATION

In order to incorporate λ in the optimization problem, we modify the objective function in Equation
(26) as follows:

F8(W,K,τ) =
k

∑
i=1

(wT
i φK(X)hi)

2

wT
i (τΣK + I)wi

.

By following the same derivation in Lemma 3.1 and noticing the relationship with the binary-class
case, we derive the following SDP formulation for the multi-class RKDA kernel learning problem:

min
t1,··· ,tk,θ̃

k

∑
j=1

t j

subject to















∑p
i=0 θ̃iG̃i h1 h2 · · · hk

hT
1 t1 0 · · · 0

hT
2 0 t2 · · · 0
...

...
...

...
...

hT
k 0 0 · · · tk















� 0,

θ̃ ≥ 0,

θ̃T r = 1, (45)

where θ̃ = [θ0,θ1, · · · ,θp]
T , θ0 = 1

τ = λ, and G̃0 = I.

4.2.2 QCQP FORMULATION

Similar to the binary-class case, we modify the least square problem in Equation (33) as follows:

F9(W,K,τ) =
k

∑
i=1

(

τ||(φK(X)P)T wi −hi||2 + ||wi||2
)

,

where τ = 1/λ. By following the same derivation as in Theorem 3.2, we obtain the following joint
optimization problem:

max
β1,··· ,βk,t

k

∑
j=1

βT
j h j −

1
4

t

subject to t ≥ 1
ri

k

∑
j=1

βT
j G̃iβ j, i = 0, · · · , p. (46)

This is a quadratically constrained linear program.

741



YE, JI AND CHEN

4.2.3 SILP FORMULATION

Similar to the reformulation in the binary-class case, the SILP formulation for multi-class problems
can also be formulated to optimize λ simultaneously as follows:

max
θ̃,γ

γ (47)

subject to θ̃ ≥ 0,

θ̃T r = 1,
p

∑
i=0

θiSi(β) ≥ γ, for all β,

where

Si(β) =
k

∑
j=1

(

1
4

βT
j G̃iβ j − riβT

j h j

)

, for i = 0, · · · , p,

r = (r0, · · · ,rp)
T , ri = trace(G̃i), θ̃ = [θ0,θ1, · · · ,θp]

T , θ0 = 1
τ = λ, and G̃0 = I.

The reformulations to optimize λ simultaneously proposed in this section are motivated from
Lanckriet et al. (2004b) and De Bie et al. (2003). As has been show in Lanckriet et al. (2004b),
this joint optimization of λ works well in most cases in comparison with the simple approach of
pre-specifying λ, but improved performance is not guaranteed.

5. Experimental Study

We conduct extensive experiments in this section to compare various aspects of relevant algorithms.
The first part of the experiments focuses on combining kernel matrices derived from a single source
of data. We demonstrate the effectiveness of the proposed MKL formulations for heterogeneous
data integration in the second part of the experiments. The SDP formulations in Equations (8), (32),
(41), and (45) are solved using the optimization package SeDuMi (Sturm, 1999). The QCQP formu-
lations in Equations (13), (34), (43), and (46) are solved using the MOSEK package (Andersen and
Andersen, 2000). The linear programs involved in the SILP formulations in Equations (16), (37),
(44), and (47) are solved using the MATLAB1 build-in function linprog. The tolerance parameter ε,
defined in Equation (22), is set to 5×10−4. The source codes of the proposed formulations for the
experiments are available online.2

We first evaluate the proposed formulations for binary-class problems in Section 5.1. The ex-
perimental results and analysis for the multi-class formulations are presented in Section 5.2. We
demonstrate the effectiveness of the proposed formulations for heterogeneous data integration in
Section 5.3. In Section 5.4, we analyze the relationship between RKDA and SVM, and Section 5.5
studies the effect of regularization parameter on classification performance.

5.1 Experiments on Binary-class Problems

In the binary-class case, we compare our formulations with the 1-norm soft margin SVM, 2-norm
soft margin SVM with and without the regularization parameter C optimized jointly as proposed in

1. The URL is http://www.mathworks.com.
2. The URL is http://www.public.asu.edu/˜jye02/Software/DKL/.
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sonar θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ/C TSA
SDPθ 0 0 0 0 0.550 0.307 0.022 0.041 0.029 0.050 5.0e-04 89.27±5.34
SDPθ,λ 0 0 0 0 0.550 0.307 0.022 0.041 0.029 0.050 3.1e-08 89.35±5.34
QCQPθ 0.003 0.003 0.004 0.011 0.444 0.375 0.046 0.034 0.035 0.048 5.0e-04 89.76±5.34
QCQPθ,λ 0 0 0 0 0.550 0.307 0.022 0.041 0.029 0.050 5.0e-02 89.35±5.34
SILPθ 0 0 0 0 0.459 0.406 0.011 0.034 0.032 0.059 5.0e-04 89.76±5.37
SILPθ,λ 0 0 0 0 0.547 0.313 0.023 0.031 0.034 0.052 4.2e-10 89.43±5.18
SDPKim 0.167 0.048 0.175 0.072 0.251 0.173 0.031 0.025 0.015 0.044 1.0e-08 88.46±5.28
SM1 0 0 0 0.040 3.953 5.514 0.491 0 0 0 1 89.75±4.90
SM2 0 0 0 0 2.875 6.765 0.359 0 0 0 1 89.59±5.24
SM2C 0 0.011 0.014 0.084 4.253 6.038 0.570 0.004 0.001 0 5.5e+7 89.84±4.80
RKDAK,λ

3 0 0 0 0 0 3 14 11 2 0 – 89.67±6.62
SVMK,C

4 0 0 0 0 0 2 16 7 5 0 – 89.35±5.18
RKDAλ

5 53.65 54.95 60.24 73.57 84.95 90.56 89.91 86.99 85.52 84.95 – –
SVMC

6 53.65 54.63 59.91 73.41 86.09 89.67 90.65 89.59 86.58 84.22 – –

Table 2: Comparison of twelve methods on the sonar data set. The twelve methods, listed from
top to bottom are: SDP formulation with λ fixed as proposed in Theorem 2.1, SDP
formulation with λ optimized jointly as proposed in Equation (41), QCQP formulation
with λ fixed as proposed in Theorem 2.2, QCQP formulation with λ optimized jointly as
proposed in Equation (43), SILP formulation with λ fixed as proposed in Theorem 2.3,
SILP formulation with λ optimized jointly as proposed in Equation (44), SDP formu-
lation proposed in Kim et al. (2006), 1-norm soft margin SVM, 2-norm soft margin
SVM without and with C optimized as proposed in Lanckriet et al. (2004b), RKDA and
SVM with the kernels and regularization parameters selected by double cross-validation.
Generally, subscripts of names in the first column are used to denote quantities that are
optimized. The ten pre-specified kernels are all RBF kernels and the σ values used
are 0.10, 0.22, 0.46, 1.00, 2.15, 4.46, 10.00, 21.54, 46.42, 100.00, as in Kim et al. (2006).
The table is partitioned into three sections row-wise. In the first section, the columns
headed with θi are the coefficients learned from the corresponding methods. The coef-
ficients for the proposed six formulations are normalized to sum to one while those for
other compared approaches are reported as obtained from their formulations. The column
headed with λ/C provides the values of the regularization parameters, whether fixed or
learned, and the test set accuracies and standard deviations are given in the last column.
The second section includes RKDA and SVM with kernel and regularization parameter
chosen by double cross-validation. We also report the number of times that a particular
kernel is selected by cross-validation. The third section shows the accuracies of RKDA
and SVM when the kernel is fixed and the regularization parameters chosen by cross-
validation. Dashes are used to denote non-applicable items.

Lanckriet et al. (2004b), and the SDP formulation proposed in Kim et al. (2006). Also, we use
double cross-validation to choose kernels and regularization parameters for SVM and RKDA. The
1-norm SVM classifier used is the LIBSVM package (Chang and Lin, 2001) and the 2-norm SVM
code was obtained by adapting Anton Schwaighofer’s implementation.7

Four data sets are used in the binary-class case. The sonar, ionosphere, and cancer data were
retrieved from the UCI Machine Learning Repository (Newman et al., 1998). The heart data were

3. The number of times that a kernel is chosen by doubly cross-validated RKDA over 30 randomizations.
4. The number of times that a kernel is chosen by doubly cross-validated SVM over 30 randomizations.
5. Accuracy of RKDA when the kernel is fixed to each of the ten candidate kernels and λ is chosen by cross-validation.
6. Accuracy of SVM when the kernel is fixed to each of the ten candidate kernels and C is chosen by cross-validation.
7. The URL is http://ida.first.fraunhofer.de/˜anton/software.html.
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obtained from the STATLOG project.8 All data are normalized. For each data set, we randomly
partition the entire data set into training and test sets using the ratio 8:2. Ten RBF kernels are con-
structed from the training set data with different choices of the parameter σ as in Kim et al. (2006).
Then the ten kernels are fed into the optimization software packages to obtain the corresponding
coefficients for each kernel. Finally, the kernels are combined and used to compute the accuracy.
For formulations SDPθ, QCQPθ, and SILPθ, the λ value is fixed to 5.0× 10−4. For SDPKim, this
value is fixed to 10−8, as used in Kim et al. (2006). Following Lanckriet et al. (2004b), we fix C to
1 for SM1 and SM2.

Tables 2–5 present the experimental results on sonar, heart, ionosphere, and cancer data sets, re-
spectively. In terms of performance, formulations that optimize λ jointly achieve similar accuracies
to the ones with λ fixed. Note that for our experiments, all the data are normalized and the λ value
is tuned manually for formulations with λ fixed. In practice, the optimal λ value is data-dependent.
Thus, formulations that optimize λ jointly are expected to work better in such situations. In cases
where no numerical problems have been reported, all the twelve compared methods achieve similar
performance. However, for the first ten methods, there is no need for cross-validation, and they can
be used for heterogeneous data integration from various sources.

For MKL formulations in Tables 2–5, we present the coefficients learned for each kernel. For
doubly cross-validated methods, that is, RKDAK,λ and SVMK,C, we record the number of times
that a particular kernel has been selected in cross-validation. To understand the relative importance
of each kernel when they are used individually, we fix the kernel to each of the ten pre-specified
kernels and tune the regularization parameter using cross-validation and the accuracy of each kernel
is recorded. We expect these quantities to have some relationship with the coefficients learned
by solving convex programs. For the sonar data, RKDAλ achieves the best performance on kernels
corresponding to θ6 and θ7 while SVMC achieves the highest accuracy on θ6, θ7 and θ8. On the other
hand, methods using linear combination of kernels favor kernels corresponding to θ5 and θ6. For
the heart data, cross-validated SVM favors kernels corresponding to θ9 and θ10 (they were chosen
9 and 17 times out of 30, respectively) while cross-validated RKDA uses kernels corresponding to
θ7, θ8, and θ9 most frequently. Our six formulations all give kernels corresponding to θ1 and θ10

large weights, especially to θ1, while SVM-based MKL formulations all set θ10 to zero. This may
be due to the fact that RKDA and SVM optimize different criteria and thus favor different kernels.
Another interesting observation is that all the ten MKL formulations give the first kernel a large
weight while it is the worst kernel when used individually. This implies that the best individual
kernel may not lead to a large weight when used in combination with others and poorly-performed
individual kernel may contain complementary information that is useful when combined with other
kernels. Such complementary information can not be incorporated when cross-validation is used
to choose a single best kernel. For the ionosphere data, the best three individual kernels chosen by
cross-validation are kernels corresponding to θ5, θ6 and θ7. Interestingly, the kernel corresponding
to θ5 is assigned a zero weight by nine out of the ten MKL-based methods. For the cancer data, all
kernels achieve similar performance when used separately while MKL-based formulations tend to
assign a large weight to the kernel corresponds to θ2.

To compare the efficiency of the proposed formulations with methods based on cross-validation,
we record the computation time of the proposed QCQP and SILP formulations along with that of
methods based on double cross-validation. Figure 1 plots the computation time of these six methods.

8. The URL is http://www.liacc.up.pt/ML/old/statlog/datasets.html.
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Note that methods based on SDP have a much larger computation time than these six methods and
their results are thus omitted. It can be seen that the proposed SILP formulations are more efficient
than cross-validation based methods. Note that the convergence rate of the algorithm for solving the
QCQP formulation depends on the data and parameter setting. Thus, it may take a relatively long
time to converge in some cases, as shown by QCQPθ on the cancer data in Figure 1.

heart θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ/C TSA
SDPθ 0.783 0.089 0 0 0 0.001 0 0 0.005 0.123 5.0e-4 81.98±4.27
SDPθ,λ 0.753 0.089 0 0 0 0.001 0 0 0.005 0.123 3.0e-2 81.67±4.49
QCQPθ 0.734 0.117 0.003 0.001 0.001 0.001 0.002 0.004 0.008 0.129 5.0e-4 81.85±4.17
QCQPθ,λ 0.753 0.089 0 0 0 0.001 0 0 0.005 0.123 1.2e-1 81.67±4.47
SILPθ 0.742 0.115 0 0 0 0.001 0 0 0.006 0.137 5.0e-4 81.98±4.27
SILPθ,λ 0.744 0.095 0 0 0 0 0 0 0.007 0.121 3.4e-2 81.73±4.23
SDPKim 0.881 0.036 0.002 0 0 0.001 0.003 0.004 0.009 0.065 1.0e-8 82.22±3.79
SM1 7.688 0.479 0.001 0.002 0.002 0.024 1.813 0 0 0 1 82.59±4.55
SM2 7.317 0.669 0 0 0 0.029 1.994 0 0 0 1 82.71±4.41
SM2C 6.746 0.626 0 0 0 0.036 1.991 0 0 0 4.4e+5 82.53±4.58
RKDAK,λ 0 0 0 0 1 2 7 9 7 4 – 77.35±5.83
SVMK,C 0 0 0 0 0 0 2 2 9 17 – 81.73±4.48
RKDAλ 58.64 65.06 69.62 73.33 77.28 79.13 78.70 77.65 76.79 75.92 – –
SVMC 57.96 64.75 71.79 76.60 79.93 80.30 81.66 81.54 82.22 82.59 – –

Table 3: See the caption and footnotes of Table 2 for explanation.

ionosphere θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ/C TSA
SDPθ 0.362 0.073 0.033 0.108 0 0.147 0.277 0 0 0 5.0e-4 94.67±2.25
SDPθ,λ 0.362 0.073 0.033 0.108 0 0.147 0.277 0 0 0 1.4e-7 94.67±2.25
QCQPθ 0.222 0.116 0.081 0.074 0.042 0.182 0.236 0.022 0.014 0.012 5.0e-4 94.86±2.39
QCQPθ,λ 0.362 0.073 0.033 0.108 0 0.147 0.277 0 0 0 2.2e-4 94.67±2.25
SILPθ 0.261 0.080 0.061 0.116 0 0.167 0.316 0 0 0 5.0e-4 94.90±2.33
SILPθ,λ 0.364 0.073 0.028 0.112 0 0.145 0.279 0 0 0 3.6e-9 94.81±2.23
SDPKim 0.942 0 0 0 0 0.006 0.038 0.013 0.001 0 1.0e-8 89.43±3.98
SM1 3.553 0.672 0.482 0.240 0 4.828 0.221 0 0 0 1 95.28±2.09
SM2 2.883 0.682 0.683 0.196 0 5.305 0.248 0 0 0 1 94.81±2.07
SM2C 3.910 0.714 0.561 0.255 0 5.300 0.256 0 0 0 1.4e+7 95.19±2.17
RKDAK,λ 0 0 0 4 5 10 8 3 0 0 – 92.33±5.51
SVMK,C 0 0 0 0 8 9 7 4 2 0 – 94.48±2.39
RKDAλ 65.71 76.47 90.33 92.14 93.33 94.28 93.14 91.71 90.61 89.00 – –
SVMC 65.38 66.57 89.38 93.00 94.57 95.04 93.80 93.42 92.61 91.95 – –

Table 4: See the caption and footnotes of Table 2 for explanation.

5.2 Experiments on Multi-class Problems

In the multi-class experiments, we compare our formulations with KRDA and SVM with kernels and
regularization parameters tuned using double cross-validation. The methods proposed in Lanckriet
et al. (2004b) and Kim et al. (2006) are only applicable to binary-class problems. Five data sets with
different numbers of classes are used for this experiment. The USPS handwritten digits database
was described in Hull (1994). We choose the first 3,6, and 8 classes with 100 data points in each
class for the experiment. The wine data set was obtained from UCI Machine Learning Repository
and the satimage and segment were obtained from the STATLOG project. We use the first 3,5, and
6 classes for the satimage data and the first 3 and 4 classes for the segment data. The waveform
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cancer θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ/C TSA
SDPθ 0.013 0.006 0.014 0 0.018 0.044 0.061 0.101 0.280 0.463 5.0e-4 96.05±2.65
SDPθ,λ 0 0.532 0.096 0.040 0.008 0.020 0.244 0.020 0 0.048 1.0e-8 96.00±1.44
QCQPθ 0.147 0.312 0.207 0.080 0.052 0.055 0.051 0.038 0.031 0.028 5.0e-4 97.01±1.31
QCQPθ,λ 0.003 0.662 0.111 0.042 0.010 0.015 0.134 0.007 0 0.004 4.3e-3 96.20±2.21
SILPθ 0 0.468 0.298 0.022 0.010 0.020 0.170 0.007 0 0.005 5.0e-4 97.01±1.20
SILPθ,λ 0.003 0.663 0.105 0.047 0.009 0.014 0.132 0.009 0 0.005 1.3e-2 96.98±1.28
SDPKim 0.970 0.006 0.005 0.004 0.004 0.003 0.003 0.002 0.002 0.002 5.0e-4 73.43±4.28
SM1 1.797 5.706 0.179 0.008 0 2.308 0 0 0 0 1 97.08±1.27
SM2 1.483 5.541 0.402 0.023 0.006 2.527 0.013 0 0 0 1 97.15±1.22
SM2C 1.690 4.855 0.546 0.047 0.003 2.521 0.015 0 0 0 1.0e+4 97.01±1.22
RKDAK,λ 0 0 0 2 8 2 3 4 4 7 – 95.79±1.55
SVMK,C 0 0 0 0 0 7 10 4 6 3 – 96.81±1.28
RKDAλ 94.54 95.32 96.05 96.15 96.30 95.74 95.59 95.59 95.49 95.64 – –
SVMC 92.21 94.93 96.03 96.30 96.81 96.88 96.86 96.66 96.69 96.64 – –

Table 5: See the caption and footnotes of Table 2 for explanation.
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Figure 1: Computation time (in seconds) of the six methods on four binary-class data sets.

data set was described in Breiman et al. (1984) and are also available from UCI Machine Learning
Repository. For each data set, we randomly partition the entire set into two subsets with 60% of
the samples in the training set and 40% in the test set. Ten RBF kernels, with σ assigned the same
values as in the binary-class case, are constructed from the training set.

Tables 6–15 present the experimental results on the ten data sets. In general, all the six proposed
formulations achieve similar performance on the ten data sets. Compared to the QCQP and SILP
formulations which are exact, our approximate SDP formulation for the multi-class problems work
well in most cases. This implies that the approximate formulation is close to the exact one while
the computational cost is lower. Furthermore, methods based on MKL and cross-validation achieve
similar performance on all of the data sets.

In order to gain insights into the relative importance of each kernel when used in combination
or separately, we use a similar experimental setup to the binary-class case. We found that for the
USPS(3),9 USPS(6), and USPS(8) data, all eight compared approaches favor the kernels correspond-
ing to θ9 and θ10. Similar behavior has been observed for the waveform(3) data where only the last
two kernels are selected by cross-validation and they are given large weights by all six MKL-based

9. The number in the parentheses denotes the number of classes used in the experiment.

746



DISCRIMINANT KERNEL LEARNING

USPS(3)10 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0 0 0 0 0 0.027 0.023 0.012 0.518 0.420 5.0e-4 99.64±0.57
SDPθ,λ 0.007 0.004 0.015 0.016 0.013 0.036 0.022 0.014 0.493 0.379 6.3e-7 99.69±0.46
QCQPθ 0 0 0 0 0 0.037 0.052 0.040 0.372 0.498 5.0e-4 99.72±0.51
QCQPθ,λ 0.007 0.004 0.021 0.009 0.008 0.067 0.029 0.054 0.345 0.457 1.2e-5 99.64±0.47
SILPθ 0 0 0 0 0 0.037 0.052 0.043 0.370 0.499 5.0e-4 99.72±0.51
SILPθ,λ 0.007 0.005 0.019 0.011 0.006 0.069 0.027 0.057 0.343 0.457 3.6e-7 99.61±0.48
RKDAK,λ

11 0 0 0 0 0 0 0 0 8 22 – 98.97±1.11
SVMK,C

12 0 0 0 0 0 0 0 0 24 6 – 99.50±0.60

Table 6: Comparison of eight methods on the USPS data set when the first three classes are used.
The eight methods, listed from top to bottom, are the SDP formulation with λ fixed as
proposed in Theorem 3.1, the SDP formulation with λ optimized jointly as proposed in
Equation (45), the QCQP formulation with λ fixed as proposed in Theorem 3.2, the QCQP
formulation with λ optimized jointly as proposed in Equation (46), the SILP formulation
with λ fixed as proposed in Theorem 3.3, the SILP formulation with λ optimized jointly as
proposed in Equation (47), RKDA and SVM with kernels and regularization parameters
chosen by double cross-validation. Generally, subscripts of names in the first column are
used to denote quantities that are optimized. Ten RBF kernels are pre-specified and the
values for σ are the same as those used in the binary-class case (see caption of Table 2).
This table is partitioned into two sections row-wise. In the first section, the columns headed
with θi present the coefficients learned from each method. Note that all coefficients are
normalized to sum to one. This is followed by the values for the λ, whether fixed or
learned. The test set accuracies are given in the last column. In the second section, we
report the number of times that each kernel has been selected by double cross-validation
and the accuracies. Dashes are used to denote non-applicable items.

USPS(6) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0 0 0 0 0 0.001 0.009 0.195 0.655 0.141 5.0e-4 98.40±0.80
SDPθ,λ 0.018 0.001 0.011 0.038 0.013 0.011 0.036 0.222 0.516 0.134 1.9e-6 98.33±0.88
QCQPθ 0 0 0 0 0 0.001 0.023 0.165 0.564 0.247 5.0e-4 98.36±0.82
QCQPθ,λ 0.020 0.002 0.003 0.035 0.025 0.008 0.063 0.165 0.463 0.216 2.8e-5 98.28±0.89
SILPθ 0 0 0 0 0 0.002 0.028 0.156 0.569 0.245 5.0e-4 98.35±0.84
SILPθ,λ 0.021 0 0.003 0.037 0.017 0.011 0.064 0.169 0.459 0.218 1.4e-8 98.29±0.88
RKDAK,λ 0 0 0 0 0 0 0 0 20 10 – 98.08±0.85
SVMK,C 0 0 0 0 0 0 0 0 26 4 – 98.11±1.02

Table 7: See the caption and footnotes of Table 6 for explanation.

approaches. Thus for these data sets, the kernels selected by cross-validation and multiple kernel
learning (MKL) agree. In contrast, for the satimage(3), satimage(5), and satimage(6) data sets,
the proposed MKL-based approaches assign large weights to the first five kernels. In particular, θ2,
θ3, and θ5 are given large values for the satimage(3) data; θ2, θ4, and θ5 are given large values for the
satimage(5) data; θ1, θ2, and θ4 are given large values for the satimage(6) data. On the other hand,

10. The number in parenthesis denotes the number of classes used in the experiments.
11. RKDA with kernel and λ chosen by double cross-validation. The first ten columns show the number of times that a

kernel is chosen by doubly cross-validated RKDA over 30 randomizations.
12. SVM with kernel and λ chosen by double cross-validation. The first ten columns show the number of times that a

kernel is chosen by doubly cross-validated SVM over 30 randomizations.

747



YE, JI AND CHEN

USPS(8) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0 0 0 0 0 0.034 0.057 0.118 0.792 0 5.0e-4 97.60±0.83
SDPθ,λ 0.032 0.002 0.016 0.011 0.009 0.130 0.056 0.104 0.641 0 4.4e-6 97.64±0.70
QCQPθ 0 0 0 0 0 0.001 0.116 0.053 0.697 0.133 5.0e-4 97.57±0.77
QCQPθ,λ 0.025 0.003 0.021 0.023 0.007 0.066 0.149 0.029 0.573 0.106 3.2e-5 97.65±0.72
SILPθ 0 0 0 0 0 0 0.112 0.060 0.695 0.134 5.0e-4 97.51±0.77
SILPθ,λ 0.024 0 0.020 0.025 0.006 0.071 0.144 0.034 0.571 0.106 7.8e-9 97.64±0.74
RKDAK,λ 0 0 0 0 0 0 0 0 12 18 – 97.53±0.78
SVMK,C 0 0 0 0 0 0 0 0 18 12 – 97.10±0.82

Table 8: See the caption and footnotes of Table 6 for explanation.

wine(3) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0.044 0.147 0.104 0.415 0.104 0.012 0.008 0.016 0.018 0.133 5.0e-4 97.98±1.60
SDPθ,λ 0.065 0.177 0.086 0.394 0.100 0.011 0.008 0.018 0.015 0.126 2.4e-7 97.79±1.60
QCQPθ 0.028 0.128 0.202 0.181 0.302 0.010 0.005 0.01 0.009 0.125 5.0e-4 98.12±1.49
QCQPθ,λ 0.046 0.169 0.171 0.177 0.289 0.009 0.004 0.011 0.004 0.123 9.3e-7 98.12±1.45
SILPθ 0.023 0.133 0.205 0.178 0.305 0.010 0.003 0.009 0.010 0.125 5.0e-4 98.12±1.49
SILPθ,λ 0.045 0.162 0.182 0.172 0.287 0.010 0.008 0 0.009 0.124 2.2e-7 98.12±1.45
RKDAK,λ 0 0 0 2 5 2 6 3 5 7 – 98.31±1.63
SVMK,C 0 0 0 6 4 11 4 4 1 0 – 97.65±1.90

Table 9: See the caption and footnotes of Table 6 for explanation.

satimage(3) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0 0.157 0.247 0.046 0.353 0.08 0.024 0.046 0.017 0.032 5.0e-4 98.03±0.94
SDPθ,λ 0.003 0.251 0.193 0.033 0.349 0.06 0.02 0.05 0.012 0.029 9.0e-4 98.00±0.97
QCQPθ 0 0.131 0.249 0.068 0.265 0.165 0.034 0.03 0.009 0.049 5.0e-4 98.06±0.96
QCQPθ,λ 0.002 0.229 0.193 0.049 0.281 0.115 0.055 0.023 0.003 0.048 1.8e-3 98.08±0.93
SILPθ 0 0.133 0.246 0.073 0.252 0.181 0.026 0.033 0.006 0.051 5.0e-4 98.06±0.96
SILPθ,λ 0.003 0.226 0.197 0.047 0.274 0.133 0.042 0.019 0.004 0.053 1.6e-3 98.08±0.93
RKDAK,λ 0 0 0 3 0 7 5 6 5 4 – 97.56±1.26
SVMK,C 0 0 0 0 5 5 8 3 5 4 – 97.92±1.09

Table 10: See the caption and footnotes of Table 6 for explanation.

the two methods based on cross-validation tend to use the last five kernels more frequently than the
first five kernels. This demonstrates that the best kernels used in combination and separately differ
significantly for the satimage data set. We expect that complementary information exists among
kernels for this data set such that a subset of kernels can be combined to obtain the optimal per-
formance though none of them is the best kernel when used individually. Similar phenomenon can
be observed from the segment(3) and segment(4) data sets in which the first kernel is assigned the
largest weight by MKL-based formulations while it is never selected by cross-validation. This anal-
ysis shows that the information used by methods based on MKL and cross-validation may coincide
or differ depending on the data.

To compare the efficiency of various methods, we report the computation time of the eight
methods on the ten data sets in Table 16. It can be seen that the SDP formulations are much
slower than methods based on cross-validation due to its inherent large complexity. The QCQP
formulations are relatively efficient for data sets with a small number of classes. When the number
of classes increases, their computation time increases rapidly. This is consistent with the theoretical
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satimage(5) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0 0.302 0.244 0.196 0.225 0 0 0 0 0.034 5.0e-4 93.50±1.57
SDPθ,λ 0.002 0.477 0.083 0.225 0.184 0 0 0 0 0.030 2.1e-7 93.42±1.69
QCQPθ 0 0.165 0.469 0.001 0.251 0.068 0 0 0.004 0.043 5.0e-4 93.52±1.59
QCQPθ,λ 0.011 0.337 0.310 0.017 0.235 0.048 0 0.001 0.003 0.039 2.4e-6 93.28±1.51
SILPθ 0 0.162 0.470 0.005 0.247 0.071 0 0 0.004 0.042 5.0e-4 93.48±1.60
SILPθ,λ 0.014 0.331 0.316 0.010 0.242 0.044 0 0.001 0.003 0.039 5.9e-9 93.33±1.52
RKDAK,λ 0 0 0 3 2 7 7 6 4 1 – 93.15±1.73
SVMK,C 0 0 0 1 11 13 5 0 0 0 – 93.48±2.08

Table 11: See the caption and footnotes of Table 6 for explanation.

satimage(6) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0.131 0.478 0.031 0.249 0.072 0 0 0 0 0.039 5.0e-4 87.65±1.85
SDPθ,λ 0.293 0.338 0.04 0.212 0.06 0 0 0 0 0.033 2.3e-2 86.69±1.97
QCQPθ 0.102 0.454 0.096 0.138 0.128 0.043 0.001 0.002 0.009 0.029 5.0e-4 87.96±1.78
QCQPθ,λ 0.282 0.295 0.114 0.107 0.111 0.035 0.001 0.002 0.008 0.024 2.0e-2 87.22±1.84
SILPθ 0.108 0.448 0.094 0.143 0.123 0.046 0 0.002 0.006 0.031 5.0e-4 87.97±1.74
SILPθ,λ 0.277 0.299 0.112 0.106 0.114 0.032 0.003 0.005 0.006 0.024 2.2e-2 87.26±1.81
RKDAK,λ 0 0 0 5 7 7 2 5 4 0 – 87.71±1.55
SVMK,C 0 0 0 1 16 10 3 0 0 0 – 88.50±2.11

Table 12: See the caption and footnotes of Table 6 for explanation.

segment(3) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0.329 0.040 0.061 0.349 0.094 0.003 0 0 0 0.125 5.0e-4 99.17±0.62
SDPθ,λ 0.215 0.083 0.053 0.314 0.089 0.003 0 0 0 0.114 1.3e-1 99.00±0.83
QCQPθ 0.314 0.046 0.075 0.257 0.127 0.087 0.002 0 0 0.091 5.0e-4 99.19±0.67
QCQPθ,λ 0.215 0.075 0.079 0.218 0.127 0.079 0 0 0 0.084 1.2e-1 99.03±0.76
SILPθ 0.312 0.049 0.073 0.263 0.118 0.093 0.003 0 0 0.090 5.0e-4 99.17±0.69
SILPθ,λ 0.210 0.083 0.071 0.222 0.128 0.078 0 0 0 0.085 1.2e-1 99.03±0.76
RKDAK,λ 0 0 2 8 1 3 4 6 4 2 – 98.86±1.08
SVMK,C 0 0 5 9 8 3 4 1 0 0 – 99.06±0.81

Table 13: See the caption and footnotes of Table 6 for explanation.

analysis in Section 3.4. In contrast, the proposed SILP formulations are more efficient than methods
based on cross-validation on all of the ten data sets.

5.3 Gene Expression Pattern Image Classification

In this experiment, we demonstrate the effectiveness of the proposed multiple kernel learning (MKL)
formulations for data (feature) integration. Gene expression pattern images of Drosophila melanogaster
embryo at a given developmental stage (time) capture the spatial and temporal distribution of gene
expression patterns (Tomancak et al., 2002). The identification of genes showing spatial overlaps
in their expression patterns is fundamentally important to formulating and testing gene interaction
hypotheses (Kumar et al., 2002; Peng and Myers, 2004). Estimation of pattern overlap is most bi-
ologically meaningful when images from a similar time point (developmental stage) are compared.
Thus, one of the central issues in gene expression pattern image analysis is the classification of
images into different developmental stage ranges (Ye et al., 2006).
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segment(4) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0.376 0.149 0.074 0.019 0.363 0.005 0 0 0 0.014 5.0e-4 97.00±1.09
SDPθ,λ 0.379 0.104 0.073 0.018 0.324 0.005 0 0 0 0.012 8.5e-2 96.77±1.25
QCQPθ 0.368 0.117 0.114 0.031 0.306 0.035 0 0 0 0.030 5.0e-4 97.00±1.17
QCQPθ,λ 0.373 0.073 0.111 0.028 0.271 0.033 0 0 0 0.027 8.5e-2 96.81±1.28
SILPθ 0.372 0.110 0.117 0.028 0.310 0.033 0 0 0 0.030 5.0e-4 97.02±1.12
SILPθ,λ 0.369 0.075 0.112 0.031 0.267 0.033 0 0 0 0.027 8.7e-2 96.81±1.26
RKDAK,λ 0 0 1 1 2 3 2 7 6 8 – 97.31±0.93
SVMK,C 0 0 0 4 5 7 4 6 1 3 – 96.83±1.38

Table 14: See the caption and footnotes of Table 6 for explanation.

waveform(3) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0.072 0.072 0.072 0.072 0.029 0 0.007 0.028 0.415 0.232 5.0e-4 83.03±2.68
SDPθ,λ 0.074 0.074 0.074 0.074 0.069 0 0.01 0.034 0.377 0.214 6.8e-7 83.22±2.61
QCQPθ 0.061 0.061 0.061 0.061 0.061 0.006 0.003 0.036 0.423 0.226 5.0e-4 83.03±2.68
QCQPθ,λ 0.071 0.071 0.071 0.071 0.071 0.006 0.006 0.041 0.385 0.209 6.2e-6 83.19±2.49
SILPθ 0.053 0.021 0.033 0.115 0.094 0 0 0.036 0.422 0.227 5.0e-4 83.08±2.74
SILPθ,λ 0.012 0.066 0.033 0.136 0.113 0 0.006 0.040 0.382 0.213 2.0e-7 83.22±2.50
RKDAK,λ 0 0 0 0 0 0 0 0 6 24 – 84.17±3.14
SVMK,C 0 0 0 0 0 0 0 0 12 18 – 81.86±2.99

Table 15: See the caption and footnotes of Table 6 for explanation.

Data USPS wine satimage segment waveform
# of classes 3 6 8 3 3 5 6 3 4 3
SDPθ 50.98 411.15 1021.16 18.91 95.95 415.58 753.07 74.38 163.26 64.09
SDPθ,λ 69.95 646.05 1642.17 27.02 130.51 710.70 1172.55 99.29 235.50 96.08
QCQPθ 5.19 81.24 276.27 1.15 4.23 36.56 79.61 4.16 14.89 4.09
QCQPθ,λ 5.96 88.05 286.49 1.29 4.67 39.09 82.93 4.50 16.20 4.65
SILPθ 0.32 1.52 3.03 0.30 0.59 1.97 3.65 0.62 1.03 0.24
SILPθ,λ 0.60 3.45 6.70 0.30 0.66 2.29 4.38 1.03 1.52 0.25
RKDAK,λ 1.54 9.26 20.59 0.76 1.56 5.39 8.61 1.56 2.89 1.71
SVMK,C 5.60 17.82 23.18 3.65 1.87 4.24 9.50 3.53 4.13 5.44

Table 16: Comparison of computation time (in seconds) of various methods. The reported time is
averaged over 30 random partitions.

We collect 2705 gene expression pattern images in the first three stage ranges (1-3, 4-6, and 7-8)
from the FlyExpress13 database. The raw gene expression pattern images are of size 128×320. It
has been observed (Gargesha et al., 2005) that across various developmental stages, a distinguishing
feature is the image textural properties at sub-block level, because image texture at the sub-block
level changes as embryonic development progresses. Gabor filters (Daugman, 1988) have been
shown to be effective in detecting local texture features and are well suited for extracting textural
features for gene expression pattern images.

We apply Log Gabor Filters to extract the texture features (Daugman, 1988). Gabor filters are
the product of a complex sinusoidal function and a Gaussian-shaped function. We use Log Gabor
filters with 4 different wavelet scales and 6 different filter orientations to extract the texture infor-
mation. Hence, 24 Gabor images were obtained from the filtering operation. Note that all 24 Gabor
images have the same size (i.e., 128× 320) as the original one. Figure 2 plots the 24 Gabor im-

13. The URL is http://www.flyexpress.net.
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ages extracted from a sample image. These images contain different but potentially complementary
information for stage classification. Two RBF kernels are built from each of the 24 Gabor images
with σ values assigned as 50 and 100, respectively. We thus obtain a total of 48 kernel matrices.
To exploit the complementary information in kernels constructed from different Gabor images, we
apply the proposed SILP formulation to learn a linear combination of the 48 kernel matrices.

The 2705 images are randomly partitioned into training and test sets using the ratio 1:9. Our ex-
perimental results show that SILPθ achieves a classification accuracy of about 88.28%. To see how
each of the 48 kernel matrices works when used individually, we fix the kernel matrix and tune the λ
value using cross-validation. The maximum, minimum, and average accuracies achieved across the
48 kernel matrices are 72.03%, 54.37%, and 61.88%, respectively. We also assign a uniform weight
of 1 to each of the 48 kernel matrices and the combined kernel matrix achieves an accuracy of about
72.65%. These results demonstrate that different Gabor images contain complementary informa-
tion, which is critical for stage classification, and the proposed MKL formulations are effective in
exploiting this information by combining different kernel matrices.

Figure 2: The 24 Gabor images extracted from a single sample image with 4 different wavelet scales
and 6 different filter orientations.
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SM1 SM2 SM2C

data set training size C SVs PCT C SVs PCT C SVs PCT
sonar 167 1 155.4 93.05 1 152.2 91.12 2.43e7 156.8 93.89
heart 216 1 208.7 96.62 1 195.9 90.70 6.01e6 208.3 96.44
ionosphere 281 1 203.6 72.46 1 184.9 65.80 3.70e6 206.3 73.42
cancer 546 1 210.3 38.52 1 138.8 25.42 2.61e6 212.5 38.92

Table 17: The numbers of support vectors (“SVs”) obtained from the 1-norm soft margin SVM, 2-
norm soft margin SVM without and with C learned jointly that were proposed in Lanck-
riet et al. (2004b). These numbers are averaged over 30 random partitions. The total
number of data points in the training set and the C values are also shown. The columns
with title “PCT” show the percentage of support vectors over the training set.

5.4 SVM versus RKDA

It was shown (Shashua, 1999) that hard margin linear SVM is equivalent to linear discriminant
analysis (LDA) when all the training points are support vectors. Through experiments, we found
that the C values chosen by the 2-norm soft margin SVM proposed in Lanckriet et al. (2004b) are
very large. Under such circumstances, soft margin SVM is approaching hard margin SVM. It has
already been observed that SVM and kernel discriminant analysis usually have similar performance
(Mika, 2002) and this has been confirmed by our experiments in the last two subsections. Thus
it is interesting to report the number of support vectors for SVM. We record the average number
of support vectors for 1-norm soft margin SVM, 2-norm soft margin SVM without and with C
optimized jointly over the 30 random partitions reported in Section 5.1. As proposed in Lanckriet
et al. (2004b), C is fixed to 1 for 1-norm and 2-norm soft margin SVM without C optimized. Table 17
reports the average C values obtained by the joint optimization 2-norm soft margin SVM and the
average number of support vectors. For ease of comparison, we also report the size of training
set and the averaged percentage of support vectors over 30 randomizations. It can be seen that for
three out of four data sets, the percentages of support vectors are very high. This implies that SVM
is similar to RKDA and explains why they have similar performance, as reported in the last two
subsections.

5.5 The Effect of Regularization Parameter

In order to investigate the effect of regularization parameter in RKDA, we sampled 30 λ values
between 10−10 and 102 uniformly over logarithmic scale and the accuracies of SDPθ and QCQPθ are
plotted for two binary-class data sets (Figure 3) and two multi-class data sets (Figure 4). The results
for SILP formulations are omitted since their performance is similar to their QCQP counterparts. It
can be observed that as λ value changes, the accuracies oscillate in all cases. It can also be observed
from the four figures that QCQPθ tends to be less sensitive to the change of λ value than SDPθ. This
may be attributable to the fact that SDP is more computationally intensive and numerical problems
may cause the poor performance. Indeed, we observed several reports of numerical problems from
SeDuMi while conducting SDP experiments. The low accuracies of SDPθ for some choices of λ in
Figures 3 and 4 were caused by numerical problems and should be interpreted with caution.
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Figure 3: The change of accuracies for SDPθ and QCQPθ when λ varies from 10−10 to 102 for the
sonar (left) and heart (right) data. The horizontal axis represents the indexes of the 30 λ
values.

6. Discussion and Conclusion

We address the issue of learning appropriate kernels for RKDA in this paper. This problem is for-
mulated as convex programs and thus globally optimal solutions are guaranteed. Practically, some
convex optimization problems are computationally expensive and we propose approaches that are
scalable and efficient to solve. While most existing work on kernel learning only deal with binary-
class problems, we show that our binary-class formulations can be extended naturally to multi-class
setting. Furthermore, we consider the problem of optimizing the kernel and regularization parameter
in a joint framework, thus approaching the desirable goal of automated learning.

We have conducted extensive experiments to evaluate the proposed algorithms. When combin-
ing kernels from a single source of data, the proposed formulations have similar performance with
approaches based on double cross-validation. When the candidate kernels contain complementary
information, we show that the proposed formulations are effective to exploit such information. In
terms of computation time, the SILP formulations are more efficient than approaches based on
cross-validation. When evaluating the relative importance of each kernel (either used separately
or in linear combination), we found that the best individual kernel sometimes coincides with the
highly-weighted kernels in linear combination and sometimes disagrees considerably.

There are some directions for future work. Our experimental results have shown that the pro-
posed approximate SDP formulation works well in most cases while it has a much lower com-
putational cost in comparison with the exact formulation. We plan to compare the approximate
formulation to the exact one in terms of complexity and performance. The derivation of multi-class
formulations is based on an alternative criterion defined in Equation (23). This results in the same
optimal transformation matrix as the original criterion in Equation (26) when a common (fixed)
kernel matrix is used. However, they may differ when the kernel matrix is also optimized. We plan
to investigate their differences further in the future. Most existing formulations for learning SVM
kernels are restricted to the binary-class case. The idea from this paper may be useful for kernel
learning in multi-class SVM. A more general problem is learning kernels for multi-label data in
which each data point can be assigned to multiple classes. Such data are common in automatic
image annotation problems (Lavrenko et al., 2004). We plan to explore these in the future.
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Figure 4: The change of accuracies for SDPθ and QCQPθ when λ varies from 10−10 to 102 for
the satimage(6) (left) and waveform(3) (right) data. The horizontal axis represents the
indexes of the 30 λ values.
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Appendix A.

One of the basic tools used in our proof is the Sherman-Woodbury-Morrison formula (Golub and
Van Loan, 1996): Let S ∈ IRd×d , and Q,R ∈ IRd×n. Assuming that both the matrices S and (I +
RT S−1Q) are nonsingular, we have

(S +QRT )−1 = S−1 −S−1Q(I +RT S−1Q)−1RT S−1.

Since P = PP and P = PT , where P is the centering matrix defined in Equation (5), it follows that

w∗ = (ΣK +λI)−1(µ+
K −µ−K )

=
(

φK(X)PφK(X)T +λI
)−1 φK(X)a

=
(

φK(X)PPφK(X)T +λI
)−1 φK(X)a

=
(

(φK(X)P)(φK(X)P)T +λI
)−1 φK(X)a

=

(

1
λ

I − 1
λ2 φK(X)P

(

I +
1
λ

PφK(X)T φK(X)P

)−1

PφK(X)T

)

φK(X)a

=
1
λ

φK(X)
(

I −P(λI +PGP)−1 PG
)

a.
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