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Abstract — Cardiovascular diseases are one of the main causes of death around the world. Automatic classification of 
electrocardiogram (ECG) signals is of paramount importance in the unmanned detection of a wide range of heartbeat 
abnormalities. In this paper an effective multi-class beat classifier, based on a statistical identification of a minimum-complexity 
model, is presented. This methodology extracts from the ECG signal the multivariate relationships of its natural modes, by means 
of the separation property of the Karhunen-Loève transform (KLT). Then, it exploits an optimized expectation maximization (EM) 
algorithm to find the optimal parameters of a Gaussian mixture model, with the focus being in reducing the number of parameters. 
The resulting statistical model is thus based on the estimation of the multivariate probability density function (PDF) that 
characterizes each beat type. Based on the above statistical characterization a multi-class ECG classification was performed. The 
experiments, conducted on the ECG signals from the MIT-BIH arrhythmia database, demonstrated the validity and, considering 
the reduced model size, the excellent performance of this technique to classify the ECG signals into different disease categories. 
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I. INTRODUCTION 
The electrocardiogram (ECG) signals [1], as well as 

electroencephalogram [2] or surface electromyogram signals 
[3], are some of the most important bio-electric signals that 
correspond to the electrical functionality of the human body. 
These signals could be considered as outputs of a 
nonstationary nonlinear system whose “input signals” are 
unknown. More in detail, the ECG signals reflect the 
performance and properties of the human heart, thus their 
analysis provides critical information on the cardiac function 
of patients. 

The incidence of cardiovascular diseases (CVDs) have 
increased in recent years representing the biggest cause of 
deaths worldwide. More than 17 million people died from 
CVDs in 2008 and more than 3 million of these deaths 
occurred before the age of 60. The percentage of premature 
deaths from CVDs ranges from 4% in high-income countries 
to 42% in low-income countries, leading to growing 
inequalities in the occurrence and outcome of CVDs between 
countries and populations [4]. One of the complication of 
CVD among many others is atrial and ventricular 
arrhythmias which occur due to cardiac rhythm disturbances. 
Arrhythmia is a collective term for a heterogeneous group of 
conditions in which there would be abnormal electrical 
activity. Sometimes cardiac arrhythmia is life threatening 
and causes medical emergencies, sometimes it may not cause 
symptoms or it may give rise to palpitations. Arrhythmias 
like ventricular fibrillation and flutter are life threatening 

medical emergencies which result in cardiac arrest, 
hemodynamic collapse and sudden cardiac death. 

Cardiac disease conditions can be diagnosed by 
identifying abnormal heartbeats in the ECG signal. Therefore 
long-term recordings of the ECG signal are performed in 
healthcare applications such as clinical monitoring or 
telemedicine using the popular Holter recorders. Holter 
ambulatory systems record at least 24 hours of heart activity, 
resulting in data that contain thousands of heartbeats. The 
analysis is usually performed offline by cardiologists by 
analyzing ECG visually on paper or on a screen. Because of 
the high number of beats to evaluate and the complexity of 
their shape, this task is very time consuming and reliable 
visual inspection is difficult. This leads numerous scientists 
to study the automatic detection problem [5]–[14]. In 
particular, computer-aided multi-class classification of 
pathological beats is of paramount importance to perform 
correct diagnosis as reported in very recent works [11], [15]–
[26] where several classification methods have been used 
such as support vector machine (SVM) [6], [19], [21]–[23], 
[27], neural networks [15], [16], [28], [29], hybrid neuro-
fuzzy systems [30]–[32], as well as the powerful dynamical 
models such as Bayesian networks [33], [34] and hidden 
Marcov models [35]. 

To this end, we propose an automatic classifier based on 
the identification of a statistical model of the ECG signal 
[36]. Indeed, the signals to be modeled are inherently 
stochastic, in that they contain unpredictable components not 
only due to the presence of noise. ECG signals, even if they 
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belong to the same individual, are well-known examples of 
stochastic signals. 

The issue of selecting an optimal set of relevant features 
for the ECG signal plays an important role in beat 
classification. It is well-known that the performance of a 
classifier in general deteriorates when some of the selected 
features are correlated. Therefore the multi-class beat 
classification turns out to be a problem of classification with 
the smallest number of uncorrelated extracted features 
capable of separating the classes with a minimum error. 

Thus, we opted for features that are automatically 
selected from the data properties themselves, and not fixed a 
priori. Among available methods that can be used to extract 
different features from the same raw data we chose the 
Karhunen-Loève transform (KLT), because it produces 
uncorrelated features whose number can be arbitrarily 
chosen according to the desired model accuracy, still 
maintaining optimal signal reconstruction capability [37]. 

Based on a stochastic setting, the technique we propose 
initially extracts from the signals the multivariate 
relationships existing between their natural modes. This was 
obtained by using the properties of spectral separability of 
the information contained in the KLT. Then it approximates 
the multivariate probability density function (PDF) of the 
KLT components with a Gaussian mixture model (GMM), 
and performs the model identification by finding the 
maximum likelihood of the mixture model parameters. To 
this end an efficient implementation of the expectation 
maximization (EM) algorithm, as presented in [38], is 
employed. Although other techniques can be employed for 
the above task, (e.g. the use of a self-organizing mixture 
network [39]–[41]), this algorithm appeared to be the most 
suitable for our application, as it also automatically selects 
the minimum number of Gaussians per mixture in order to 
jointly optimize the information loss due to the modeling 
error together with the model complexity. Having a limited 
number of model parameters is useful because it facilitates 
the possible implementation of the proposed technique in 
resource-constrained portable devices. 

At the end of the identification process a statistical model 
of the different beat types is obtained, and a multi-class ECG 
classification can be performed, capable of distinguishing 
normal beats from several different types of arrhythmia. 

Fig. 1 reports the flow chart of the overall multi-class 
ECG beat classification methodology presented in this paper. 

For the classification six types of ECG beats were 
considered: normal, Right Bundle Branch Block (RBBB), 
Left Bundle Branch Block (LBBB), Premature Ventricular 
Contraction (PVC), Atrial Premature Contraction (APC) and 
paced beats. 

The algorithm was validated through the baseline MIT-
BIH arrhythmia database [42]. 89807 beats were extracted 
from which 44905 (50%) were used for training and the 
remaining 44902 beats for testing purposes. The proposed 
technique achieved an overall accuracy of more than 95% ad 
its performance was compared with state-of-the-art SVM 
multi-class classifier [19], [21], [22]. 
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Figure 1.  Flowchart of the proposed ECG beat classifier. 

Due the large amount of data necessary for building an 
accurate statistical model for each of the considered beat 
classes, we opted for a “class-oriented” evaluation scheme, 
as adopted in most works, such as [43]–[45]. The heartbeat 
segments were extracted from records of the MIT-BIH 
arrhythmia database and were clustered, based on the 
categorization of the heartbeats. After randomization, a 
certain fraction of each cluster (i.e., class) was selected as the 
training dataset and the remaining heartbeats were used as 
the testing dataset. 

Although the “class-oriented” evaluation could lead to 
optimistic results, because the inter-beat variations in ECG 
characteristics are reduced in such tests as the training and 
testing datasets contain heartbeats from the same subjects, 
i.e., a similar beat might be included in both sets, the 
“subject oriented” choice, used in other recent works [9], 
[11], [23], [25], [46], [47], could not be adopted here due the 
reduced number of available beats which is insufficient for 
building a reliable overall statistical model. 

This paper is organized as follows. Section II presents the 
statistical model and Section III discusses the multi-class 
beat classification. Section IV describes the data set and its 
preprocessing. Section V reports the experimental results of 
the classifier on the database signals and comments the 
performance. Finally, conclusions are drawn in Section VI. 

II. ECG SIGNAL STATISTICAL MODEL 
Let us consider the ECG signal of finite length y[ ]n , 
0, , 1n N   , as an observation of the 1N   real random 

vector  1y , , T

N
y y    whose covariance function is given 

by  

    yy y yC y y
T

E    (1) 
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where the symbol {·}E  denotes the expectation and 
 y yE  . 

It is well known that an orthonormal set [48]  1, ,
N

   , 
can be derived as a solution of the eigenvector equations  

 yyC , 1, ,
j j j

j N        (2) 
which can be put in matrix form as  
 yyC T   (3) 

where  1diag , ,
N

     , 1, , N N

N

         , and 
1N

j

    are such that 

 
1
0

T

i j ij

i j

i j


      

  . (4) 

The Karhunen-Loève transform (KLT) of y  is defined as 
 k yT    (5) 
and the inverse transform is  

 y k    (6) 

where  1k , , T

N
k k   is the transformed random vector 

with 
  k yk T

E       . (7) 
The main property of the KLT is that in this expansion 

the coefficients, 
j

k , 1, ,j N  , form an orthogonal 
sequence of random variables, so that the covariance matrix 
of the random vector k  is diagonal and given by 

    kk k kC k k T
E       (8) 

as it can be easily verified by using (3) and (5). This effect, 
known as decorrelation, is a desirable property in defining a 
statistical model for a class of signals as it reduces the 
sparseness of random data to be modeled. 

From the linear transform (6) it is easy to verify that the 
PDF y (y)f  of y  is related to the PDF k (k)f  of k  by the 
following relationship 

 
 k

y

y
(y)

Tf
f





  , (9) 

where   is the magnitude of the determinant of the matrix 
 . The equalities 1   and  

  y k(y) yT
f f    (10) 

hold, being   a unitary matrix. 
This means that the problem of estimating the 

multivariate PDF of output data can be reduced to the density 
estimation of KLT components. To this end, given a set of 
observations ( ){y , 1, , }L   Y  to which corresponds 
the set ( ){k , 1, , }L   K  of KLT vectors, let us 
approximate the multivariate PDF k (k)f  with an F-
component Gaussian mixture 

    
1

k k ,C
F

i i i

i

g


    N   (11) 

where 
i

 , 1, ,i F    are the mixing weights, and  

     
/ 2

1(2 ) 1k ,C exp k C k
2C

N
T

i i i i i

i

 
      

 
N  

  (12) 
represents the density of a Gaussian distribution with mean 

i
  and covariance matrix C

i
. It is worth noting that 

i
 , 

must satisfy 0 1
i

    and 
1

1F

ii
  .   is the set of 

parameters needed to specify the Gaussian mixture defined 
as 

  1 1, , , , ,
F F

          , (13) 
where 

  ,C
i i i

     . (14) 
It is well known that the maximum likelihood (ML) 

estimate of  , 
   ML arg m logaxˆ g


    K   (15) 

is difficult to find because (15) contains the log of the sum. 
The usual choice for solving ML estimate of the mixture 
parameters is the EM algorithm. 

This algorithm is based on a set (1) (2) ( ){h ,h , , h }L H  
of L labels associated with the L observations, each label 
being a binary vector ( ) ( ) ( ) ( )

1 2h [h , h , , h ]
F

     , where 
( )h 1
i

  and ( )h 0
l

  for all l i , means that the KLT 
vector ( )k   was generated by the i-th Gaussian component 

 k ,C
i i

N . 
The EM algorithm is based on the interpretation of K  as 

incomplete data and H  as the missing part of the complete 
data  ,X K H  . The complete data log-likelihood, i.e. the 
log-likelihood of X  as though H  was observed, is  

   ( ) ( )

1 1
log , h log k μ ,C

L F

i i i i

i

g
 

         



K H N  . 

  (16) 
In general the EM algorithm computes a sequence of 

parameter estimates  ˆ ( ) , 0,1,p p    by iteratively 
performing two steps:  
• Expectation step: computes the expected value of 

the complete log-likelihood, given the training set 
K  of KLT vectors and the current parameter 
estimate  ˆ p . The result is the so-called auxiliary 

function 
        ˆ ˆ| log , | ,Q p E g p      K H K   .  

  (17) 
• Maximization step: update the parameter estimate 

      arg maxˆ ˆ1p Q p


       (18) 

by maximizing the Q-function.  
However, the EM algorithm for mixture estimation has 

several drawbacks: i) it is sensitive to initialization so it 



P CRIPPA et al: MULTI-CLASS ECG BEAT CLASSIFICATION BASED ON A GAUSSIAN MIXTURE MODEL OF …  

DOI 10.5013/IJSSST.a.16.01.02 2.4 ISSN: 1473-804x online, 1473-8031 print 

requires careful initialization, and ii) it is not capable of 
selecting the number of components F. 

Recently, Figuereido et al. [38] suggested an 
unsupervised algorithm for learning a finite mixture model 
from multivariate data, that overcomes the limitations of the 
standard EM approach. 

This algorithm integrates both model estimation and 
component selection, i.e. the ability of choosing the best 
number of mixture components F according to a predefined 
minimization criterion, in a single framework. It is able to 
perform an automatic component annihilation directly within 
the maximization step of the EM iterations. Starting from the 
conventional equation for the maximization step defined in 
(18), the algorithm is modified as follows. 

Compute  
 

  
  

( )
1

( )
1 1

max 0,
ˆ ( 1) for 1, ,

max 0,
    

L

i

i F L

ii

u N

p i F

u N



 


    




 









  

  (19) 
where the coefficients ( )

i
u

 , defined as  

  ( ) ( ) ( )h 1 y
i i

u    P   , (20) 
represent the conditional expectations of the H  elements 
and are obtained during the expectation step of EM 
algorithm. 

For every i such that ˆ ( 1) 0
i

p   , estimate ˆ
i

   

   arg maxˆ ˆ( 1) ( )
i

i
p Q p


       . (21) 

Note that (19) should be thought of as discriminative rules 
for reducing the amount of mixture components to be 
selected for the final model. It is worth noting that the 
parameters   in (21) are no longer computed 
simultaneously, instead they are updated sequentially by 
means of a component-wise version of the EM. Furthermore, 
it can be verified that starting from a large value of F, 
compared to the optimal number of mixture components, the 
overall model training procedure shows a sensible gain in 
robustness against bad initialization. 

Thus, once the F-component Gaussian mixture is 
estimated, we can write  

      y k EM
ˆy y yT Tf f g      , (22) 

where EM̂  is the final estimation of ̂  and this represents 
the ECG signal statistical model. 

A. Reduction of Model Complexity 

A further property of the KLT is that it is the most 
efficient representation of the random process if the 
expansion is truncated to M N  orthonormal basis 
functions. Thus this property is useful in order to reduce the 
model complexity. To this end let us rewrite (6) as  

 y
1 1 1

y k x
N M N

i i i i i i M

i i i M

k k k
   

               , (23) 

where 

 
1

x k
M

M i i M M

i

k


      , (24) 

with 1, , N M

M M

         , k M

M
 , is the truncated 

expansion, and 

 y
1

N

i i

i M

k
 

     , (25) 

is the error or residual. It can be shown [48] that the 
minimum mean square error  y y

T

M
E  E , subject to the 

constraints 1T

i i
   , 1, ,i M N    , is given by  

  
1

(y x ) (y x )
N

T

M M M i

i M

E
 

     E   , (26) 

where 
i

  represent the N M  Lagrange multipliers of the 
constrained minimization, given by 

 y yμ μ , 1, ,T T

i i i i
i M N          , (27) 

and 
i

  is the eigenvalue corresponding to the eigenvector 

i
 . In particular once the  

i
  are arranged in decreasing 

order, the error 
M

E  decreases monotonically as the index M 
increases towards N. 

In order to evaluate the impact of truncation on 
probability, let us start from the definition of mean square 
error  

  2 2
yy x y x (y) y

NM M M
E p d  E   , (28) 

where   is the norm of a vector, that is  1/ 2
v v vT   

For any 0   it results  

 
 

2 2
yy x

2 2
yy x

y x y x (y) y

(y) y y x
M

M

M M

M

E p d

p d

 

 

   

      


 P

  

  (29) 
where { }AP  denotes the probability of the set A. Hence one 
gets  

  
 2

2 2

y x
y x

M
M

M

E 
    

 
EP   . (30) 

This result shows that the truncated expansion converges in 
probability [49] to the complete expansion as M tends to N 
meaning that the probability of the error monotonically 
decreases, as the truncated expansion tends to the complete 
expansion. 
The truncation error kE  on the k -vector can be estimated as 
follows. Let us define the truncated vector k

T
 as 

 
k

k
0
M N

T

 
  
 

   . (31) 

Thus we have  

 
   
   

2
k

2

k k (k k ) (k k )

(k k ) (k k ) (k k )

T

T T T

T T

T T T

E E

E E

     

       

E
  , 

  (32) 
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since IT   . The term on the right-hand side becomes 

 

 

2
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   (33) 
 where 1, ,

M M
        and  1, ,

M N      , so that it 
results k M

E E . 
Furthermore the same approach used in deriving (30) 

yields 

   k
2k k

T
   


EP   , (34) 

which combined with (26) gives an upper bound for the 
probability of the residual k k k

T
     

   1
2k k

N

i

i M

T

 


   



 

P   . (35) 

Although (34) merely shows that the truncation k
T

 
converges in probability to the complete vector k , as it is 
well known that the convergence in probability implies 
convergence in distribution [49], we conclude that the pdf 

k (k )
T T

f  converges to k (k)f . 
In conclusion, with this result in mind, once the set 

 1, ,
M

    of eigenvectors with the M largest 
i

  has been 
chosen, the statistical model used for classification is given 
by the projection 

 k yT

M M
    . (36) 

In such a way, the dimensionality M of the problem of 
estimating the multivariate PDF  k k

M M
f  is reduced, with 

negligible error in probability distribution. 

III. MULTI-CLASS BEAT CLASSIFICATION 
Now, to face multi-class beat classification, we consider 

S classes, corresponding to S different beat types. For each 
class s with 1, ,s S  , and ( )y s  belonging to the s-class, we 
perform the KLT transforms ( ) ( ) ( )y ks s s  , 

( ) ( ) ( )k ys s T s  , ( ) ( ) ( )k ys s T s

M M
  , by following the steps 

illustrated in the previous section. Then we obtain the 
statistical model for ( )k s

M
 as in (22),  

      ( ) ( ) ( )
( )

y k k
y y y k k ks s s

M

s T

M M
f f f       (37) 

where 
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N
  (38) 

and y , k , k
M

  are volumes in the y , k , and k
M

 
spaces, respectively. 

Now consider the generic beat x  to be classified, 
compute its projections over the KLT bases ( )s , 1, ,s S    

 ( ) ( )z x , 1, ,s s T
s S      , (39) 

and define the score 
s

  of the testing beat as 
  ( )

( )
k

zs
M

s

s M
f   (40) 

where ( )z s M

M
  are the first M components of ( )z s : 

 ( ) ( ) ( ) ( )
1z x , ,

T
s s T s s

M M M
z z        . (41) 

The class s   to which x  belongs is the one that gives the 
maximum score 

s
   

  arg max
s

s

s     . (42) 

IV. DATASET 
In order to test the effectiveness of the proposed classifier 

in the categorization of different beat types, suitable datasets 
were prepared to both train the model and test the 
classification accuracy. 

Starting from the MIT-BIH arrhythmia database [42], 
which is widely regarded as a benchmark for arrhythmia 
detection and classification tasks, we selected a number of 
records and used half of the beats for training, retaining the 
other half for tests. 

A. Materials 

The original database contains 48 half-hour two-lead 
ambulatory ECG signals, recorded from 47 subjects in the 
late 1970’s. The signals have then been filtered in the 
0.1÷100 Hz band and digitized at 360 Hz with 11 bit 
resolution with a 5 μV least-significant-bit value. Each beat 
was carefully annotated and checked, and the QRS complex 
position also recorded together with the beat category 
annotation. Two lead signals were recorded but only one 
(usually lead A, a modified limb lead II, or MLII) used in our 
experiments, which also made use of the category 
annotations as the ground truth for performance evaluation. 

Of all the available annotations, we made use of only the 
six main categories, for which a sufficiently high number of 
observations were present, i.e., (a) Normal, (b) Right Bundle 
Branch Block (RBBB), (c) Left Bundle Branch Block 
(LBBB), (d) Premature Ventricular Contraction (PVC), (e) 
Atrial Premature Contraction (APC) and (f) Paced beats. 

In this work we chosen a “class-oriented” evaluation 
scheme, such as in [43]–[45], because this strategy allows to 
obtain a reliable and accurate statistical model for each type 
of arrhythmia (class) also in presence of a reduced number of 
available beats, i.e. when facing to small ECG databases. 

The number of beats used for each class is reported in 
Table I: as it can be easily seen, this number varies ranging 
from 2384 for APC to 63625 for Normal beats. For each 
class, a random selection of 50% of the available beats was 
employed for training the models, while the remaining 50% 
had been set apart for evaluation during the testing phase. As 
a result a total of 89807 beats have been used, of which 
44905 (44902) for the training (testing). 
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TABLE I.  CONSISTENCY OF THE ECG BEAT DATABASE USED FOR 
EXPERIMENTAL EVALUATION 

Class Train Test 

Normal 31813 31812 

RBBB 3540 3539 

LBBB 2298 2298 

PVC 2564 2564 

APC 1192 1192 

Paced 3498 3497 

Total 44905 44902 

 

B. ECG Signal Segmentation 

In order to perform the KLT, fixed-length signal vectors 
are needed. The ECG signal was thus segmented in 200 ms 
windows (72 samples) centered around the R wave point as 
recorded in the annotated files and as suggested in [50]. Of 
course, a real application would need a QRS detector to 
automatically find this point, but many well-established 
algorithms exist to this end. 

V. EXPERIMENTAL RESULTS 
In this section we present the experimental results 

obtained with the proposed multi-class ECG signal classifier. 
The signals used for the experiments were extracted from 

the MIT-BIH arrhythmia database as described earlier. The 
set of the KLT input signals was thus populated by L vectors, 
with L given in Table I according to the class being trained, 
of N = 72 samples of windowed signal data, with no further 
preprocessing applied. For every beat belonging to the 
testing set of each class, we then run our classifier and 
counted the number of occurrences of each recognized type, 
so as to obtain a confusion matrix. 

Several experiments were performed by varying the 
number of KLT components retained in the GMM model. A 
selection of the resulting six-classes confusion matrices are 
reported in Tables II, III, and IV where 5, 10, and 20 KLT 
components,  respectively,  have been considered. 

In order to obtain more compact figures related to the 
performance of the algorithm, the standard set of 
performance indices was also extracted from the confusion 
matrices, namely we computed the sensitivity, specificity, 
precision and accuracy, defined as  

TPsensitivity
F

 
TP N




   ,  (43) 

TNspecificity
F

 
TN P




  ,   (44) 

   TPprecision
TP FP




  ,   (45) 

TP TNaccurac  y
TP

   
TN FP FN




  
  ,  (46) 

TABLE II.  CONFUSION MATRIX FOR THE PROPOSED ECG BEAT 
CLASSIFIER OBTAINED BY CONSIDERING  M = 5  KLT COMPONENTS 

Input 
Recognized 

Normal RBBB LBBB PVC APC Paced 

Normal 28416 239 96 412 2647 2 

RBBB 25 3311 0 33 170 0 

LBBB 31 0 2243 17 5 2 

PVC 86 10 2 2437 12 17 

APC 141 67 0 12 972 0 

Paced 3 1 7 9 9 3468 
 

TABLE III.  CONFUSION MATRIX FOR THE PROPOSED ECG BEAT 
CLASSIFIER OBTAINED BY CONSIDERING  M = 10  KLT COMPONENTS 

Input 
Recognized 

Normal RBBB LBBB PVC APC Paced 

Normal 29710 51 56 302 1687 6 

RBBB 16 3329 0 15 179 0 

LBBB 5 0 2272 15 5 1 

PVC 88 1 16 2455 4 0 

APC 110 69 0 11 1002 0 

Paced 3 0 4 13 0 3477 
 

TABLE IV.  CONFUSION MATRIX FOR THE PROPOSED ECG BEAT 
CLASSIFIER OBTAINED BY CONSIDERING  M = 20  KLT COMPONENTS 

Input 
Recognized 

Normal RBBB LBBB PVC APC Paced 

Normal 30521 0 1 260 1028 2 

RBBB 47 3274 0 35 183 0 

LBBB 17 0 2231 50 0 0 

PVC 83 0 0 2477 4 0 

APC 250 85 0 4 853 0 

Paced 5 0 0 22 0 3470 

 

where TP are the true positives (the diagonal elements of the 
confusion matrix), FN the false negatives (the sum of the 
other elements on the same row of the confusion matrix), FP 
the false positives (the sum of the other elements on the same 
column of the confusion matrix), and TN the true negatives 
(the sum of the elements on the other rows and columns of 
the confusion matrix). Results are reported in Fig. 2 (a)–(d), 
where different numbers of eigenvector projections M were 
retained in the GMM model, and also reported in Table V for 
the case of M = 10 eigenvectors, which we deemed to be the 
best compromise between all the indices. 
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Figure 2.  Classifier (a) sensitivity, (b) specificity, (c) precision, and (d) accuracy for different beat types as functions of the KLT components’ number. 

To compare the performance of the proposed technique 
to that of other methods, we run the same tests also with a 
simple-to-use but state-of-the-art SVM-based classifier, 
using the reference implementation [51], without any kind of 
signal preprocessing or feature extraction. The same training 
and testing sets were used to make the results directly 
comparable. The confusion matrix and performance indices 
of the SVM classifier are reported in Table VI and Table VII 
respectively. 
As can be seen from Fig. 2 (a)–(d), the trends of all the 
performance indices are quite similar, showing a sharp 
increase as the number of eigenvectors M rises to about five, 
then it remains almost stable until, for very high values of M, 
there is a significant drop in performance.  This is due to the 
fact that the number of observations available in the training 
set is not large enough to obtain an accurate statistical model 
of a high-dimensional PDF with the EM algorithm 
employed. In fact, the APC class performance is almost 
always well below that of other classes, as it is the class with 

the least number of observations (as can be seen in Table I, 
APC annotations amount to about one half of the second 
least numerous class). 

TABLE V.  PERFORMANCE ANALYSIS OF THE PROPOSED ECG BEAT 
CLASSIFIER OBTAINED BY CONSIDERING  M = 10  KLT COMPONENTS 

Class Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

Accuracy 
(%) 

Normal 93.39 98.30 99.26 94.82 

RBBB 94.07 99.71 96.49 99.26 

LBBB 98.87 99.82 96.76 99.77 

PVC 95.75 99.16 87.34 98.96 

APC 84.06 95.71 34.83 95.40 

Paced 99.43 99.98 99.80 99.94 
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TABLE VI.  CONFUSION MATRIX FOR THE ECG BEAT CLASSIFICATION 
OBTAINED BY USING THE SVM CLASSIFIER 

Input 
Recognized 

Normal RBBB LBBB PVC APC Paced 

Normal 31712 9 10 41 40 0 

RBBB 12 3439 0 4 84 0 

LBBB 8 0 2285 5 0 0 

PVC 71 4 3 2485 0 1 

APC 247 84 0 2 859 0 

Paced 4 0 0 2 0 3491 

 

TABLE VII.  PERFORMANCE ANALYSIS OF THE SVM CLASSIFIER 

Class Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

Accuracy 
(%) 

Normal 99.69 97.39 98.93 99.02 

RBBB 97.17 99.77 97.26 99.56 

LBBB 99.43 99.97 99.43 99.94 

PVC 96.92 99.87 97.87 99.70 

APC 72.06 99.72 87.39 98.98 

Paced 99.83 100.00 99.97 99.98 

 

Because of this, we deemed that M = 10 eigenvectors 
were a good compromise given the amount of available 
training data, resulting in an overall accuracy (number of 
correctly classified beats over total number of tested beats) 
of 94.1%. In this particular case the number F of Gaussian 
mixture components used by the EM algorithm for modeling 
the PDFs of the considered classes is 19 for normal, 5 for 
RBBB, 4 for LBBB, 8 for VPC, 6 for APC and 5 for paced 
beats as can be easily seen in Table VIII. Here the number F 
of Gaussian mixture components used by the EM algorithm 
to model the PDFs of every beat type for different values of  
M (M = 2, 3, 5, 7,10, 15, 20, 25, 30, 35, 40, 45, and 50) has 
been reported. Table VIII also reports, in the last column for 
different values of M, the total number of Gaussian mixture 
components  s

s
F  used for modeling all the six 

multivariate PDFs. 
The overall accuracy was also computed, and graphed, 

against the number or eigenvectors M, and results are 
reported in Fig. 3. As it easy to see, it would have been 
possible to achieve a slightly better maximum overall 
accuracy of 95.5% using 35 eigenvectors, but at the cost of a 
sensibly worse specificity and sensitivity. 

Fig. 3 also reports, as a reference benchmark, in a dashed 
red line, the overall accuracy of the SVM classifier, which is 
98.6%. The SVM approach clearly is able of obtaining better  

TABLE VIII.  NUMBER OF GAUSSIAN MIXTURE COMPONENTS (F) USED 
BY THE EM ALGORITHM TO MODEL THE PDFS OF EVERY BEAT TYPE FOR 

DIFFERENT VALUES OF M  (KLT COMPONENTS) 

M 

Beat Type 
TOT. 

Normal RBBB LBBB PVC APC Paced 

2 21 10 7 18 13 12 81 

3 24 11 17 21 13 11 97 

5 25 10 8 19 10 14 86 

7 25 9 6 13 8 9 70 

10 19 5 4 8 6 5 47 

15 9 3 3 6 3 3 27 

20 8 3 2 4 1 3 21 

25 5 3 2 3 1 3 17 

30 5 3 2 2 1 3 16 

35 4 3 2 2 1 3 15 

40 4 3 2 2 1 3 15 

45 2 2 2 1 1 3 11 

50 2 2 2 1 1 3 11 

 

results, but it is a much more complicated algorithm with 
very high computational requirements. In our tests the  
training of the model with SVM required more than 30 hours 
of computation on an PC equipped with an Intel Q9550 CPU 
running at 2.83 GHz, while the proposed approach is able to 
train a model in a few minutes. 

Moreover, the model complexity must also be taken into 
account. The SVM model required 3257 support vectors to 
achieve its performance, for a total of K = 257318 model 
parameters. This can be a symptom of overfitting, so we can 
expect real-world performance to be much lower for the 
SVM classifier. Our proposed technique, on the other hand, 
required only      1 1 / 2s

s
K F M M M MN      

3822  parameters, almost two orders of magnitude less. 
A better comparison of the two models would make use 

of the Akaike information criterion (AIC), which in our case 
can be stated as [52]: 

  AIC log 2L E L K    (47) 
where E is the residual sum of squares, so that it can be 
assumed 1E L a  , a being the overall accuracy. Lower 
values for the AIC usually denote better models, as they are 
able to capture the data with less free parameters. With the 
above mentioned data, the SVM classifier yields an AIC of 
about 60.32 10 , while the proposed GMM-based classifier 
yields an AIC of only 60.12 10  , showing the clear 
advantage of the proposed approach in terms of model 
compactness. 
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Figure 3.  Classifier overall accuracy as a function of the KLT 
components’ number. 

VI. CONCLUSION 
In this paper a novel technique suitable for a low-

complexity multi-class ECG signal classification has been 
presented. 

It is based on a statistical identification of nonlinear 
nonstationary signals. This methodology extracts the 
multivariate relationships of the ECG signal natural modes 
by exploiting the separability properties of the KLT. Then, 
by applying to the KLT-converted data an EM algorithm that 
is able to automatically find the optimal complexity, the 
parameters and the components of a Gaussian mixture 
model, it obtains the final statistical model maximizing the 
likelihood that the KLT-converted data are given by the 
estimated PDF. Based on the above statistical 
characterization, it is finally possible to perform a multi-class 
beat type classification. 

Several simulations on ECG signals affected by 
arrhythmia were performed in order to test the validity of this 
technique. The experimental results show the very good 
performance of the classification technique considering the 
relative compactness of the employed model compared to 
that of other techniques, such as SVM. This is a clear 
advantage if the automatic detection needs to be performed 
on portable equipment with limited computational 
capabilities. 
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