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Multi - Class Latency Bounded Web Services

Vikram Kanodia

Abstract

Two recent advances have resulted in significant improvements in web server quality-
of-service. First, both centralized and distributed web servers can provide isolation
among service classes by fairly distributing system resources. Second, session ad-
mission control can protect classes from performance degradation due to overload.
The goal of this thesis is to design a general “front-end” algorithm that uses these
two building blocks to support a new web service model, namely, multi-class services
which control response latencies to within pre-specified targets. Our key technique
is to devise a general service abstraction to adaptively control not only the latency
of a particular class, but also to assess the inter-class relationships. In this way, we
capture the extent to which classes are isolated or share system resources (as deter-
mined by the server architecture and system internals) and hence their effects on each

other’s QoS. We validate the scheme with trace driven simulations.
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Chapter 1

Introduction

In this thesis we introduce a new model for web services, namely multi-class web

services with the request latency controlled to within pre specified targets.

1.1 Motivation

The World-Wide Web (WWW) is a client-server system that integrates various types
of information on the global Internet and on enterprise Internet Protocol (IP) net-
works. WWW technology involves a combination of Web browsers and Web servers.
The former provides an easy-to-use graphical interface for browsing information re-
sources on the Internet. A Web server is a system on a network that can process
incoming HTTP requests.

The perceived web latency i.e., the request response time, is affected by the per-
formance of three components: the client, the server and the network that connects
clients and servers. The client delay is the time required by the browser to show
documents, considering the different types of media, such as, audio, video, text, and
graphics. The network latency represents the time required to provide the remote ac-
cess plus the data transmission time. Server delay is the time required by the server
to service the request.

An increasingly dominant factor in poor end-to-end performance of web traffic is
excessive latencies due to overloaded web servers. Recent studies have shown that

the processing delay at the server is a significant part of end to end delay experienced



by an HTTP request. Consequently, reducing and controlling server latencies is a key
challenge for delivering end-to-end quality-of-service.

Towards this end, two key mechanisms have been introduced to improve web QoS.
First, admission control has been proposed as a mechanism to prevent web servers
from entering overload situations [1, 2, 3]. Specifically, by admitting new sessions
only if the measured load is below a pre-specified threshold, admission control can
prevent the server from entering a regime in which latencies are excessive, or session
throughput collapses due to dropped requests and aborted sessions.

Second, web servers can now provide performance isolation and differentiation
among the different service classes hosted by the site. In particular, a server may sup-
port a number of service classes which may represent different classes of users or dif-
ferent applications (news, email, static documents, dynamic content, etc.). Whether
such classes are supported in a single-node server or a distributed cluster, mecha-
nisms devised in [4] and [5] respectively can ensure that each service class receives a
certain share of system resources (disk, CPU, memory, etc.). Moreover, by appropri-
ately weighting the share of system resources, differentiation among service classes
is achieved. The Eclipse/BSD operating system [6] provides mechanisms to ensure
that each class receives its share of system resources. Similarly, as delays are also in-
curred in the system’s request queues, prioritization of incoming requests can further
differentiate the performance among classes [1, 7].

Thus, differentiation and isolation can be achieved by prioritized scheduling of
system resources, and protection from overload can be achieved by admission control.
However, even if taken together, these two mechanisms cannot ensure that a request’s
targeted delay will be satisfied. Consequently, because end-to-end latency is a key
component of user-perceived quality-of-service, new mechanisms are needed to ensure

that the service class’ request delays are limited to within the targeted value.



1.2 Contributions

In this thesis, we introduce a new framework for multi-class web server control which
can satisfy per-class latency constraints, and devise an algorithm termed Latency-
targeted Multiclass Admission Control (LMAC). Our key technique is to design a
scheme within a general framework of request and service envelopes. Such envelopes
statistically describe the server’s request load and service capacity as a function of
interval length, resulting in a high-level service abstraction which circumvents the
need to model or measure the components of a request’s delay. For example, a
request incurs delays in the request queue, CPU processing, memory, disk in the case
of cache misses, and so on: individually controlling the latency in each subsystem is
simply an intractable and impractical task in a modern server. Instead, we utilize
the envelopes as a simple tool for controlling class quality-of-service while maximizing
utilization of system resources.

Our approach has three key distinctions. First, it enables web servers to support
a strong service model with class latencies bounded to a pre-specified target, i.e., a
minimum fraction of accepted requests will be serviced within the class delay target.

Second, it provides a mechanism to characterize and control the inter-class rela-
tionships. For example, suppose server resources are allocated to classes in a weighted-
fair manner so that classes have performance isolation, yet a class is able to utilize
unused resources of other classes. In general, the extent to which an increased load in
one class affects the performance of another class is a complex function of the total
system load, the particular resource scheduling algorithm, and the low-level interac-
tions among the server’s resources. Building on the results of [8], we use the envelopes
as a way to characterize the high-level isolation /sharing relationships among classes

and design a general multi-class algorithm to exploit these effects.



Finally, by decoupling access control and resource allocation from the internals of
the server, we obtain a general solution that applies to a broad class of servers, in-
cluding single-node and distributed servers, and servers with varying levels of quality-
of-service support. Consequently, as the server is enhanced with functionalities such
as weighted-fair resource allocation, the algorithm naturally exploits these features
to more highly utilize the available resources and support an increased number of
sessions per service class.

To evaluate our scheme, we perform a broad set of trace-driven-simulation exper-
iments. We first compare our scheme with an uncontrolled system and illustrate that
the algorithm is able to prevent performance degradation due to overload. Next, com-
paring the delays obtained in simulations with the class QoS objectives, we find that
in many cases, latencies can be controlled to within several percent of the targeted
value. Moreover, in the single-class case, we compare with a simple queuing theoretic
approach, and find that envelopes control the system to a significantly higher degree
of accuracy. Finally, in the multi-class case, simulations indicate that substantial
inter-class resource sharing gains are available. Here, we find that the approach is
able to extract these gains, and efficiently utilize system resources while satisfying

each class’ delay targets.

1.3 Organization

The remainder of this thesis is organized as follows.In chapter 2, we describe the
server architecture and the system abstraction used for QoS management. Next,
in chapter 3, we describe a simple single-class queuing theoretic approach to serve
as a benchmark for performance analysis, and illustration of the key problems in

meeting delay targets. In chapter 4, we introduce the request and service envelopes



and develop an access control algorithm based on the properties of these envelopes.
We next describe the simulation scenario and present experimental results in chapter
5. Finally, in chapter 6, we conclude and also discuss some possible avenues for future

work.



Chapter 2

System Architecture

In this chapter we describe the basic system architecture of a scalable QoS web server.
We are not proposing a new architecture as all of the mechanisms described below
have been introduced previously. Rather, our goal is to consider a general system
model for admission control which can exploit various QoS server mechanisms to

efficiently satisfv targeted class latency objectives.

2.1 System Model

Figure 2.1 depicts the general system model that we consider. The system consists
of a state-of-the-art web server augmented with admission control capabilities as in
[1. 2, 3]. All incoming requests, which can be sessions (as in [2]) or individual “page”
requests, are classified into different quality-of-service classes. There are a number
of possible classification criteria including the address of the server (in case of web
hosting applications), the identity of the user issuing the request, or the particular
application or data type. The goal of our admission control algorithm is to determine
whether admission of a new request in a particular service class can be supported while
meeting the latency targets of all classes. If it is not possible, the request should be
rejected outright, or redirected to a lower priority class or a different server.

As shown in the figure, incoming requests are first queued onto the listen queue
or dropped if the listen queue is full. The admission controller dequeues requests

from the listen queue and determines if they will admitted or rejected. Notice that
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Figure 2.1 System Model

the admission control unit is part of the front-end and monitors all of the server’s ar-
rivals and departures. As depicted in Figure 2.2, the admission control unit performs
observation-based control of the server using measured request and service rates of
each class. Further, notice from Figure 2.2(b) that our class-based admission control
will incorporate effects of inter-class resource sharing by also considering the effects
of a new admission on other service classes.

If admitted, requests are then scheduled according to the server’s request schedul-
ing algorithm which can be first-come-first-serve or class based (1, 7]. Finally, requests
are submitted to the back-end nodes in a distributed server [5], or in the case of a
single node server are simply processed by the node itself.

A key point is that the admission controller applies to a general system model
including single-node and distributed servers, FCFS and class-based scheduling, and
standard as well as QoS-enhanced operating systems. When QoS mechanisms are
present in the server (such as class-based rather than FCFS request scheduling), the

admission controller will measure the corresponding performance improvements and
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exploit the QoS functionality by admitting more requests per class, thereby increasing
the overall system efficiency. For example, consider a server farm where the front-end
does sophisticated load balancing to achieve better overall throughput by exploiting
locality information at the back-end [9]. In this case, the admission controller will
measure the decreased serviced latencies and be able to admit an increased number of
sessions into various classes, thereby exploiting the efficiency gain of load balancing.

Finally, notice from Figure 2.2 that the admission controller does not measure or
model resources at the operating system level, such as disk, memory, or CPU. Instead,
we abstract all low-level resources into a virtual server which allows us to design an

admission controller that is applicable to a broad class of web server architectures

and applications.
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arrival time of request j in class

service time of request j in class ¢

mean delay of class i requests

mean arrival rate of admitted class z requests
mean service rate of class i requests

class i target delay

class 7 delay-violation probability

variance of class i requests over durations T
mean class ¢ latency for £ concurrent requests
variance of class 7 latency for k£ concurrent requests
measurement window

Table 2.1 Notation
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Chapter 3

Baseline Scheme

In this chapter, we sketch a simple queuing theoretic algorithm devised to satisfy
a delay target. The goal here is threefold. First, we illustrate an abstraction of the
server resources into a simple queuing model. We present a very simple and high level
view of the web server modeled as an open single queue server. Second, we highlight
key issues for managing multi-class web services. Finally, we use the approach as a
baseline for experimental comparisons and, by highlighting its limitations, we further

motivate the LMAC scheme.

3.1 Queuing Theory

As is often the case in computer systems, Web servers typically process many simul-
taneous jobs (i.e., file requests), each of which contends for various shared resources:
processor time, file access, and network bandwidth. Since only one job may use a
resource at any time, all other jobs must wait in a queue for their turn at the resource.
As jobs receive service at the resource, they are removed from the queue; all the while
new jobs arrive and join the queue. Queuing theory is a tool that helps to compute
the size of the queues and also the time that a job (request) spends in the queues. In
this thesis we are mainly concerned with the simultaneous number of HTTP requests
handled by a server, and the total time required to service a request.

In the next subsection, we present a very simple review of important concepts

from queuing theory. More information can be found in [10].
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3.1.1 Queuing Theory Results

Queuing theory views every service or resource as an abstract system consisting of a
single queue feeding one or more servers. Associated with every queue is an arrival
process, a service process and the size of the queue (if bounded).

Consider a single-channel (server) queue with Poisson arrivals at rate Aand ex-
ponential service rate u: the M/M/1 ! queue. From Queuing theory [10], waiting
time in the system ( service time plus the delay in the queue), W, is an exponentially

distributed random variable with parameter (u — A). That is :

W ~ exp(u — A) (3.1)

The mean of the distribution is equal to the average waiting time in the system, w,

given by :

_ 1
(k=)
It is to be noted here that an M/M/1 queue is called a stable queue if the arrival

w (3.2)

rate \ is less that the service rate x. In case of a stable queue all jobs will eventually
be serviced, and the average queue size is bounded. If )\ is greater that or equal to
i, the queue is labeled as unstable and the queue length grows without bound.

In the next section we will actually use the above queuing theory results to model

the behavior of a busy web server.

I'The notation A/B/c is used to classify queuing models, where c is the number of channels, A
denotes the inter-arrival time distribution, and B denotes the service time distribution. The symbol
M denotes Poisson (exponential interarrival times).
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3.2 Problem Formulation

Tvpically a single queue is insufficient for modeling a complex system such as a
web server. In many such cases a system is modeled as a graph or a network of
queues in which each queue represents one node. However modeling a web server as a
svstem of queues leads to a complex model since the different queues (representing the
different server resources) interact with each other in an unpredictable and complex
manner. We wanted to keep the model of a server simple and also independent of
the actual resource level details of the server architecture. Jackson’s theorem ({10])
states that under specific conditions (that are beyond the scope of this thesis), the
complex interactions between nodes in the network may be ignored. Even if the
arrival distribution of the queue is no longer exponential - because it is influenced by
the rest of the network - it is approximately exponential.

Consider a single class with quality-of-service targets given by a delay bound of 0.5
seconds to be met by 99% of requests. Further consider a stationary and homogeneous
arrival of sessions and requests within sessions, so that there exists some maximum
number of requests per second which can be serviced so that this QoS requirement is
met. If the overall arrival rate of requests to the server is greater than this maximum,
the difference should be blocked (or redirected) by the access controller to prevent an
overload situation.

The key question is, how to determine which load level is the maximum one that
can support the service. Specifically, if the current load is below this maximum, then
the current 99 percentile delay will be below the target. However, when a new session
requests access to the server, the new 99 percentile delay of this class and others is
in general a complex function of the system workload, and the low-level interactions

among the many resources consumed such as disk, bandwidth, memory, and CPU.
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In the next section we sketch a baseline approach for assessing the impact of new

requests and sessions on the delay target via a simple queuing theoretic abstraction.

3.3 Sketch Algorithm

In this section we describe a sketch baseline algorithm which uses results from queuing
theory to model the request latency while modeling the server as a simple M/M/1
queue.

We approximate class j's service by an M/M/1 queue with an unknown service
rate. In particular, as described earlier, a request’s service latency includes delays at
multiple system resources like CPU, disk, etc. Each of these system level resources
have their own separate queues and the net latency of a request is composed of
processing time at each of the system resources coupled with the time spent waiting
in the resource queue. The M/M/1 model abstracts these resources and their queues
into a single virtual server with independent and exponential requests and services as
follows.

Over the last T seconds from the current time ¢, the mean arrival rate is 2

Zjl(t—Tga{St)

; 3.3
Ai e (3.3)
where 1(-) is an indicator function, and the mean delay is
_ (T —a)It-T <sl <t
LTyl -ahie-Tss<n 3.4

1t -T <sl<t)
Under the assumptions of the M/M/1 model and using equation 3.2, the unknown

mean service rate is simply

2The notation used is enumerated in table 2.1.
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1
i = = /\i 3.5
7] i + (3.5)

Using the above result and the fact that the waiting time in the system is an expo-
nentially distributed random variable (equation 3.1), the delay violation probability

under an increased load A > A; will be

P(D; > d;) = exp (—d; (1 — A7) - (3.6)

Thus, the increased load due to the new session should be admitted if the estimated
P(D; > d) is less than the class’ target €¢;. Consequently, under the particular
assumptions of the M/M/1 model, the above scheme limits the class’ latency to

within the target d! for the specified fraction of requests ¢;.

3.4 Limitations of the Baseline Scheme

While server access control based on Equations (3.3) - (3.6) does provides ability to
meet a class’ latency objectives with a high level abstraction of system resources,
it encounters several key problems which preclude its practicality to realistic web
servers.

First, it offers no support for multiple services classes. That is, by treating
each class independently, the impact of a new session on other classes is ignored.
Second, the assumption that inter-request times are independent and exponentially
distributed conflicts with measurement studies [11]. Third, the assumption of inde-
pendent and exponentially distributed service times cannot account for the highly
variable service times of requests and ignores the strong effects of caching, namely,
that consecutive requests for the same document can result in highly correlated, as

well as highly variable, service times. The reasons behind the shortcomings of the
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baseline scheme arise primarily from the fact that we model the server as a single
queue when it is in fact a network of queues, with each node in the network (repre-
senting a resource queue) interacts with each other in a complex manner.

In Chapter 5, we experimentally quantify the impact of these limitations in a

realistic scenario.
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Chapter 4

Multi-Class Admission Control

In this chapter, we build on the previous baseline admission control model and intro-
duce the Latency-targeted Multi-class Admission Control (LMAC) algorithm. The
goal is to provide a strong service model for web classes that controls statistical latency
targets of multiple service classes. The LMAC algorithm has two key distinctions from
the baseline scheme. First, we introduce use of envelopes as a general yet accurate
way of describing a class’ service and demand. As for the baseline scheme, this is
a high-level workload and service characterization, yet, unlike the baseline scheme,
envelopes capture effects of temporal correlation and high variability in requests and
service latencies. Second, exploiting the inter-class theory of [8], we show how the
performance effects of one class on another can be incorporated into admission control

decisions.

4.1 Envelopes: A General Service and Demand Abstraction

Deterministic [12] and statistical [8, 13] traffic envelopes have been developed to man-
age network QoS. Moreover, deterministic [12] and statistical {8] service envelopes
have provided a foundation for multi-class network QoS. Inter class resource sharing
has also been incorporated in [8]. Below, we extend these techniques to the scenario
of measurement-based web services exploiting two key properties of envelopes: char-
acterization of temporal correlation and variance and simple on-line measurement via

jumping windows.
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Denoting the number of class 7 requests in the interval [t,, ;] by

Niltit) =) _1(t < d < ta), (4.1)
J
the mean number of requests in an interval of length 7 is A;7, and the variance is
given by
0¥(7) = iz Tode | (NE(t = (m + )7t —m7) — (TX:)?) (4.2)

As an example envelope, Figure 4.1 shows the request envelope for the trace
described in Chapter 5. Specifically, the figure depicts A; + 1.6450;(7)/T vs. 7, where
1.6450;(7) vields the 95% tail of a Gaussian distribution. In other words, under a
Gaussian distribution of total requests with empirical mean and variance as above,
the figure shows the value of r such that P(N;(t — 1,t)/T > r) = 0.95. Figure 4.1(b)

shows the envelope normalized to the interval length so that the y-axis is a rate.

1400 T 1 T LS
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Figure 4.1 95 Percentile Request Envelopes

For example, in Figure 4.1(a) the point (100 msec, 17) on the curve indicates that
17 consecutive requests arrive within 100 msec 95% of the time. This corresponds to

a rate of 170 requests per second over the same interval length which is depicted in
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Figure 4.1(b). Thus, the figure shows that that over short interval lengths, signifi-
cantly more requests than the mean 100 per second can arrive. Such characteristics

of the request workload are a key input to admission control.

4.1.1 Measurement-Based Service Envelopes

Here, we define and show how to adaptively measure a class’ service envelope. Analogous
to the above request envelope, it describes the service latencies of consecutive requests
which simultaneously compete for system resources, characterizing the variance and
temporal correlation of services. In particular, we measure this envelope by mon-
itoring the service latencies of requests as a function of the number of concurrent
requests. For example, let k£ be the number of consecutive requests in consideration.
For & = 1, the service envelope consists of the mean and variance of the time required
to service a single request. For k = 2, the envelope characterizes the mean and vari-
ance of the time required to service two requests that are concurrently competing for
system resources. That is, if the 7’th request enters the system before the (5 — 1)tk
request is serviced, then (sJ — al™') represents the total time required to service the
two requests.>

Thus, in general, we describe the service of class i by d;(k) and v?(k) which are
the mean and variance of the time to service k overlapping requests. Denoting /3{ (k)

as indicator of whether request j overlapped with the previous k requests such that

; 1 > 0<m<k—2s
Bi (k) = (4.3)

0 otherwise

3Note that if the j'th request enters the system after the (j — 1)!* request is serviced, then this
duration reflects the two request’s inter-arrival times rather than the time to service two requests.
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then the mean latency to service k concurrent requests is given by
Zj(s—zi —d "Bkt -T < sl < t)
S BRE-T<s <?)

T —

di(k) = (4.4)

and likewise for the service variance v2(k). Notice that d;(1) = d; as in Equation

(3.4).
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Figure 4.2 Service Envelope

Figure 4.2 depicts an example service envelope from the simulation experiments
of Chapter 5. Analogous to Figure 4.1, it depicts the number of concurrent requests
serviced as a function of the the latency incurred. The key property of the figure
is its convexity so that, for example, the time required to service n requests is far
less than n times the time required to service 1 request. This is due to the effects of
caching (requests for the same document within close temporal proximity experience
significantly smaller latencies) and more generally, the servers ability to efficiently

service concurrent requests.

4.2 Sketch LMAC Algorithm

The LMAC test is invoked upon arrival of a new session or request in class i which

will increase the request rate from its current value \; to A} > A;. The LMAC test
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consists of two parts: the first ensures class i's delay target is satisfied and the second
ensures that other classes will not suffer QoS violations due to the increased workload
of class i. We illustrate the test pictorially using Figures 4.1 and 4.2.

For class i itself, with a statistical characterization of both requests and service,
maintaining a maximum horizontal distance of d; between the two curves ensures
that the delay target is satisfied with probability €; (see [8, 14] for further details).
With an increase in ), class 7 itself increases its request rate yet retains its previous
service level. Hence, the latency target is satisfied if the two curves remain d apart
after an increase of (A, — A;)7 in the request envelope.

For classes | # i, we must also consider the performance effects of class 7 on
class U’s delay targets. Our approach is to bound the effects of the incremental load.
Specifically, by an upper bound on class I’s new latency, we ensure that class 7 does
not force class [ into QoS violations. Moreover, by applying this bound only to the
incremental load the performance penalty for this worst case approach is mitigated.
In other words, class I’s current service measurements incorporate the effects of class
i’s load JA;, so that only M. — J; is included in the bound. The bound is obtained
by considering that the incremental requests A} — \; have strict priority over class {
sessions. Under this worst-case scenario, class !’s workload remains the same yet its
service over intervals of length 7 is decreased by (7 + D)(A; — A;). Hence, the new
request can be admitted if each class | # ¢ can satisfy its dj, even under a reduction
in service by (7 + D)(A; — A;).

We make three observations about the LMAC test. First, each class’ service
envelope captures the gains from inter-class resource sharing. For example, if class ¢
can exploit unused capacity from an idle or lower priority class [, class i measures a
correspondingly larger service envelope. Similarly, if the server has complete isolation

of classes (e.g., via separate back-end nodes in the extreme case), then no such gains
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will be available and the algorithm will correctly limit admissions to reflect this.
Second, the algorithm also ensures class performance isolation, i.e., that admissions
in one class do not cause violations in another class, by incorporating the effects of
inter-class interference. Finally, we note that while LMAC attempts to maximize the
utilization of the web server subject to the QoS constraints independent of the server
architecture, QoS functionality in the server itself remains critical. For example, if a
web server provides no QoS support and no class differentiation, LMAC infers that
only a single service can truly be provided, and restricts admissions to satisfy the most
stringent class requirements. Alternatively, when QoS mechanisms are deployed in
the web server [4, 5], the resulting efficiency gains are in turn exploited by the LMAC
algorithm, which increases the number of admitted sessions in each class and hence

the overall system utilization.
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Chapter 5

Experimental Investigations

In this chapter, we evaluate the performance of the LMAC algorithm. We perform
a set of trace driven simulations. First we describe the simulator used and also the
experimental methodology. Next we discuss the experiments performed and also

present our results.

5.1 Simulation Scenario

Our simulation scenario consists of a prototype implementation of the LMAC algo-
rithm built into the simulator described in [9], which was developed to approximate
the behavior of OS management for CPU, memory and caching/disk storage. The
front node has a listen queue in which all incoming requests are queued before being
serviced. Each back-end node consists of a CPU and locally attached disk(s) with
separate queues for each. In addition, each node maintains its own main memory
cache of configurable size and replacement policy.

Upon arrival, each request is queued onto the listen queue or dropped if the listen
queue is full. Processing a request requires the following steps: dequeuing from the
listen queue, connection establishment, disk reads (if needed), data transmission and
finally connection tear down. The processing occurs as a sequence of CPU and I/O
bursts. The CPU and I/O bursts of different requests can be overlapped but the
individual processing steps for each request must be performed in sequence. Also,

data transmission immediately follows disk read for each block.
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We have used the same costs for basic request processing as in [9]. The numbers
were derived by performing measurements on a 300 MHz Pentium II machine running
freeBSD 2.2.5 and an aggressive experimental server.

Connection establishment and tear down costs are set to 145 us of CPU time
each. Transmit processing costs are 40us of CPU time per 512 bytes. Reading a file
from the disk requires a latency of 28 ms for 2 seeks + rotational latency followed
by a transfer time of 410 us per 4 kByte (resulting in a peak transfer rate of 10
MBytes/sec). A file larger than 44 kBytes is charged an additional latency of 14ms (1
seek + rotational latency) for every 44 kByte block length in excess of 44 kBytes. The
cache replacement policy is Greedy-Dual-Size [15]. To incorporate cache behavior, we
deliberately set the cache size in our simulation to be 32 MB. The small cache size
effectively compensates for the relatively small data set of our traces.

The input to the simulator are streams of tokenized requests, one stream for each
user class. Requests within a user class arrive with a user defined mean rate. Each
request represents a file (and the corresponding file size in bytes). We generate the
arrival stream from logs collected from real web servers.

One of the traces used in our simulations is generated from the CS departmental
server log at Rice University. Although we do have the request arrival times em-
bedded in the logs, they do not represent the workload of an overloaded web server.
For simplicity we simulate inter-arrival times as exponential. (As this particular as-
sumption is unrealistic, we plan to collect additional traces which also include access
times.) The latency experienced by a request is the delay from the time the request
arrives at the listen queue until the time when that connection is torn down. The

time taken to make admission control decisions are assumed to be negligible.



5.2 Overload Protection

The first experiment was performed to demonstrate LMAC’s capability to actually
protect the server from overload. In particular, without admission control, as the
load offered to a server is increased beyond the server’s capacity, the request latencies
become excessive. Admission control [2] provides protection from overload by moni-

toring the utilization of the server and blocking requests which will yield unacceptable

performance.
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Figure 5.1 95 Percentile Latency vs. Load

To demonstrate the overload protection capabilities of the LMAC algorithm, we
simulate various offered loads to the web server, keeping the targeted request latencies
to be the same. We compare the performance of LMAC with a web server without
admission control capabilities and measure the 95 percentile delay in both cases.
Figure 5.1 shows the results for a targeted delay of 1 second. As depicted in the figure,
latencies in the unmodified server increase without bound as the load is increased.

On the other hand, the LMAC algorithm blocks requests to meet the delay constraint
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and thus protects the web server from overload. In addition to overload protection,

the figure indicates that LMAC controls latencies to within a small error of the target.

5.3 Comparison with the Baseline Scheme

For the second experiment, we compare the performance of LMAC with the queuing
theoretic baseline approach of Chapter 3. (We do not compare with admission control
schemes from the literature as none have latency targets.) Figure 5.2 shows the
measured utilization versus 95 percentile delay for an offered load of 200 requests/sec.
The server is a stand alone server with all incoming requests belonging to a single user
class. The simulation curve depicts the 95 percentile delay obtained in simulations
for a given throughput, while the LMAC and baseline curves depict the throughput

obtained when targeting a given 95 percentile delay value.
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Figure 5.2 Throughput vs. 95 Percentile Latency

Both the LMAC algorithm and the baseline approach meet the latency targets,

yvet the baseline scheme blocks an excessive number of requests thereby unnecessarily
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restricting throughput. The low utilization level of the baseline approach can be ex-
plained by the fact that the assumption of independent and exponentially distributed
service and arrival times does not take into account the inherent variability of traces
and web server. For example, back-to-back requests for the same document result in
lower delays for subsequent requests (since the document will reside in cache), yet the
baseline approach does not exploit this correlation when performing admission con-
trol. On the other hand, the LMAC algorithm incorporates temporal correlation and
variance properties of requests and services and achieves a correspondingly higher
throughput. Regardless, LMAC is still somewhat conservative, for example, for a
target 95 percentile latency of 1 second, a 95 percentile latency of .76 seconds is mea-
sured at a throughput of 150 reqs/sec, whereas the maximum throughput achievable

while still meeting this latency is 157 reqs/sec.

5.4 Multi-Class Performance

To investigate the performance of LMAC in a multi-class environment, we simulate a
two-class scenario by randomly classifying incoming requests as belonging to one of
the two classes, with each class having a different arrival rate and latency target.

An important point to note here is that a web server without QoS capabilities
would only be able to provide a single level of service. Hence, if two differentiated
classes are targeted by admission control, the resulting request latencies will be those
of the class with the minimum targeted latency: indeed, this behavior was confirmed
by our experiments with the simulator.

In order to explore a true multi-class scenario, we devise an artificial resource
isolation policy. We consider a server with two back-end nodes and a front-end policy

in which the scheme of [9] is modified so that class A requests can be directed to either
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back-end nodes but all class B requests are directed only to one particular back end
node (figure 5.3). Thus, class A receives a minimum of one node’s resources yet is
able to exploit unused resources of node 2, whereas class B receives a mazimum of one
node’s resources. While further class differentiation can be provided by additional
QoS server mechanisms described in Chapter 1, this scenario allows a basic exploration

of multi-class issues.

BACK
END
A
B -
........ FRONT Isolation
END [%
A B
BACK
END
BACK
END
B .
........ FRONT Class A Exploits
y END Inter-class Gain
BACK
END

Figure 5.3 Experimental Setup for
Investigating LMAC's interclass performance

We perform two experiments. First, we perform simulations with complete isola-
tion of the two classes (all class A jobs are directed to node 1 and all class B jobs
are directed to node 2) so that there is no inter-class resource sharing. Next, we per-
form the experiment as described above so that class A exploits inter-class resource

sharing. The results of the experiments are shown in Table 5.1.



Class Isolation Multi-class with Sharing
Throughput | Delay | Throughput Delay
A 92 467 120 .501
B 147 912 136 935

Table 5.1 Multi Class Performance of LMAC

The request rate for class A is 300 reqs/sec with a delay target of 0.5 sec and
for class B the request rate is 200 reqs/sec with a delay target of 1 sec. Observe
from Table 5.3 that when isolated, both classes meet their delay targets at differ-
ent throughputs as obtained by the LMAC algorithm. More importantly, when the
scheduling policy among the backend facilitates inter class resource sharing, the sys-
tem itself is providing inter-class resource sharing and the LMAC algorithm exploits
these gains. Specifically, with the above load balancing scheme, class A increases
significantly while both classes’ delay targets remain satisfied. Also Class B does not
suffer a significant drop in throughput, though its throughput does go down a bit.
Also note that the overall throughput of the system goes up, while the different user
classes still are able to meet their targeted delay.

Thus, as described in Chapter 4, LMAC can satisfy an arbitrary set of class QoS
targets, yet its efficiency in doing so relies in the QoS functionality of the server
itself. Regardless, the goal of LMAC is to maximally utilize system resources, given

whatever QoS targets are required, and whatever server QoS mechanisms are present.
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Chapter 6

Conclusions and Future Work

In this chapter we conclude with a brief summary of the contribution of this thesis

and also discuss possible extensions in section 6.2

6.1 Conclusions

In this thesis, we developed a scheme termed Latency-targeted Multiclass Admission
Control (LMAC). The algorithm uses measurements of requests and service laten-
cies to control each class’ quality-of-service. By abstracting system resources into a
high-level virtual server rather than modeling the intricate interactions of low-level
svstem resources, our approach can be applied to off-the-shelf servers enhanced with
monitoring and admission control. Moreover, as QoS and performance functionalities
are added to servers, e.g., class-based request scheduling, quality-of-service operating
systems, or locality aware load balancing, we have shown that the LMAC algorithm
exploits these features and realizes a corresponding increase in utilization to various

service classes.

6.2 Future Work

In this section we discuss some of the possible future directions that can be taken to
extend the work presented in this thesis.
One important area where we would like to extend our work is in the direction

of heterogenous content. The work in this thesis has focused upon static content
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pages only. But recent studies have shown that a significant percentage of web traffic
consists of dynamically generated pages. Keeping this in mind we intend to generalize
the LMAC framework to encompass the scenario where the typical ,load consists of
a mix of static and dynamic requests.

Further, we would like to perform further experiments with a additional traces and
also explore the possible prototype implementation of our framework in a commercial

web server.
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