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Abstract AdaBoost.OC has been shown to be an effective method in boosting “weak”
binary classifiers for multi-class learning. It employs the Error-Correcting Output Code
(ECOC) method to convert a multi-class learning problem into a set of binary classification
problems, and applies the AdaBoost algorithm to solve them efficiently. One of the main
drawbacks with the AdaBoost.OC algorithm is that it is sensitive to the noisy examples and
tends to overfit training examples when they are noisy. In this paper, we propose a new boost-
ing algorithm, named “MSmoothBoost”, which introduces a smoothing mechanism into the
boosting procedure to explicitly address the overfitting problem with AdaBoost.OC. We
proved the bounds for both the empirical training error and the marginal training error of the
proposed boosting algorithm. Empirical studies with seven UCI datasets and one real-world
application have indicated that the proposed boosting algorithm is more robust and effective
than the AdaBoost.OC algorithm for multi-class learning.

Keywords Boosting · Smoothing · Regularization · Multi-class learning

1 Introduction

AdaBoost has been shown to be an effective method for improving the classification accu-
racy of weak classifiers (Freund and Schapire 1996, 1997; Schapire 1997, 1999; Grove and
Schuurmans 1998; Schapire and Singer 1999; Bauer and Kohavi 1999; Ratsch et al. 1999,
2000; Lebanon and Lafferty 2001; Jin et al. 2003). It works by repeatedly running a weak
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learner on various training examples sampled from the original training pool, and combin-
ing multiple instances of the weak learner into a single composite classifier. A straightfor-
ward way to extend the boosting algorithm to multi-class learning is to use AdaBoost as the
base binary classifier when decomposing a multi-class learning problem into a set of binary
ones. For example, in the AdaBoost.MO algorithm (Schapire and Singer 1999), the Error-
Correcting Output Codes (ECOC) (Dietterich and Bakiri 1995) is first applied to reduce
a multi-class learning problem into a set of binary classification problems, which are then
solved by the AdaBoost algorithm. One problem with this approach is that the boosting pro-
cedure is completely independent from the partitioning of multiple classes, which could lead
to undesirable results. To see this, consider a coding scheme that divides ten classes into two
groups: the positive group that includes nine classes, and the negative group that includes
only one single class. Evidently, it is much more likely for a binary classifier to misclassify a
data point from a positive group into a negative group since the positive group is significantly
more popular than the negative group. Therefore, if we follow the weights of binary boosting
algorithm, the examples in the negative group will be weighted significantly higher than the
examples in the positive group. But, this situation is simply an artifact of the coding scheme,
and it does not imply that examples in the class of the negative group are more difficult to
be classified correctly than the examples in other classes. Hence, a better designed boosting
algorithm should take into account the partitioning of multiple classes when it computes
the weight of training examples. This leads to the AdaBoost.OC (Schapire 1997), which
extends the AdaBoost algorithm. Similar to the AdaBoost.MO algorithm, AdaBoost.OC ex-
tends AdaBoost to multi-class learning by reducing a multi-class learning problem into a
set of binary ones using the ECOC method. But, unlike AdaBoost.MO where the boosting
procedure is independent from the codewords that are generated by the ECOC method, Ad-
aBoost.OC takes into account both the classification accuracy of the base binary classifier
and the codewords that are generated by the ECOC method, which makes it more effective
for multi-class learning as indicated in (Schapire 1997).

Despite its success, the AdaBoost.OC algorithm can potentially suffer from the overfit-
ting problem, particularly when the training examples are noisy. Previous studies of over-
fitting with boosting algorithms mainly focus on the binary classifiers (Ratsch et al. 1998,
1999, 2000; Schapire 1999; Lebanon and Lafferty 2001; Jin et al. 2003). Empirical results
have shown that the AdaBoost algorithm tends to overfit the noisy training examples. Since
AdaBoost.OC is an extension of the AdaBoost algorithm for multi-class learning, it is sim-
ilar to AdaBoost in that it reduces the exponential loss function by a greedy search. As
a result, we expect that it will suffer from the overfitting problem as AdaBoost does. Al-
though there have been many studies on how to prevent AdaBoost from overfitting training
examples, none of them target on multi-class learning problems. As already argued before,
applying binary boosting algorithms directly to multi-class learning may not be desirable
given that they do not take into account the distribution of multi-class membership in the
binary classes.

In this paper, we present a new boosting algorithm, named “MSmoothBoost”, that ex-
plicitly addresses the overfitting problem of AdaBoost.OC for multi-class learning. In par-
ticular, to alleviate the overfitting problem, a smoothing mechanism is introduced into the
boosting algorithm. In particular, a bounded weight is assigned to each individual example
to prevent any single training example from dominating over other examples in any itera-
tion. In contrast, in AdaBoost.OC, unbounded weights are assigned to individual examples.
As a result, noisy training examples can be overly emphasized during the iterations when
they are assigned with extremely large weights. It is important to note that the proposed
“MSmoothBoost” is different from the smoothing approach for AdaBoost in (Schapire and
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Singer 1999) where smoothing is introduced to prevent the linear combination weight α

from being too large.
The rest of this paper is arranged as follows: Sect. 2 reviews the related work; Sect. 3

describes the smoothed boosting algorithm for multi-class learning and the probabilistic
output codes; Sect. 4 presents the experimental results; Sect. 5 concludes this paper.

2 Related Work

Multi-class classification is one of the basic learning problems (Hsu and Lin 2002;
Lee et al. 2002; Zhang 2003). Most approaches for multi-class learning can be di-
vided into two categories. In the first category, a multi-class learning problem is decom-
posed into multiple binary classification problems. Each binary classification problem is
learned separately and combined to make multi-class prediction. A common approach
within this category is one-against-all, which builds a different binary classifier to dis-
tinguish every class from the rest of classes. Another commonly used approach is one-
against-one (Hastie and Tibshirani 1998), which builds a binary classifier for every pair
of classes. In (Platt et al. 2000), the authors proposed a different approach for combin-
ing binary SVM classifiers to make multi-class prediction based on the Direct Acyclic
Graph (DAG). Furthermore, unlike the one-against-all or DAG approach where each binary
classification model is solved independently, in (Vapnik 1998; Weston and Watkins 1999;
Bredensteiner and Bennett 1999), several multi-class support vector machines have been
proposed to solve all the binary classification problems simultaneously. Approaches in the
second category target multi-class learning problems directly without converting them into
a set of binary classification problems. Classification models like Naive Bayes (McCallum
and Nigam 1998) and logistic regression (Zhu and Hastie 2001) can naturally be extended
from binary classification problems to multi-class classification problems. In (Crammer and
Singer 2000), the authors presented a maximum margin based framework for multi-class
multi-label learning. In this paper, we are interested in combining AdaBoost with ECOC for
multi-class learning problems, which belongs to the first category of approaches.

The most relevant work is the AdaBoost.OC algorithm (Schapire 1997), which combines
the AdaBoost algorithm with the ECOC method for multi-class learning. Figure 1 describes
the detailed steps of the AdaBoost.OC algorithm. Note that function [x] outputs 1 when
the input logic variable x is true and 0 otherwise. AdaBoost.OC iteratively refines a multi-
class classifier H(x). At the t -th iteration, a coding function ft (y) is first generated to map
any class label y into the binary set {0,+1}. Based on the coding function ft (y), a binary
classifier ht (x) is trained over examples that are weighted by the distribution Dt(i). The
learned classifier ht (x) is then linearly combined with the binary classifiers that are learned
in previous iterations to make predictions for test examples. The combination parameter αt

is computed based on the classification error εt . Finally, the weight distribution Dt(i, y) is
updated using the estimated combination parameter αt .

One problem with AdaBoost.OC is that it could overfit the training data. Note that in
Fig. 1 Dt(i, y) is updated by multiplying with an exponential factor, and thus may be very
large (close to 1). If a data point is noisy, it may be misclassified multiple times. As a result,
its weight can be considerably larger than the weights of other data points, which could
lead AdaBoost.OC to overfit training examples. In the later experimental section, we will
demonstrate the overfitting problem with AdaBoost.OC for multi-class learning problems.

In the past, a number of studies have been devoted to prevent boosting algorithms from
overfitting training examples, including the smoothing method (Schapire and Singer 1999),
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Given: (x1, y1), . . . , (xm,ym) where xi ∈X , yi ∈ Y
Initialize the weight distribution D1(i, y) = [y �= yi ]/(m(|Y| − 1))

For t = 1, . . . , T

1. Generate coding function ft (y) : Y → {0,1}
2. Let Ut = ∑m

i=1
∑

y∈Y Dt(i, y)[ft (y) �= ft (yi)]
3. Let Dt(i) = ∑

y∈Y Dt(i, y)[ft (y) �= ft (yi)]/Ut

4. Train a weak classifier ht (x) : X → {0,1} on examples weighted by Dt(i)

5. Let εt = ∑m
i=1 Dt(i)[ft (yi) �= ht (xi)]

6. Let αt = 1
2 ln

(
1−εt
εt

)

7. Update the weight distribution

Dt+1(i, y) = 1

Zt+1
Dt(i, y) exp(αt ([ft (yi) �= ht (xi)] + [ft (y) = ht (xi)]))

where Zt+1 is a normalization factor (chosen so that Dt+1(i, y) sums to 1).

Output the final hypothesis: H(x) = arg maxy∈Y
∑T

i=1 αt [ht (x) = ft (y)]

Fig. 1 Description of the AdaBoost.OC algorithm

Gentle Boost (Friedman et al. 2000), BrownBoost (Freund 2001), the linear programming
approach (Ratsch et al. 1999), the quadratic programming approach (Ratsch et al. 1999),
the Weight Decay method (Ratsch et al. 1998, 2000), and the smooth boosting algorithm
(Servedio 2003). The main ideas of these methods can be summarized into two groups: one
is to change the cost function used for boosting algorithms, and the other is to introduce
a soft margin. The problem of overfitting for AdaBoost might be linked to the exponential
cost function, which makes the weights of the noisy data grow exponentially and leads to
the overemphasis of those data patterns. The solution to this issue can be, either to introduce
a different cost function, such as a logistic regression function in (Friedman et al. 2000),
or to regularize the exponential cost function with a penalty term such as the weight decay
method used in (Ratsch et al. 1998), or to introduce a different weighting function, such
as BrownBoost (Freund 2001), or limit the weight assigned to training examples whose
classification margin does not reach the desired threshold (Servedio 2003). A more general
solution is to replace the hard margin in AdaBoost with a soft margin. Similar to the strategy
used in the support vector machine (SVM) algorithm (Burges 1998), the boosting algorithm
with a soft margin is able to allow a larger margin at the expense of some misclassification
errors. This idea leads to works such as the regularized boosting algorithms using both
linear programming and quadratic programming (Ratsch et al. 1999). Despite the extensive
study on the overfitting issue with the boosting algorithms, none of them target on multi-
class learning, which is the focus of this paper. It is worth noting that although the boosting
algorithm proposed in (Servedio 2003) is similar to this paper in that both of these two
studies try to avoid assigning very large weights to the difficult examples, the strategy used
in our paper is very different from the one in (Servedio 2003). Unlike (Servedio 2003)
where the difficult examples are assigned with a constant weight, this study allows varied
weights to be assigned to the examples that are difficult to classify, which allows our work
to address different levels of difficulty in classification by different weights. Furthermore,
this study targets on multi-class learning while the study in (Servedio 2003) is focused on
binary classification problems.
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Finally, the idea of applying the ECOC coding method to reduce a multi-class learn-
ing problem into a set of binary ones can be found in a number of studies (Diet-
terich and Bakiri 1995; Berger 1999; Crammer and Singer 2000; Allwein et al. 2000;
Ghani 2000). In (Dietterich and Bakiri 1995), the authors presented a general study of using
the ECOC method for multi-class learning, and showed a significant reduction in classifica-
tion error. In (Berger 1999; Ghani 2000), the authors evaluated both a random code (Berger
1999) and the BCH code (Hill 1986) for multi-category text classification. In (Allwein et al.
2000), an error analysis of reducing multi-class learning to binary class learning is presented.
In (Crammer and Singer 2000), the authors showed that finding optimal ECOC codes for
specific multi-class classification problems is NP-complete, and introduced the “continuous
output codes” to approximate the optimal solution by relaxing the discrete codes to contin-
uous ones. A number of coding schemes were studied in (Schapire 1999) under the context
of boosting. In (Masulli and Valentini 2003), the authors presented empirical studies about
the ECOC coding for multi-class learning. The results have shown that the performance of
ECOC not only depends on the base classifier and coding schemes, but also on a number
of other factors, such as the relationship among base classifiers and dependence between
codeword bits.

3 A Smoothed Boosting Algorithm for Multi-Class Learning

Similar to AdaBoost.OC, the proposed smoothed boosting algorithm applies an iterative
procedure to boost binary classifiers for multi-class learning. In each iteration, a new coding
function is first generated to map multiple classes into a binary set. Then, a binary classifier
is learned based on the given coding function. The final multi-class classifier is a linear
combination of the binary classifiers that are learned in the iterations.

Let the coding functions for the first T iterations be denoted by �fT (y) = (f1(y), . . . ,

fT (y)) where each coding function ft (y) : Y → {−1,+1}. Let �gT (x) = (α1h1(x), . . . ,

αT hT (x)) be the weighted classifiers obtained in the first T iterations where ht (x) : X →
{−1,+1} and αt is a weight for ht (x). Using the above notations, the combined classifier
H(x) for the first T iterations is rewritten as:

HT (x) = arg max
y∈Y

�fT (y) · �gT (x). (1)

Then, the training error at the T -th iteration errT is written as:

errT = 1

m

m∑

i=1

[HT (xi) �= yi]

= 1

m

m∑

i=1

I
(

max
y �=yi

[( �fT (y) − �fT (yi)) · �gT (xi)]
)

where m is the number of training examples. I (x) is an indicator function that outputs 1
when the input x is positive and 0 otherwise. For the convenience of presentation, we define

�T (y, x) = �fT (y, x) · �gT (y, x). (2)

�T (y, x) defined above indicates the confidence of assigning an instance x to class y in the
T -th iteration. The larger the �T (y, x) is, the more likely that instance x will be assigned to
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class y. Using the notation of �T (y, x), the training error errT can be rewritten as:

errT = 1

m

m∑

i=1

I
(

max
y �=yi

[�T (y, xi) − �T (yi, xi)]
)
.

To facilitate the computation, we upper bound the training error by the following expres-
sion:

errT ≤ 1

m

m∑

i=1

(1 + λ)
∑

y �=yi
exp(�T (y, xi))

exp(�T (yi, xi)) + λ
∑

y �=yi
exp(�T (y, xi))

(3)

where λ ≥ 0 is a smoothing parameter. The above inequality holds for every correctly clas-
sified example (xi, yi) since I (maxy �=yi

[�T (y, xi) − �T (yi, xi)]) = 0. When example xi is
misclassified, the indicator function will take value 1. We also have

exp(�T (yi, xi)) ≤
∑

y �=yi

exp(�T (y, xi)).

Thus, the above inequality also holds for misclassified examples.
The introduction of λ in (3) is to prevent overfitting training examples that are difficult to

classify. One reason for AdaBoost to overfit training examples is because the noisy training
examples can have a dominant contribution to the overall loss function compared with the
contribution of other training examples. As a result, most of the optimization effort is put on
improving the classification results of the noisy training examples, which could lead to sig-
nificant degradation in the overall performance. In (3), by introducing smoothing parameter
λ, we guarantee that the contribution of each training example to the upper bound in (3) is
bounded by 1 + 1/λ. To see this, we have

(1 + λ)
∑

y �=yi
exp(�T (y, xi))

exp(�T (yi, xi)) + λ
∑

y �=yi
exp(�T (y, xi))

≤ (1 + λ)
∑

y �=yi
exp(�T (y, xi))

λ
∑

y �=yi
exp(�T (y, xi))

= 1 + λ

λ
.

Hence, the contribution of each training example to the upper bound on training errors would
be limited when λ > 0. It is also interesting to note that when λ → 0, the upper bound in (3)
becomes:

errT ≤ 1

m

m∑

i=1

∑

y �=yi

exp(�T (y, xi) − �T (yi, xi)),

and the contribution of each example to the upper bound becomes unbounded. As we will
show later, the above error bound will lead to the AdaBoost.OC algorithm.

At iteration T + 1, the goal of our boosting algorithm is to learn classifier hT +1(x),
combination constant αT +1, and coding function fT +1(y) given HT (x) that is learned from
the T -th iteration. To shorten our notation, in the rest of the derivation, we drop the index
T +1 and simply write fT +1(y), gT +1(x) and αT +1 as f (y), g(x) and α, respectively. Using
the fact that �T +1(x, y) = �T (x, y) + f (y)g(x), we rewrite the upper bound of training
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error at T + 1 iteration as follows:

errT +1 ≤ 1

m

m∑

i=1

(1 + λ)
∑

y �=yi
μT (y|xi) exp(f (y)g(xi))

μT (yi |xi) exp(f (yi)g(xi)) + λ
∑

y �=yi
μT (y|xi) exp(f (y)g(xi))

(4)

where μT (y|xi) is defined as:

μT (y|xi) = exp(�T (y, xi))

exp(�T (yi, xi)) + λ
∑

y′ �=yi
exp(�T (y ′, xi))

. (5)

μT (y|xi) in the above can be interpreted as the confidence of classifying the instance xi

into class y in the T -th iteration. The higher the μT (y|xi) is, the more likely that instance
xi will be classified into class y. Furthermore, it is important to note that 0 < μ(yi |xi) ≤ 1
according to the definition in (5).

We will then simplify the upper bound in (4) by using the convexity of reciprocal func-
tion, namely

1
∑n

i=1 pixi

≤
n∑

i=1

pi

xi

(∗)

where pi, i = 1,2, . . . , n is a probability distribution and xi > 0, i = 1,2, . . . , n. By defining

p(y|xi) =
{

λμT (y|xi), y �= yi ,
μT (y|xi), y = yi ,

we rewrite (4) as

errT +1 ≤ 1

m

m∑

i=1

(1 + λ)
∑

y �=yi
μT (y|xi) exp(f (y)g(xi))

∑
y p(y|xi) exp(f (y)g(xi))

and now using (∗) we get

errT +1 ≤ 1 + λ

m

m∑

i=1

(∑

y �=yi

μT (y|xi) exp(f (y)g(xi))

)(∑

y

p(y|xi) exp(−f (y)g(xi))

)

≤ λ + 1

m

m∑

i=1

λ

(∑

y �=yi

μT (y|xi)

)2

+ λ + 1

m

m∑

i=1

μT (yi |xi)
∑

y �=yi

μT (y|xi) exp
(
αh(xi)(f (y) − f (yi))

)
. (6)

In the last step, we use the definition of g(xi) = αh(xi). Using the convexity of exponential
function and the fact f (y)2 = 1, exp(αh(xi)(f (y) − f (yi))) can be upper bounded as:

exp
(
αh(xi)(f (y) − f (yi))

)

= exp
(
αh(xi)f (yi)(f (y)f (yi) − 1)

)

= exp

(

−2αh(xi)f (yi)
1 − f (y)f (yi)

2
+ 0 × 1 + f (y)f (yi)

2

)
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≤ 1 − f (y)f (yi)

2
exp(−2αh(xi)f (yi)) + 1 + f (y)f (yi)

2
.

Substituting the second term in (6) using the above inequality, we further relax the bound
in (6) as follows:

errT +1 ≤ λ + 1

m

m∑

i=1

λ

(∑

y �=yi

μT (y|xi)

)2

+ 1 + λ

2m

m∑

i=1

μT (yi |xi) exp(−2αh(xi)f (yi))
∑

y

μT (y|xi)(1 − f (y)f (yi))

+ 1 + λ

2m

m∑

i=1

μT (yi |xi)
∑

y �=yi

μT (y|xi)(1 + f (y)f (yi)). (7)

Define weight distributions DT +1(i, y) and DT +1(i) as:

DT +1(i, y) = μT (yi |xi)μT (y|xi)

ZT +1
, (8)

DT +1(i) =
∑

y DT +1(i, y)[f (yi) �= f (y)]
UT +1

(9)

where ZT +1 and UT +1 are the normalization factors that are defined as follows:

ZT +1 =
m∑

i=1

∑

y �=yi

μT (yi |xi)μT (y|xi),

UT +1 =
m∑

i=1

∑

y

DT +1(i, y)[f (yi) �= f (y)].

Using the notation Dt(i, y) and Dt(i), we rewrite (7) as follows:

errT +1 ≤ λ + 1

m

m∑

i=1

λ

(∑

y �=yi

μT (y|xi)

)2

+ 1 + λ

2m
ZT +1

m∑

i=1

∑

y �=yi

DT +1(i, y)(1 + f (y)f (yi))

+ 1 + λ

m
ZT +1UT +1

m∑

i=1

exp(−2αh(xi)f (yi))DT +1(i). (10)

Notice that the last term in above expression can be viewed as some kind of classification
error. This is because exp(−2αh(xi)f (yi)) gives a small value (e.g., e−2α) when the pre-
diction h(xi) is identical to the assigned class membership f (yi), and a large value (e.g.,
e2α) when h(xi) �= f (yi). Thus, we can interpret DT +1(i) and DT +1(i, y) as the weight for
the i-th example in the T + 1 iteration. More specifically, DT +1(i, y) can be interpreted as
the weight assigned to an instance xi when it is misclassified to class y in the T + 1 itera-
tion. Note that according to the definition in (8), weight DT +1(i, y) depends not only on the
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confidence μT (y|xi), but also on the confidence μT (yi |xi). Hence, if a instance has a very
small chance to be classified correctly, its weight DT +1(i, y) could be small even if it is very
likely to be misclassified into class y. It is this smoothing mechanism that will effectively
prevent the boosting algorithm from overfitting training examples. DT +1(i), according to
the definition in (9), is computed as the linear combination of DT +1(i, y), and therefore
can be interpreted as the overall weight assigned to the instance xi for its misclassification.
Note that the overall weight DT +1(i) will not only depend on how likely each instance is
misclassified but also depend on the partitioning of multiple classes by the coding function
f (y).

To minimize the upper bound in the above expression, we will train a classifier h(x) on
the training examples that are weighted by DT +1(i). Furthermore, given a coding function
f (y) and a binary classification function h(x), the combination weight α that minimizes the
upper bound in (10) is:

α = 1

4
ln

(
1 − εT +1

εT +1

)

(11)

where

εT +1 =
m∑

i=1

DT +1(i)[f (yi) �= h(xi)]. (12)

Note that when λ = 0, our weight distribution DT +1(i, y) in (8) becomes the same expres-
sion as the one in Fig. 1. This is because when λ = 0, we have

μT (y|xi) = exp(�T (y, xi))

exp(�T (yi, xi))
= exp

(
( �fT (y) − �fT (yi)) · �gT (xi)

)
.

Then,

DT +1(i, y) = 1

ZT +1
μT (yi |xi)μT (y|xi)

∝ DT (i, y) exp
(
2αT ([fT (y) = hT (xi)] + [fT (yi) �= hT (xi)])

)
.

The above relation can be derived directly using the definition of μT (y|x) and DT (i, y).
Thus, the proposed boosting algorithm can be viewed as the generalized version of
AdaBoost.OC algorithm. In Fig. 2, we summarize the steps for the proposed boosting al-
gorithm. Note that in the last step of each iteration, we compute the values of μT (y|xi) by
an iterative updating equation:

μt+1(y|xi) = μt(y|xi) exp(αtft (y)ht (xi))

μt (yi |xi) exp(αtft (yi)ht (xi)) + λ
∑

y′ �=yi
μt (y ′|xi) exp(αtft (y ′)ht (xi))

.

The above updating equation can be directly derived from the original definition of μt(y|xi)

in (5) by using the fact

�t+1(y, xi) = �t(y, xi) + αft (y)ht (xi).

Note also that the final output hypothesis H(x) in Fig. 2 is the same as the one defined in (1)
since
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Given: (x1, y1), . . . , (xm,ym) where xi ∈ X , yi ∈ Y
Choose smoothing parameter λ

Initialize μ1(y|xi) = 1/(1 + λ(|Y| − 1))

For t = 1, . . . , T

1. Compute weight distribution Dt(i, y) = μt (yi |xi)μt (y|xi)/Zt where Zt is a normaliza-
tion factor (chosen so that Dt+1(i, y) is sum to 1)

2. Generate coding function ft (y) : Y → {−1,1}
3. Let Ut = ∑m

i=1
∑

y∈Y Dt(i, y)[ft (y) �= ft (yi)]
4. Let Dt(i) = ∑

y∈Y Dt(i, y)[ft (y) �= ft (yi)]/Ut

5. Train a weak classifier ht (x) :X → {−1,1} on examples weighted by Dt(i)

6. Let εt = ∑m
i=1 Dt(i)[ft (yi) �= ht (xi)]

7. Let αt = 1
4 ln

(
1−εt
εt

)

8. Update μt+1(y|xi) as

μt+1(y|xi) = μt (y|xi) exp(αtft (y)ht (xi))

μt (yi |xi) exp(αtft (yi)ht (xi)) + λ
∑

y′ �=yi
μt (y′|xi) exp(αtft (y′)ht (xi))

Output the final hypothesis: H(x) = arg maxy∈Y
∑T

t=1 αt [ht (x) = ft (y)]

Fig. 2 Description of the MSmoothBoost algorithm

H(x) = arg max
y∈Y

�fT (y) · �gT (x)

= arg max
y∈Y

T∑

t=1

αtht (x)ft (y)

= arg max
y∈Y

T∑

t=1

αt (2[ht (x) = ft (y)] − 1) = arg max
y∈Y

T∑

t=1

αt [ht (x) = ft (y)].

We refer to the proposed algorithm as MSmoothBoost.

3.1 Bounds for Training Errors

In this subsection, we will bound the training error for the MSmoothBoost algorithm with
T iterations.

Theorem 1 Let h1, . . . , hT and f1, . . . , fT be the classifiers and the coding functions that
are generated by running the MSmoothBoost algorithm (in Fig. 2). Let ε1, . . . , εT be the
weighted classification errors of h1, . . . , hT . Then, the following inequality holds:

1

m

m∑

i=1

I
(

max
y �=yi

�T (y, xi) − �T (yi, xi)
)

≤
T∏

t=1

(1 − νtγ
2
t ) (13)

where

νt =
∑m

i=1

∑
y �=yi μt (yi |xi)μt (y|xi)[f (y) �= f (yi)]

∑m

i=1

∑
y �=yi

μt (y|xi)
(14)

and γt = 1 − 2εt .
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Similar to the error bound theorem for AdaBoost (Schapire 1999), the above theorem
indicates that the proposed MSmoothBoost algorithm is able to reduce the empirical training
error exponentially if the underlying base classifier is better than random. The variable γt

is introduced for the classification accuracy of each iteration. In particular, the smaller the
classification error of each iteration is, the larger the γt is, and therefore the smaller the
training error will be. The variable νt used in this theorem reveals the effect of smoothing
parameter λ on training errors. To see the relationship between λ and ν, we examine the
definition of ν in (14). Notice that one of the main difference between the denominator and
the numerator in (14) is the term μt(yi |xi). Since both μt(yi |xi) ∈ (0,1] and μ(y|xi) > 0,
we have 0 < νt ≤ 1. Furthermore, since μt(yi |xi) is inverse to λ, we would expect that in
general the ν is inverse to λ, namely the smaller the λ is, the larger the ν will be. Combining
this analysis with the fact that the larger the νt is the smaller the training error is, we conclude
that a small smoothing parameter λ will usually lead to a small training error. The detailed
proof of the above theorem can be found in Appendix 1.

Since the introduction of smoothing parameter λ does not improve the empirical train-
ing error, a natural question arises, i.e., in what aspect will λ help improve the quality of
the boosting algorithm. The following theorem answers this question by showing that the
introduction of smoothing parameter λ is effective in reducing the marginal training error.
Before we state this theorem, we first introduce the concept of normalized �T (y, x), which
is defined as

�̂T (y, x) = �T (y, x)
∑T

t=1 αt

.

Theorem governing the marginal training error for �̂(y, x) is then stated as follows:

Theorem 2 Let h1, . . . , hT and f1, . . . , fT be the classifiers and the coding functions that
are generated by running the MSmoothBoost algorithm (in Fig. 2). Let ε1, . . . , εT be the
weighted classification errors of h1, . . . , hT . Then, the following inequality holds for any
θ ∈ [0,1]:

1

m

m∑

i=1

I
(

max
y �=yi

�̂T (y, xi) − �̂T (yi, xi) + θ
)

≤ 1

(1 + λ)2

(

λ(2 + λ) +
T∏

t=1

(
1 + γt

1 − γt

)4θ
)

T∏

t=1

(1 − νtγ
2
t ) + λ

1 + λ
. (15)

The above theorem gives an explicit expression for how the smoothing parameter λ will
impact the marginal training error. To see this clearly, we divide the upper bound in (15) into
two parts:

• the empirical part of the error bound, i.e., λ(1+2λ)/(1+λ)2
∏T

t=1(1−νtγ
2
t )+λ/(1+λ),

and
• the marginal part of the error bound, i.e., 1

(1+λ)2

∏T

t=1(1 − νtγ
2
t )[(1 + γt )/(1 + γt )]4θ .

It is not difficult to see that the empirical part of the error bound is in general proportional
to the value of λ, namely the larger the λ is, the larger the empirical part will be. In contrast,
the marginal part of the error bound is in general inverse to λ, i.e., the larger the λ is the
smaller the marginal part will be. Hence, by choosing appropriate value for the smoothing
parameter λ, we will be able to balance the tradeoff between the empirical training error and
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Table 1 Properties of test datasets

Method ecoli wine pendigit iris glass vehicle yeast phys.

#Instance 327 178 2000 154 204 946 1484 2579

#Classes 5 3 10 3 5 4 9 5

#Features 7 13 16 14 10 18 9 13

the errors related to the margin, which will lead to more desirable generalization error. The
detailed proof of this theorem can be found in Appendix 2.

4 Experiments

In this experiment, we examine the effectiveness of the proposed MSmoothBoost algorithm
for multi-class learning. For the simplicity of implementation, a random code is used to
generate the coding function f (y). Three baseline algorithms that also combine binary clas-
sification models for multi-class learning are used in the evaluation. They are:

• the ECOC method that uses a random code,
• the AdaBoost.OC algorithm in (Schapire 1997), and
• the one-against-all approach that uses the regularized boosting algorithm (Jin et al. 2003)

as its base binary classifier.

We refer to these three baseline models as ECOC, AdaBoost.OC, and BinBoost.Reg. We
compare the MSmoothBoost algorithm to these three baseline algorithms over a number of
UCI datasets and a real world application. We also evaluate the robustness of the proposed
boosting algorithm over a number of corrupted datasets. Finally, an extensive set of exper-
iments are conducted to examine the impact of parameter λ and the base classifiers on the
performance of the MSmoothBoost algorithm.

4.1 Experimental Design

Eight datasets are used in our experiments, as shown in Table 1. Among them, the first
seven are multi-class datasets from the UCI machine learning repository and the last one
is the physiological dataset from the physiological data modeling contest of ICML 2004.1

In order to examine the robustness of the proposed algorithms, we conducted experiments
with noisy data using the seven multi-class datasets. These noisy datasets are generated by
randomly selecting 20% of training data and assigning them with incorrect labels. We also
use the physiological dataset in our experiments, whose basic unit is the physiological sec-
tion. Each section contains multiple physiological records and is assigned to one of the five
classes of activities, with code “3003”, “3004”, “5101”, “5102”, and “5199”. The challenge
in classifying physiological sections lies in the fact that even though each physiological sec-
tion is labeled by a single class, multiple activities may be conducted within a single section.
For example, a user may fall into sleep when he/she is watching TV. Thus, although the sec-
tion is labeled as “watch TV”, some of its records are related to the activity of sleeping.
Due to the large volume of the original dataset, a small subset of the physiological dataset

1http://www.cs.utexas.edu/users/sherstov/pdmc/
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Table 2 Classification errors (%) for the original UCI datasets

Dataset ECOC AdaBoost.OC BinBoost.Reg MSmoothBoost

ecoli 14.4 ± 6.1 3.5 ± 2.4 3.4 ± 1.8 2.8 ± 1.6

wine 20.3 ± 3.5 16.0 ± 3.3 13.2 ± 3.4 13.9 ± 2.1

pendigit 10.5 ± 5.7 2.7 ± 1.6 3.2 ± 1.3 2.3 ± 1.6

iris 6.7 ± 2.2 5.2 ± 2.1 4.8 ± 1.8 5.2 ± 1.6

glass 50.5 ± 3.4 49.7 ± 2.9 47.0 ± 1.9 43.8 ± 2.8

vehicle 30.3 ± 4.2 26.0 ± 3.8 26.9 ± 1.4 21.4 ± 2.4

yeast 46.7 ± 5.5 36.4 ± 2.6 33.6 ± 2.9 33.7 ± 3.1

A bold font is used to highlight the result when it is significantly better than its
counterparts based on the t -test at the confidence level 0.95

is randomly selected and used in our experiment. Detailed information about this dataset is
listed in Table 1.

A decision stump is used as the base classifier for most of the experiments. We also eval-
uate the performance of the proposed boosting algorithm with the decision tree as the base
classifier. All the boosting algorithms generate 50 binary classifiers and combine them to
make prediction. The choice of 50 iterations is based on the previous studies on AdaBoost
(e.g., Dietterich 2000). For each dataset, 60% of data are randomly selected for training and
the rest is used for testing. Each experiment is repeated 10 times and the average classifica-
tion error together with its standard deviation is used as the evaluation metric. Finally, the
parameter λ in the proposed boosting algorithm is automatically determined by the cross
validation with 80/20% split of the training data.

4.2 Experiment (I): Effectiveness of MSmoothBoost

We tested the MSmoothBoost algorithm on the UCI datasets. A random code is used for
the proposed boosting algorithm. To see the effectiveness of MSmoothBoost for multi-class
learning, we also evaluate the performance of the three baseline methods using the same
datasets. Table 2 summarizes the classification errors of the four methods. A bold font is
used to highlight the result when it is significantly better than all of its counterparts based
on the statistical t -test at the confidence level 0.95.

First, compared to the ECOC method, we see that all three boosting algorithms are ef-
fective in reducing classification errors. For example, for dataset “ecoli”, its classification
error is reduced from 14.4% to around 3% by all three boosting algorithms. Second, we see
that for most datasets, MSmoothBoost is more effective than the other two boosting meth-
ods in improving the classification accuracy for multi-class learning. For dataset “glass” and
“vehicle”, the MSmoothBoost algorithm performs significantly better than the other three
algorithms based on the t -test.

In order to see the robustness of MSmoothBoost with regard to training noises, we
tested both the MSmoothBoost algorithm and the three baseline methods on the “corrupted”
datasets in which 20% of training data are incorrectly labeled. The classification errors of
the four methods are displayed in Table 3.

First, comparing Table 3 to Table 2, we observed substantial degradation in the clas-
sification errors of the ECOC method. The most noticeable cases are dataset “wine” and
“pendigit”, whose classification errors have increased from 20.3% and 10.5% to 27.2% and
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Table 3 Classification errors (%) for the “corrupted” UCI datasets with 20%
training noise

Dataset ECOC AdaBoost.OC BinBoost.Reg MSmoothBoost

ecoli 18.7 ± 4.3 12.8 ± 4.9 9.3 ± 3.4 6.7 ± 3.1

wine 27.2 ± 6.1 20.3 ± 4.5 21.2 ± 3.0 17.1 ± 3.4

pendigit 15.6 ± 4.4 13.9 ± 3.6 12.0 ± 3.8 6.4 ± 2.5

iris 8.8 ± 4.9 9.7 ± 4.5 7.1 ± 3.1 8.0 ± 3.4

glass 54.7 ± 4.7 55.0 ± 6.2 49.9 ± 2.8 44.5 ± 1.4

vehicle 32.7 ± 4.5 35.0 ± 4.4 31.1 ± 2.7 23.3 ± 1.9

yeast 46.9 ± 5.8 42.5 ± 6.2 37.5 ± 3.8 37.4 ± 4.3

A bold font is used to highlight the result when it is significantly better than its
counterparts based on the t -test at the confidence level 0.95

15.6%, respectively. Second, compared to the ECOC method, AdaBoost.OC has experi-
enced more severe degradation in its classification errors when training data are noisy. For
example, for dataset “ecoli” and “pendigit”, the classification errors of AdaBoost.OC have
increased dramatically from 3.5% and 2.7% to 12.8% and 13.9%, respectively. Third, com-
pared to AdaBoost.OC, both BinBoost.Reg and MSmoothBoost are more robust to training
noise. For all datasets, they suffer from less degradation than AdaBoost.OC in classification
errors. This is because both BinBoost.Reg and MSmoothBoost employ certain mechanisms
to alleviate the overfitting problem while AdaBoost.OC does not. Finally, comparing the
MSmoothBoost algorithm to BinBoost.Reg, we found that MSmoothBoost is more resilient
to training noise. For example, for dataset “pendigit”, given 20% training noise, the classifi-
cation error for MSmoothBoost is only 6.4% while the classification error for BinBoost.Reg
is over 12%. In fact, it performs significantly better than the other three methods over four
UCI datasets. Although BinBoost.Reg employs the regularized boosting algorithm as its
binary classifier, it is less effective than MSmoothBoost because the regularized boosting
algorithm is designed for binary classification, not for multi-class learning. Based on the
above observation, we conclude that MSmoothBoost is effective for multi-class learning
and is robust to training noise.

4.3 Experiment (II): Impact of λ on MSmoothBoost

In these experiments, we examine how the smoothing parameter will affect the classifica-
tion error of MSmoothBoost. In the first experiment, we test the effect of λ on the clean
UCI datasets. Table 4 summarizes the classification errors of the MSmoothBoost algo-
rithm with λ varied from 0.0 to 1.0. Note that MSmoothBoost of λ = 0 corresponds to
the AdaBoost.OC algorithm, as already discussed before.

By comparing the results of using smoothing (i.e., λ > 0) to the cases without smooth-
ing (i.e., λ = 0), we observe that no matter what value λ is used, in general smoothing
is helpful in reducing the classification error of boosting. In fact, for most datasets, the
classification errors of MSmoothBoost are relatively stable when different values of λ are
used. For instance, the classification error of “iris” is only changed between 4.5% and 5.7%
when λ is varied from 0.1 to 1.0. The exceptional case is dataset “vehicle”, whose clas-
sification error is increased significantly from 21.5% to 27.7% when λ is varied from 0.1
to 1.0. However, even for the worst cases, the MSmoothBoost algorithm is able to produce



Mach Learn (2007) 67: 207–227 221

Table 4 Classification errors (%) of MSmoothBoost using different smoothing parameter λ for the
original UCI datasets. λ = 0 corresponds to the AdaBoost.OC algorithm

λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ecoli 3.5 3.0 2.8 4.1 3.8 3.9 4.1 3.4 3.2 5.2 4.4

wine 16.0 14.7 15.5 13.2 14.0 13.4 13.3 15.2 13.9 14.8 13.7

pendigit 2.7 1.3 2.1 1.7 1.1 1.8 1.4 1.7 2.6 2.7 1.6

iris 5.2 4.5 4.7 5.2 5.3 5.0 5.7 5.7 4.7 4.7 4.7

glass 49.7 43.8 44.4 45.4 44.9 44.7 45.7 44.8 47.6 48.0 47.6

vehicle 26.0 21.5 21.5 22.4 22.5 23.4 23.5 25.0 25.9 27.7 26.2

yeast 36.4 35.0 34.6 36.7 36.3 35.5 35.3 35.9 35.1 34.9 35.8

Table 5 Classification errors (%) of MSmoothBoost using different smoothing parameter λ for the
“corrupted” UCI datasets with 20% training errors. λ = 0 corresponds to the AdaBoost.OC algorithm

λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ecoli 12.8 5.1 6.8 6.3 6.5 5.4 7.8 7.7 6.8 6.6 7.0

wine 21.2 17.5 17.3 16.4 17.0 17.2 16.2 17.1 17.3 17.5 17.6

pendigit 13.9 7.1 6.3 5.8 5.5 4.8 4.5 6.6 4.8 6.1 5.1

iris 9.7 6.2 6.7 7.0 7.5 7.5 7.3 8.0 7.7 8.3 8.2

glass 55.0 45.4 45.6 45.0 46.3 45.9 45.4 46.0 46.3 47.6 48.2

vehicle 35.0 24.0 24.6 24.8 24.9 25.9 26.2 26.1 26.6 27.0 28.2

yeast 42.5 36.6 37.8 37.5 38.3 38.8 38.0 38.3 38.5 38.1 38.6

classification errors that are comparable to the AdaBoost.OC algorithm. This is consistent
with the study of the regularization approach in data classification. For instance, people
have found that introducing regularization into the maximum entropy model usually re-
duces the classification error (Nigam et al. 1999). In the meantime, a number of studies
(e.g., Zhang 2003) also indicated that although the reduction in classification error usu-
ally depends on the amount of regularization introduced into the classification model, it
is usually true that any reasonable amount of regularization can improve the classification
performance.

In the second experiment, we test the impact of the smoothing parameter λ for the
corrupted UCI datasets with 20% of training examples whose class labels are incorrect.
Table 5 summarizes the classification errors of the MSmoothBoost algorithm for the cor-
rupted datasets when λ is varied from 0.0 to 1.0. Similar to the previous study, we observe
that the classification error of MSmoothBoost for the corrupted datasets does not experi-
ence a significant change when we vary λ from 0.1 to 1.0. Second, for all the values of λ

that are tested in this experiment, the MSmoothBoost algorithm is able to outperform the
AdaBoost.OC (i.e., λ = 0) across all the datasets.

Based on the two sets of experiments, we conclude that MSmoothBoost is effective in
reducing the classification errors and dealing with the noisy training examples. We also
conclude that the performance of the MSmoothBoost algorithm is relatively stable across
different λ.
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Table 6 Classification errors
(%) for the original UCI datasets

Decision tree is used as the base
classifier

Dataset ECOC AdaBoost.OC MSmoothBoost

ecoli 9.7 ± 3.6 3.1 ± 3.2 3.1 ± 2.5

wine 15.4 ± 2.8 16.2 ± 2.5 16.0 ± 2.5

pendigit 4.0 ± 2.0 3.2 ± 2.0 3.4 ± 2.4

iris 6.5 ± 2.5 6.0 ± 2.8 5.5 ± 3.2

glass 40.5 ± 2.0 45.3 ± 1.7 40.8 ± 2.3

vehicle 3.6 ± 0.7 3.0 ± 0.7 3.9 ± 0.8

yeast 27.4 ± 2.9 24.7 ± 2.1 24.1 ± 2.2

Table 7 Classification errors
(%) for the “corrupted” UCI
datasets with 20% training errors

Decision tree is used as the base
classifier. A bold font is used to
highlight the result when it is
significantly better than its
counterparts based on the t -test at
the confidence level 0.95

Dataset ECOC AdaBoost.OC MSmoothBoost

ecoli 20.8 ± 4.1 13.5 ± 5.2 13.8 ± 4.0

wine 16.5 ± 3.8 23.2 ± 4.5 15.8 ± 3.5

pendigit 9.5 ± 4.8 17.6 ± 4.9 17.7 ± 5.0

iris 9.8 ± 5.0 12.3 ± 5.2 9.3 ± 4.3

glass 42.1 ± 1.7 53.0 ± 4.7 42.7 ± 1.3

vehicle 5.8 ± 1.0 15.3 ± 1.8 8.1 ± 0.7

yeast 34.4 ± 3.0 35.8 ± 2.9 31.0 ± 1.9

4.4 Experiment (III): The Impact of Base Classifier

In these experiment, we evaluate the MSmoothBoost algorithm by using the decision tree as
the base classifier. The goal of this experiment is to examine the effect of base classifier on
the performance of the proposed boosting algorithm.

In the first experiment, we test the ECOC method, the AdaBoost.OC algorithm, and
the MSmoothBoost algorithm on the original UCI dataset. All the three algorithms use the
decision tree as their base classifier. The classification results are summarized in Table 6.
First, we observe that for most of the datasets, both boosting algorithms are unable to reduce
the classification error when compared to the simple ECOC method. The only exception
case is dataset “ecoli” in which the boosting algorithms are able to reduce the classification
error from 9.7% to around 3%. This is in contrast to the case when the decision stump is
used as the base classifier in which we usually observe a significant improvement when
the boosting algorithms are applied. Second, we observe that for dataset “glass”, instead of
reducing classification error, the AdaBoost.OC algorithm in fact increases the classification
error substantially, from around 40.5% to 45.3%. In contrast, the MSmoothBoost is able to
achieve the same classification error as the ECOC method. This result indicates that even
for clean datasets, the AdaBoost.OC algorithm can still overfit training examples when the
underlying base classifier is a strong classifier, whereas the MSmoothBoost algorithm is able
to avoid the overfitting problem by using the smoothing technique.

In the second experiment, we evaluate the three multi-class classification algorithms us-
ing the decision tree as the base classifier for the corrupted UCI dataset with 20% training
noise. The classification errors of the three algorithms are listed in Table 7. First, we ob-
serve that for almost all datasets except “ecoli” and “yeast”, the AdaBoost.OC algorithm
performs substantially worse than the ECOC method. For instance, the classification error of
dataset “vehicle” is degraded from 5.8% to 15.3% when AdaBoost.OC is used. This result
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Table 8 Classification errors
(%) for the physiological dataset

A bold font is used to highlight
the result that is statistically
significantly better than its
counterparts

Base Classifier ECOC AdaBoost.OC MSmoothBoost

Decision Stump 33.5 ± 1.0 35.1 ± 1.4 32.7 ± 1.3

Decision Tree 32.7 ± 0.7 31.1 ± 1.1 30.1 ± 0.9

is consistent with the previous observation for the corrupted UCI datasets when the deci-
sion stump is used as the base classifier. Both results indicate the overfitting problem with
the AdaBoost.OC algorithm when the training examples are noisy. On the other hand, the
MSmoothBoost algorithm is able to alleviate the problem of overfitting substantially across
almost all the datasets. For a number of datasets, the MSmoothBoost is able to achieve a
similar performance as the ECOC method when AdaBoost.OC degrades the performance.
For dataset “yeast”, the MSmoothBoost algorithm is even able to reduce the classification
error significantly, from 34.4% to 31.0%. The only exception cases are dataset “pendigit”
and “vehicle”, in which both boosting algorithm did poorly compared to the ECOC method.
All these results indicate that in general the MSmoothBoost is more robust and effective
than the AdaBoost.OC algorithm. These results also indicate that boosting algorithms are
usually less effective when a strong base classifier is used.

4.5 Experiment (VI): The Physiological Dataset

The classification errors of the physiological dataset by the ECOC method, AdaBoost.OC,
and MSmoothBoost using the random codes are listed in Table 8. Two base classifiers,
namely decision stump and decision tree, are used in the experiment. First, as indicated in
Table 8, AdaBoost.OC appears to overfit training examples when decision stump is used as
the base classifier. It performs significantly worse than the ECOC method according to the
statistical t -test at the confidence level 0.95. In contrast, MSmoothBoost appears to be more
robust than AdaBoost.OC and is able to achieve slightly better performance than the ECOC
method when the decision stump is used as the base classifier. Second, both MSmoothBoost
and AdaBoost.OC are able to reduce the classification error of the ECOC method when
decision tree is used as the base classifier. According to the t -test, MSmoothBoost performs
significantly better than AdaBoost.OC.

5 Conclusion

In this paper, we propose a new boosting algorithm, named “MSmoothBoost”, that is able
to boost binary classifiers for multi-class learning problems. In particular, it addresses the
overfitting problem of the AdaBoost.OC algorithm by introducing a smoothing mechanism
into the boosting algorithm. We show theoretically that the proposed boosting algorithm is
able to reduce the training error in an exponential fashion, and the smoothing parameter λ is
able to reduce the marginal training errors by balancing the tradeoff between the empirical
part of the error bound and the marginal part of the error bound. A set of extensive experi-
ments have been conducted to evaluate the effectiveness and the robustness of the proposed
boosting algorithm. Our empirical studies have shown that the proposed MSmoothBoost
algorithm performs better than the AdaBoost.OC algorithm for both clean data and noisy
data. In the future, we plan to extend this work to multi-label classification where each data
point can be assigned with multiple labels.
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Appendix 1 Proof of Theorem 1

Proof First, according to (3), we have

1

m

m∑

i=1

I
(

max
y �=yi

�T (y, xi) − �T (yi, xi)
)

≤ 1

m

m∑

i=1

(1 + λ)
∑

y �=yi
exp(�T (y, xi))

exp(�T (yi, xi)) + λ
∑

y �=yi
exp(�T (y, xi))

.

Let the upper bound in the above equation denoted by τT . Note that using notation μT (y|x),
τT can also be written as:

τT = 1 + λ

m

m∑

i=1

∑

y �=yi

μT (y|xi). (16)

Then, according to (6) and (7), we have τT +1 upper bounded by

τT +1 ≤ λ + 1
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×
∑

y

μT (y|xi)(1 − f (y)f (yi)). (17)

By rewriting (1+f (y)f (yi))/2 = 1−(1−f (y)f (yi))/2 and using the relation μT (yi |xi)+
λ

∑
y �=yi

μT (y|xi) = 1, we have the upper bound in the above equation simplified as:
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εT +1(1 − εT +1). (18)
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Note that νt defined in (14) can also be written as:

νt = (1 + λ)UtZt

mτt

.

Hence, the bound in (18) can be further written as:

τT +1 ≤ τT

(

1 − νT +1

2

(
1 −

√
1 − 4γ 2

T +1

))

≤ τT (1 − νT +1γ
2
T +1).

Applying the above inequality recursively, we have
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�T (y, xi) − �T (yi, xi)
)
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(1 − νtγ
2
t ).

�

Appendix 2 Proof of Theorem 2

Proof Similar to Theorem 1, the marginal training error can be bounded by the following
expression:

1

m

m∑

i=1

I
(

max
y �=yi

�̂T (y, xi) − �̂T (yi, xi) + θ
)

≤ 1 + λ

m

m∑

i=1

∑
y �=yi

exp(�T (y, xi) + θ
∑T

t=1 αt )

exp(�T (yi, xi)) + λ
∑

y �=yi
exp(�T (y, xi) + θ

∑T

t=1 αt )

≤ 1 + λ

m

m∑

i=1

∑
y �=yi

exp(�T (y, xi))

exp(�T (yi, xi)) + λ
∑

y �=yi
exp(�T (y, xi))

+ 1 + λ

m

m∑

i=1

∑
y �=yi

exp(�T (y, xi))(exp(θ
∑T

t=1 αt ) − 1)
(

exp(�T (yi, xi)) + λ
∑

y �=yi
exp(�T (y, xi))+

λ
∑

y �=yi
exp(�T (y, xi))(exp(θ

∑T

t=1 αt ) − 1)

) (19)

where the first inequality is obtained in a similar way as (3).
Using the convexity of reciprocal function ((p1a1 + p2a2)

−1 ≤ p1/a1 + p2/a2, with
p1 = 1/(1 + λ) and p2 = λ/(1 + λ)), we have

(
exp(�T (yi, xi)) + λ

∑
y �=yi

exp(�T (y, xi))+
λ

∑
y �=yi

exp(�T (y, xi))(exp(θ
∑T

t=1 αt ) − 1)

)−1

≤ 1

(1 + λ)2(exp(�T (yi, xi)) + λ
∑

y �=yi
exp(�T (y, xi)))

+ λ

(1 + λ)2
∑

y �=yi
exp(�T (y, xi))(exp(θ

∑T

t=1 αt ) − 1)
.
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Using the above result, the bound in (19) can be simplified as:

1

m

m∑

i=1

I
(

max
y �=yi

�̂T (y, xi) − �̂T (yi, xi) + θ
)

≤ τT + τT

exp(θ
∑T

t=1 αt ) − 1

(1 + λ)2
+ λ

1 + λ

≤ 1

(1 + λ)2

(

λ(2 + λ) +
T∏

t=1

(
1 + γt

1 − γt

)4θ
)

T∏

t=1

(1 − νtγ
2
t ) + λ

1 + λ
.

The last step in the above derivation uses the relationship αt = 1
4 ln( 1−εt

εt
) and the result in

Theorem 1. �
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