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Abstract

Inductive (IVAP) and cross (CVAP) Venn—Abers predictors are computationally efficient
algorithms for probabilistic prediction in binary classification problems. We present a new
approach to multi-class probability estimation by turning IVAPs and CVAPs into multi-
class probabilistic predictors. The proposed multi-class predictors are experimentally more
accurate than both uncalibrated predictors and existing calibration methods.
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1. Introduction

Multi-class classification is the problem of classifying objects into one of the more than two
classes. The goal of classification is to construct a classifier which, given a new test object,
will predict the class label from the set of possible k classes. In an “ordinary” classification
problem, the goal is to minimize the loss function by predicting correct labels on the test
set. In contrast, a probabilistic classifier outputs, for a given test object, the probability
distribution over the set of k classes. Probabilistic classifiers allow to express a degree of
confidence about the classification of the test object. This is useful in a range of applications
and industries, including life sciences, robotics and artificial intelligence.

A number of techniques are available to solve binary classification problems. In logistic
regression, the dependent variable is a categorical variable indicating one of the two classes.
Logistic regression model is used to estimate the probability of binary response based on
a number of independent variables (features). In large empirical comparison of supervised
learning algorithms (Caruana and Niculescu-Mizil, 2006) logistic regression, whilst not com-
petitive with the best methods, was the best model for some performance metrics in specific
problems. Another technique that can be used for both binary and multi-class classification
problem is Artificial neural network (ANN). Artificial neural network is a computational
model based on a large collection of connected units called artificial neurons. Depending
on problem setting, an ANN could be used either to predict one of the k classes directly
(by having k neurons in the final layer of neural network) or indirectly by building separate
networks for each of the classes. ANNs are also able estimating multi-class probabilities
direct by using softmax function in the final layer of a neural-based classifier.

In a probabilistic classification setting where the loss function uses exact class prob-
abilities, calibrating the classifier improves its performance. As shown in Caruana and
Niculescu-Mizil (2005), maximum margin methods such as support vector machine and

© 2017 V. Manokhin.



MANOKHIN

boosted trees result in sigmoid-shaped distortion of the predicted probabilities. Other
methods such as neural networks and logistic regression do not suffer from these biases
and result in better calibrated probabilities. The calibration method in Platt (1999) is
most effective when the underlying machine learning algorithm produces sigmoid shaped
distortions in the predicted probabilities, this method (called Platt’s scaling) was originally
developed to address distortions produced by support vector machine. Another algorithm
for probability calibration is isotonic regression (Zadrozny and Elkan, 2001), this scaling
method can correct any monotonic distortion. The disadvantage of isotonic regression is
that it is also prone to overfitting, especially when data is scarce.

More recently, Vovk et al. (2015) introduced two new computationally efficient proba-
bilistic predictors: IVAPs (inductive Venn—Abers predictors) and CVAPs (cross Venn-Abers
predictors). IVAP can be considered a regularized form of calibration based on the iso-
tonic regression. Due to its regularized nature, the IVAP is less prone to overfitting when
compared to isotonic regression. As IVAPs are a special case of Venn—Abers predictors,
they are automatically well-calibrated. CVAP is an extension of IVAP using the idea of
cross-validation. In empirical studies of pairwise classification problem CVAPs have demon-
strated (Vovk et al., 2015) consistent accuracy when compared to the existing methods such
as isotonic regression and Platt’s scaling.

All probability calibration methods described so far were designed for binary classifi-
cation problems. For a multi-class classification problem there are several techniques of
assigning test objects to one of the k classes. If the conditional probabilities for each of the
k classes are known or can be estimated, the multi-class classification problem is reduced
to a trivial task of finding the number ¢ of the class maximizing the conditional probability
pi(x) computed for each of the k classes. In practice, estimating conditional class probabil-
ities is a hard task, especially in high-dimensional setting with limited data (“the curse of
dimensionality”). In binary classification task, finding a good separating function instead
of conditional probabilities often gives better prediction results.

Binary probabilistic classifiers output class probabilities or decision scores. We use
Platt’s scaling, IVAP and CVAP to convert output of binary classifiers into calibrated
binary class probabilities. We then use the method in Section 2 to convert calibrated
binary class probabilities to the multi-class probability distribution over the k classes.

The classical approach to multi-class classification is to consider a collection of binary
classification problems and then combine their solutions (when solutions include pairwise
class probabilities) to obtain multi-class probabilities. A number of methods for converting
output of binary classifiers into multi-class probabilities are available. In a simple “one-
versus-all” approach, k classifiers are built with the kth classifier separating all objects in
the ith class from the objects in all other k£ —1 classes. The multi-class classifier f(z) is then
a function attaining arg max; f;(z), where f;(x) is a classifier in binary classification problem
of separating ith class from all the other classes. In another “one-versus-one” method (also
called “all-pairs” classification) @ binary classifiers are built to classify test objects be-
tween each pair of the ith and jth classes. If such classifiers are denoted as f;;, the multi-class
classification problem is reduced to finding f;(x) such that f;(x) = argmax; ) fi;(v). Both
“one-versus-all” and “one-versus-one” approaches generally perform well and the suitability
of a method to the specific problem or application depends on the time needed to build a
particular classifier in comparison with time required to repeat the classification task. For
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“one-versus-one” (OVO) algorithm, the number of repetitions is O (N 2), whilst for “one-
versus-all” (OVA) the number of repetitions is O (N). However, if the time required to
build a classifier is super-linear in terms of the number of objects, “one-versus-one” (OVO)
is a more efficient choice.

As an alternative to solving multi-class classification by combining solutions to binary
classification problems, approaches such as “single machine” and the “error correcting code”
can be used. In the single machine approach (Weston and Watkins, 1999), a single optimiza-
tion problem is solved by training a multi-class support vector machine to solve generalized
binary support vector machine problem with the decision function f(z) = arg max(w;x+b;).

This approach can be used for simultaneous multi-class separation in situatizons where bi-
nary classification by “one-versus-all” and “one-versus-one” fails. As an additional benefit,
the single machine approach results in reducing the number of support vectors and more
efficient kernel computations. The benefits of the single machine are, however, limited to
the situations where it is hard to separate the data whilst at the same time meaningful
subsets exist which allow assigning a higher value to the decision function for the correct
class as compared to other classes.

Other methods for solving multi-class classification problem include voting (Price et al.,
1994) and various methods based on combining binary probabilities to obtain multi-class
probabilities. Such methods rely on obtaining estimates 7;; of pairwise probabilities f1;; =
Py =1i|y e {i,j},x). Estimates r;; are obtained by building binary classifiers for each
of the pairwise unions of the ¢th and jth classes and using 7;; as an approximation for
ij- In the next section, we describe a method of converting estimates r;; of pairwise class
probabilities into estimates p; of multi-class probabilities for k classes.

2. Obtaining multi-class probabilities from pairwise classification

In order to obtain estimates of multi-class probabilities we convert binary class probabilities
using the method in Price et al. (1994):

PKPD __ 1 (1)

S S )

After computing pZPKPD, the probabilities need to be normalized to ensure that they
sum to one. We will refer to this method as the “PKPD” method. We use this method
to obtain multi-class probabilities from pairwise class probabilities produced by applying
Platt’s scaling, IVAP and CVAP to the pairwise classification scores/probabilities obtained
by applying underlying algorithms (we use logistics regression, support vector machine and
neural network) to the test objects of each data set. We then use multi-class probabilities
computed using the “PKPD” method to assign test object to one of the k classes which
allows us to compute loss metrics and compare them across different calibration algorithms.

3. Inductive and cross Venn—Abers predictors

Prediction algorithms IVAP (inductive Venn—Abers predictor) and CVAP (cross Venn-
Abers predictor) are computationally efficient versions of Venn-Abers predictors studied
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in Vovk and Petej (2014). Whilst IVAP and CVAP are based on the calibration method
used by the isotonic regression (Zadrozny and Elkan, 2001), IVAP and CVAP avoid prob-
lems associated with isotonic regression such as miscalibrated probabilities or overfitting
when data is scarce. As Venn—Abers predictors are a special case of Venn predictors, they
inherit the property of perfect calibration from Venn predictors. As shown in Vovk et al.
(2015), IVAPs are automatically perfectly calibrated and the experimental results reported
in the same paper suggest that this property is inherited by CVAPs. IVAPs and CVAPs are
computationally efficient algorithms with predictive efficiency depending on the efficiency
of the underlying algorithms.

3.1. Computational details of IVAPs and CVAPs

IVAP uses the scores s, ..., s computed by an underlying classification algorithm on the
calibration set of size k (obtained by reserving part of the training set, the other part of the
training set is used for training of the underlying algorithm) and also the score s computed
for a new test object. The isotonic regression is then fit twice to the set of computed scores
S1,.-.,Sk,S (used as the independents variable), and two sets of dependent variable formed
by combining the labels of the calibration objects with two potential labels for the test object
(0 or 1 accordingly) . By fitting isotonic regression twice, IVAP computes multi-probability
prediction (pg,p1) for the test objecte that can be interpreted as the lower and the upper
probability respectively. IVAP computes (po,p1) efficiently for each of the potential test
objects by pre-computing two vectors F© and F'! which store fy(s) and fi(s), respectively,
for all possible values of s. As shown in Vovk et al. (2015), given the the scores sy, ..., sx of
the calibration objects computed by the underlying algorithm, the IVAP’s prediction rule
can be computed in time O(klogk) and space O(k) where k is the size of the calibration
set.

A cross Venn—Abers predictor (CVAP) is just a combination of K IVAPs, where K
is the number of folds in the training set. To obtain class probabilities in CVAP, Vovk
et al. (2015) use minimax method to merge K multiprobability predictions by K IVAPs.
For the log loss the multiprobability prediction for CVAP is an interval (1-GM (1 — py),
GM((p1)) obtained by computing geometric means of multiprobability predictions arising
out of repeated application of IVAP to K folds (GM (p1) is the geometric mean of pi, ..., p
and GM (1 —po) is the geometric mean of 1 —p}, ..., 1—pk). For the Brier loss, the merged
probability is given by formula p = % Zszl (p’f + %(p’g)2 — %(p’f)z) .

The minimax method can also be applied to IVAP to obtain single probability prediction
by combining multi-probability prediction as follows: p := p1/(1 — po + p1).

4. Experiments on multi-class data sets

We present experimental results using several multi-class data sets: satimage and vehicle
silhouettes from the Statlog collection (Michie et al., 2009), waveform from the UCI
Machine Learning Repository (Blake and Merz, 1998) and the mnist (LeCun et al., 1998)
. The main loss function used in the empirical studies is the log loss, defined as:

log loss := —ylog p. (2)
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Another popular loss function is the Brier loss.
Brier loss := (y — p)2. (3)

In both cases p is the vector of class probabilities and ¥ is the vector of true labels one—hot
encoded across the K classes. Both the log loss and the Brier loss are computed by taking
arithmetic average of losses on the test set.

One advantage of the Brier loss function is that it it is still possible to compare quality
of prediction in cases where prediction algorithm produces infinite log loss. In this section
we compare the performance of IVAPs and CVAPs with that of Platt’s scaling (Platt,
1999). We use the same underlying algorithms, namely logistic regression, neural networks
and support vector machine (SVM) across all experiments. The underlying algorithms
produce binary classification scores which are calibrated by applying Platt’s scaling, IVAP
and CVAP. The data sets and the results of the experiments are described below.

4.1. “Waveform” data set

Waveform is an artificial data set (Lichman, 2013) containing three different classes of waves
with a total of 5,000 instances (3,500 training and 1,500 test instances) and 40 attributes.
Each class is generated by combining two or three “base” waves and adding noise to each
attribute. The following classification accuracies were obtained in the CART ( “Classification
and regression trees”) study (Breiman et al., 1984): the optimal Bayes classification rate is
86% accuracy, CART decision tree algorithm — 72%, nearest neighbour algorithm — 38%.

We use the original split of the data into the training set (3,500 observations) and the
test set (1,500 observations). We further split the training set into the proper training set
and the validation set in proportion 3:1. To obtain pairwise classification scores, we run
three underlying machine learning algorithms: support vector machine, logistic regression
and neural network. We use Platt’s calibration, IVAP and CVAP to convert pairwise
classification scores into pairwise class probabilities. We then apply the “PKPD” (method
1) to turn pairwise classification scores into calibrated multi-class probabilities. Table 1
refers to the results of experiments.

Table 1: The Brier (top table) and log loss (bottom table) for the waveform data set

Platt IVAP CVAP

SVM 0.3147 0.3050 0.2988
logistic regression 0.3198 0.2996 0.3003
neural network  0.3490 0.3048 0.2916

Platt IVAP CVAP
SVM 0.3304 0.3075 0.3020

logistic regression 0.3316 0.2998 0.3025
neural network  0.3623 0.2973 0.2896

For all three underlying algorithms, using IVAP and CVAP to calibrate pairwise classifi-
cation probabilities results in performance improvements as measured by the lower Brier and
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log losses. In addition, both IVAP and CVAP result in improved accuracy when compared
to Platt’s calibration.

4.2. “Satellite image” data set

The Satimage (“Landsat Satellite”) data set (Lichman, 2013) contains images representing
7 different classes of soil, ranging from red or gray soil to soil containing crops such as cotton
or vegetation stubble. The data set was collected to predict the soil type from new satellite
images, given the multi-spectral values. The number of attributes is 36 and the number of
instances is 6435.

We use the last 2,000 observations as the test set and the remaining 4,435 observations
as the training set. We further split the training set into the proper training set and the
validation set in proportion 3:1. Table 2 refers to the results of the experiments.

Table 2: The Brier (top table) and log loss (bottom table) for the satimage data set

Platt IVAP CVAP

SVM 0.1538 0.1523 0.1494
logistic regression 0.2528 0.2455 0.2395
neural network 0.1710 0.1482 0.1445

Platt IVAP CVAP

SVM 0.2480 0.1477 0.1445
logistic regression 0.2410 0.1491 0.1412
neural network  0.3667 0.1294 0.1265

For support vector machine and neural network, IVAP and CVAP improve on Platt’s
scaling in terms of both Brier and log losses. For logistic regression, IVAP and CVAP result
in substantial improvement in the log loss for all three underlying algorithms as well as for
Platt’s scaling. For the log loss, the performance improvement by using IVAP and CVAP is
quite substantial. This is due to Platt’s scaling producing more “confident” probabilities for
the incorrect class on some of the test points where classification errors are made. Whilst
IVAP and CVAP also produce errors on some of the same test objects where Platt’s scaling
assigns incorrect label, IVAP and CVAP assign incorrect labels in a more cautious manner
(by lowering relative probability of the incorrect class when compared to Platt’s scaling).
When algorithms are uncertain between two classes and Platt’s scaling is assigning lower
probability to the correct class (in comparison with IVAP and CVAP which assign more
balanced probabilities for the uncertain cases) this results in larger penalization of Platt’s
scaling using log loss. This in turn is due to inherent regularization present in computing
results of the application of IVAP procedure. As IVAP can be considered a regularized form
of isotonic regression due to application of isotonic regression to two potential labels (0 and
1), the merged probability is averaged and is never 0 or 1.
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4.3. “Vehicle silhouettes” data set

Vehicle silhouettes data set from the “Statlog collection” (Blake and Merz, 1998) was
designed to find a method of distinguishing between 3D objects within a 2D image by
application of an ensemble of shape feature extractors to the 2D silhouettes of the objects.
Four “Corgie” model vehicles were used: “Chevrolet” van, “SAAB 9000”7, double—decker
bus and “Open Manta 400”. This particular combination of vehicles was chosen with the
expectation that the bus, van and either one of the cars would be readily distinguishable,
but it would be more difficult to distinguish between the cars. The data set contains 946
instances and 18 attributes.

We use 562 (2/3) observations for the training and 282 (1/3) for the testing set. we split
the training set into the proper training set and the validation set in proportion 3:1. We
run the same underlying algorithms and calibration methods as in all previous data sets.
Table 3 refers to the experimental results for the vehicle silhouettes data set.

Table 3: The Brier (top table) and log loss (bottom table) for the vehicle silhouettes
data set

Platt IVAP CVAP

SVM 0.4826 0.5182 0.4563
logistic regression 0.4937 0.5099 0.4765
neural network  0.3803 0.4196 0.3423

Platt IVAP CVAP

SVM 0.4773 0.5190 0.4643
logistic regression 0.4768 0.5083 0.4780
neural network  0.3728 0.4312 0.3689

Vehicle silhouettes is a complicated data set for the classification task, this is re-
flected in higher losses when compared to other data sets. CVAP performs better than
Platt’s scaling across all three underlying algorithms in terms of the Brier loss and for
support vector machine and neural network in terms of the log loss.

4.4. The MINIST data set

To test the performance of multi-class probabilistic predictors based on IVAP and CVAP
also on a larger data set we use the MNIST (LeCun et al., 1998) data set. The MNIST is a
large database of handwritten digits commonly used for training and testing of the machine
learning algorithms. The data set contains 60,000 training and 10,000 testing images.

We use the original split of the data into a training set (60,000 observations) and test
set (10,000 observations). We use part of the test set (2,500 observations) for calibration.
The results are shown in Table 4.

For the MNIST data set, CVAP produces Brier loss comparable to that obtained using
Platt’s scaling. For the log loss, both IVAP and CVAP are able to quantify log loss even in
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Table 4: The Brier (top table) and log loss (bottom table) for the MNIST data set

Platt IVAP CVAP

SVM 0.0430 0.0552 0.0498
logistic regression 0.1348 0.1355 0.1147
neural network  0.0414 0.0484 0.0435

Platt IVAP CVAP

SVM - 0.3923 0.1189
logistic regression - 0.3430 0.2910
neural network  0.1860 0.1464 0.0949

situations where Platt’s scaling results in NaNs (shown as “-” in Table 4). The formulas for
combining multi-probability predictions(see Section 3.1 for more details) ensure that multi-
class probabilities are never 0 or 1, this in turn guarantees that the log loss is bounded
when using IVAP and CVAP.

4.5. Empirical Studies of Cross-validation

An important question is whether calibration methods perform better because of extra
regularization (as one used in IVAP) or because of cross-over (when using CVAP). To
investigate this, using waveform data set, the results for the Brier and log losses were
reproduced using CVAP with different number of folds. The horizontal line is the “fold
ratio” less 1, there the “fold ratio” is the ratio of the size of proper training set to the size
of validation set. Figure 1 refers to the results of cross-validation experiments.

In Figure 1, support vector machine is calibrated using three different calibration algo-
rithms, namely method of Platt (1999) (shown as “SMO” on the plot), IVAP and CVAP
(Vovk et al., 2015). In terms of the Brier loss, the results for CVAP are consistently better
than those for Platt’s scaling. As CVAP also performs consistently better than IVAP, the
results demonstrate benefits from both extra regularization and cross validation.

For logistic regression (Figure 2), the results for CVAP based on the the Brier loss are
consistently better than for Platt’s scaling. In terms of the log loss (Figure 2) both IVAP
and CVAP deliver better performance when compared to Platt’s scaling.

For neural network (Figure 3), both IVAP and CVAP perform consistently better than
Platt’s scaling. Similar to the cases of support vector machine (Figure 1) and logistic
regression (Figure 2), when neural network is used as an underlying algorithm, CVAP
performs better than TVAP.

5. Conclusion

Machine learning has made a remarkable progress. A number of methods (Caruana and
Niculescu-Mizil, 2006) such as random forests, boosting, bagging and support vector ma-
chine demonstrate excellent performance exceeding the performance of earlier machine
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Brier loss

Log loss

Figure 1: waveform dataset, the Brier loss (top panel) and log loss (bottom panel) for SVM
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Brier loss for logistic regression calibrated with three calibration methods
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Figure 2: waveform dataset, the Brier loss (top panel) and log loss (bottom panel) for
logistic regression calibrated with three calibrations methods.
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Brier loss for neural network calibrated with three calibration methods
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learning algorithms. Calibration with traditional methods such as Platt’s scaling or iso-
tonic regression can improve the performance or underlying algorithms such as boosted
trees, support vector machine and Naive Bayes. On the other hand, algorithms such as
neural networks and logistic regression produce already well calibrated results and their
performance is usually not significantly improved by calibration.

The main contribution of this paper is empirical study of the performance of two compu-
tationally efficient calibration algorithms IVAP and CVAP in the multi-class classification
setting. Multi-class probability predictors based on IVAP and CVAP perform well, deliver-
ing performance improvements when compared to underlying machine-learning classification
algorithms such as support vector machine, logistic regression and neural network as well
as in comparison with traditional calibration method of Platt’s scaling. The improvements
in performance in comparison with the results produced by underlying algorithms is in line
with what has been reported in the previous literature for binary classification cases, with
max-margin methods such as support vector machine benefiting the most from calibration.
In addition, even for well-calibrated algorithms such as neural networks and logistic re-
gression, both IVAP and CVAP are often more accurate than the traditional calibration
methods.

The additional contribution of this paper is a method of using calibration techniques
for multi-class classification problems via the application of the “PKPD” method. This
allows to apply well calibrated binary class probabilities in the multi-class setting in a
computationally efficient manner.
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