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   Dear editor,

This letter presents an unsupervised feature selection method based
on machine learning. Feature selection is an important component of
artificial  intelligence,  machine  learning,  which can effectively  solve
the curse of dimensionality problem. Since most of the labeled data is
expensive  to  obtain,  this  paper  focuses  on  the  unsupervised  feature
selection  method.  The  distance  metric  of  traditional  unsupervised
feature  selection  algorithms  is  usually  based  on  Euclidean  distance,
and it is maybe unreasonable to map high-dimensional data into low-
dimensional space by using Euclidean distance. Inspired by this, this
paper  combines  manifold  learning  to  improve  the  multi-cluster
unsupervised feature selection algorithm. By using geodesic distance,
we  propose  a  multi-cluster  feature  selection  based  on  isometric
mapping  (MCFS-I)  algorithm  to  perform  unsupervised  feature
selection adaptively for multiple clusters. Experimental results show
that  the  proposed  method  consistently  improves  the  clustering
performance compared to the existing competing methods.

Related work: With the rapid development of data and knowledge
management  technologies,  the  amount  of  data  collected  in  various
application areas is growing exponentially. Feature selection method
[1]  is  conducive  to  reduce  dimensionality,  remove  irrelevant  data,
and  improve  resultant  learning  accuracy  of  the  high-dimensional
data. In most of the tasks, the labeled data is often difficult to obtain,
which  increases  the  difficulty  of  the  feature  selection  task.
Unsupervised  feature  selection  can  be  used  to  process  the  data
without labels which make it better for the distance-based clustering
tasks.

The  feature  selection  algorithm  could  be  categorized  into  three
types:  filter  [2],  [3],  wrapper  [4],  and  embedded  [5].  The  filter
methods first pretreated the data and then throws the processed data
into the model for training. The wrapper methods are to continuously
optimize  the  selection  by  the  feedback  of  the  subsequent  model.
Embedded  methods  select  a  feature  subset  in  the  learning  stage.
According to whether or not the label assist feature selection process,
the  feature  selection  algorithms  can  be  divided  into  supervised
feature  selection  [2]–[5]  and  unsupervised  feature  selection  [6],  [7],
heuristic-based feature selection exploration is also a very important
direction in the feature selection.

The unsupervised feature  selection algorithm multi-cluster  feature
selection (MCFS) [7] could preserve the multi-cluster structure of the
data to make it beneficial to multi-cluster tasks. The MCFS algorithm
is  an  unsupervised  feature  selection  algorithm  based  on  manifold
learning.  It  first  uses  Laplacian  Eigenmaps  (LE)  [8]  algorithm  to
embed  the  high  dimensional  manifold  data  into  low-dimensional
space,  and  then  process  the  embedded  feature  matrix.  The  LE

algorithm  uses  the  Euclidean  distance  to  establish  a p-nearest
neighbor map. The geodesic distance is the shortest distance that two
points  on  the  hypersurface  travel  along  the  surface  of  the
hypersurface  in  high-dimensional  space.  In  dealing  with  the
hypersurface in high dimensional space, when the hypersurface close
to the plane, the distance between two points in the low dimensional
space  approximate  the  Euclidean  distance.  When  the  high-
dimensional  space  hypersurface  bend  degree  is  large,  the  geodesic
distance  can  preserve  the  global  structure  commendably  [9].  By
introducing the  geodesic  distance into  MCFS,  this  paper  proposes  a
novel  algorithm  called  multi-cluster  feature  selection  based  on
isometric mapping (MCFS-I).

Multi-cluster feature selection based on isometric mapping:
1)  Manifold  data  embedding: Manifold  data  refers  to  hyper-

surfaces  composed  of  data  in  a  high-dimensional  space.  Due  to  the
high  dimensional  space  where  these  data  is  located  has  redundant
information,  manifold  learning  [10]  is  to  expand  manifold  data  in
high-dimensional  space  and  embed  them  into  low-dimensional
subspace. Most manifold learning algorithms use Euclidean distance
to establish p-nearest  neighbor map to process data,  which can only
preserve the data in the local  manifold structure embedded into low
dimensional subspace, and isometric mapping (IsoMap) [9] based on
the  geodesic  distance  can  well  preserve  the  global  structure  of  the
data.

Firstly,  IsoMap  applies  property  that  the  manifold  data  is  locally
homeomorphic  to  Euclidean  space.  By  calculating  the  Euclidean
distance of all data points, its adjacent points can be obtained. After
that, each point is connected to its adjacent points, and the geodesic
distance  between  two  points  is  their  shortest  path  in  the p-nearest
neighbor  graph.  In  this  way,  the  classical  shortest  path  algorithm
Dijkstra  or  Floyd  algorithm  can  be  used  to  approximate  the  real
geodesic  distance  with  the  shortest  path.  Therefore,  the  global
structure of the manifold data can be well  preserved, and the global
structure  can  be  retained  to  the  maximum  extent  after  the  data  is
embedded in the low-dimensional space. After the distance between
any two points is  obtained, the multiple dimensional scaling (MDS)
algorithms [11] can be used to calculate the coordinates of each data
point in the low-dimensional space. The process of IsoMap is shown
in Algorithm 1.

Algorithm 1 IsoMap

X = {x1, x2, . . . , xN } ,
p, K.

Input: Feature  matrix  nearest  neighbor
number  embedding space dimension 

Y = {y1, . . . ,yK}Output: Embedding matrix 
i = 1,2, . . . ,N1: for  do

xi2: 　 Find the p-nearest neighbor of ;
xi3: 　Set  the  distance  of  the  and  its  neighbor  to  the  Euclidean

distance;
xi4: 　 Set the distance of the  and other points to the infinity;

5: end for
dist(xi, x j)6: Compute the  by using Dijkstra algorithm;

dist(xi, x j)7: Compute the embedding matrix Y based on ;
8: return Y

2) Learn the sparse coefficient vector: The MCFS-I algorithm is
composed  of  IsoMap  algorithm  and  Lasso  regression,  the  feature
matrix  is  embedded  into  the  low-dimensional  space  based  on
geodesic  distance  and  MDS  algorithm.  Since  the  dimensions  in  the
low-dimensional space are usually equal to the cluster number, each
dimension  in  the  low-dimensional  space  corresponds  to  each
clustering structure. Based on this, Lasso regression is used to fit the
embedding matrix.

Y ∈ RN×K

X ∈ RN×M
When the embedding matrix  is obtained by the IsoMap

algorithm,  the  feature  matrix  should  be  normalized  to
make  the  various  feature  metric  in  the  feature  matrix  consistent.  A
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yksparse  coefficient  vector  is  obtained  by  fitting  each  column  of Y
with Lasso regression [12] :
 

min
ak

∥∥∥yk −XT ak
∥∥∥2 +β∥ak∥1 (1)

ak
L1

where  is  the M-dimension coefficient vector.  Due to the punitive
of  regularization,  when β is  large  enough,  some coefficients  will
be  reduced  to  0  precisely.  Since  the  sparsity  of  Lasso  regression,  a
sparse matrix will be automatically obtained in the process of solving
Lasso  regression.  Because  the  metric  of  features  is  unified  before
Lasso regression, the larger the coefficients of some features are, the
greater  their  contribution  to  resolving  cluster  structure  will  be.
Moreover,  the  combination  of  several  features  with  relatively  weak
influence  can  better  distinguish  different  clusters,  this  property  will
be  ignored  when  evaluating  these  features  individually.  Lasso
regression  is  a  combination  solution  of  various  features  rather  than
the  independent  evaluation  of  features.  Therefore,  we  chose  Lasso
regression  instead  of  evaluating  the  contribution  of  each  feature
individually.  The  equivalent  form  of  Lasso  regression  can  be
expressed as follows:
 

min
ak

∥∥∥yk −XT ak
∥∥∥2 s.t. |ak | < γ. (2)

ak

It is difficult to control the sparsity of coefficient matrix precisely
in  Lasso  Regression,  while  the  least  angel  regression  (LARs)  [13]
algorithm  can  solve  (2)  effectively  by  entering  the  number  of  non-
zero  items  in ,  the  sparsity  of  coefficient  matrix  can  be  easily
controlled. Hence, we use LARs algorithm to solve (2).

3)  Unsupervised  feature  selection: By  combining  IsoMap
algorithm  and  Lasso  regression,  MCFS-I  algorithm  embedded  the
feature  matrix  of  the data  into the low-dimensional  space according
to  the  geodesic  distance,  and  obtains  the  low-dimensional
representation of the clustering structure. The importance of features
is  comprehensively  measured  by  Lasso  regression,  and  then  the d
features with the highest score can be selected by scoring the results
of Lasso regression.

ak ∈ RM , k ∈ {1,2, . . . ,K}
ak

ak
ak, j

K sparse  coefficient  vectors   can  be
obtained by Lasso regression in Section II-B, each  corresponds to
a cluster,  and each item in  represents  a  feature.  Since the data  is
normalized  first,  the  larger  is,  the  greater  contribution  of  the j
feature  to  the k cluster.  Since each feature  contributes  differently  to
different  clustering  structures,  it  is  natural  to  choose  its  maximum
contribution value as the selection criterion for each feature, which is
recorded as MCFS score [7] and it can be defined as follows:
 

MCFS ( j) =max
k

∣∣∣ak, j
∣∣∣ (3)

ak, j akwhere  is the j element of .  After that, the MCFS scores of all
features  are  ranked  in  descending  order,  and d features  with  the
largest  MCFS  score  will  be  selected  as  the  output  result  of  the
MCFS-I algorithm. The detailed process of the MCFS-I algorithm is
shown in Algorithm 2.

Algorithm 2 MCFS-I

X = {x1, . . . , xN } , K,
p, d.

Input: Feature  matrix  number  of  clusters 
nearest neighbor number  selected feature number 

Output: Selected d features.
Y = IsoMap(X, p,K)1: ;

i = 1,2, . . . ,K2: for  do
ai = LARs(X,yi)3: 　 ;

4: end for
5: idx = rank coefficient matrix with MCFS score;
6: return Selected d features.

Experiments: In this section, we will evaluate the performance of
the  MCFS-I  algorithm  in  clustering  tasks.  We  compared  the
following four algorithms:

n_neighbor
n_emb

●  For  the  proposed  MCFS-I  algorithm,  the  nearest  neighbors
parameter  is  set  to  5,  and  the  dimension  of  the
embedding  matrix  is  set  to  be  the  same  as  the  number  of

clusters on the data set [14].
● MCFS algorithm [7] uses LE [8] algorithm to process manifold

data.
●  Laplacian  (Lap_score)  algorithm  [6]  selects  the  data  that

preserves the local manifold structure.
●  Nonnegative  discriminative  feature  selection  (NDFS)  algorithm

[15]  combines  spectral  clustering  with  the  unsupervised  feature
selection process.

1)  Data  sets: We  selected  four  commonly  used  benchmark  data
sets to test the algorithm separately, which are from scikit-learn and
scikit-feature. The detailed information of these data sets is shown in
Table 1.
 

Table 1.  Data Sets Used in the Experiment
Data sets Samples Features Classes

Lung_small 72 325 7

WarpPIE10P 210 2420 10

Yale 165 1024 15

Digits 1797 64 10
 
 

2)  Performance  comparisons: In  our  experiment,  we  use
normalized  mutual  information  (NMI)  [6]  to  evaluate  the  clustering
result on the data which are processed by feature selection algorithm.
In each test, we repeat the experiments for five times. Each time we
run  the  k-means  clustering  algorithm  with  a  random  starting  point
and  evaluate  it  with  the  NMI  evaluation  metric.  The  average  NMI
value of the five algorithms is used as the comparison results.

The  comparison  of  feature  selection  results  is  shown  in Fig. 1.  It
can be seen that the clustering performance of the MCFS-I algorithm
on each data set is better than the MCFS algorithm, and the clustering
result  of  the  MCFS-I  algorithm gradually  reaches  the  optimal  when
the number of features is 50 to 100 on the Lung_small data set.

Table 2 shows  the  clustering  results  of  each  feature  selection
algorithm  when  the  number  of  selected  features  is  100/30  (digits).
The  column  of  the “All  Features” in  the  table  indicates  the
performance  of  the  k-means  algorithm  over  the  original  datasets
without  using  feature  selection  algorithm.  It  can  be  seen  that  the
MCFS-I algorithm has shown the best  performance on all  data sets,
and the MCFS-I algorithm performs better than that when all features
are used on some of these data sets. The average improvement of the
MCFS-I algorithm over the MCFS algorithm on the four data sets is
about 3.206%, the average improvement for the Lap_score algorithm
is  about  14.822%,  and  the  average  improvement  for  the  NDFS
algorithm is about 7.704%.

It can be observed from Table 2 that the MCFS-I algorithm on the
biological  data  set  has  a  greater  improvement  than  the  MCFS
algorithm,  while  the  improvement  on  the  other  three  image
recognition  data  sets  is  small.  This  is  because  biological  data  sets
have  higher  requirements  for  global  information,  while  image  data
pays more attention to local information.

Conclusions: This paper proposes a multi-cluster feature selection
based on isometric mapping (MCFS-I) algorithm by introducing the
geodesic distance into MCFS. The proposed algorithm uses IsoMap
to  capture  global  information  and  embed  it  into  a  low-dimensional
space,  which is  extremely beneficial  to process the data with global
information.  In  the  experimental  section,  we compare  MCFS-I  with
MCFS  and  two  commonly  used  unsupervised  feature  selection
algorithms Laplacian score and NDFS on four benchmark data sets,
and  the  experimental  results  demonstrate  the  superiority  of  the
proposed algorithm.
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Fig. 1. NMI of the different feature selection algorithms on four data sets.
 

 

Table 2.  The NMI of the Feature Selection Algorithms (%)

Data sets MCFS-I MCFS Lap_score NDFS All feature

Lung_small 78.23 72.22 59.92 72.44 73.14

WarpPIE10P 40.31 36.25 32.42 25.99 23.98

Yale 50.45 50.18 49.07 41.15 49.73

Digits 72.31 70.61 58.04 62.63 74.38
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