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Abstract

We propose a novel multi-conditional latent variable

model for simultaneous facial feature fusion and detec-

tion of facial action units. In our approach we exploit the

structure-discovery capabilities of generative models such

as Gaussian processes, and the discriminative power of

classifiers such as logistic function. This leads to supe-

rior performance compared to existing classifiers for the

target task that exploit either the discriminative or gener-

ative property, but not both. The model learning is per-

formed via an efficient, newly proposed Bayesian learning

strategy based on Monte Carlo sampling. Consequently,

the learned model is robust to data overfitting, regardless

of the number of both input features and jointly estimated

facial action units. Extensive qualitative and quantitative

experimental evaluations are performed on three publicly

available datasets (CK+, Shoulder-pain and DISFA). We

show that the proposed model outperforms the state-of-the-

art methods for the target task on (i) feature fusion, and (ii)

multiple facial action unit detection.

1. Introduction

Facial expression is one of the most powerful channels of

non-verbal communication [1]. It conveys emotions, pro-

vides clues about people’s personality and intentions, re-

veals the state of pain, weakness or hesitation, among oth-

ers. Automatic analysis of facial expressions has attracted

significant research attention over the past decade, due to its

wide importance in various domains such as medicine, se-

curity and psychology [14]. The facial action coding system

(FACS) [7] is the most comprehensive anatomically-based

system for describing facial expressions in terms of non-

overlapping, visually detectable facial muscle activations,

named action units (AUs). FACS defines 33 unique AUs,

several categories of head/eye positions and other move-

ments, which can describe every possible facial expression.

Automatic detection of AUs is a challenging task mainly

due to the complexity and subtlety of human facial behav-

ior, and individual differences and artifacts caused by vari-

ation in head-pose, illumination, occlusions, etc. [4]. These

and other sources of variation in facial expression data are

typically accounted for at the (i) feature level, by finding

facial features that are robust to the aforementioned arti-

facts, and/or (ii) model level, by capturing semantics of

AUs, i.e., their co-occurrences as commonly encountered

in naturalistic data. At the feature level, detection of AUs

can be performed using either geometric or appearance de-

scriptors, or both. While the geometric features (e.g., the

displacement of the facial points between expressive and

neutral faces [13]) are more robust to illumination and pose

changes, not all AUs can be detected solely from them. For

example, activation of AU6 wrinkles the skin around the

outer corners of the eyes and raises the cheeks, which makes

it difficult to detect this AU (independently from other AUs)

using the geometric features explicitly. On the other hand,

appearance-based features overcome this by being able to

capture transient differences in the facial texture, such as

wrinkles, bulges and furrows, however, they are usually

prone to overfitting. Hence, modeling both geometric and

appearance features exploits the complementary properties

of these two features, leading to improved AU detection.

At the model level, the goal is to improve the AU de-

tection by modeling ‘semantics’ of facial behavior (e.g., in

terms of AU co-occurrences). This is important because

AUs rarely appear in isolation (more than 7,000 AU combi-

nations have been observed in everyday life [23]). The type

of the AU co-occurrences depends largely on the context

in which the facial expression is displayed, e.g., due to la-

tent variables such as emotions (e.g., AU12 and AU6 in the

case of happiness, and AU4 and AU7 in the case of fear).

Furthermore, co-occurring AUs can be non-additive, in the

case of one AU masks another, or a new and distinct set

of appearances can be created [7]. For instance, AU4 (brow

lowerer) has a different appearance when occurring together

with AU1 (inner brow raise) than alone. When AU1,4 co-

occur, the brows are drawn together and are raised due to the

action of AU1; the brows are lowered otherwise. This, in

turn, significantly affects the appearance of the target AUs.

mailto:s.eleftheriadis@imperial.ac.uk
mailto:orudovic@imperial.ac.uk
mailto:m.pantic@imperial.ac.uk


Figure 1. The proposed MC-LVM. The geometrical and appearance input features, y(1) and y(2), are first projected onto the shared manifold X. The

fusion is attained via GP conditionals, p(y(1)|x) and p(y(2)|x), that generate the inputs. Classification is performed on the manifold via simultaneously

learned logistic functions p(z(c)|x) for multiple AU detection. The subspace is regularized using constraints imposed on both latent positions and output

classifiers, encoding local and global dependencies among the AUs.

Most of existing approaches to AU detection model each

AU independently, using either a single feature set [2, 4],

or by combining multiple feature sets through feature con-

catenation [13, 14], or multiple-kernel learning (MKL) [24].

Other methods treat different combinations of AUs as new

independent classes [16]; yet, this is impractical given the

number of possible combinations. On the other hand,

methods that do attempt to model the AU co-occurrences

(e.g., [26, 33, 35]) fail to perform efficient fusion of dif-

ferent types of facial features. To the best of our knowl-

edge, the only methods that attempt both are [29, 36, 34].

However, neither of these methods can perform simultane-

ous feature fusion and modeling of a large number of AUs.

To this end, we propose a Multi-Conditional Latent Vari-

able Model (MC-LVM) that performs jointly the fusion of

different facial features and detection of multiple AUs. In-

stead of performing the AU detection in the original fea-

ture space, as done in existing works [29, 34, 36], the MC-

LVM attains the fusion by learning a low-dimensional sub-

space (i) shared across different feature sets, learned via the

framework of Gaussian processes (GPs) [21], and (ii) con-

strained by the local dependencies among multiple AUs, en-

coded by means of string kernels [21], and the global depen-

dencies, encoded via the AU co-occurrence structure. The

key to our approach is the proposed definition of the multi-

conditional likelihood function that combines both the gen-

erative and discriminative properties of probabilistic mod-

els. In contrast to existing subspace learning methods for

multi-output (e.g., [30]), the MC-LVM learns a discrimi-

native subspace for multiple AU detection that is endowed

with the generative property of GPs, which turns out to

be an efficient regularizer during the parameter learning.

To further improve the robustness of the parameter esti-

mation, a Bayesian learning of the subspace is facilitated

through Monte Carlo (MC) sampling, and the Expectation-

Maximization (EM)-like algorithm is proposed. As a re-

sult, the training of the MC-LVM can be performed with a

large number of AUs, without seriously affecting its com-

putational load. During inference, multiple AU detection

is performed through the learned subspace that best gener-

ate the input features. This is attained via the learned back

mappings to the shared space, and does not require any ad-

ditional optimization. As evidenced by our results, the re-

sulting model achieves superior performance compared to

existing methods for multiple AU detection, and other meth-

ods for feature fusion and multi-label classification. The

outline of the proposed approach is given in Fig. 1.

2. Related Work

2.1. Facial AU detection

The majority of the existing works attempt to recog-

nize AUs or certain AU combinations independently [13,

14, 2, 4, 16, 11, 22]. While the former ignores the de-

pendencies among AUs, the latter is a prohibitively large

space of possible combinations. To the best of our knowl-

edge, there are only few works that perform joint AU de-

tection. [26] proposed a generative framework based on dy-

namic Bayesian networks (DBN) to model the semantics of

different AUs. A downside of this model, is that it lacks

discriminative properties of what models. In contrast, the

models in [36, 35, 29, 33, 34] are defined in a fully dis-

criminative manner. Specifically, [36] first learns the logis-

tic classifiers for multiple AUs using the notion of multi-

task feature learning, and then uses a pre-trained BN to re-

fine the predictions. This independent modeling could re-

sult in inconsistent dependencies across inputs/outputs, and

produce contradictory predictions. [35] tries to learn inde-

pendent logistic classifiers by first selecting a sparse subset

of facial patches which are more relevant to each AU. Yet,

the fusion task is not addressed, while the AU-dependencies

are regarded only between predefined pairs. [29] employed

the restricted Boltzman machine (RBM) to overcome the

pair-wise AU modeling limitation of DBN. Discrete latent

variables account for the dependencies among the outputs,

which are directly connected to the image features. Since

the latent variables are not connected to the feature space,

they cannot model correlations between the inputs, hence,



concatenation is used for the fusion task. [33, 34] combine

multi-task learning with MKL to jointly learn different AU

classifiers. The authors introduce lp-norm regularization to

the MKL, in order to fuse multiple features with different

kernels [34], and account for the AU-dependencies [33].

Yet, [34] can deal only with subsets of AUs in its output

due to its learning complexity, while in [33] the relations

among the AUs are captured by predefined latent variables.

Our approach significantly differs from the above works,

since the fusion of the features is performed in a continuous

latent space. The latter can also efficiently model relations

among large number of outputs, without the requirement to

a priori define groups of AUs as done in [33, 34, 35]. The

learning of the output dependencies is performed simultane-

ously to the fusion task by combining both generative and

discriminative learning within a single model. This has not

been addressed before in models for multiple AU detection.

2.2. Multilabel Classification

Various approaches for multi-label classification (MLC)

exist in the literature. For an extensive overview please

see [27, 25]. Baseline methods include [32], which extends

the k-nearest neighbor (kNN) classifier to the multi-label

scenario, and [31], which derives the back-propagation al-

gorithm of the neural networks for the MLC. MLC is also

highly related to multi-task learning techniques, that cap-

ture dependencies among multiple outputs through parame-

ter sharing [9]. More sophisticated algorithms learn a latent

variable model of task specific parameters within a proba-

bilistic framework [30]. However, none of these methods

perform simultaneous feature fusion and MLC.

To mitigate the limitations of the above methods, re-

cent works in the GP context [28, 6] try to combine multi-

task learning and feature fusion via subspace learning. [28]

jointly optimizes latent variables in order to reconstruct the

input data, and account for multiple tasks in the output. A

downside of this method is that the latent space is directly

optimized using the ML strategy, which in the case of large

number of data can overfit. To ameliorate this, [6] proposed

learning of the space in a fully Bayesian framework using

variational inference to integrate out the latent space.

Contrary to [28, 6], MC-LVM employs multi-conditional

learning strategies to re-weight the generative and discrimi-

native conditionals, in order to unravel a more suitable sub-

space for joint feature fusion and MLC. In our Bayesian

approach, the latent space is approximated via efficient MC

sampling, where the conditional models determine the im-

portance of each sample. More importantly, the inference

step is efficiently facilitated via the learned projection map-

pings to the manifold. This overcomes the requirement

of [6] to learn another approximation to the posterior of the

test inputs. Finally, note that such an approach has not been

applied before on the task of multiple AU detection.

3. Multi-conditional Latent Variable Model

(MC-LVM)

Let us denote the training set as D = {Y,Z}.

Y = [y1, . . . ,yi, . . . ,yN ]T is comprised of N

instances of multi-variate inputs stored in yi =

{y
(1)
i , . . .y

(v)
i , . . .y

(V )
i }, where y

(v)
i ∈ RDv . These repre-

sent different types of corresponding facial features or ob-

servation spaces. Furthermore, Z = [z1, . . . , zi, . . . , zN ]T

are multiple binary labels, with zi ∈ {−1,+1}C encoding

C (co-occurring) outputs.

3.1. Model Definition

We aim to learn a model that simultaneously combines

different inputs and detects activations of multiple out-

puts. We assume the existence of a latent space X =
[x1, . . . ,xi, . . . ,xN ]T , where xi ∈ Rq , q ≪ D, jointly

generates yi and zi. For notational simplicity, in what fol-

lows, we set the number of input spaces to V = 2. Then,

the joint distribution p(y, z) can formally be written down

as marginalization over the latent space x as:

p(y, z) =

∫

p(y(1)|x)p(y(2)|x)p(z|x)p(x)dx, (1)

where we exploited the property of conditional indepen-

dence, i.e., {y(1),y(2), z} are independent given x. For

the non-linear conditional models, which we propose in

Sec.3.2, the integral in Eq.(1) cannot be computed analyti-

cally. To this end, we numerically approximate the marginal

likelihood using MC sampling

p(y, z) ≈
1

S

S
∑

s=1

p(y(1)|xs)p(y
(2)|xs)p(z|xs), (2)

where the samples xs, s = 1, . . . , S are drawn from p(x),
which is defined in Sec.3.2. Using the Bayes’ rule, we can

derive the posterior of the model as:

p(x|y(1),y(2), z) =
p(z|x)p(y(1),y(2)|x)p(x)

1
S

∑S

s=1 p(y
(1),y(2)|xs)p(z|xs)

.

(3)

We can now calculate the above probability for all pairs of

training data i and MC latent samples s, to obtain the mem-

bership probabilities p(s, i) = p(xs|y
(1)
i ,y

(2)
i , zi). This

gives rise to the expectation of the latent points:

xi = E{x|y
(1)
i ,y

(2)
i , zi} =

S
∑

s=1

p(s, i)xs. (4)

3.2. Conditional Models

The choice of conditional models p(y(v)|x), v = 1, 2,

and p(z|x), as well as the sampling distribution p(x), in



Eq.(3) critically affect the representational capacity of the

space, and thus, the model’s performance. Effectively, this

boils down to learning conditional models that provide: (i)

generative mappings from latent space to the inputs (x →
y(v), v = 1, 2), (ii) projection mappings from the inputs to

latent space (y(v) → x), and (iii), discriminative mappings

from latent space to multiple binary outputs (x → z).

Generative mappings. Different probabilistic models such

as Gaussian models [3] or naive Bayes models [19] can be

employed to recover the generative mappings. However,

these parametric models are limited in their ability to re-

cover non-linear mappings from the latent space to high-

dimensional input features, and the other way around. To

this end, we exploit the framework of GP [21], which allows

us to model arbitrary data structures via suitable choice of a

kernel function. We briefly describe GPs below.
Given a collection of latent points X and corresponding

outputs, e.g., Y(v), we seek to find mapping f : X → Y(v).
By placing a GP prior over f , we can integrate it out [21].
Then, the marginal distribution over the outputs is:

p(Y(v)|X, θY (v)) =

1
√

(2π)NDv |KY (v) |Dv

exp(−
1

2
tr((KY (v))

−1
Y

(v)(Y(v))T )),

(5)

where KY (v) is N × N kernel matrix, obtained by apply-

ing the covariance function k(x,x′) to elements of X, and

it is assumed to be shared across the dimensions of Y(v).

The covariance function is usually chosen as the sum of the

radial basis function (RBF) kernel, bias and noise terms

k(x,x′) = θ1 exp(−
θ2

2
‖x− x′‖2) + θ3 +

δx,x′

θ4
, (6)

where δx,x′ is the Kronecker delta function, and θY (v) =
(θ1, θ2, θ3, θ4) are the kernel hyperparameters. The param-

eter learning is performed by gradient-based minimization

of −log(p(Y(v)|X, θY (v))) w.r.t. θY (v) [21]. Then, condi-

tional probability for new inputs x∗ has the Gaussian form

p(y
(v)
∗ |x∗,X,Y(v)) = N (µ

y
(v)
∗

, σ
y
(v)
∗

) (7)

µ
y
(v)
∗

= kT
∗ (KY(v) + σ2I)−1Y(v) (8)

σ
y
(v)
∗

= k∗∗ + kT
∗ (KY(v) + σ2I)−1k∗ + σ2. (9)

The kernel values k∗ and k∗∗ are computed by applying

Eq.(6) to (X,x∗) and (x∗,x∗), respectively, and σ is the

noise on the outputs. We use the conditional model in

Eq.(7) to represent p(y(v)|x), v = 1, 2, in Eq.(3).

Projection mappings and sampling. To model the sam-

pling distribution p(x), the simplest choice is to assume a

Gaussian prior over the latent points x. However, sampling

from such an uninformative prior, would give rise to latent

representations that do not exploit the true nature of the in-

put data. To ameliorate this, we define the sampling distri-

bution so that it constraints the samples xs by conditioning

them on the inputs, i.e., p̃(x) = p(x|y(1),y(2)). This is mo-

tivated by the notion of back-constraints in [12], where this

type of conditional distribution is used to learn the map-

pings from input to latent space, and also ensures that dis-

tances between the outputs (in our case, {y(1),y(2)}) are

preserved in the manifold. We learn the conditional model

for p̃(x) using GPs, as done for the generative mappings.

The use of GP in the projection mappings allows us to eas-

ily combine multiple features within its kernel matrix as

KX = K
(1)
X + K

(2)
X , corresponding to the sum of the ker-

nel functions defined on y(1) and y(2), respectively. The

resulting conditional model p(x∗|y
(1)
∗

,y
(2)
∗ ), which is the

Gaussian distribution as in Eq.(7), is used for sampling.

Discriminative mappings. Since we are interested in de-

tection of activations of multiple AUs, we use the logistic

function [21] to model p(z|x). By assuming conditional in-

dependence given x, we can factorize this conditional as:

p(z|x,W) = p(z(1)|x,w1) . . . p(z
(C)|x,wC), (10)

p(z(c)|x,wc) =
1

1 + e−xTwcz(c)
, c = 1, . . . , C, (11)

where W = [w1, . . . ,wC ] ∈ Rq×C contains the weight

vectors of the individual functions. During inference, if

p(z
(c)
∗ |x∗) > 0.5, the c-th output is active, i.e., z

(c)
∗ = 1.

In the case of multi-class outputs (e.g., when modeling AU

intensities), the class conditional in Eq.(11) should be mod-

eled with multiple logistic functions.

3.3. Output Relational Constraints

Due to the possible large number of outputs, the topology

of the latent space need to be constrained in order to avoid

the model focusing on unimportant variation in the data.

We need, also, to encourage the model to produce similar

predictions for likely co-occurring outputs (e.g., AU6+12),

and dissimilar for some rarely co-occurring (e.g., AU12 and

AU17). Below we describe the construction of appropriate

constraints based on the output relations, and how these are

incorporated into the MC-LVM as additional regularizers.

Topological constraints. Herein, we define constraints that

encode co-occurrences of the output labels using the notion

of the graph Laplacian matrix [5]. The latter is defined as

L = D− S, where S is a N ×N similarity matrix, and D

is a diagonal matrix with Dii =
∑

j Sij . We define S in a

supervised fashion by measuring the similarity between the

output label vectors using string kernels [21] as:

S(x,x′) =
∑

l∈A

zTl,xzl,x′ , (12)



where A is the set of all possible 2C combinations of sub-

labels l for a given latent position, and zl,x denotes the num-

ber of times l appears in labels z of x. Note that by ac-

counting for all sub-labels, we measure the similarity of the

outputs based on all possible groups of AUs, and not only

on pairs. Then, using the expectation of the latent positions

from Eq. (4), we arrive at the Laplacian regularization term:

C = tr(XTLX) =

N
∑

i,j

S
∑

s=1

S
∑

t=1

Lijp(s, i)p(t, j)x
T
s xt.

(13)

Eq. (13) incurs higher penalty if latent projections of co-

occurring AUs are distant in the latent space.

Global relational constraint. In order for the MC-LVM

to fully benefit from the above topological constraint, it is

important to ensure that the model will produce similar pre-

dictions for frequently co-occurring AUs. For this, we in-

troduce the global relational regularizer as:

R = ‖PT
z Pz − ZT

0 Z0‖
2
F , (14)

where Pz = [p(z1|x1), . . . , p(zN |xN )]T are the predic-

tions from Eq.(11) for each xi from Eq.(4), and Z0
1 is the

true label set. Thus, the regularizer in Eq.(14), incurs a high

penalty if correlated outputs have dissimilar predictions.

3.4. Learning and Inference

The objective function of our model is the sum of the
complete data log-likelihood of the (weighted) joint distri-
bution in Eq.(2) penalized by the constraints in Eq.(13,14)

L(Θ) =

N∑

i=1

log

S∑

s=1

p(y(1)
,y

(2)|xs)
︸ ︷︷ ︸

p
g,i

1−α
p(z|xs)
︸ ︷︷ ︸

p
d,i

α−λCC−λRR,

(15)

where Θ = {θY (v) ,W}. Note that, in contrast to the stan-

dard ML optimization, we use the parameter α ∈ [0, 1]
to find an optimal balance between the generative (pg,i)

and discriminative (pd,i) components, as commonly used in

multi-conditional models [19]. The generative component

has the key role to unravel the latent space of the fused fea-

tures, while the discriminative component regularizes the

manifold by inducing to the space information regarding

the outputs’ relations. By finding optimal α, we restructure

the joint likelihood by allowing the model to concentrate its

modeling power on a conditional distribution of interest.

To optimize the objective in Eq.(15), we propose an EM-

based approach for parameter learning. In the E-step, we

find the expectation of the complete-data log-likelihood in

Eq.(15) under the posterior in Eq.(3), which is given by

Q(Θ,Θ(old)) =

N
∑

i=1

S
∑

s=1

p(s, i) log
(

p1−α
g,i pαd,i

)

, (16)

1The subscript 0 indicates the negative class.

Algorithm 1 MC-LVM: Learning and Inference

Learning

Inputs: D = (Y(v),Z), v = 1, . . . , V
Initialize X using PCA.

repeat

Stage 1

Learn p̃(x) = p(x|y(1),y(2)) by training the specified GP.

Draw S latent variables xs from p̃(x)
Stage 2

E-step: Use the current estimate of the parameters Θ(old)

to compute the membership probabilities in Eq. (3).

M-step: Update Θ by maximizing Eq. (17).

Stage 3

Update the latent space using Eq. (4)

until convergence of Eq. (17)

Outputs: X, Θ

Inference

Inputs: y(1)
∗

,y(2)
∗

Step 1: Find the projection x∗ to the latent space using Eq. (8).

Step 2: Apply the logistic functions from Eq. (11) to the ob-

tained embedding to compute the outputs z∗.

Output: z∗

where the membership probabilities, p(s, i), are computed

with Θ(old). In the M-step, we find Θ(new) by optimizing

Θ(new) = argmax
Θ

Q(Θ,Θ(old))−λCC −λRR, (17)

w.r.t. Θ using the conjugate gradient method [21].

The full training of the model is split into two stages,

where in each stage we compute p(x|y(1),y(2)) and

p(y(1),y(2), z|x) alternatively. First, we initialize the

latent coordinates X, using a dimensionality reduction

method, e.g., PCA. Then, we learn the sampling distribu-

tion p(x|y(1),y(2)) by training a GP on the projection map-

pings, as explained in Sec.3.2, and collect S samples from

the GP posterior. During the second stage, we employ the

EM algorithm described above to learn the parameters Θ.

Note that the constraints C and R implicitly depend on the

posterior, which is a function of the current Θ, hence, we

need to compute their derivatives w.r.t to Θ. Eq.(17) can be

optimized jointly [3] or separately [10] without violating

the EM-optimization scheme, since the updates from the

penalty terms do not affect the computation of the expec-

tation. After the M-step we refine our original estimate of

the latent space X, using Eq.(4). We iterate between stage 1

and 2 until convergence of the objective function in Eq.(17).

Inference: Inference in MC-LVM is straightforward. The

test data y
(1)
∗ ,y

(2)
∗ , are first projected onto the manifold us-

ing Eq.(7). In the second step, the activation of each output

is detected by applying the classifiers from Eq.(11) to the

obtained latent position. All this is summarized in Alg. 1.



4. Experiments

4.1. Datasets

We evaluate the proposed model on three publicly avail-

able datasets: Extended Cohn-Kanade (CK+) [13], UNBC-

McMaster Shoulder Pain Expression Archive (Shoulder-

pain) [15], and Denver Intensity of Spontaneous Facial Ac-

tions (DISFA) [18]. These are benchmark datasets of posed

(CK+), and spontaneous (Shoulder-pain, DISFA) data, con-

taining a large number of FACS coded AUs. Specifically,

CK+ contains 593 video recordings of 123 subjects display-

ing posed facial expressions in frontal views. The Shoulder-

pain dataset contains video recordings of 25 patients suffer-

ing from chronic shoulder pain while performing a range of

arm motion tests. Each frame is coded in terms of AU in-

tensity on a six-point ordinal scale. DISFA contains video

recordings of 27 subjects while watching YouTube videos.

Again, each frame is coded in terms of the AU intensity on a

six-point ordinal scale. For both DISFA and Shoulder-pain

we treated each AU with intensity larger than zero as active.

Fig. 2 depicts the AU relations, and the distribution of the

AU activations for the data used from each dataset.

Features: From images in each dataset, 49 fiducial fa-

cial points were extracted using the 2D Active Appearance

Model [17]. Based on these points, we registered the im-

ages to a reference face (average for each dataset) using an

affine transformation. As input to our model, we used both

geometric features, i.e., the registered facial points (feature

set I), and appearance features, i.e., Local Binary Patterns

(LBP) histograms [20] (feature set II) extracted around each

facial point from regions of 32×32 pixels. We chose these

features as they showed good performance in variety of AU

recognition tasks [24]. To reduce the dimensionality of the

extracted features we applied PCA, retaining 95% of the en-

ergy. This resulted in approximately 20D (geometric) and

40D (appearance) feature vectors, for each dataset.

Evaluation procedure. We evaluate MC-LVM on a subset

of highly correlated AUs, i.e., AUs (1, 2, 4, 6, 7, 12, 15, 17)

for CK+, AUs (1, 2, 4, 6, 12, 15, 17) for DISFA and AUs (4,

6, 7, 9, 10, 43), that according to the Prkachin and Solomon

formula [15], are associated with pain. We report F1 score

as the performance measure. In all our experiments, we

performed 5 fold subject independent cross validation.

Models compared. We compare the proposed MC-LVM to

GP methods with different learning strategy. Specifically,

we compare to the manifold relevance determination

(MRD) [6], which uses the variational approximation,

and the discriminative shared GP latent variable model

(DS-GPVLM) [8] and multi-task latent GP (MT-LGP) [28],

which perform exact ML learning. We also compare to

the multi-label backpropagation and kNN (k=1), i.e. the

BPMLL [31] and ML-KNN [32]. Lastly, we compare to

the state-of-the-art methods for multiple AU detection:
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Figure 2. The global AU relations (in terms of correlation coefficients)

(upper row), and the distribution of the AU activations within the used

datasets (lower row).

hierarchical RBM (HRBM) [29], lp-regularized multi-

task MKL (lp-MTMKL) [34] and joint patch multi-label

learning (JPML) [35]. For the single input methods,

we concatenated the two feature sets. For the kernel-

based methods, we used the RBF kernel (in lp-MTMKL

we also used the polynomial kernel). Due to the high

learning complexity of lp-MTMKL, we followed the

training scheme in [34] where AUs were split into groups:

{{AU1, AU2, AU4}, {AU6, AU7, AU12}, {AU15, AU17}} for

CK+, the same groups (without AU7) for DISFA, and

{AU4, AU43, AU7}, {AU6, AU9, AU10} for Shoulder-pain.

The parameters of each method were tuned as described in

the corresponding papers. For the MC-LVM, optimal α and

λC , λR parameters, as well as the size of the latent space

(set to 8D) were found via a validation procedure.

4.2. Qualitative Results

Fig.3 (left) shows the convergence of the learning crite-

rion in MC-LVM as a function of the used samples during

training on the CK+ dataset. We see that for small num-

ber of samples, the model does not converge to a minimum.

This is expected, since with few samples (100 − 500) the

posterior in Eq.(3) cannot be approximated well. By in-

creasing the number of samples to 1000, the model con-

verges, and does not change considerably after that. Thus,

we fixed the number of samples to 1000. Fig.3 (right) shows

the effect of changing α on the discriminative power of the

model, for all three datasets. We observe that the model

prefers a weighted conditional distribution, than fully se-

lecting the generative/discriminative component. The opti-

mal value of α is 0.6 for the posed, and 0.8 for the sponta-

neous data. This difference is because in the case of the nat-

uralistic data (DISFA, Shoulder-pain), the model puts less

focus on explaining the unnecessary (for the AU detection)

variations (e.g., head pose) of the input features. Therefore,

the influence of the generative component is lower (higher

α) than in the case of the posed expressions from CK+.
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Figure 3. The cost function of the MC-LVM for different number of sam-

ples used to estimate the posterior (left), and average F1 score for multiple

AU detection as a function of the regularization parameter α (right).

In Fig.4 (left) we see the effect of the introduced rela-

tional constraints on the model’s performance, on all three

datasets. At first we observe that when no regularization is

used (λC , λR = 0), MC-LVM achieves the lowest perfor-

mance for both posed and spontaneous data. By includ-

ing the topological constraint (λC 6= 0), MC-LVM un-

ravels a better representation of the data in the manifold,

which results in higher F1 scores. Finally, with the addi-

tion of the global relational constraint (λC , λR 6= 0) MC-

LVM achieves the highest scores. Note that the difference

is more pronounced in data from DISFA and Shoulder-pain,

which evidences the importance of modeling the global re-

lations for the detection of spontaneous (more subtle) AUs.

We continue by evaluating the effectiveness of the proposed

MC-LVM on the feature fusion task. To this end, we learn

the MC-LVM in single, and multi-input settings. Fig.4

(right) shows the average performance of the model on all

three datasets, for the different feature combinations. In the

single input case, we observe that, on average, geometric

features (I) outperform the appearance features (II) (apart

from DISFA where features (I) suffer from large variations

in head pose) in the task of multiple AU detection. This

is because, by concatenating the histograms obtained from

each patch, the local information of the data is lost, and

thus, the model obtains lower scores. However, when both

inputs are used, MC-LVM can unravel a shared latent space

with fused information from the global geometrical descrip-

tors and the local patch-related histograms. This results in

the highest F1 score, with significant improvement on the

spontaneous data of DISFA and Shoulder-pain.

4.3. Model Comparisons on Posed Data

We next compare the proposed MC-LVM to several

state-of-the-art methods on the posed data from CK+. We

first inspect the performance of MC-LVM and the GP-

related methods on the target task. From Table 1, the ML-

based methods, i.e., the MT-LGP [28] and DS-GPLVM [8],

achieve similar performance on average and per AU, since

they are based on the same learning scheme. On the other

hand, MRD [6], uses a variational distribution to approxi-

mate a manifold shared across multiple inputs and outputs,
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Figure 4. Average F1 score on all three datasets for different settings of

the proposed MC-LVM. The effect of the relational constraints (left), and

the feature fusion (right) to the joint AU detection task.

Table 1. F1 score for joint AU detection on CK+ dataset.

Methods (I+II) AU1 AU2 AU4 AU6 AU7 AU12 AU15 AU17 Avg.

MC-LVM 84.39 86.55 81.60 68.42 61.67 88.48 82.54 87.40 80.14

MC-LVM (SO) 86.06 88.37 82.93 70.80 57.27 87.16 73.26 85.57 78.93

MRD [6] 80.72 79.18 69.93 69.81 53.24 77.83 65.70 85.20 72.70

MT-LGP [28] 89.12 83.70 79.79 67.16 60.89 80.53 64.63 85.97 76.47

DS-GPLVM [8] 87.41 81.78 79.70 68.48 63.29 81.04 60.33 84.29 76.17

HRBM [29] 87.62 84.00 74.10 62.90 50.74 82.38 66.06 84.56 74.04

lp-MTMKL [34] 87.50 85.50 51.43 72.65 58.82 85.95 74.21 75.44 73.93

BPMLL [31] 75.41 84.31 64.85 69.14 64.34 83.98 69.50 76.25 73.47

ML-KNN [32] 76.83 84.34 63.28 67.23 53.19 82.88 65.88 78.71 71.54

JPML∗ [35] 91.2 96.5 - 75.6 50.9 80.4 76.8 80.1 78.8

without any constraints over the latent variables. By con-

trast, the combination of the approximate learning with the

relational constraints used in the proposed MC-LVM results

in a significant increase in the performance. We partly at-

tribute this to the explicit modeling of AU co-occurrences

through the introduced constraints, as well as the multi-

conditional learning using the proposed sampling scheme.

The importance of the latter is further evidenced in the per-

formance of the single output instance of MC-LVM, which

for the case of the posed data it achieves comparable scores

to the multi-output. Finally, the state-of-the-art models for

joint AU detection, i.e. the HRBM and lp-MTMKL, im-

prove the detection of specific AUs (AU1,6). Yet, they

achieve lower results compared to the proposed MC-LVM.

HRBM cannot handle simultaneously the fusion of the con-

catenated features and the modeling of the AU dependen-

cies using binary latent variables. lp-MTMKL, due to its

modeling complexity, it is trained on subsets of AUs (as

mentioned above) which affects its ability to capture all

AU relations. More importantly, in contrast to MC-LVM,

these two models lack the generative component, which, ev-

idently, acts as a powerful regularizer. The results of JPML

were obtained from [35], thus, they are not directly compa-

rable to the other models. Yet, we report its performance

as a reference to the state-of-the-art. The baseline models,

BPMLL and ML-KNN, report the lower average scores.

To demonstrate the model’s scalability when dealing

with large number of outputs, we compare the proposed ap-

proach to the state-of-the-art HRBM for joint AU detection

on all 17 AUs from CK+ (lp-MTMKL cannot be evaluated



Table 2. F1 score for joint AU detection (all 17) on CK+ dataset. Comparison to state-of-the-art.

Methods (I+II) AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU11 AU12 AU15 AU17 AU20 AU23 AU24 AU25 AU26 AU27 Avg.

MC-LVM 82.49 86.96 79.16 73.47 72.80 57.52 87.94 31.11 87.60 76.40 86.76 70.27 67.27 51.02 91.81 21.05 91.14 71.45

HRBM [29] 86.86 85.47 72.58 72.04 61.74 54.47 85.91 26.51 72.65 72.53 81.66 47.46 56.64 35.29 92.57 37.61 87.65 66.45

Table 3. F1 score for joint AU detection on DISFA and Shoulder-pain datasets.

Methods (I+II)
DISFA dataset Shoulder-pain dataset

AU1 AU2 AU4 AU6 AU12 AU15 AU17 Avg. AU4 AU6 AU7 AU9 AU10 AU43 Avg.

MC-LVM 58.55 62.99 72.85 52.32 84.74 49.44 48.63 61.36 47.20 97.75 67.88 37.13 58.23 72.51 63.45

MC-LVM (SO) 35.50 52.68 70.99 54.67 82.58 37.11 47.76 54.47 57.76 95.57 63.59 34.54 49.93 64.49 60.98

MT-LGP [28] 41.44 36.84 61.19 45.98 49.78 40.12 43.01 45.48 50.42 50.48 63.52 33.38 61.62 61.00 53.40

HRBM [29] 39.67 55.92 61.56 54.01 79.16 38.72 38.82 52.55 47.20 93.93 63.67 29.80 52.39 69.54 59.42

lp-MTMKL [34] 42.21 45.81 47.18 62.79 76.33 34.47 41.40 50.03 37.69 97.75 70.08 33.28 41.79 44.03 54.10

on this experiment due to its learning complexity). As we

can see in Table 2, modeling of the remaining (less frequent)

AUs affects the overall performance of both MC-LVM and

HRBM, which suffer a drop of 8.6% and 7.6%, respectively.

However, MC-LVM outperforms HRBM on 14 out of 17

AUs, which demonstrates the ability of the former to better

model the relations among AUs, even in a larger scale.

4.4. Model Comparisons on Spontaneous Data

We further investigate the models’ performance on spon-

taneous data from DISFA and Shoulder-pain. We focus

here on the best performing methods from Table 1. From

Table 3, we observe a significant drop in the performance

of all methods on both datasets. This evidences the diffi-

culty of the task of AU detection in realistic environments,

and demonstrates the difference between posed and sponta-

neous expressions. We also observe from Figure 2 that the

distribution of the activated AUs is more imbalanced than

the posed dataset. This imposes an additional challenge

since data for certain AUs (e.g., AU2,15 for DISFA, and

AU9,10 for Shoulder-pain) are limited compared to others,

and thus, the models need to give more emphasis on the AU

co-occurrences for their detection. Hence, the single output

MC-LVM reports low scores for the aforementioned AUs in

both datasets. On the other hand, with limited data the mod-

eling of the global AU relations is even harder task. HRBM

is adversely affected by this issue, and it performs close to

the single output model. lp-MTMKL, reports even lower

results (especially in Shoulder-pain), due to not modeling

global relations. MT-LGP fails to model explicitly the re-

lations between AUs, resulting in low scores. On the other

hand, it is evidenced that the proposed MC-LVM is more

robust to the data imbalance, and can better discover the

AU relations, which in turn gives the best average scores.

5. Discussion and Conclusions

We proposed a novel multi-conditional latent variable

model that exploits successfully the non-parametric proba-

bilistic framework of GPs to perform multi-conditional sub-

space learning for efficient feature fusion and joint AU de-

tection. By assuming conditional independence given the

subspace of AUs, MC-LVM allows each feature set to be

described via feature-specific GPs, resulting in more accu-

rate fusion in the manifold, and hence, more discriminative

features for the detection task. More importantly, the newly

introduced multi-conditional objective allows the genera-

tive and discriminative costs of the model to act in concert

– the generative component has the key role to unravel the

shared subspace of different feature sets, while the discrim-

inative component endows the subspace with the relational

information about the output labels. Consequently, this en-

ables MC-LVM to learn the structure of a discriminative

subspace that is optimized for multiple AU detection, while

being effectively regularized by the generative component.

We demonstrated the effectiveness of these properties on

three publicly available datasets by showing that the pro-

posed model outperforms the existing works for multiple

AU detection, and several methods for feature fusion and

multi-label learning. Finally, we showed that the proposed

MC-LVM scales well with a large number of AUs, without

significant increase in its computational complexity.

As evidenced by our experiments, the proposed joint in-

ference improves detection of most AUs and the overall per-

formance. Yet, sometimes this results in decreased detec-

tion performance on other AUs, when compared to single

output AU detectors. It would be interesting to investigate

how the subsets of strongly correlated AUs could efficiently

be detangled by learning subset-specific subspaces within

the proposed framework. Also, automatic balancing of the

conditional distributions in the model is another direction to

pursue. These are going to be the focus of our future work.
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