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Multi-conformation representation of Mpro identifies promising
candidates for drug repurposing against COVID-19
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Abstract

The COVID-19 main protease (Mpro), one of the conserved proteins of the novel coronavirus is crucial for its replication and so
is a very lucrative drug target. Till now, there is no drug molecule that has been convincingly identified as the inhibitor of the
function of this protein. The current pandemic situation demands a shortcut to quickly reach to a lead compound or a drug, which
may not be the best but might serve as an interim solution at least. Following this notion, the present investigation uses virtual
screening to find a molecule which is alraedy approved as a drug for some other disease but could be repurposed to inhibit Mpro.
The potential of the present method of work to identify such a molecule, which otherwise would have been missed out, lies in the
fact that instead of just using the crystallographically identified conformation of the receptor’s ligand binding pocket, molecular
dynamics generated ensemble of conformations has been used. It implicitly included the possibilities of “induced-fit” and/or
“population shift”mechanisms of ligand fitting. As a result, the investigation has not only identified antiviral drugs like ribavirin,
ritonavir, etc., but it has also captured a wide variety of drugs for various other diseases like amrubicin, cangrelor, desmopressin,
diosmin, etc. as the potent possibilities. Some of these ligands are versatile to form stable interactions with various different
conformations of the receptor and therefore have been statistically surfaced in the investigation. Overall the investigation offers a
wide range of compounds for further testing to confirm their scopes of applications to combat the COVID-19 pandemic.
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Introduction

COVID-19, the novel coronavirus (SARS-CoV-2), a member
of the class β-coronavirus, is the causal agent of the viral
pneumonia outbreak 2019–2020. The recent outbreak of this
highly transmissible airborne disease, first officially recorded
in Wuhan, China, and thereafter in many other countries all
around the world, has been declared as pandemic by WHO in
March 2020. As of January 13, 2021, more than 90 million
people are reported to be affected worldwide [1], and one can
suspect that the actual number of affected people is more than
that as many asymptomatic, yet infected people are not yet
tested. As the aforesaid virus is a novel member of the family
Coronaviridae, until now, targeted therapies against the virus
are scanty.

A number of proteins are encoded by the genome of this
RNA virus including 3-chymotrypsin-like protease (3CLpro)
or the main protease (Mpro), RNA-dependent RNA polymer-
ase, helicase, etc. [2]. Among these proteins, Mpro becomes a
very potential drug target because of a number of reasons [3,
4]. Replication and transcription of the virus are mediated by
two overlapping polyproteins pp1ab. A highly complex pro-
teolytic processing event of the polyproteins is catalyzed by
two proteases. Among the two proteases, Mpro is the key
enzyme which catalyzes the cleavage of the polyproteins at
11 sites conserved in SARS-CoV and SARS-CoV2.
Therefore, Mpro is essential for viral replication and is a lu-
crative drug target [5]. Another important feature is that
though the virus is verymuch prone to mutations,Mpro, being
a conserved protein throughout the Coronavirinae subfamily
is much less susceptible to frequent mutation. Therefore, de-
signing inhibitors against Mpro would be worthwhile for the
treatment of not only the SARS-CoV-2 but also for the entire
subfamily. Also, cleavage specificity of no human protease is
known tomatch with that ofMpro, thereby low or no inhibitor
toxicity for human proteases can be expected. The Mpro
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consists of 3 distinct structural domains made up of 13 β-
sheets and 11 α-helices (Fig. 1) [6]. Domain1 (residues 8–
101 shown in orange) and domain 2 (residues 102–184 shown
in green) comprised mostly of antiparallel β-barrel, with a
folding scaffold found in other viral proteases [7, 8].
Domain 3 comprising of α-helices (residues 201–306 shown
in red) is specific for CoVMpro. A loop of ~15 residues (185–
200 shown in purple) links domains 2 and 3. A H41–C145
catalytic dyad is present at the interface between domains 1
and 2 which hydrolyze the peptide bond at specific cleavage
sites in a series of steps. Imidazole group of H41 extracts the
side-chain proton of C145 resulting into thiolate nucleophile
which then attacks the amide bond of the substrate. As a result
of proton extraction, N-terminal portion releases from H41
which in turn releases the C-terminal portion restoring the
catalytic dyad. Therefore the inhibitors which perturb the
communication between the H41 and C145 would block the
catalytic cycle of the protein. N3 is a computationally
designed peptido-mimetic irreversible Michael acceptor in-
hibitor which has the capability to inhibit Mpro of not only
SARS-CoV2 but also other coronaviruses, including SARS-
CoV and MERS-CoV [9]. It acts as a natural target of Mpro
that forms a covalent bond with the catalytic site residue like
any Michael acceptor inhibitor, blocking the catalytic cycle of
the protein [10]. The inhibitor also showed antiviral activity
against bronchitis virus in an animal model [11]. The 50%
cytotoxicity concentration of the inhibitor is >133 μM [9].

Developing a new drug for a disease is a time-taking process.
While such processes of drug development are running, there is a
need of rapidly finding a rescue for the interim time. Repurposing
of pre-existing drugs for the still escalating disease which took
more than 1.9 million lives as of January 13, 2021, around the
globe is one of such faster andmore efficient approaches [12–15].

Continuous endeavor for the development of effective treatment
measures by researchers worldwide has suggested some potential
drugs for repurposing both in silico and experimentally. In
March 2020, the WHO commenced the “SOLIDARITY Trial”
of four prevailing antiviral drugs for targeting different proteins of
the virus on thousands of affected people in 10 countries to esti-
mate the treatment effects of the drugs. The drugs chloroquine and
hydroxychloroquine, ritonavir/lopinavirwith andwithout interfer-
on-beta, and remdesivir are presently under clinical trials of dif-
ferent phases [16]. Additionally, a number of antibodies, antivi-
rals, and various therapeutic compounds have been reported [2,
12–15, 17–28]. However, till date, none of these drugs or com-
pounds can be mentioned as part of the confirmed treatment
protocol for the disease.

Computer-aided drug designing (CADD) offers methods to
accelerate the search for possible lead compounds, and the virtual
screening of compounds with respect to a receptor is one of such
widely used methods [29–33]. The standard practice of such
screening is to use a conformation of the receptor as a reference
to find suitable ligands that fit in its binding pocket; the model of
the conformation may come either from experiment or from
computation or their combination. But in a real system, in prin-
ciple, all possible conformations are present, and therefore a
ligand can select the conformation of the receptor that it suits,
even if that is not the most probable conformation of the
uncomplexed/apo receptor, and then through a population shift,
the equilibrium can gradually shift towards the complex state.
Therefore, the use of one conformation of the receptor, even if it
is experimentally determined, can miss the ligands that would be
of higher binding affinity for another conformation of the bind-
ing pocket of the receptor. To overcome this limitation, a rela-
tively better approach is to use multiple conformations of the
receptors as the references for screening the ligands. In this work,

Fig. 1 Structure of Mpro. Domain 1, orange; domain 2, green; domain3, red. Domains 2 and 3 are connected by an unstructured loop shown in purple.
The catalytic site is magnified showing H41-C145 catalytic dyad
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starting from the experimentally determined structure, molecular
dynamic (MD) simulation-based conformational sampling has
been used to generate an ensemble of conformations, and from
that pool, fourteen different conformations of the receptors along
with the experimentally derived receptor were chosen for the
screening using the “DrugBank” database containing 2115
FDA-approved compounds [34].

Methods

Molecular dynamics simulation The uncomplexed (Apo)
structure was modeled by removing the ligand N3 from the
structure of the SARS-CoV-2 main protease (resolution
2.16 Å) having the PDB ID 6LU7 [9]. CHARMM36 force
field [35] and parameter set were used. The system was sol-
vated using a cubic water box of TIP3P [36] water model. K+

and Cl− ions were added to neutralize the overall charge of the
system and also to maintain a 0.15 M ionic concentration. The
energy minimization of the model and molecular dynamics
(MD) simulation were performed using NAMD2.12 package
[37], at 300 K, under NPT conditions, using a 2 fs time inte-
gration step, and the snapshots were saved at every 4 ps inter-
val. Heating and equilibration were followed by production
run. Short-range nonbonded interactions were truncated at
12 Å, whereas the long-range electrostatic interactions were
computed using the particle mesh Ewald (PME) method [38].
The pressure and the temperature were controlled using Nosé-
Hoover thermostat/barostat algorithm [39]. A 100 ns trajectory
was run. Before continuing with the docking procedure, the
trajectory was clustered skipping every alternate frame in
UCSF Chimera based on backbone RMSD of the protein with
default RMSD cutoff provided by the software [40]. Because
of the relatively large population of the first 14 clusters, central
frames of these clusters (named as frames 2–15) were selected.
The apo crystal structure (named as frame 1) along with frames
2–15 were selected for ensemble docking. (Fig. 2, Fig. S1).

Protein preparation Apo structures, one extracted from 6LU7
and the others selected from the MD simulations, were pre-
pared us ing the Pro te in Prepara t ion Wizard of
Schrödinger software suite 2019-1 release. Amino acid bond
orders were adjusted following the addition of missing hydro-
gen atoms. Epik was used to calibrate the protonation as well
as tautomeric states of Lys, Arg, Glu, Asp, and His to match
pH 7(± 2). Finally the geometry was refined by restrained
minimization with heavy atoms RMSD 0.3 Å.

Receptor grid generation A 20 Å 3D grid box of the prepared
receptors was defined keeping the important catalytic residues
in the center. van der Waals radius scaling and partial charge
cutoff were kept default.

Ligand preparation The downloaded DrugBank database [34]
andN3 ligand obtained from the complexwere prepared using
LigPrep without considering the protonation and ionization
states. Also no stereoisomers were generated.

High-throughput virtual screening (HTVS) and docking Using
the prepared receptors and the ligands from the DrugBank,
rigid HTVS was done in Glide [41, 42] version 8 with default
settings. Glide uses an empirical scoring function which has
been parameterized for separating binders from the
nonbinders in screening. The best 25% of the HTV-screened
ligands were used for SP (standard precision) docking.
Further, the best 25% of SP-docked ligands were taken for
XP (extra precision) docking [43]. In XP docking, a more
sophisticated scoring function is included so as to wipe out
the false-positive results which SP docking permits.

Binding free energy calculation The free energy of ligand
binding was calculated on the docked complexes using the
Prime MM-GBSA method implemented in the Schrödinger
software suite using default parameters. Prime MM-GBSA
calculated the OPLS2005 force field–based energies of each
system, using the VSGB2.0 implicit solvent model to account
for the solvation energy [44].

Results and discussion

Selection of the MD frames for screening The trajectory ob-
tained after the simulation was first visualized in VMD, and
no major deviation of the protein backbone from the starting
conformation was observed which was also reflected in the
root-mean-square deviation (RMSD) of Cα along the trajec-
tory (Fig. S1). From the cluster of conformations, the central
conformation of each of the top 14 clusters was selected for
screening, in addition to the one obtained from the PDB struc-
ture itself. The CαRMSD of each selected conformation, with
respect to the PDB structure (PDB ID: 6LU7), is listed in
Table 1. Although the overall backbone conformation of the
protein remained stable, yet in the catalytic site significant
variations in the amino acids side chain orientations were no-
ticed (Fig. 2, S2).

Noting the interactions between Mpro and N3 N3 was previ-
ously reported to interact with T24–T26, H41, M49, F140,
L141, G143-C145, H163–H164, M165, E166, P168, H172,
and D187-Q192 [19]. In the crystal structure, N3 has been
found to form a covalent bond with C145 [9]. Re-docking of
N3 in all the 15 frames using the docking pipeline crossed all
of the stages; among them, frame 1, which correspond to the
receptor’s conformation seen in the crystal stature, showed the
best XP g-score (−7.5 kcal mol−1), along with frame 2, as
listed in Table 1. When frames 1 and 2 are further compared
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in terms of the binding free energy, frame 1 appeared as the
best. Therefore, the positive control run successfully selected
the best receptor’s conformation for itself, being fully in
agreement with the experimentally determined conformation.
Visually, it was observed that the binding pose of N3 was
similar to that of crystal structure in multiple frames, and that
serves as the benchmark of the method and the capacity to
identify the best pair of receptor’s conformation and ligand
(Fig. 3a). The g-score of the 6LU7 was used as a reference to
find a ligand-drug with higher affinity. Ligand interaction
diagram (Fig. 3b, c) of the re-docked complexes revealed the
interaction of N3 with the catalytic dyad H41-C145 of the
active site. These are the key residues for a proteolytic process
where the thiol group of the C145 acts as nucleophile [45]. N3
was also found to form a hydrogen bond with N142, G143,
E166, and Q189 and salt bridge with E166 in different frames
(Fig. 3b, c). The salt bridge formation between N3 and Mpro
is very important because E166 is known to have a crucial role

in the dimerization of Mpro by associating the binding site
with dimer interface, and that is necessary for the catalytic
function of the protein [31].

Shortlisting the ligandsThe top-scoring ligands obtained from
XP docking were analyzed to find their type and strength of
interactions. Such a blind screening listed 78 ligands from the
entire database, which had scores better than N3 in at least one
of the 15 frames of the receptor. Among them, there were a
number of dyeing agents, food additives, supplements, and
some nondrug molecules which were eliminated from the list;
for obvious reasons, the drug molecules approved for topical
application were also eliminated. This knowledge-based scru-
tiny yielded a shortlist of 49 compounds (Table S1, Fig. S3).
Since the N3 itself showed a very similar or very close value
of the dock scores in multiple frames, e.g., frames 1, 2, and 4,
the short listed compounds which were present in at least 20%
of the frames, i.e., 3 frames, were further identified (Table S2)

Fig. 2 (a) Differences in the side-
chain orientation of some impor-
tant residues present within the
catalytic site shown with some
representative snapshots chosen
for screening (frame 3 and 9). The
conformations are distinguished
by the coloring schemes; among
them, the pink color refers to
6LU7. (b) and (c) Interaction of
N3 with Mpro in frames 3 and
9 respectively
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Table 1 Cα RMSD (with respect
to the 6LU7) of the conformations
chosen for the screening. The
ligand N3, as found from the
crystallized complex (6LU7), was
also docked to all other frames to
get the reference score for all the
frames

Frame index referred to in the
screening

RMSD with respect to
6LU7 (Å)

XP g-score of N3
(kcal mol−1)

Binding free energy
(kcal mol−1)

1( 6LU7) 0 −7.5 −82.4

2 1.324 −7.5 −78.9

3 0.998 −6.9 −75.7

4 1.122 −7.0 −93.2

5 1.338 −3.7 −74.8

6 0.857 −5.0 −74.5

7 1.143 −6.7 −83.1

8 0.097 −4.5 −70.6

9 1.324 −2.2 −70.0

10 1.452 −3.7 −48.2

11 1.326 −3.1 −81.4

12 1.507 −5.1 −66.1

13 1.848 −4.5 −78.4

14 2.516 −5.6 −72.8

15 2.185 −5.6 −71.4

Fig. 3 a) Superposition of N3
docked in the catalytic site in
different frames. The
conformations are distinguished
by the coloring scheme. The
crystalized conformationl of
the receptor is shown in pink, and
that of N3 is shown in green. (b)
and (c) 2D diagrams of the
interactions between Mpro and
N3. The residues are coloured
according to their nature of
sidechain: hydrophobic (green)
color, positively charged (blue),
negatively charged (red), other
polar groups (sky blue), and gly-
cine (white)
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which resulted a list 23 compounds. In this list, 9 more com-
pounds were added, which otherwise got eliminated due to
shortfall in the number of frames in which they appeared.
The reason of adding those compounds in the list was that
they were biochemically and/or functionally close to one or
more of those 23 compounds. For example, doxorubicin and
valrubicin (Table 1, Serial no. 13 and 30, respectively) were
present in 3 frames each, but three other, rubicins amrubicin,
daunorubicin, and idarubicin were left out because of their
presence in less number of frames; they were added in
Table 2 because of their biochemical and functional similarity
with doxorubicin and valrubicin.

From this list, the ligands which were present in at least 3
frames were elaborated further in with the details of their

interaction pattern with Mpro (Fig. S3). Interestingly for most
of the compounds, the H-bond and salt bridge with E166 were
common indicating that they might have the capability to dis-
rupt the dimerization on Mpro which is important for
performing the catalytic function [31]. A number of the
screened drugs were found to interact with H41. The H-
bonds and/or other interactions between H41 and different
ligands could be argued to disrupt the interaction of the
H41-C145 catalytic dyad rendering Mpro unable to perform
its catalytic function.

Complexes from screening The Mpro, which was derived
from crystal structure 6LU7 by eliminating N3, identified ri-
tonavir as a promising drug candidate although the g-score

Table 2 Top-scoring ligands with
their best XP g-score, number of
frames in which they were found,
and corresponding binding free
energy

Serial no. Name of drug No. of frames
where present

Highest g-score Binding free energy in the
highest-scoring frame (kcal mol−1)

1 Almasilate 6 −7.9 82.74

2 Amrubicin 2 −7.3 −74.27

3 Arbutamine 3 −8.9 −73.89

4 Cangrelor 11 −8.4 −47.83

5 Carbetocin 6 −8.0 −81.32

6 Cefixime 1 −7.8 −43.27

7 Cefpiramide 5 −8.1 −77.76

8 Ceftolozane 3 −8.9 −73.4

9 Daunorubicin 1 −6.8 −65.1

10 Desmopressin 11 −9.9 −59.36

11 Diosmin 9 −10.3 −55.58

12 Dobutamine 1 −8.2 −74.9

13 Doxorubicin 3 −7.7 −73.7

14 Droxidopa 5 −7.8 −44.7

15 Enviomycin 2 −7.8 −42.1

16 Felypressin 9 −8.9 −86.8

17 Idarubicin 1 −6.2 −56.9

18 Kanamycin 2 −7.9 −46.8

19 Lymecycline 4 −8.0 −73.31

20 Mitoxantrone 3 −9.3 −79.8

21 Novobiocin 2 −8.0 −74.3

22 Polydatin 5 −8.1 −66.0

23 Regadenoson 6 −7.7 −54.8

24 Ribavirin 4 −7.1 −29.9

25 Risedronate 6 −7.9 −21.34

26 Sofosbuvir 1 −7.3 −75.7

27 Terlipressin 3 −9.8 −84.2

28 Ritonavir 1 −7.6 −73.1

29 Tigecycline 3 −7.3 −67.2

30 Valrubicin 3 −8.1 −85.6

31 Zanamivir 1 −7.8 −46.0

32 Zoledronic acid 4 −7.7 −16.3
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was lesser than a number of other hits. The score − 7.6
kcalmol−1 however was almost the same as N3; nevertheless,
the identification of ritonavir provides a confidence to this
computed prediction as the ligand is currently under discus-
sion everywhere. The interaction pattern of ritonavir with res-
idues of Mpro as depicted in Fig. 4 revealed this ligand also
interacts with the catalytic site residues especially H41-C145
catalytic dyad forming π-π stacking interaction with H41
which might disrupt the communication between the dyad
residues. In addition to ritonavir, a number of antivirals along
with antibiotics, vasodilators, antineoplastic drugs like differ-
ent rubicins, drugs used to treat circulatory diseases, drugs for
bone diseases, etc. were found as top-scoring ligands in dif-
ferent frames (Table 2).

Antivirals like ribavirin, sofosbuvir, zanamivir,
penciclovir, saquinavir, ganciclovir, and cidofovir were
found, some of them having known protease inhibitor proper-
ties. Most of the ligands were found in a single frame or in
multiple frames with very low g-score (data not shown). All
these drugs though have been found as potent Mpro inhibitors
in other studies [46–51]; here, only ribavirin, which is pres-
ently under phase II clinical trial, was found in 4 frames, the g-
scores being less than N3 and ritonavir (Table S3). The score
of ribavirin was the highest in frame 6 (−7.179 kcal mol−1),
and plausibly is due to the formation of H-bonds with residues
R188 and T190 in this frame but not elsewhere (Fig. S5a).
Further, in the lowest-scoring frame, i.e., in frame 13, the NH2

group of the ligand was not involved in the formation of H-
bondwith any residues of the catalytic site (Fig. S5b). Binding
free energy for all the frames ranging between −29 and −39
kcal mol−1was much lower compared to that of other ligands.
The reason of a low g-score and binding free energy could be
attributed to a smaller size of the ligand which leads to lesser
accessibility to catalytic site residues.

Several antibiotics are presently being used to treat differ-
ent viruses including SARS-CoV [52, 53]. Azithromycin is
being used to treat COVID-19 but possibly to prevent second-
ary infections and may not be interfering with the components
of the virus [53]. The antibiotics screened in this work,
enviomycin, lymecycline, novobiocin, kanamycin, tigecyc-
line, cefpiramide, ceftolozane, and cefixime, have been al-
ready known to be used as antivirals as well as for lung dis-
eases. Lymecycline, which has been found as an inhibitor for
Mpro in different studies, was identified in 4 frames. There
was π-π interaction between lymecycline and H41only in the
highest-scoring frame, i.e., frame 2 (Table S4, Fig. S6a). Also,
H-bond and salt bridge are formed between E166 and NH3

+

and NH2
+ group of the ligand in this frame while in other

frames salt bridge was formed with NH2
+ group (Fig. S6b).

The salt bridge between NH2
+ group of the ligand and E166

might be considered as capable of stabilizing the ligand within
the catalytic site of Mpro, but it can be stated that the involve-
ment of both NH2

+and NH3
+in the formation of salt bridge as

well as H-bond with E166 led to better stabilization as well as
optimization of the ligand resulting the best g-score as well as
binding free energy (Table S4). Cefpiramide, present in 5
frames, was found to have the best score in frame 7. In this
frame, H-bonds were more in number. Additionally two salt
bridges were formed with H41 and E47 (Fig. S6c).
Tigecycline was found in 3 frames g-scores varying between
−6.9 and −7.3 kcal mol−1. Salt bridge was present between the
NH2

+ group of the ligand and E166 in all frames. Only in the
highest-scoring frame, there was a cation-π interaction with
H163 (Fig. S6d). The highest score of ceftolozane though is
better than N3 (−8.9 kcal mol−1); in other three frames, the
scores were much less than N3, the lowest being −4.8
kcal mol−1. Only in the highest-scoring frame there was a salt
bridge and π-π stacking interaction between H41 and the

Fig. 4 Orientation and interactions of ritonavir in the catalytic site: (a) 2D ligand interaction diagram that shows stacking interaction between ligand and
H41 (green), (b) 3D orientation of the ligand in the same conformation. The color scheme followed Fig. 1
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ligand (Fig. S6e). In lowest-scoring frame in addition to H41,
salt bridge was formed between the NH3

+ group of the ligand
and E166 which might have over-stabilized the ligand
resulting in a low g-score (Fig. S6f). Binding free energies
for all the antibiotics were in agreement with the g-scores
(Table S4). The rest of the antibiotics, though with g-scores
better than N3, were found in less number of frames, and
therefore they were not discussed here in detail.

Among the top-scoring ligands, rubicins, the anthracycline
antineoplastic antibiotics were found in 6 frames. Previous
studies have reported some of the resulted rubicins to have
in vitro effect to the replication of other viruses though their
protease-inhibiting capacity was not clear [54–56]. These
drugs along with the detail of their interactions have been
listed in Table S5. Most of the drugs had g-scores greater than
or very similar to N3. Among the 3 frames in which

Fig. 5 2D ligand interaction diagram and 3D orientation of the diosmin
are shown in (a) and (b) respectively for the highest scoring frame.
Cation-π (red) and π-π (green) interactions among the ligand and H41

of Mpro in lowest frame 3D orientation of the ligands, and functional
groups involved in the interaction are different in the highest- (b) and
lowest (b)-scoring frames. Color scheme followed Fig. 1
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doxorubicin was found, g-scores in frame 4 (−7.4 kcal mol−1)
and 13 (−7.7 kcal mol−1) were mostly similar with the score of
apo-N3 while in frame 8, it was less than N3 (−6.4 kcal mol−1)
and it was seen in the ligand interaction diagram that in this
frame, there were both cation-π and π-π interactions with H41
(Fig. S7b) while in the highest-scoring frame (frame 13), there
was only π-π interaction with H41 (Fig. S7a). Also in the
lowest-scoring frame, E166 was forming two H-bonds with
the ligand in contrast to no H-bonds between E166 and the
ligand in the highest-scoring frame. Valrubicin was found in
frames 3, 7, and 13 among which scores in the first two frames
were higher than N3 (−7.7 kcal mol−1and − 8.1 kcal mol−1,
respectively) (Table S5). Only in the lowest-scoring frame (−5
kcal mol−1) π-π interactions with H172 were found (Fig.

S7d). In both the above rubicins, binding free energies were
in harmony with the respective g-scores (Table S5). Other
rubicins, daunorubicin and idarubicin, were found in frame
4, but their g-scores were less than N3. Both of them were
found to form salt bridges as well as H-bonds with E166 (data
not shown).

One crucial reason for fatality in COVID-19 patients is
venous thromboembolism [57–61]. The use of drugs that in-
hibit intravenous clotting like heparin and tissue plasminogen
activator along with other drugs have already been disclosed
as more effective [62–66]. In the present investigation, cardio-
vascular drugs like cangrelor and diosmin were found in more
than 50% of the frames and imparted in more rigorous inter-
actions in MD-generated receptor frames suggesting

Fig. 6 2D ligand interaction diagram and 3D orientation of cangrelor are
shown in (a) and (b) respectively for the highest scoring frame, which
reveal the H-bond between PO4 group of the ligand and the catalytic site

residues. The same for the lowest scoring frame are shown in (c) and (d)
which show the salt bridge between K137 and PO4 group.. Color scheme
followed Fig. 1
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optimization of the complexes. Residues involved in the in-
teractions with diosmin and cangrelor in different frames are
furnished in Tables S6 and S6, respectively. Among the dif-
ferent plant flavonoids reported as SARS-CoV-2 inhibitor,
diosmin has been reported in several studies [67–71]. In our
multi-conformation-based screening study, diosmin, an anti-
coagulant, was found in 9 frames, the highest and lowest being
frames 10 (−10.266 kcal mol−1) and 6 (−7.517 kcal mol−1),
respectively (Table S6). In the ligand interaction diagram, it
was seen that there were cation-π and π-π interactions among
the ligand and H41 of Mpro in the lowest frame (Fig. 5c).

Binding free energy of lowest-scoring frame was however
more or less similar to that of the highest-scoring frame. The
ligand orientation within the binding pocket varied in the
highest and the lowest-scoring frames. L167 was forming H-
bond with the ligand in the lowest-scoring frame. While g-
scores of diosmin in most of the frames were more than or
near the values of N3, scores of cangrelor, another cardiovas-
cular drug, were mostly less than that of N3 (Table S7). In 2
out of 11 frames, the value was more than that of N3. H41 was
found to form salt bridges with the molecule in all the frames
except in the lowest one. The orientation of the ligand was

Fig. 7 2D ligand interaction diagram and 3D orientation of regadenoson
are shown in (a) and (b) respectively for the highest scoring frame. The
same for the lowest scoring frame are shown in (c) and (d). The higher

number of H-bonds and the involvement of –OH group in case of highest
scoring frame compared to the lowest scoring frame are notable. Color
scheme followed Fig. 1
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different in the highest and lowest-scoring frames. In the
highest-scoring frame, side chains E166 and K137 were ori-
ented towards the outer side of the catalytic side, so they were
not involved in the H-bonding (Fig. 6b). The PO4-containing
group of the ligand was forming H-bonds with the catalytic
site residues. Cl− of the ligand was also involved in the inter-
action in the highest-scoring frame. On the contrary, in the
lowest-scoring frame, K137 was oriented towards the ligand
and was forming salt bridge with the PO4 group (Fig. 6c, d).
E166 was also involved in forming H-bond with the ligand.
Regadenoson was screened in 6 out of 15 frames. Details of
catalytic site residues involved in the interaction with this drug

as depicted in Table S8 showed the g-scores were less than
N3, the lowest and highest being −5.156 and -7.678 kcal mol−1,
respectively. The number of H-bonds were more in the highest-
scoring frame (frame 7), and the –OH groups of the ligand were
involved in H-bond formation (Fig. 7a) while in the lowest-
scoring frame (frame 11), the –OH groups were not forming
H-bonds (Fig. 7c). Binding free energies of cangrelor and
regadenoson were not consistent with the g-scores. It can be
argued that the best pose of a ligandmight not result in the lowest
binding free energy as the type of interactions could alter the
fitting of the ligand. Again, the poses with lowest binding free
energy might be associated with over-stabilization of the ligands

Fig. 8 2D ligand interaction diagram and 3D orientation of desmopressin
are shown in (a) and (b) respectively for the highest-scoring frame which
show that T190 and Q192 are involved in H-bonds. The same shown for

the lowest-scoring frame in (c) and (d) reveal that those H-bonds are
missing. Color scheme followed Fig. 1
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resulting in perturbation of the optimal functionality of the
ligand.

Three vasodilators desmopressin, felypressin, and
terlipressin, were screened as Mpro inhibitors among which
desmopressin and felypressin were found in 11 and 10 frames,
respectively. Though there was no experimental evidence of
antiviral effects of the pressins, felypressin has been found as
an inhibitor of the dengue virus in silico [72]. Details of inter-
actions of desmopressin and felypressin are given in Table S9
and S10, respectively. Side-chain orientations of catalytic site

residues of Mpro and also the ligand desmopressin in the
highest (frame 4) and lowest (frame 11) scoring frames were
different (Fig. 8). In frame 4, N119 and N142 were not in-
volved in H-bonds while T190 and Q192 were forming H-
bonds with the ligand (Fig. 8a, b). In this frame, T190 and
Q192 were not oriented towards the ligand in frame 11 and
thus were not involved in H-bonds formation. XP g-scores of
felypressin were the highest and lowest in frames 4 and 13,
respectively (Table S10). The number of H-bonds between
ligand and Mpro was much higher in frame 4 especially with

Fig. 9 2D ligand interaction diagram and the 3D orientation of
felypressin are shown in (a) and (b) respectively for the highest-scoring
frame which reveal the H-bond and salt bridge between NH3

+ and

E166. The same for the lowest-scoring frame are shown in (c) and (d)
which find the H-bond formed between NH2

+and E166. Color scheme
followed Fig. 1
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E166 (Fig. 9a, c). Also salt bridges were present between
E166 of Mpro and one of the NH3

+ of the ligand in frame 4.
One of the NH2 instead of NH3

+was forming H-bond with E166
in frame 13, and H41 was forming H-bond with the ligand (Fig.
9b, d). The ligand was nearer to side chain of C44 in frame 13
where there was an H-bond between C44 and ligand, but in
frame 4, the ligand was away from C44, and also the orientation
of C44 was different. The side chains of T190 and Q192 were
oriented towards the ligand in frame 4 but were away from the
ligand in frame 13. As a result, H-bonds between the residues
were found in frame 4 but not in frame 13 (Fig. 9b, d). In the
case of the highest-scoring frame of terlipressin (frame 1), like
previous two pressins, one of the NH3

+ group of the ligand was
forming H-bond as well as salt bridge with E166 (Table S11,
Fig. S9a). In the lowest-scoring frame, there was no salt bridge
between the ligand and Mpro (Fig. S9b). Binding free energies
were in correspondence with the g-scores.

In addition to the above-discussed groups of drugs, a few
drugs with different functions were found (Table 2). Some of
them have been found as Mpro inhibitor in different studies
[73–75]. Out of these drugs, almasilate, though found in 6
frames, is a buffering antacid; thereby, its chance of entering
into the bloodstream is very less likely. Therefore, this drug
has not been discussed in detail here. Also the binding free
energies of the ligand were very low in different frames.
Imami et al., with their transcriptome-based approach, have
shown that carbetocin, the analogue of oxytocin, has an im-
pact on the induction of immune response in COVID-19 [73].
Here, carbetocin was found as an Mpro inhibitor in 6 frames
(Table S12) among which in the highest-scoring frame, the
number of protein-ligandH-bondswas muchmore than that in
other frames which might have resulted in the lowest binding
free energy. Risedronate and zoledronic acid, drugs for the
treatment of osteoporosis and other bone diseases, were found
in 4 and 6 frames, respectively. Both of the ligands possess O−

groups which were found to be involved in the formation of
salt bridge with H41 (Table S12). In the case of zoledronic
acid, additionally cation-π and π-π stacking interactions with
H41 were seen. The binding free energy of these ligands was
very low compared to that of others ranging from ~ −2 to −21
kcalmol−1. Polydatin, a picecid, used in various diseases like
anti-arrhythmia drug and potassium channel modulator, was
found as a probable Mpro inhibitor in previous studies [74,
75]. Here the ligand was found to be buried in the catalytic
pocket of Mpro in the highest-scoring ligand while in the
lowest-scoring one, a smaller number of residues were accessi-
ble (Table S12). Arbutamine and dobutamine, the drugs to treat
cardiogenic shock, were found in frames 1 and 3, respectively.
Low scoring frames of arbutamine showed covalent interac-
tions with E166 which were not found in the highest-scoring
frame. Rather in the highest-scoring frame, there was a
π-π stacking interaction with H41. The binding free energy
was highest in this frame. H41 of Mpro was found to form a

π-π stacking and/or cation-π interaction, and E166 was in-
volved in salt bridge formation with droxidopa, a norepineph-
rine prodrug, in all frames except the highest-scoring one
(frame 6). Mitoxantrone, an antineoplastic drug, was obtained
in 3 frames among which a number of protein-ligand H-bonds
were least in the highest-scoring frame (Table S12). The bind-
ing free energies of droxidopa and mitoxantrone were in har-
mony with the g-scores. It can be stated that more protein-
ligand interaction might sometimes result in over-stabilization
of the ligands which might alter the optimal function of the
ligand. Some of the drugs discussed in this paragraph were
detected as an inhibitor of Mpro in previous studies, most of
them being in silico. These drugs could be tested further exper-
imentally. Modification of functional groups of the rest of the
drugs might result into new compounds with the capability to
inhibit Mpro.

The dock score of N3 was taken as reference, which is
experimentally known to bind to Mpro and used it to
shortlist the hits with scores better than N3. This was
done with the expectation that it would be able to identify
the ligand at least having similar interaction pattern with
desired biochemical activity and then would carry some
additional features that might increase the probability of
success rate of the prediction. The present virtual screen-
ing and MM-GBSA-based approaches have revealed a
number of FDA-approved drugs which have Mpro affinity
above the cutoff of N3 scores. Almost all the top-scoring
drugs were forming hydrogen bonds with the catalytic site
residues H41, M49, F140, L141, G143-C145, H163–164,
M165, E166, P168, H172, and D187-N192, the same con-
tact points seen in the N3 complex. Though not all, some
of the identified drugs have already proven antiviral
effects.

Variation in the g-scores and binding free energy for the
same ligand in different frames were due to differences in
the interactions and packing of the ligand inside the catalyt-
ic site. There have been some exceptions in the trends of the
g-scores and the binding free energies, which otherwise
reflected the correlation in their trends, i.e., the good g-
score did not correspond to promising binding affinity in
some cases which indicated the need of some advanced
method of refinement. But in this work, shortlisting of li-
gands by either of the scoring methods was the goal, and as
that was achieved, the strict match between g-score and
binding free energy was not aspired. Again the consonance
of binding free energy with the g-score in most of the li-
gands has confirmed that the particular pattern of interaction
in the best scoring ligands resulted in the lowest binding free
energies. Also, it was evident that the usage of multiple
conformations for screening resulted in some molecules
which might have been rejected if a single conformation
would have been used because of relatively lower g-score
and binding free energy.
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Conclusions

A list of FDA-approved drugs have been obtained through
virtual screening with the promise to inhibit Mpro of
COVID-19. The N3 molecule is already known to bind to
Mpro, which is reported as its co-crystallized ligand. The
binding score of N3 has been used as a reference, and the
ligands with scores better than this are plausibly expected to
bind to Mpro with higher affinity. The scores of the docking
and also the computed binding free energies are best
interpreted in a relative scale, instead of debating on the abso-
lute values. The use of ensemble representation of the recep-
tor’s conformation has implicitly covered the possibilities of
“induced-fit” and/or “population shift” mechanisms that the
ligands might adapt to fit in the pocket, and therefore this
method has been powerful to identify a wide variety of li-
gands, and many of which would have been otherwise missed
out. It has not only identified antiviral drugs like ribavirin,
ritonavir, etc., but it has also identified the drugs used in var-
ious other diseases, e.g., amrubicin, cangrelor, desmopressin,
diosmin, etc. as the potential candidates to inhibit Mpro. The
screened drugs might have a cumulative inhibitory effect on
the viral multiplication and pathogenesis. Functional group
modification of the drugs might lead to better binding affinity
with Mpro. Top-scoring ligands with correlating binding free
energies could be considered for persuasion of further tests
and designing inhibitors against the viral protein.
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