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Abstract

Background: Low-resolution images may be acquired in magnetic resonance imaging (MRI) due to limited data

acquisition time or other physical constraints, and their resolutions can be improved with super-resolution methods.

Since MRI can offer images of an object with different contrasts, e.g., T1-weighted or T2-weighted, the shared

information between inter-contrast images can be used to benefit super-resolution.

Methods: In this study, an MRI image super-resolution approach to enhance in-plane resolution is proposed by

exploring the statistical information estimated from another contrast MRI image that shares similar anatomical

structures. We assume some edge structures are shown both in T1-weighted and T2-weighted MRI brain images

acquired of the same subject, and the proposed approach aims to recover such kind of structures to generate a

high-resolution image from its low-resolution counterpart.

Results: The statistical information produces a local weight of image that are found to be nearly invariant to the

image contrast and thus this weight can be used to transfer the shared information from one contrast to another.

We analyze this property with comprehensive mathematics as well as numerical experiments.

Conclusion: Experimental results demonstrate that the image quality of low-resolution images can be remarkably

improved with the proposed method if this weight is borrowed from a high resolution image with another contrast.
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Background
In MRI, low-resolution (LR) images may be acquired in

applications, e.g., functional MRI [1, 2] and diffusion

tensor imaging [3, 4], due to limited data acquisition

time or other physical constraints. High-resolution (HR)

images appear favorable to perform subsequent posterior

image processing and visualization [5]. Super-resolution

methods are widely utilized to improve image resolution

[6–10]. Typical methods include sparse representations

[6–8], projection onto convex sets (POCS) [9], tensor

frames [10], etc. However, these methods need numer-

ous iterations to accomplish super-resolution, thus they

inevitably lead to high computational costs. For MRI,

since a great number of images have to be processed,

fast and stable methods are desired. Recently, the prior

information of MRI has been explored in super-

resolution. For example, (a) redundant information pro-

duced by sub-pixel spatial shifts between multiple images

[3], (b) space homogeneity constraint from orthogonal

anisotropic acquisitions [2], and (c) the learned dictionary

with a nature of the orthogonality [11] have been

employed to refine structural details and edges. Besides,

image contrast can also be utilized to produce sharper im-

ages [12]. However, these methods may not lead to faithful

super-resolution results when multiple-shifted images are

inapplicable or the information is very limited within a

single image. Thus, one may expect other prior informa-

tion beyond a single image.

Multi-contrast images are frequently acquired in MRI

experiments [13]. For example, plentiful edge structures

are visible both in T1-weighted and T2-weighted brain

images of the same subject. According to the principles
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of MRI [14], we pick up T1 or T2 weighted signal

denoted by SI and take the form

SI∝ ρ Hð Þ 1−e−TR=T1
� �

e−TE=T2
� �

ð1Þ

where ρ(H) refers to the proton density, TR is the repe-

tition time and TE is the echo time. There are different

TR value and TE value within a section of medical tissue

that would result in multiple contrast images. Yet, these

images share the proton density of the subject so that

they largely share similar anatomical structures but with

different contrasts in regions. The shared information

between inter-contrast images can be considered to

benefit super-resolution. Therefore, it is possible to im-

prove the LR image resolution by incorporating prior in-

formation from the different contrast image in HR.

Rousseau proposed a patch-based iterative framework

combining with non-local similarity to share information

among multiple contrast images in [15], and later many

more detailed analysis was studied in [16]. A constraint

that the downsampled version of the reconstructed LR

data must be equal to the original LR data is imposed in

the iterative framework [5]. The non-local similarity is

also measured with both voxel intensity and gradient in-

tensity in super-resolution [17]. However, these methods

require training sets or time-consuming iteration

processing.

New edge-directed interpolation (NEDI) [18] is a fast

and statistical super-resolution method for a single

image. It estimates local covariance coefficients from a

LR image and assumes that this statistical information is

also valid for the corresponding HR image. A pixel of

the HR image is interpolated by performing the linear

regression of neighboring pixels, which originate from

the LR image. This regression process is based on non-

iterative operations, thus the super-resolution can be per-

formed fast. The NEDI provides a nice way of analyzing stat-

istical information in the image super-resolution. Some

recent methods [19–21] also use regressions to improve the

image resolution and achieve remarkable performances.

However, these methods train hundreds of external images

prior to recovering structural details, and require plenty of

computations. Due to the nice statistical property and low

computation time of NEDI, in this work, we extend it into

the multi-contrast image super-resolution and demonstrate

its superior performance on MRI images.

We will explore how to incorporate the statistics

from one image into another contrast image. Regres-

sion weights, estimated from a HR image in one con-

trast, and neighboring pixels around the interpolated

location in the LR image of another contrast work to-

gether to generate a new pixel value. The fact that

neighbors are provided by the LR image itself can offer

a guarantee and support for the consistent contrast be-

tween the LR one and the interpolated result. Mathematical

Fig. 1 Interpolation process in NEDI. a Generating regression weights by 1-pixel-width overlap patches (with moving from left to right and from

top to bottom) inside a local region; b Interpolating a new pixel γ by multiplying neighbors and 4 regression weights estimated from (a)

Fig. 2 A toy example of multi-contrast images of size 9×9. a-f share the same structure but have different intensities
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analysis and experimental evidence will be presented to ad-

dress a fundamental question of why these weights between

two contrast images constitute faithful criteria. Then, the

proposed approach probes the information both from a LR

image and its corresponding HR image in another contrast.

Our method will be compared with the classic bicubic

method, NEDI method [18], and the state-of-the-art

contrast-guided interpolation (CGI) method [12] in terms of

objective-evaluation criteria and visual perceptions.

The remainder of this article is organized as follows:

In section II, we briefly review basic concepts of NEDI.

In section III, we derive conditions that must be satisfied

in our method. Experimental results and discussions will

be presented in sections IV. Finally, concluding remarks

are made in section V.

Method

Brief review of NEDI

In NEDI, regression weights are estimated in a local re-

gion then target pixels are calculated as a linear regres-

sion of neighbors [18]. Thus, it is crucial to determine

the regression weights in the interpolation. Within a

neighborhood, four neighbors are commonly used in

NEDI, and consequently there are four regression

weights for one pixel interpolation.

The interpolation process is shown in Fig. 1. The

NEDI uses patches in the local region to estimate regres-

sion weights bj(j = 1, 2, 3, 4) (Fig. 1a). The variable n (i =

1, ⋅ ⋅ ⋅, n) denotes the number of patches and each patch

is composed of one pixel yi and its four neighbors xi,j along

diagonal directions. Then, the target pixel γ is obtained by

multiplying neighbors and their weights (Fig. 1b).

The basic regression model (Fig. 1a) applied in our

work is

yi ¼ b1xi;1 þ b2xi;2 þ b3xi;3 þ b4xi;4 þ εi ; ð2Þ

where εi is the residual error. By continually sampling in

a 9 × 9 region, a vector y = [y1,⋯, y49]
T
∈ ℝ

49 is formed

to represent pixels in this region and meanwhile a

matrix X = [x1,⋯, x49] ∈ ℝ
49 × 4, whose column xi

contains four neighbors of yi, is formed to represent all

neighboring pixels around those pixels of y.

Assuming the image pixel values in a local region satisfy

a locally stationary Gaussian process [18], the regression

weight b ¼ b1 b2 b3 b4½ �T is estimated according to

min
b

y−Xbk k2; ð3Þ

and its solution is

b ¼ XTX
� �−1

XTy
� �

: ð4Þ

The above analysis can be also interpreted from the

classical Wiener filtering theory. Let R = (XTX)− 1
∈ ℝ

4 × 4

represents a covariance between two arbitrary members

of the four nearest neighbors, r =XTy ∈ ℝ4 represents a

covariance between the center-pixel and the one of the

four nearest neighbors around it, the optimal coefficients

can be found by

b ¼ R−1r: ð5Þ

Multi-contrast image super-resolution

In the proposed method, a HR image of one contrast is

assumed to be available for interpolating a LR image of

another contrast. This assumption is reasonable since

multi-contrast images are always available in MRI exper-

iments [5, 7, 13].

The regression weights bi for the ith pixel, borrowed

from one contrast HR image according to Eq. (4), is in-

corporated into the interpolation of the LR image in an-

other contrast. Interpolated pixels ỹi of an expected HR

image are given by

~yi ¼ bi
T si ð6Þ

where the vector si includes four pixels of the LR

image that are the nearest neighbors along diagonal

directions of the ith pixel in the center. This means

we assume that the HR image in Fig. 1a is in one

contrast and the LR image in Fig. 1b is in another con-

trast. Then bi is estimated from Fig. 1a and si comes from

Table 1 Regression weights for synthetic images shown in Fig. 2

Fig. 2a Fig. 2b Fig. 2c Fig. 2d Fig. 2e Fig. 2f

( Ωp, Ωq) (0, 0.78) (0.39, 0.78) (0.76, 0.78) (0.78, 0.76) (0.78, 0.39) (0.78, 0)

b [0.50;0.00; 0.00; 0.50] [0.50;0.00; 0.00; 0.50] [0.50;0.00; 0.00; 0.50] [0.50;0.00; 0.00; 0.50] [0.50;0.00; 0.00; 0.50] [0.50;0.00; 0.00; 0.50]

∑j = 1
4 bj 1.00 1.00 1.00 1.00 1.00 1.00

Table 2 Regression weights in regions of zoom for same anatomical structures shown in Fig. 3

Fig. 3a Fig. 3b Fig. 3c Fig. 3d

b [−0.19;0.70;0.55;−0.07] [−0.15;0.68;0.53;−0.06] [−0.18;0.68;0.59;−0.09] [−0.05;0.56; 0.53;−0.04]

∑j = 1
4 bj 0.99 1.00 1.00 1.00
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Fig. 1b. Therefore, this new approach absorbs prior infor-

mation from the HR image in one contrast and maintains

the data consistency of LR image in another contrast.

To facilitate following discussion, intensities of images

are all normalized between 0 and 1. Furthermore, we as-

sume that multi-contrast images are well registered be-

fore super-resolution.

Weights in multi-contrast images

For example, multi-contrast images (Fig. 2) share similar

anatomical structures but are with different intensities in

sub-regions.

An interesting phenomenon is that, regression weights for

different contrast images in Fig. 2 are nearly the same

(Table 1). The same observation is also found (Table 2) for

MRI images generated from the BrainWeb [22] that embody

more complex structures (Figs. 3a–d). However, regression

weights (Table 3) will be totally different if images do not

share the similar anatomical structures (Figs. 3a, e–g). These

observations convey important information: The regression

weights obtained using the least square estimation is nearly

invariant to image contrasts. If this is possible, one may eas-

ily employ the information from another contrast image by

making use of these weights.

Besides, one may find that the sum of weights in each

vector is approximately 1 (Tables 1, 2 and 3). We will

analyze this property with comprehensive mathematics

and empirical tests on MRI images. This property will

be an important foundation to derive similar regression

weights for multi-contrast images.

Sum of weights is approximately equal to 1

Suppose there are n central pixels, by adding n opera-

tions in a local region, Eq. (2) is written as

Xn

i¼1
yi ¼ b1

Xn

i¼1
xi;1 þ b2

Xn

i¼1
xi;2

þ b3
Xn

i¼1
xi;3 þ b4

Xn

i¼1
xi;4

þ
Xn

i¼1
εi : ð7Þ

Here, εi is assumed to satisfy the normal distribution, i.e.,

εi~ N(μi, σ
2). The variable μi is the mean and σ

2 is the vari-

ance associated with εi. Then we can easily have ∑i = 1
n

εi

= ∑i = 1
n

μi + ∑i = 1
n

ε′, where there exists εi
′
∼N(0, σ2).

Next, according to the principle of the law of large number,

meaning that sufficient central pixels are sampled, one has

Xn

i¼1
yi ¼ b1

Xn

i¼1
xi;1 þ b2

Xn

i¼1
xi;2

þ b3
Xn

i¼1
xi;3 þ b4

Xn

i¼1
xi;4

þ
Xn

i¼1
μi ; ð8Þ

where ∑i = 1
n

μi is a fairly small constant. Then, given that

∑i = 1
n xi,1, ∑i = 1

n xi,2 , ∑i = 1
n xi,3 , ∑i = 1

n xi,4 and ∑i = 1
n yi are equal

to one another, one can obtain that the sum of weights

follows

X4

j¼1
bj≈1: ð9Þ

We verify this property that sum of weights is approxi-

mately equal to 1 on MRI images. Statistical analysis in

Fig. 4 show that most of ∑j = 1
4 bj are very close to 1 for

Fig. 3 Sub-regions with same or different anatomical structures in synthetic MRI images in (a-g)

Table 3 Regression weights in regions of zoom for different anatomical structures shown in Fig. 3

Images Fig. 3a Fig. 3e Fig. 3f Fig. 3g

b [−0.19;0.70; 0.55;−0.07] [0.44;0.04; 0.03;0.49] [0.22;0.23; 0.33;0.21] [−0.95;1.45; −0.72;1.21]

∑j = 1
4 bj 0.99 1.00 0.99 0.99
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tested images. In each image, the range of ∑j = 1
4 bj lies be-

tween 0.95 and 1.05 can cover above 95% pixels of local

regions.

An explanation on why sum of weights is nearly 1

is given. As shown in Fig. 5a, the red solid

wireframe indicates the local region of size 9 × 9. In-

side this region, all upper left pixels xj(j = 1) come

from the pixels in the marked region X1 in Fig. 5c.

In the same way, the upper right xj(j = 2), bottom

left xj(j = 3) and bottom right xj(j = 4) will be from

Fig. 4 Sum of weights (i.e., ∑j = 1
4 bj) on MRI data. The vertical axis represents the percentage that the estimation values of ∑j = 1

4 bj lies in the

corresponding values in the horizontal axis. a-b list the frequency of ∑j = 1
4 bj for simulated images (i.e., Fig. 3a and b). c-d list the frequency of ∑j = 1

4 bj for

real images (i.e., Fig. 9a and b)

Fig. 5 An illustration of ∑j = 1
4 bj ≈ 1. a A synthetic image of size 256 × 256 in which the red solid wireframe draws out a local region of size 9 × 9; b

Repeated pixels of each xj and y are indicated by an arrow; Collections of all of pixels from xj and y were displayed in (c-g) respectively
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X2, X3 and X4, respectively. Meanwhile, the central

pixels y are extracted from the marked region in

Fig. 5g. Thus, we can see abundantly repeated pixels

(suggestion of an arrow in Fig. 5b) are in these vec-

tors. When the repeated pixels account for a big pro-

portion in the region with a sufficiently large size, the

sum of pixel value in each vector comes near to one

another, implying that ∑i = 1
n xi,1 = ∑i = 1

n xi,2 = ∑i = 1
n xi,3 = ∑i

= 1
nxi,4. Then, one can infer that sum of weights can

be nearly 1 in Eq. (9).

Shared weights in multi-contrast images

In this section, the case where the weights in one image

are close to those of another contrast image will be

analyzed.

Regression weights within a small region are deter-

mined mostly by the main edge direction in it. These

weights are mainly estimated from similar image

patches located on edges. In the sense of least square,

the influence of contrast on weights regression is very

limited since multiplication of a linear system of

equations by a constant factor does not change its so-

lution. For example, in Fig. 6a and b, one can see

that corresponding regions in the T1 image (Fig. 6a)

and T2 images (Fig. 6b) generate similar weights

(Table 4).

The mathematical analysis on weights is simplified as

listed below:

Weights error meets the following equation (see the

derivation of Eq. (A.6) in the Additional file 1: Appendix

for details)

~b−b
�

�

�

�

2
≤ ~X

þ
y−Xbð Þ

�

�

�

�

�

�

2
þ ~X

þ
d−Cbð Þ

�

�

�

�

�

�

2
: ð10Þ

Regression weights are estimated by continually sam-

pling 3 × 3 patches in a 9 × 9 region, and each patch is

composed of one pixel yi and its 4 neighbors xi,j(j = 1, 2,

3, 4) along diagonal directions. Consequently, the vector

y = [y1, ⋯, yi, ⋯, y49]
T
∈ ℝ

49 denotes pixels in this re-

gion and the matrix X = [x1, ⋯, xi, ⋯, x49]
T
∈ ℝ

49 × 4

stands for all neighboring pixels around those pixels of

y. Here, X (or ~X ) is the column-full-rank matrix and

their generalized inversions are represented by X+ and ~X
þ
,

respectively. In addition, there are the vector d = ỹ − y ∈ℝ49

and the matrix C ¼ ~X−X∈ℝ49�4.

We measure the right hand of Eq. (10) on real MRI

images at different regions and observations are sum-

marized in Fig. 7. First, most of ~X
þ
y−Xbð Þ

�

�

�

�

�

�

2
are

very close to 0 (Fig. 7a). Besides, most of

~X
þ

d′
−C′b

� �

�

�

�

�

�

�

2
is close to 0 (Fig. 7b). Therefore, the

left hand of Eq. (10) approaches to 0 in most regions,

implying that b≈~b . This conclusion is confirmed in

Fig. 7c, showing that almost 84% of ~b−b
�

�

�

�

2
lies in

small values (in the range [0, 0.25]) for the tested

multi-contrast MRI images.

Results and discussions

In experiments, we verify our approach on realistic

T1-weighted and T2-weighted brain MRI images.

256 × 256 T1 and T2 HR images in Fig. 9 are from

Philips Company. The T1 (TR = 170 ms, TE = 3.9 ms)

and T2 (TR = 3000 ms, TE = 80 ms) datasets are ac-

quired with Fast Field Echo (FFE) sequence (FOV =

Fig. 6 Regression weights within local regions of T1-weighted and T2-weighted MRI images. a is the T1-weighted image; b is the T2-weighted

image. Two pairs of image region of size 9 × 9 (enclosed in wireframes, marked as S1 and S2) are extracted from (a) and (b). Note: The data are

acquired on a 3 T SIMENS scanner

Table 4 Regression weights for T1-weighted and T2-weighted

images

Source images Regression weights b

S1 S2

T1 [−0.10; 0.56; 0.71; −0.16] [0.76; −0.26; −0.06; 0.53]

T2 [−0.04; 0.54; 0.60; −0.07] [0.76; −0.26; −0.19; 0.65]
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230 × 230 mm2, slice thickness = 5.0 mm). The FFE

sequence is a steady state gradient echo sequence

acquired from Philips Company. The name of FFE is

the trade name in Philips Company, and its common

name is SSFP-FID. Corresponding trade name of this

sequence in Siemens Company is FISP and in GE

Company is GRASS. Figure 10 and Fig. 11 are ac-

quired at a 3 T Siemens Trio Tim MRI scanner

using a turbo spin echo sequence (FOV = 230 ×

187 mm2, slice thickness = 5.0 mm) and the matrix

size of T1 (TR = 2000 ms, TE = 9.7 ms) and T2 (TR

= 5000 ms, TE = 97 ms) HR images is 384 × 324.

Super-resolution experiments

Before conducting the interpolation simulation, HR im-

ages are first blurred by 3 × 3 Gaussian smooth filter

with standard deviation 0.5 and then down-sampled by a

factor of 2 to obtain their LR versions as listed in Fig. 8.

The LR image will be expanded as large as the HR refer-

ence by using the basic nearest neighbor interpolation.

Then these interpolated pixels will be updated using the

proposed approach.

The proposed method aims to recover edge details

of LR brain image. We only borrow the weight from

another HR contrast image if a pixel in the ex-

panded LR image is located on an edge. In our

work, a pixel is declared to be an edge pixel if the

local variance within the nearest neighbors is above

a given threshold (=0.0001, under the condition of

intensities of images are all normalized between 0

and 1). We set the same value of the threshold in all

experiments. Although, in some locations, it is not

enough to satisfy the property of weights similarity,

they only take a very small proportion of the total

and are not processed specially in the proposed

method.

The proposed approach is compared with the bicu-

bic method, NEDI [18], and CGI [12]. The CGI

method is used to guide the interpolation process by

conducting directional filtering and achieves superior

Fig. 7 Error of regression weights on real MRI images. Weights are estimated within each pair of regions at multi-contrast images. The vertical axis

represents the percentage that estimation values lies in the range of the horizontal axis. a-c list the frequency that ~X
þ
y−Xbð Þ

�

�

�

�

�

�

2
, ~X

þ
d−Cbð Þ

�

�

�

�

�

�

2

and ~b−b
�

�

�

�

2
occurs in the range of the horizontal axis in (a-c), respectively

Fig. 8 Input images. The original HR T2-weighted vision of (a) is acquired on a 3 T Philips scanner; Original HR T2-weighted visions of (b) and (c)

are acquired on a 3 T SIMENS scanner
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results compared to traditional interpolation tech-

niques and other state-of-the-art edge-guided image

interpolation methods. Three objective criteria, Peak

Signal-to-Noise Ratio (PSNR), the Structural Similar-

ity (SSIM) [23] and the relative l2 norm error

(RLNE), are used to quantitatively measure the

supper-resolution performance. The higher PSNR in-

dicates that the reconstructed pixel value is more

consistent to the original HR image and the higher

SSIM implies better image structures are preserved.

Also, the lower RLNE implies better consistency to

the original HR image.

For the proposed method, we set the region size as

9 × 9. Within each region, 3 × 3 size patches with 1-

pixel-width overlap between adjacent patches is set to

maximally explore the statics in the local region.

These are typical settings in the original NEDI

method and works well for tested images. For CGI,

default parameters are used in the shared source

code.

First pair of images in Fig. 9 clearly show the ad-

vantage of employing the statistical information from

a HR image in another contrast. Blocky artifacts in

Fig. 9c are obviously generated using the classic

bicubic method. The NEDI method outperforms the

bicubic method since sharper edges are observed in

Fig. 9d. The CGI method recovers brain boundaries

in Fig. 9e much better than NEDI. Most promising

edges (Fig. 9f ) are produced by the proposed

approach.

For another two pairs of images acquired on a 3 T

MRI scanner in Figs. 10 and 11, it can also be ob-

served that there are many artifacts around some

edges (seeing arrows) by the bicubic method. Such ar-

tifacts can be reduced by interpolation of using NEDI

and CGI, and the proposed method still produces

most faithful edges.

The CGI obtains higher PSNR and SSIM and lower

RLNE than both NEDI and the classic bicubic. The best

objective criteria are achieved by the proposed approach

as listed in Table 5. These criteria are consistent to the

image quality analyzed above.

Sensitivity to the Misregistration

To evaluate how the misalignment affects the accuracy

of the reconstruction result, we shift reference images

Fig. 9 One pair of T1 and T2 MRI images acquired on 3 T Philips scanner. a HR of T2; b HR of T1; c the bicubic; d NEDI; e CGI; f the

proposed method
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Fig. 10 One pair of T1 and T2 MRI images acquired on 3 T Siemens scanner. a HR of T2 image; b HR of T1 image; c-f are super-resolved images

using the bicubic, NEDI, CGI, and the proposed method, respectively

Fig. 11 Another pair of T1 and T2 MRI images acquired on 3 T Siemens scanner. a HR of T2 image; b HR of T1 image; c-f are super-resolved

images using the bicubic, NEDI, CGI, and the proposed method, respectively

Zheng et al. BMC Medical Imaging  (2017) 17:6 Page 9 of 13



along different directions (e.g., slant, anti-slant, verti-

cal and horizontal) by a certain amount of pixels [5].

First, we compute the evaluation criteria of CGI and

the proposed method using the ground truth HR

image and the interpolated HR images; Second, each

number in Table 6 is obtained by subtracting the

evaluation criteria of the CGI from of the proposed

method and is referred as “the improvement of the

PSNR or SSIM or RLNE”. The positive number means

that the proposed method outperforms CGI method,

implying better tolerance of image misregistration.

From Table 6, one can see that, under 1 to 2-pixel-

shift, the proposed method holds advantage over CGI.

One slice of the brain image in Fig. 11 is used in

simulation.

Structural distinction in T1 and T2

In MRI, T1 and T2 images have some distinct signal

intensity that may cause structural distinctions

appeared. For example, a structure can be visible

clearly in the T2 image and is embodied too little in

the T1 image (Fig. 10a and b, arrow B), or, in turn, a

structure can be visible in T1 image and is embodied

too little in the T2 image (Fig. 10a and b, arrow A).

These distinct structures may be lesions or normal

organisms but are not ghosts. This is normal

phenomenon in MRI.

As discussed in Super-resolution experiments, we

know estimated weights are nearly invariant to image

contrasts. Therefore, the super-resolution still can

work decently. Fig. 12 demonstrates the proposed

method produces structures consistent with the

ground-truth. For example, if a structure is observed

on the reference but not on the ground-truth HR

image, the proposed approach will not introduce the

structure into the reconstruction (Fig. 12, arrow A).

Other structures, which are found on the ground-

truth image but not on the reference, can be recov-

ered faithfully (Fig. 12, arrow B). These recovered

structures are not reproduced correctly as well as in

the ground-truth image, and appear blurrier than its

vision in the ground-truth image.

Image denoising

We agree that the noise is not obviously presented in

the tested brain imaging datasets. But the proposed

method has the ability to suppress noise since regres-

sion weights are estimated according to the least

square rule, which intrinsically has the ability to sup-

press noise.

To further elaborate the noise removal, the noise at

common levels (1, 3 and 5% of the maximum inten-

sity) [24, 25] is added into the ground-truth image.

Results of 3% noise in Fig. 13 imply that reducing the

region size to 5 × 5 or increase to be larger than 9 × 9

will reduce the PSNR, SSIM and increase the recon-

struction error, RLNE. Therefore, a region size of 7 ×

7 or 9 × 9 is suggested to optimally suppress the

noise. For other noise levels, trend curves of objective

criteria are similar with Fig. 13 and come to the same

conclusion.

We also comment that if the serious noise that may

injury the interpolation result, noise removal before the

Table 5 PSNR/SSIM/RLNE evaluation for different methods

Images The bicubic NEDI CGI The proposed

Fig. 9 28.55/0.8738/0.1159 31.55/0.9117/0.0820 31.79/0.9168/0.0798 31.90/0.9190/0.0788

Fig. 10 30.67/0.9121/0.1532 33.12/0.9347/0.1155 33.73/0.9396/0.1077 33.89/0.9400/0.1057

Fig. 11 29.39/0.8986/0.1767 32.60/0.9282/0.1221 33.09/0.9341/0.1155 33.15/0.9345/0.1146

Fig. A1 29.38/0.9067/0.1800 31.26/0.9389/0.1451 31.81/0.9446/0.1362 32.17/0.9466/0.1306

Fig. A2 28.50/0.8849/0.1819 30.74/0.9196/0.1405 31.21/0.9260/0.1331 31.32/0.9262/0.1314

Table 6 Improvements of PSNR/SSIM/RLNE compared with CGI method showed in Fig. 11

Pixels
to
move

Directions of move

Slant Anti-slant Vertical Horizontal

0 +0.06/+0.0004/+0.0009

1 +0.10/+0.0004/+0.0014 +0.05/+0.0003/+0.0007 +0.04/+0.0002/+0.0006 +0.07/+0.0006/+0.0010

2 +0.08/+0.0001/+0.0011 −0.05/−0.0007/−0.0006 −0.0003/−0.0001/0 +0.03/0/+0.0004

3 +0.06/−0.0006/+0.0009 −0.39/−0.0033/−0.0053 −0.05/−0.0005/−0.0005 −0.25/−0.0022/−0.0034

4 −1.04/−0.0081/−0.0145 −1.57/−0.0111/−0.0229 −0.51/–0.0039/−0.0069 −1.29/−0.0092/−0.0184
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interpolation should be accomplished. This is beyond

the scope of this work and we leave this as the future

work.

Computation time

Our method is implemented with MATLAB on a

personal computer with Dual-Core CPU 3.00GHz

and 2GB memory. The computation time of the pro-

posed method is very close to NEDI, and costs

around 10 s.

Conclusions

An MRI image super-resolution approach is proposed to

employ the statistical information retrieved from another

contrast MRI image that shares similar anatomical struc-

tures. It is found that local regression weights are very

similar among multi-contrast MRI images. This property

is analyzed with comprehensive mathematics and experi-

mental evidence. Experiment results demonstrate that

the image quality of the low-resolution image can be

truly improved if the contrast-invariant weight is bor-

rowed from the high resolution image of another con-

trast. In the future, we plan to further improve the

sharpness of edges and textures by utilizing sparse

representation [26–29] and local geometric directions

[30–32]. The code of this work is available at http://

www.quxiaobo.org/project/MultiContrastMRI/Toolbox

_MultiContrastMRI_Superresolution.zip.

Highlights

� Multi-contrast MR images share similar anatomical

structures, e.g., the T1-weighted and the T2-weighted

images.

� Regression weights are found to be similar among

multi-contrast images.

� Comprehensive mathematics and numerical

experiments are presented trying to analyze the

weights-similarity property.

� Regression weights are learnt from another contrast

high-resolution MRI image.

� An MRI image super-resolution approach using

local regression weights is proposed.

� Compared with classic state-of-the-art interpolation

techniques, the performance of the proposed

method is remarkably improved.

Fig. 12 Super-resolution of structural distinctions. a The HR of T2 image (the ground-truth); b The HR T1 image (the reference); c The proposed

Fig. 13 Effects of noise with various region sizes. Note: To simulate the 3% Rician noise, the zero mean Gaussian noise are added to real and

imaginary parts of T2-weighted images, respectively. (a-c) are PSNR, SSIM and RLNE, respectively

Zheng et al. BMC Medical Imaging  (2017) 17:6 Page 11 of 13
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Additional file 1: Detailed formula derivations, analysis of regression

weight in completely opposite contrast images, and more super-resolved

MRI images. (DOCX 1215 kb)
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