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ABSTRACT Load forecasting is critical for power system operation and market planning. With the

increased penetration of renewable energy and the massive consumption of electric energy, improving load

forecasting accuracy has become a difficult task. Recently, it was demonstrated that deep learning models

perform well for short-term load forecasting (STLF). However, prior research has demonstrated that the

hybrid deep learning model outperforms the single model. We propose a hybrid neural network in this article

that combines elements of a convolutional neural network (1D-CNN) and a long short memory network

(LSTM) in novel ways. Multiple independent 1D-CNNs are used to extract load, calendar, and weather

features from the proposed hybrid model, while LSTM is used to learn time patterns. This architecture is

referred to as a CNN-LSTM network with multiple heads (MCNN-LSTM). To demonstrate the proposed

hybrid deep learning model’s superior performance, the proposed method is applied to Ireland’s load data for

single-step and multi-step load forecasting. In comparison to the widely used CNN-LSTM hybrid model,

the proposed model improved single-step prediction by 16.73% and 24-step load prediction by 20.33%.

Additionally, we use the Maine dataset to verify the proposed model’s generalizability.

INDEX TERMS short-term load forecast, deep learning, multi-head CNN-LSTM, multi-step load predic-

tion.

I. INTRODUCTION

E
Lectricity is a significant secondary energy source that

has a sizable impact on both the national economy

and daily life. With large-scale renewable energy connected

to the power grid, we can expand the use of renewable

resources, which has a number of benefits. However, there are

additional complications associated with power distribution

and dispatch. Short-term load forecasting (STLF) enables

the generation of detailed forecasts for a time period that is

critical for supply unit optimization, economy dispatch, and

market transactions [1]. A detailed and reliable STLF enables

the power system to operate safely and efficiently.

Due to the complexity of the factors affecting STLF, such

as historical load curves, weather conditions, and calendar ef-

fects, staying on schedule is more difficult than ever. Numer-

ous weather research experiments are currently being con-

ducted to examine the four critical STLF variables: temper-

ature, humidity, wind speed, and air pressures. Mukhopad-

hyay et al [2] incorporated temperature and relative humidity

into the load forecasting model. Friedrich and Afshari [3]

included wind speed in their load forecasting model. Because

the weather is influenced by both climate and geography,

some of its forecast parameters are non-relational. Correla-

tions between weather parameters and load data must be de-

termined in order to determine which parameters (variables)

to measure [4].The calendar effect was used to characterize

the cyclical and seasonal variation in electricity consump-

tion [5]. People’s production and daily lifestyle changes can

affect their energy consumption patterns, resulting in daily

or weekly changes in the power load. Numerous calendar-

dependent input features were incorporated into the load

forecasting model to emphasize the importance of calendar
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variables via coding techniques.

Historically, a variety of load forecasting algorithms were

employed to determine historical loads and load-related

characteristics and produced accurate prediction results. Re-

cently, deep learning models based on long short mem-

ory networks (LSTMs) and convolutional neural networks

(CNNs) have been applied to anticipate wind energy gener-

ation, photovoltaic energy generation, and load forecasting.

Their predicting abilities have been demonstrated to be su-

perior to those of conventional shallow neural networks and

machine learning techniques. The LSTM model accurately

captures the time series’ pattern information, whereas the

CNN model extracts valuable features from the time series

without requiring domain expertise. LSTMs are excellent at

extracting temporal features, while CNNs are excellent at

extracting spatial features [6]. Thus, by integrating the tech-

nological advantages of the two models, forecasting accuracy

can be increased.

The periodicity of electric load and the effect of weather

parameters on electric load are discussed in this paper. As

input features, periodic calendar coding and weather param-

eters (temperature and humidity) are used. Different from

other hybrid models of CNN and LSTM [7], [8], we pro-

pose a novel combined architecture of CNN and LSTM for

STLF. We use three independent 1-dimensional convolution

heads to extract historical load features, calendar features

and weather features, and fuse the features into LSTM layer.

This hybrid model is called multi-head CNN-LSTM(MCNN-

LSTM). The independent convolutional head can concentrate

on the input data, which can aid in feature extraction, and

each independent convolutional head can finely tune the

parameters to adapt to the feature extraction. At the same

time, it can avoid the slow fitting speed caused by the increase

of input feature dimension, thus reducing the training time.

Currently, most of the methods used in deep learning focus

operate on single-step load forecasting, while power market

participants rely on multi-step forecasting. For multi-step

load forecasting, we also utilize the proposed multi-input

multi-output model. The main contributions of this paper are

as follows:

1. We propose a novel MCNN-LSTM hybrid deep learning

model for short-term load forecasting.

2. We compare the proposed model’s performance to that

of other machine learning models and deep learning models,

demonstrating the model’s validity.

3. We use polar coordinates coding to encode calendar

variables, and analyze the impact of calendar coding on load

forecasting at different time steps.

The rest of this paper is organized as follows. Section II

describes related forecasting techniques. Section III details

the basic framework of MCNN-LSTM hybrid deep learning

model. Section IV gives the evaluation indicators of STLF

model. Section V contains data processing and simulation

analysis of experiments. Section VI presents the conclusions.

II. RELATED WORK

STLF methods can be divided into two categories: statistical

methods and artificial intelligence (AI) methods. The main

statistical methods are linear regression (LR) [9], multiple

linear regression (MLR) [10], auto regressive moving av-

erage (ARIMA) [11]. The goal of statistical methods is

to measure changes in both current and past load series

to establish a mathematical relationship. While time series

correlation is considered, it is difficult to attain the requisite

forecasting accuracy when working with non-stationary load

series due to their inherent restrictions [1]. Because of the

introduction of random and intermittent energy sources in

the grid, the traditional statistical approach does not work for

the complex load curve. The use of machine learning models

that overcame the shortcoming of statistical methods in STLF

models were widely implemented for this class of problems,

including support vector machine (SVM) [12], [13], light

gradient boosting machine (LightGBM) [14] and artificial

neural network(ANN) [15]–[17]. SVM’s primary methodol-

ogy is based on the principle of structural risk minimization.

While SVM’s time series performance is a strength, the ac-

curacy with which the parameters are chosen has an effect on

performance. LightGBM is a promotion model for gradient

boosted decision trees (GBDTs) that allows for equal gains

in speed and accuracy. ANN makes it much easier to track

the relationship between input and output variables due to

the nonlinear processing. The ANN combined with a multi-

layer perceptron (MLP) has become one of the most widely

used load forecasting algorithms. However, the freedom of

an ANN is constrained by its initial conditions and increases

as the model becomes more complex, resulting in overfitting

or underfitting [17].

This is a new type of machine learning application known

as deep learning. In comparison to the shallow network, big

data and unsupervised learning have garnered considerable

interest. Deep learning, particularly convolutional neural net-

works (CNN), has aided in the study of STLF [18], [19]

and long-term memory network(LSTM) [20], [21]. CNN’s

local connection and global sharing capabilities significantly

reduce the model’s training parameters and training time,

with some organizations utilizing CNN for load prediction.

Dong et al [22] used CNN and K-means clustering to process

large-scale power load data. Cai et al [23] used gated CNN

to forecast the short-term power consumption of commer-

cial buildings, which has the best performance compared

with gated recurrent neural network and seasonal ARIMAX.

LSTM is a recurrent neural network, which is suitable for

processing time series. Rahman and Zubair [24] presented

a method of applying LSTM with data construction method

for hourly electric load forecasting. Bedi and Toshniwal [25]

proposed a deep learning framework based on LSTM to

forecast electricity demand by learning history data depen-

dencies. Sometimes a single model is not competent for all

tasks, and deep learning is no exception. In order to take

advantage of different models, some researchers have mixed

different deep learning models into a hybrid network model
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[7], [14]. Alhussein et al [26] proposed a hybrid CNN-LSTM

model using CNN layer to extract features from the input data

and LSTM layer for sequence learning to forecast household

load. Kim et al [27] proposed a recurrent inception con-

volution neural network (RICNN) that combines RNN and

1-dimensional CNN (1-D CNN) to forecast electricity load

of three distribution industrial complexes in South Korea.

The hybrid CNN and LSTM model has good performance

in small-scale load forecasting of commercial buildings and

individual household, while the STLF of large-scale regional

level needs to be studied.

To capitalize on the CNN and LSTM hybrid model’s ad-

vantages, many implementations of CNN and LSTM hybrid

deep learning models have been developed in a variety of

domains. Bixuan et al [6] compared the forecasting per-

formance of five different CNN-LSTM structures and pro-

posed that the solar irradiance features be decomposed using

complete ensemble empirical mode decomposition adaptive

noise (CEEMDAN), and the prediction model of historical

solar irradiance features obtained by multiple CNNs be fused

into LSTM for optimal performance. Behnam et al [28]

introduced a parallel deep LSTM-CNN (PLCNet) model that

relied on the parallel CNN layer and LSTM as the upper layer

to extract the features of load data, and then connected the

LSTM layer and the Dense layer to anticipate the final load

data. Hourly load forecasting accuracy was 98.23% on the

Malaysian dataset and 91.18% on the German dataset.The

hybrid model of CNN and LSTM enables the incorporation

of additional data features. Taoying et al [29] introduced

a cascaded CNN-LSTM model for PM2.5 prediction and

demonstrated that the multivariate CNN-LSTM model is

more accurate than the univariate CNN-LSTM model. Kejun

et al [8] proposed the LSTM-Convolutional Network fore-

casting model for photovoltaic power generation. To begin,

an LSTM layer is utilized to extract the temporal features

affecting photovoltaic power, followed by a CNN layer to

retrieve the spatial data. It is more accurate than a single

CNN model or LSTM model. While our proposed model

incorporates historical load and load-related characteristics

and makes use of the CNN and LSTM hybrid model’s

multivariate feature processing capabilities, it also addresses

the issue of training costs associated with the increased data

dimension generated by multivariate features. It contains

important references for tasks involving load forecasting with

different input features.

III. THE PROPOSED FRAMEWORK

A. 1-DIMENSIONAL CONVOLUTION NEURAL NETWORK

Convolutional neural network (CNN) was originally devel-

oped for image classification, and have been used in the

field of computer vision with great success. Recently, CNNs

are not only used in the field of natural language, but they

are also extend to solving energy related problems, such as

power quality issues [30], wind power prediction [31], solar

irradiation prediction [32] and load prediction [23] etc. In

comparison to a traditional full connected network, CNN

has two main characteristics: local connection and weight

sharing. The structure of CNN mainly includes convolution

layer, pooling layer and full connection layer. Figure 1(a)

shows the basic framework of one-dimensional CNN.

FIGURE 1. (a)The basic structure of 1-Dimensional convolution neural

network; (b) operation of 1-Dimensional convolution.

Unlike a two-dimensional convolution image processing

kernel, which moves in two dimensions from left to right and

from top to bottom, the one-dimensional convolution ker-

nel moves in just single dimension (time dimension). Time

series can be defined as one-dimensional vector, and one-

dimensional CNN is suitable for learning the characteristics

of time series. In this study, CNN is applied for feature

extraction of load forecasting. The operation example of one-

dimensional convolution is shown in Figure 1(b). Convolu-

tion is the core concept of CNN, which is used to combine

two sets of information into one. Convolution transforms

the input data, and the convolution calculation formula is as

follows:

c = f(wn ⊗ x+ bn) (1)

where w, n, x and b denote the weighting factors in kernels,

number of kernels, input series and bias. The symbol ⊗
signifies the convolution operation. f is the activation func-

tion. The Rectified Linear Unit (ReLU) can effectively deal

with the vanishing gradient problem and make network more

trainable. It is adopted as the activation function in this paper.

The formula is as follow:

f(x) = max(0, x) (2)

Pooling layer is mainly used to reduce the number of param-

eters. In this paper, maximum pooling is adopted.

B. LONG SHORT-TERM MEMORY NETWORK

In the traditional feedforward neural network, information

flows from the input node to the hidden layer and then

to the output layer in one direction, so the neural network

cannot remember the input of different time series. Recursive

network (RNN) can make use of internal state storage to

realize memory function. Long short-term memory (LSTM)

network is a special RNN, which can learn long-term de-

pendence. It was proposed by Hochreiter and schmidhub in

1997 [33], and has been improved and promoted by many

people in the following works. It uses more complex internal

structure cells instead of primitive low cell neurons to solve
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the problem of gradient explosion and gradient disappearance

of primitive RNN. The basic unit of LSTM is shown in Figure

2.

FIGURE 2. The basic LSTM cell.

There are four important elements in the cell structure of

LSTM: input gate, forgetting gate, output gate and cell state.

Input gate, forgetting gate and output gate are used to update,

maintain and delete the information contained in the status

of control unit. The LSTM model updates the cell status and

calculates the output as follows:

it = σ(wiht−1 + wixt + bi) (3)

ft = σ(wfht−1 + wfxt + bf ) (4)

ot = σ(woht−1 + woxt + bo) (5)

c̃t = tanh(wcht−1 + wcxt + bc) (6)

ct = ft ∗ ct−1 + it ∗ c̃t (7)

ht = ot ∗ tanhct (8)

where σ is sigmoid activation function. it, ft, c̃t, ot are

the output value of the input gate, forget gate, cell state and

output gate. ht−1 is the hidden state of former time step

t − 1, xt is the input value at present time t, ct is cell

output, ht is the output at time t. wi, wf , wc, wo are the

weight matrices, bi, bf , bc, bo is bias vectors. The weights

and bias are updated based on the difference between the

Back Propagation Trough Time (BPTT) algorithm calculated

output and the actual value.

C. MULTI-HEAD CNN-LSTM HYBRID NEURAL

NETWORK

Hybrid model has better performance than single model [7],

[34]. CNN and LSTM are the most widely used models for

deep learning. In this paper, a novel hybrid MCNN-LSTM

deep learning load forecasting model is proposed. The upper

layer of MCNN-LSTM consists of three convolution heads

with different positions. Convolutional neural network can

receive various variables, such as historical load, date, time

and weather that affect load changes. Figure 3 demonstrates

the architecture of MCNN-LSTM. CNN layer extracts the

characteristics of historical load, time and weather factors re-

spectively across three different positions of one-dimensional

CNN. Using an independent one-dimensional CNN, which

can obtain the characteristics of independent time series,

and accurately identify the key features of the specific pe-

riod (such as weekends and working day information) and

weather changes that affect the load. The lower layer of

MCNN-LSTM is LSTM. The time feature information re-

lated to power demand is extracted by CNN layer, and then

processed by LSTM layer. LSTM is responsible for finding

hidden time patterns from the extracted features. LSTM has

the ability to remember the past events. Data passes through

the unit neuron, which has two inputs: past historical data

and current data. It can form internal memory that capture

the actions through the whole sequence.

FIGURE 3. The proposed MCNN-LSTM hybrid model framework.

D. ARCHITECTURE OF THE PROPOSED MODEL

The proposed MCNN-LSTM hybrid model can adjust the

parameters of each layer according to the composition of the

network. The convolution layer can adjust the parameters of

filter, kernel and stride, and the LSTM layer can adjust the

parameters of hidden layer. Tuning the parameters will adjust

the model’s learning rate and learning effect of the model.

Each model will differ. Dropout works to avoid over-fitting

on the results. To improve continuity, the parameters of CNN

layer and LSTM layer of MCNN-LSTM as shown in Table 1.

E. SIMULATION SOFTWARE AND HARDWARE

The proposed model is implemented in Python using back-

end libraries such as Keras and TensorFlow. This work is

being conducted on a personal computer equipped with an

Intel Core i7-4720HQ processor, a NVIDIA GeForce GTX

950m graphics card, and 16.0 GB of random access memory

(RAM).

IV. PREDICTION EVALUATION

In order to evaluate the forecasting performance of the model

proposed in this paper, the error metrics of five different
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TABLE 1. The specific structure configuration of the proposed model

The proposed MCNN-LSTM model

CNN layers Conv1d_1 filters=32; kernel size=2; stride=1

MaxPooling kernel size=2; stride=1

conv1d_2 filters=64; kernel size=3; stride=1

MaxPooling kernel size=2; stride=1

conv1d_3 filters=32; kernel size=2; stride=1

MaxPooling kernel size=2; stride=1

conv1d_4 filters=64; kernel size=2; stride=1

MaxPooling kernel size=3; stride=1

conv1d_5 filters=32; kernel size=2; stride=1

MaxPooling kernel size=2; stride=1

conv1d_6 filters=64; kernel size=3; stride=1

MaxPooling kernel size=2; stride=1

LSTM layers LSTM1 hidden nodes=128

LSTM2 hidden nodes=128

Dropout layer dropout 0.01

viewpoints are adopted. They are MAE(Mean Absolute Er-

ror), RMSE(Root Mean Square Error), MAPE(Mean Abso-

lute Percentage Error), R-squared and error as fellow:

MAE =
1

N

N∑

i=1

|yi − ŷi| (9)

RMSE =

√√√√ 1

N

N∑

i=1

(yi − ŷi)2 (10)

MAPE =
1

N

N∑

i=1

|yi − ŷi|
yi

× 100% (11)

R2 = 1−
∑N

i=1
(yi − ŷi)∑N

i=1
(yi − yi

(12)

error = yi − ŷi (13)

where yi is the true load data, ŷi is the forecasting value, yi
is the average of true load data, and N is the number of yi.

V. CASE STUDY

A. DATASET DESCRIPTION

Ireland’s 2016-2018 datasets and Maine’s 2013-2015

datasets were used for the case studies. Ireland’s electrical

power data is provided by the EirGrid Group1, and the coun-

try’s weather data is provided by the Irish Meteorological

Service2. Maine’s electrical power and weather data are pro-

vided by ISO New England3. The data above is granular to

the hour. The datasets from these two regions are divided into

three components in this paper: training set, verification set,

and testing set. The proportions of these three components

are 6:2:2.

B. DATA PREPROCESSING AND FEATURE

ENGINEERING

Outlier analysis and missing value filling are examples of

data preprocessing. Due to the continuity of load data, the

abnormal load value included in the data calculation and

analysis process will have a negative impact on the load

forecast result. A box plot is a graphical representation of dig-

ital data by its quartiles, it is a straightforward and effective

method for visualizing outliers. Using the upper and lower

tentacles as the distribution’s boundaries, any data points that

are higher or lower than the upper tentacles can be considered

outliers. In terms of missing value filling, our data has sparse

missing values, which we fill using interpolation.

The purpose of this study is to forecast future load at the

large region level using historical load data, meteorological

data, and calendar variables. The primary exogenous factors

affecting STLF problems are weather conditions. Seasonal

weather has an effect on electricity consumption. For exam-

ple, the increased use of air conditioning and heating systems

during the summer and winter seasons will affect the load

curve’s trend. We determine the correlation between load and

four weather variables (temperature, humidity, air pressure,

and wind speed) using the Pearson correlation coefficient

method, and identify temperature and humidity as the most

relevant input features.

The load on the large level region accumulates the power

system’s large-scale energy consumption. In comparison

to the stochastic microgrid, the periodicity of power load

changes is more apparent [4]. STLF benefits from an ap-

propriate mechanism for encoding calendar information in

a way that accurately indicates the periodic change pattern.

The most common methods of encoding a calendar in the

traditional sense are natural encoding and one-hot encoding

[11]. However, because these two coding methods do not take

into account the periodicity of electricity behavior, they are

ineffective for load forecasting. For instance,if natural coding

is used, for example, 23:00 on the first day and 0:00 on the

second day are adjacent, but their distance differs by 23.

When one-hot encoding is used, the Euclidean distance be-

tween two distinct time points is always
√
2 and the distance

between two identical time points is 0, making it difficult

to distinguish the distance between the two time points.We

use polar coordinates to encode calendar effect features in

order to reflect the periodicity of temporal data. The polar

coordinate coding method makes use of the sin and cos

functions to identify calendar variables within a given period.

Electricity consumption is influenced by people’s production

and lifestyle choices and exhibits varying trends over time.

For instance, the load on weekdays and weekends is different,

as is the load at various times of the day. As a result, we

perform periodic coding for the hour of the day and the day

of the week or year. The encoding process is by(14-19) and

Figure 4. gives an example of coding 24 hours of the day.

phsin = sin(2πnh/Th) (14)

VOLUME 4, 2016 5
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phcos = cos(2πnh/Th) (15)

pwsin = sin(2πnw/Tw) (16)

pwcos = cos(2πnw/Tw) (17)

pdsin = sin(2πnd/T d) (18)

pdcos = cos(2πnd/T d) (19)

FIGURE 4. Polar coordinate coding for 24 hours a day.

where n is time point, T is the length of a period.

[phsin,phcos ],[pwsin,pwcos ] and [pdsin,pdcos ] denote the

polar coordinate code of the hour in one day and day in one

week or year.

C. SINGLE-STEP PREDICTION ANALYSIS

To evaluate the proposed MCNN-LSTM hybrid model, it is

compared to traditional machine learning and deep learning

models: (1) multi-layer perceptron (MLP), (2) support vector

machine (SVM), (3) light gradient boosting machine (Light-

GBM), (4) convolutional neural network (CNN), (5) long

short-term memory neural network (LSTM), and (6) CNN-

LSTM hybrid network. For each model, we perform a single-

step load forecasting to forecast the load for the next hour.

1) Ireland single-step load forecasting

The length of the proposed model series is crucial since it

determines the amount of historical data that will be used in

the training process. If the series is too brief, it is impossible

to extract sufficient data to forecast the load. If the length

is excessive, the presence of a significant amount of weakly

correlated data increases the training cost and decreases

the accuracy. We determine the length with the strongest

connection by computing the load series’ autocorrelation

and partial autocorrelation coefficients. The autocorrelation

coefficients of load series denote the correlation between

a given load point and the load point at time t lagging,

whereas the partial autocorrelation coefficients denote the

correlation between the load point and the load series trailing

over a specified time period. As illustrated in Figure 5, we

use Python’s statsmodels tool to plot the autocorrelation

and partial autocorrelation of the Ireland load series. Ac-

cording to Figure 5, we design five models with 24-, 48-,

h

TABLE 2. Predictive evaluation of Ireland dataset with different input set

lengths.

Input length MAE(MW) RMSE(MW) MAPE(%) train time(s)

24-step 48.02 71.36 1.49 275.81

48-step 47.29 68.07 1.48 540.52

72-step 45.32 66.71 1.42 692.05

144-step 56.34 81.28 1.74 931.37

168-step 57.98 82.81 1.77 1132.77

72-, 144-, and 168-step series lengths.The proposed model

input set is historical load series and corresponding length

of historical temperature (T), humidity (H) and calendar

variables(phsin,phcos,pwsin,pwcos,pdsin,pdcos).

FIGURE 5. The autocorrelation coefficients and partial autocorrelation

coefficients of load on Ireland dataset.

Table 2 compares the performance of MCNN-LSTM mod-

els with varying input set lengths.As the length of the input

set rises, the training time increases as well, but the prediction

accuracy does not. When the first 72 steps were used on the

input set of the Ireland dataset, the prediction accuracy was

the highest.

For Ireland’s testing set, the results of all models’ single-

step load forecasting are calculated using the performance

indicators MAE, RMSE, and MAPE. The evaluation indi-

cators for the seven algorithms in Table 3 indicate that:

(i) Deep learning models outperform traditional machine

learning models in terms of prediction accuracy, while hybrid

models outperform single models. (ii) Our proposed hybrid

model’s MAE, REMSE, and MAPE are the smallest and

have the best predictive performance. (iii) When compared

to the worst-precision SVM model, the proposed model’s

MAE is decreased by 42.83, RMSE is decreased by 42.58

MAPE is decreased by 1.35% and its R-squared is increased

by 2.12%. (iv) Compared with the CNN-LSTM model, the

proposed model’s MAE decreases by 8.32, RMSE decreases

5.07, MAPE is decreased by 0.28%, and its R-squared is

increased by 0.7%. Figure 6 illustrates error distributions

using box plots. It can be seen that the proposed model’s error
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is concentrated near the zero-valued baseline, indicating that

the predicted load value is closer to the actual value.

TABLE 3. Evaluation index of single step forecasting result of Ireland dataset

Methods MAE (MW) RMSE (MW) MAPE (%) R
2score

SVM 88.15 109.29 2.77 96.61%

MLP 82.78 110.11 2.56 96.56%

LightGBM 75.77 102.13 2.34 97.04%

CNN 67.612 94.46 2.08 97.46%

LSTM 65.22 84.07 2.21 97.99%

CNN-LSTM 53.34 71.78 1.70 98.03%

MCNN-LSTM 45.32 66.71 1.42 98.73%

FIGURE 6. The error distribution of each actual value and the predicted value

for Ireland dataset.

FIGURE 7. Single step load forecasting results of model for Ireland dataset.

Figure 7 shows the simulation results of load forecasting

curves of different models. All models predict values in a

consistent manner relative to the actual values. To illustrate

the predictive performance of various models, the details

of the lower and peak load in Figure 7 have been partially

enlarged and are shown in Figure 8 (a) and (b). In comparison

to other models, the proposed model’s lower and upper peak

loads are more similar to the actual value in terms of trend

shape and degree of fit.

2) Maine single-step load forecasting

Figure 9 depicts the autocorrelation coefficients and partial

autocorrelation coefficients of Maine datasets. The prediction

(a) Lower peak points

(b) Upper peak points

FIGURE 8. The local enlargement (lower peaks and upper peaks) comparison

of forecasting results for Ireland dataset.

evaluation of different length load series in the Maine dataset

is shown in Table 4, and the findings indicate that the pro-

posed model performs best when a 48-step input set length is

used. As a result of the variances in load curves, load data sets

from different locations must select appropriate sequences to

get the highest prediction performance.

FIGURE 9. The autocorrelation coefficients and partial autocorrelation

coefficients of load on Maine dataset.

Additionally, we forecast single-step load on Maine’s

testing set. Table 5 illustrates the evaluation indicators for
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TABLE 4. Predictive evaluation of Maine dataset with different input set

lengths.

Input length MAE(MW) RMSE(MW) MAPE(%) Train time(s)

24-step 21.78 28.79 1.63 211.48

48-step 18.92 25.04 1.43 462.81

72-step 19.95 27.01 1.50 535.62

144-step 22.93 30.15 1.73 766.31

168-step 25.77 34.38 1.96 959.72

TABLE 5. Evaluation index of single step forecasting result of Maine dataset

Methods MAE(MW) RMSE(MW) MAPE(%) R
2 score

SVM 30.45 37.57 2.33 96.72%

MLP 36.66 46.77 2.84 94.92%

LightGBM 25.36 31.77 1.97 97.65%

CNN 26.93 35.80 2.05 97.02%

LSTM 24.71 32.53 1.86 97.54%

CNN-LSTM 22.47 30.48 1.70 97.83%

MCNN-LSTM 19.01 24.98 1.43 98.55%

various models: (i)The proposed model performs the best

in terms of prediction accuracy, while the MLP model per-

forms the worst. (ii) When compared to the MLP model, the

proposed model’s the proposed model’s R-squared increases

3.63%, MAE decreases 17.65, RMSE decreases 21.79 and

MAPE has a reduction of 1.41%. (iii)When compared to

the second-performing CNN-LSTM, R-squared increases

0.72%, MAE decreases 3.46, RMSE decreases 5.50 and

MAPE is reduced by 0.27%. Additionally, Figure 10 box plot

also demonstrates that the error distribution of the proposed

model is the smallest overall.

Figure 10 illustrates the load forecasting simulation curves

for various models. Figure 12 (a) and (b) are enlarged ver-

sions of the lower and peak load curves from Figure 11.

The findings indicate that the proposed model is capable of

accurately forecasting the electricity load and has superior

fitting performance for lower and upper peak loads with a

higher degree of randomness.

FIGURE 10. The error distribution of each actual value and the predicted

value for Maine dataset.

FIGURE 11. Single step load forecasting results of model for Maine dataset.

(a) Lower peak points

(b) Upper peak points

FIGURE 12. The local enlargement (lower peaks and upper peaks)

comparison of forecasting results for Maine dataset.

D. MULTI-STEP PREDICTION ANALYSIS

We compare the proposed MCNN-LSTM model to other

models for 24-step load forecasting. For example, a slid-

ing window multi-input multi-output forecasting method for

MLP, CNN, LSTM, CNN-LSTM, and the proposed MCNN-

LSTM models. The previous time-steps of data are used

as input, and the predicted load for 24 time-steps is the

output result. Because the SVM and LightGBM models do

not support multiple outputs, multi-step load forecasting is

accomplished by creating 24 models corresponding to 24

time steps.
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TABLE 6. Evaluation index of 24-step forecasting result of Ireland dataset

Methods MAE(MW) RMSE(MW) MAPE(%) R
2score

SVM 122.50 157.56 3.87 92.96%

MLP 106.68 146.08 3.20 93.65%

LightGBM 98.96 135.49 3.01 94.79%

CNN 86.58 119.48 2.66 95.95%

LSTM 86.19 121.35 2.72 95.82%

CNN-LSTM 84.27 119.59 2.65 95.94%

MCNN-LSTM 67.31 105.12 2.10 96.87%

1) Ireland 24-step load forecasting

We conduct 24-step load forecasting on Ireland’s testing set,

forecast the load for the next 24 hours. Table 6 summarizes

the error evaluation metrics for the 24-hour ahead, including

MAE, RMSE, and MAPE. In comparison to single-step load

forecasting, the forecast errors of each model increase as the

output dimensions increase. However, the proposed MCNN-

LSTM model still has the best predictive performance, MAE

is 67.31, RMSE is 105.12, MAPE is 2.10% and R-squared is

96.87%. The performance improvement of the CNN-LSTM

hybrid model over the single CNN and single LSTM models

is not immediately apparent. Compared with the CNN-LSTM

model, the proposed MCNN-LSTM model’s MAPE has a

decline of 0.55%, and its MAE decreases by 16.96, RMSE

decreases by 14.47, R-squared increases by 0.93%.

To concretely demonstrate the forecast results, we evaluate

different time points of each week. It can be observed from

table 7 that the proposed model is smaller than other models

in MAE, RMSE and MAPE, indicating that the proposed

model has strong load forecasting capacity for weekdays

and weekends. The simulation of a 24-hour ahead prediction

curve for the Ireland testing set is shown in Figure 13. The

findings indicate that deep learning-based methods such as

CNN, LSTM, CNN-LSTM, and the proposed MCNN-LSTM

are capable of accurately simulating the next 24-hour power

consumption trend. The power consumption trends of MLP,

SVM, and LightGBM, on the other hand, are poorly fitted.

Additionally, the proposed MCNN-LSTM model can more

accurately predict the 24-hour power consumption predic-

tion’s lower and upper peak loads.

2) Maine 24-step load forecasting

The weekly MAE, RMSE and MAPE show in Table 8, the

proposed model has obvious advantages over other models.

The overall evaluation index of Maine test set is shown in

Table 9, and the prediction curves are shown in Figure 14.

The results demonstrate that our proposed model provides

the best 24-hour load forecasting performance and validates

its generalizability.

E. COMPARISON OF TRAINING TIME

We compare the training times of four deep learning mod-

els with the best prediction performance, including CNN,

LSTM, CNN-LSTM, and the proposed MCNN-LSTM. The

CNN model is composed of two stacked one-dimensional

convolutions with a total of 32 or 64 convolution kernels.

The LSTM model is composed of two LSTMs stacked into

a two-layer LSTM, with each hidden layer having a neural

unit of 128. The CNN-LSTM hybrid model is constructed

by stacking two-layer CNNs and two-layer LSTMs in series.

The CNN layer contains between 32 and 64 convolution

kernels, while the LSTM layer contains 128 hidden layer

neurons. The MCNN-LSTM model’s structural parameters

are described in Section III D. To compensate for random-

ness, we run each model ten times over 100 epochs and em-

ploy early stopping to avoid overfitting. Table 10 summarizes

the average ten-time training time for various deep learning

models.

According to the results in Table 10, the CNN model

requires the least amount of training time, while the LSTM

model requires the most. The CNN-LSTM and proposed

MCNN-LSTM models have a shorter training time than the

LSTM model, owing to the use of the CNN layer to extract

features and the convolution operation, which reduces the

number of parameters and improves training efficiency. The

training time for MCNN-LSTM is less than that for CNN-

LSTM, because multiple convolution heads extract features

independently, avoiding the issue of slow fitting speed caused

by increased dimensionality of the input features. Simultane-

ously, the Ireland test set has 5256 data points. Single-step

load forecasting has a test time of 12.08s and an average

hourly forecasting time of 0.0023s. The forecasting time for a

24-step load is 10.23s, and the average forecasting time every

24 hours is 0.047s.

F. THE IMPACT OF PERIODIC CODING

To demonstrate the effect of periodic coding, we compare

the proposed MCNN-LSTM model to a model that does not

include a convolution head for extracting calendar variables.

The forecasting of single-step, six-step, twelve-step, and

twenty-four-step loads is carried out using Ireland’s testing

set, and the error evaluation indicators are listed in Table 11.

As shown in Table 11, as the output dimension increases,

the MAE, RMSE, and MAPE values increase as well. The

proposed MCNN-LSTM model performs better than the

MCNN-SLTM model without calendar variables. Accord-

ing to MAPE values, the performance of single-step load

forecasting is improved by 1.39%, 6-step load forecasting is

improved by 6.47%, 12-step load forecasting is improved by

10.23%, and 24-step load forecasting is improved by 20.45%.

The experimental results indicate that periodic coding of

calendar variables is more advantageous for forecasting loads

with large time steps.

VI. CONCLUSION

We propose a multi-head CNN-LSTM (MCNN-SLTM)

short-term load forecasting model in this article. Two datasets

(the Ireland dataset and the Maine dataset) are used to eval-

uate the proposed MCNN-LSTM model’s performance. On

these two datasets, experiments with single-step and 24-step

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3107954, IEEE Access

H. H. Goh et al.: Multi-convolution feature extraction and recurrent neural network dependent model for short-term load forecasting

FIGURE 13. 24-step load forecasting results with difference methods for ireland dataset.

TABLE 7. The forecast results of weekly time points for Ireland dataset.

Time points Monday Tuesday Wednesday Thursday Friday Saturday Sunday

MLP

MAE(MW) 185.7 128.18 83.82 73.18 80.1 88.67 110.37

RMSE(MW) 222.31 181.9 120.29 96.53 107.29 117.47 138.03

MAPE(%) 5.41 3.68 2.50 2.20 2.31 2.81 3.61

SVM

MAE(MW) 194.83 125.03 113.60 104.84 106.60 100.25 114.71

RMSE(MW) 226.29 177.65 150.37 129.43 130.99 123.62 142.39

MAPE(%) 5.84 3.83 3.60 3.35 3.31 3.28 3.95

LightGBM

MAE(MW) 147.79 117.12 95.72 89.69 90.58 82.38 71.58

RMSE(MW) 192.37 169.02 132.82 115.7 118.62 103.42 89.78

MAPE(%) 4.42 3.34 2.85 2.60 2.64 2.76 2.51

CNN

MAE(MW) 120.55 102.75 90.60 79.99 81.52 67.26 65.03

RMSE(MW) 169.56 151.57 117.62 99.32 104.9 86.18 82.59

MAPE(%) 3.68 3.09 2.68 2.39 2.42 2.17 2.22

LSTM

MAE(MW) 111.88 97.77 90.18 79.67 79.78 70.86 74.38

RMSE(MW) 173.04 149.68 116.68 98.85 103.87 92.3 93.7

MAPE(%) 3.53 3.05 2.81 2.44 2.37 2.30 2.59

CNN-LSTM

MAE(MW) 109.42 90.09 71.99 66.22 65.91 66.19 67.98

RMSE(MW) 164.43 142.72 96.78 86.65 90.54 85.33 88.95

MAPE(%) 3.39 2.69 2.16 2.00 1.95 2.13 2.32

MCNN-LSTM

MAE(MW) 106.99 72.93 55.63 55.79 55.35 65.48 60.48

RMSE(MW) 178.90 126.27 72.95 81.94 75.91 81.19 76.44

MAPE(%) 3.37 2.17 1.67 1.68 1.63 2.16 2.07
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FIGURE 14. 24-step load forecasting results with difference methods for Maine dataset.

TABLE 8. The forecast results of weekly time points for Maine dataset.

Time points Monday Tuesday Wednesday Thursday Friday Saturday Sunday

MLP

MAE(MW) 54.55 52.00 42.78 53.03 45.63 68.08 49.63

RMSE(MW) 70.37 64.49 54.27 67.53 57.5 81.15 63.00

MAPE(%) 3.85 3.88 3.17 4.05 3.53 5.35 3.79

SVM

MAE(MW) 55.45 46.41 40.94 50.45 50.61 49.40 49.91

RMSE(MW) 70.91 59.52 52.05 65.01 66.18 62.47 61.44

MAPE(%) 4.04 3.38 3.07 3.86 3.9 3.95 3.89

LightGBM

MAE(MW) 55.17 39.67 43.98 47.81 47.06 45.89 43.65

RMSE(MW) 70.68 55.97 57.23 61.88 61.64 56.87 55.26

MAPE(%) 3.96 2.84 3.16 3.67 3.68 3.77 3.40

CNN

MAE(MW) 47.35 45.01 46.51 49.43 64.05 49.14 37.31

RMSE(MW) 64.59 62.23 61.14 67.04 82.4 65.58 2.88

MAPE(%) 3.42 3.13 3.31 3.72 4.82 3.85 49.64

LSTM

MAE(MW) 52.01 43.11 41.97 46.40 47.39 39.83 44.04

RMSE(MW) 67.50 55.19 53.53 61.98 64.01 50.90 3.42

MAPE(%) 3.74 3.11 3.06 3.52 3.63 3.17 55.81

CNN-LSTM

MAE(MW) 48.32 45.43 38.86 45.94 46.32 42.92 44.70

RMSE(MW) 65.18 60.48 49.05 62.58 65.44 56.05 57.63

MAPE(%) 3.44 3.21 2.85 3.50 3.62 3.41 3.47

MCNN-LSTM

MAE(MW) 42.29 36.58 32.68 42.65 47.15 38.97 37.03

RMSE(MW) 57.07 53.07 42.85 56.95 60.17 50.39 48.40

MAPE(%) 3.03 2.56 2.34 3.20 3.36 3.04 2.82
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TABLE 9. Evaluation index of 24-step forecasting result of Maine dataset

Methods MAE(MW) RMSE(MW) MAPE(%) R
2
score

SVM 48.49 62.27 3.66 90.97%

MLP 51.48 65.38 3.90 90.11%

LightGBM 46.02 60.34 3.48 91.56%

CNN 48.18 65.27 3.57 90.12%

LSTM 45.12 59.67 3.39 91.74%

CNN-LSTM 44.63 60.35 3.35 91.59%

MCNN-LSTM 39.86 53.73 2.93 93.30%

TABLE 10. The training time of different deep learning models

Methods

Ireland dataset

training time (s)

Maine dataset

training time (s)

Single-step 24-step Single-step 24-step

CNN 149.35 152.25 121.84 108.72

LSTM 1293.95 1085.73 998.46 694.56

CNN-LSTM 975.25 776.60 585.16 396.97

MCNN-LSTM 692.05 525.97 462.81 296.40

load forecasting are conducted. When compared to other ma-

chine learning and deep learning models, the proposed model

achieves the highest accuracy for the evaluation indicators

MAE, RMSE, and MAPE. The training time of four deep

learning models is also recorded in this experiment. Although

the proposed model requires significantly more training time

than the CNN model, it is more accurate. In comparison

to the CNN-LSTM model, the proposed model can reduce

parameter variables and accelerate feature extraction speed

through the use of multiple convolutional heads, while main-

taining high accuracy and training speed. To investigate the

effect of calendar encoding, we remove the proposed MCNN-

LSTM model’s convolution head about calendar variables.

To investigate the effect of calendar encoding, we remove

the proposed MCNN-LSTM model’s convolution head about

calendar variables. Comparative experiments indicate that

the addition of calendar variables improves load forecasting

performance slightly with short output steps but significantly

with long output steps.

In general, the MCNN-LSTM short-term load forecast-

ing model proposed in this paper is capable of producing

acceptable results for both single-step and multi-step load

forecasting. For future research, a variety of optimization

algorithms could be considered to optimize the proposed

model’s parameters. Holidays are not treated differently in

the proposed model, and necessary holiday elements can be

introduced into future model upgrades.

.

APPENDIX A DATA SOURCES

1. https://www.eirgridgroup.com/.

2. https://www.met.ie/.

3. https://www.iso-ne.com/.

TABLE 11. The evaluation index of multiple steps ahead for load forecasting

in Ireland’s testing set

Steps
MCNN-LSTM

MCNN-LSTM

(lack calendar variables)

MAE (MW) MAPE (%) MAE (MW) MAPE (%)

Single-step 45.32 1.42 46.89 1.44

6-step 59.70 1.88 65.83 2.01

12-step 66.76 2.04 72.94 2.27

24-step 67.31 2.10 85.32 2.64
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