
Multi-core Defense System (MSDS) for Protecting Computer Infrastructure
against DDoS attacks

Ashley Chonka, Member, IEEE, Soon Keow Chong, and Wanlei Zhou, Member, IEEE,
School of Engineering & Information Technology

Deakin University
Geelong, 3220, Australia

Yang Xiang, Member, IEEE

School of Management and Information Systems
 Central Queensland University
Rockhampton, 4702, Australia

{ashley, skchon,wanlei}@deakin.edu.au and y.xiang@cqu.edu.au

Abstract

Distributed Denial of Service attacks is one of the
most challenging areas to deal with in Security. Not
only do security managers have to deal with flood and
vulnerability attacks. They also have to consider
whether they are from legitimate or malicious
attackers. In our previous work we developed a
framework called bodyguard, which is to help security
software developers from the current serialized
paradigm, to a multi-core paradigm. In this paper, we
update our research work by moving our bodyguard
paradigm, into our new Ubiquitous Multi-Core
Framework. From this shift, we show a marked
improvement from our previous result of 20% to 110%
speedup performance with an average cost of 1.5ms.
We also conducted a second series of experiments,
which we trained up Neural Network, and tested it
against actual DDoS attack traffic. From these
experiments, we were able to achieve an average of
93.36%, of this attack traffic.

Index Terms — Multicore, Ubiquitous Multicore
framework, Farmer, Bodyguard Framework

1. Introduction

Today’s internet has evolved into high-speed
backbones and local-wide area networks, which link
millions of end-users to many critical services.
Majority of today’s businesses rely upon these critical

services to function at full capacity, so that they can
achieve a greater customer base and profits. A DDoS
(Distributed Denial of Service) attack puts these
critical systems under the series threat of collapse and
loss for these businesses.

The two major challenges in defending against these
attacks, is to firstly have a defense system that has
detection that is sensitive and accurate, while at the
same time filtering and monitoring the defense system.
Unfortunately, most defense systems, such as
traceback [1][2], logging [3][4] and messaging [5][6]
are just not sensitive enough to be able separate out
legitimate traffic from attack. Another major problem
with these defense systems is that, they themselves are
usually susceptible to the same DDoS attacks, that they
are trying defending against [7].

In our previous paper [8] we introduced a defense
system called Farmer, after the Kevin Costner Movie
‘Bodyguard’. Farmer was built and developed based on
our Bodyguard Framework. This Framework is an
abstract paradigm, which groups class of applications
based on what functions they provide to the system
(Security related or Multi-media related). Once these
applications are grouped they are then placed own
prospective core process, within a Multi-Core system.
For example, with Farmer, we separated out different
parts of security procedures (IP reconstruction, filter
attack traffic, monitoring farmer) and placed them on
separate core processors within an Intel Quad-Core
system. In our former results, we achieved an overall
speedup performance increase of 20% for our defense
system. We also gained a number of advantages by

2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies

978-0-7695-3443-5/08 $25.00 © 2008 IEEE
DOI 10.1109/PDCAT.2008.72

503

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on November 11, 2009 at 22:22 from IEEE Xplore. Restrictions apply.

applying this framework, which are, firstly the ability
of our defense system to defend itself against an attack
in real-time, the ability to record and analysis traffic
almost simultaneously, protect the defense system by
having its own redundant defense system, monitor and
troubleshoot the system if problems arise.

In this paper we discuss current updates with our
bodyguard framework, now call Ubiquitous Multicore
Framework (UM), and continue our experimentation of
the system. Section Two briefly covers the related
work done in Multicore. The details of UM framework
and how it is applied to the bodyguard framework
Section Three. Section Four presents the experiments
and evaluation that were conducted on our system.
Lastly, Section Five covers the conclusion and future
work.

2. Related Work

In this section, we discuss very briefly multicore and

multimedia, and the two areas where our multicore
framework has been applied.

2.1. Multicore and Multimedia

Multi-core systems can be defined as a system that
has two or more processing cores integrated into a
single chip [11][12][13]. Through this design, each
processing cores has their own private cache (L1) and a
shared common cache (L2). The shared cache and
main memory share the bandwidth between all the
processing cores. Multimedia co-processor interface
was developed by [14], in which they used a multicore
system to offload task management jobs from MPU or
DSP. From their evaluations conducted on a JPEG file,
Ou et al. achieved an overall performance increase of
57%, while they kept their overhead to 1.56% of the
DSP core. In comparison with our UM framework
[10], our framework is more abstract, by applying
applications (not separate sections of a file) to separate
core processors.

2.2. Multi-classifier SPAM filter

To follow up on [8], we then applied our multicore
framework to a multi-classifier SPAM filter [9]. We
found that if you ran each classifier process in parallel
with each other, it greatly improved the performance of
our multi-classifier architecture, in the areas of false
positives reduction and increase accuracy. Further,

Attacker Authorized User Attacker Authorized User

Farmer Farmer

Farmer Farmer

Farmer

Defender/Victim
Figure 1. System Architecture of Farmer

advantages that our multicore framework provided, is
as follows:

• Reduced computation burden of the overall
mail server.

• Reduced memory storage, email messages are
processed independently from other
classifiers.

• When one of the classifiers becomes idle it
will directly go into training mode, thereby
optimizing resource usage.

• Is robust as the adaptive selection can still
provide accurate email classification if one of
the core fails.

3. Background

3.1 Farmer System Design

The bodyguard framework is distributed on each
router in the network; in order to provide overall
protection (Figure 1). Each Bodyguard is a source end
(provides security before traffic leaves the router) and
destination end protector (provides security as the
traffic enters the network). Another feature in Figure 1
is that each bodyguard is connected to each other.
There are three main reasons for this; to allow
bodyguards to send updated security information to
each other (new attacks that each has encountered, for
example), send security information down to the next
hop for checking application data as it comes into the
router (This is to provide better performance, by
breaking up the security and application data),
monitors the performance of each other (So if a
successful attack brings down a bodyguard, the next
hop router is prepared to handle the security). Farmer
includes the two parts of the bodyguard framework, the
side bodyguard (SB) and front bodyguard (FB) (Figure
2). The side bodyguard is the main component of the
framework, is to protect the system, while allowing
application/s to run at full performance potential.

504

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on November 11, 2009 at 22:22 from IEEE Xplore. Restrictions apply.

Figure 2. Bodyguard Architecture

3.2 Ubiquitous Multicore (UM) Framework

The Ubiquitous Multicore Framework is built from a
divide-and-conquer approach [15], by dividing our
applications into specifics classes and places them on
separate core processors (Figure 3). Each application
will run in parallel with each other, and exchange
information when necessary. The application core
assigner (ACA), assigns the class applications either on
behalf of the user, or the user can select from the
core(s) that are available. Once each application is
assigned to a core, depending on the application
program, a number of jobs or threads can then be
executed on this core processor.

3.3 Applied UM Algorithm to Bodyguard

Framework

In this paper, we further our research development
by updating our bodyguard framework by
incorporating it into our UM algorithm. We also
include a mathematical partition model (MPM), that
we adapted and modified from [19][20], so that we can
evaluate our algorithm. The MPM, is to used to give a
clearer picture of how the bodyguard framework is
partitioned, on a multi-core system. But just separating
and assigning our bodyguard tells us nothing about the
speedup performance, if any is achieved, or what the
overhead costs in terms of this partition are. So we
have also included formulas (4,5,6) to accomplish this.

Figure 3. Ubiquitous Multicore Framework

3.4 Mathematical Partition Model

The MPM is adapted and modified from the partition
analysis of [19][20], in which they analysed the
speedup performance, computation and communication
cost and execution times of their partition. To partition
the application correctly we use three phases,
communication, computation and communication.
Phase 1:

(1)()comm stup dt p t t= − + (1)

Phase 2:
*
1comp

mp nt
p

≤
−

(2)

Phase 3:
()comm stup dt u t vt= + (3)

In order to maintain the highest speedup and
computation/communication ratio we use the Overall
Execution Time(4), Speedup factor (5), C/C ration (6):

* (1)()
1p stup d

mp nt p t t k
p

≤ + − + +
−

(4)

*

* (1)()
1

s

p
stup d

t mp n
mp nt p t t k
p

=
+ − + +

−

(5)

*

(1)((1)())stup d

mp n
p p t t k− − + +

(6)

4. Performance Evaluation

4.1 Performance Analysis

To assess the performance of our multicore system,
we compared the two kernel benchmarks. The
hardware on the multicore system had Intel Core 2
Quad Q6600 2.4GHz Quad Core Processor, 2 GB of
RAM and 2 300GB SATA hard-drives. The kernel

Figure 4. Pseudo Code for MPI “Perfect” parallel
program.

505

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on November 11, 2009 at 22:22 from IEEE Xplore. Restrictions apply.

under measurement was 2.6.22.14.72 fc6. To gather
computational data, we included timers with our
application, in order to record execution times.
Communication time is depended upon the number of
messages, the size of the message and the
interconnection speed. We have decided to set the
standard to 1ms and computational data is assumed to
be .1ms less then execution time.

4.2. Simulation Setup

4.2.1 Benchmark factors

Once we have the execution times ts, computational
time tcomp, and communication time tcom, we can
establish the speedup factor (formula 7) and
computation/communication ratio (formula 8).

s s

cp comp com

t t
t t t

=
+

(7)

Where ts will stand for execution time on a single core
processor (tcp), this includes computation time and
communication time.

c o m p

c o m

t
t

(8)

Apart from speedup and the Computation and
Communication ratios, we also evaluate the UM
algorithm, through the use of Time Complexity or
“big-oh”, also referred to as “order of magnitude” [12]

() (())f x O g x=

[]0 () ()f x cg x≤ ≤ for all 0x ≥

(9)

Where f(x) and g(x) are functions of x. A positive
constant, c, has to exist for all 0x x≥ otherwise it is
zero.
 Core 1 Core 2 Core 3 Core 4
Exe Time 1.5ms 1.4ms 1.3ms 1.4ms
Comp
Time

.3ms .3ms .2ms .3ms

Comm
Time

1ms 1ms 1ms 1ms

Speed
Ratio

115% 108% 108% 108%

C/C 0.3 0.3 0.2 0.3
Time
Complex

3.5 3.5 3.5 3.5

Cost 1.5 1.4 1.3 1.4
Cost-
Optimal

3.7 3.7 3.7 3.7

Table 1. Results of speedup and the costs, which show
an average increase of 110% at the average cost of
1.4ms

1.30

1.35

1.40

1.45

1.50

1 2 3 4 5

Test

Multicore(Serial)

Multicore

Figure 5. Resource Sharing delay time for shared
memory (latency)

(/ 1) (2 (/ 1)cp com stup mdt t n cp t n cp t+ = + + + +
(10)

 Where n is the number of threads on each core
processor. The last benchmark we will use is the cost
and cost-optimal.
Cost = (execution time) * (total number of processor
used)
Cost Optimal = time complexity * number of processor
= (n log n
MPI Core 1 Core 2 Core 3 Core 4
Exe Time 1.5ms 1.4ms 1.3ms 1.4ms
Speed
Ratio

115% 108% 108% 108%

C/C 0.5 1.8 0.3 1.8
Cost 1.5 1.4 1.3 1.4
MultiC Core 1 Core 2 Core 3 Core 4
Exe Time 1.35ms 1.36ms 1.35ms 1.35ms
Speed
Ratio

101% 101% 101% 101%

C/C 0.3 0.3 0.2 0.3
Cost 1.5 1.4 1.3 1.4
Table 2. Results of speedup and the costs, which show
an average increase of 105% at the average cost of
1.4ms for the MPI over our previous Multicore result.

4.3. Experimentation

To give us a baseline of comparison, we wrote a
program using MPI (19) [See Figure 4], in which the
program gives us a “perfect” example of parallel
programming. The results show [table 1] that we
achieved a speedup result of 110% across of
bodyguard application. From table 1 we then do a
comparison of previous results from paper [8], in
which we selected the best of our results (Figure 5,
Test 2), and show them along side table 1 (See Table
2). To make the comparison fair, we used the same
computation and communication time from the MPI
program, for our multicore program. What the results
from Table 2 shows is that our MPI program use’s
multicore technology with a greater efficiency then our
multi-core program.

506

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on November 11, 2009 at 22:22 from IEEE Xplore. Restrictions apply.

MPI
(MC)

Core 1 Core 2 Core 3 Core 4

Exe Time 1.10ms 1.15ms 1.11ms 1.11ms
Comp
Time

0ms .04ms .01ms .01ms

Comm
Time

1ms 1ms 1ms 1ms

Speed
Ratio

110% 111% 110% 110%

C/C 0.3 0.3 0.2 0.3
Cost 1.5 1.4 1.3 1.4
Table 3. Results of speedup and the costs, which show
an average increase of 110% at the average cost of
1.4ms for the MPI over our previous Multicore result.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.4 0.5 0.6 0.7 0.8 0.9

Threshold

Pe
rf

or
m

an
ce

Monday

Tuesday

Wednesday

Thursday

Friday

Figure 6. Training Results of our Neural Network
archived a better than average (94%) result, with an
average of 6 false positives per test (5 days of tests
were conducted from the MIT Dataset).

But the reason for this greater efficiency was due to the
fact that we wrote our multicore program in C++ only.
Thereby, we used MPI in our multi-core program to
get the following result in table 3. As we can see, our
speed up ratio increase from 101% average to 110%
with the use of MPI. As we see from our previous
work, we only achieved a 20% increase, but the
experiments we conducted were quite different (see
table 4). In S-Core results, we just allowed the program
to be assigned by the Linux Kernal, in M-Core we
assigned the programs using affinity methods in C.

In our second experiment we trained up Farmers side
bodyguard, which contains our Back Propagation
Neural Network Filter (placed on core 2) to detect and
filter DDoS attack traffic. In order to train up our
Neural Network we used dataset from the week 2,
1998 DARPA intrusion detection evaluation set at
Lincoln
System T1 T2 T3 T4 T5 Total
S-Core 150 153 150 151 151 150
M-Core 130 133 129 133 132 130

Speedup 20 20 21 18 19 20
Table 4. Speedup Comparison between Serial
Multicore and Multicore

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.4 0.5 0.6 0.7 0.8 0.9

Threshold

Pe
rc

en
ta

ge

Monday

Tuesday

Wednesday

Thursday

Friday

Figure 7. Average of 75% was achieved from our
training results for detecting Legitimate Traffic.
 Legitimate

Traffic
[Best]

Attack
Traffic
[Best]

Legitimate
Traffic
[Worse]

Attack
Traffic
[Worse

Mon 90.0% 91.25% 75.20% 86.87%
Tues 92.35% 93.37% 74.37% 85.90%
Wed 95.62% 94.09% 71.02% 84.90%
Thur 95.40% 94.01% 72.25% 85.52%
Fri 95.43% 94.10% 71.17% 83.65%
Table 5. Test Results from our Neural Network,
showing the best and worse achieved results.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1 2 3 4 5

Legit [Best]

Attack [Best]

Legit [Worse]

Attack [Worse]

Figure 8. Test Results from our Neural Network

Laboratory, MIT [17]. The data sets from MIT come
in TCP dump format, so we extracted the features we
needed and insert them into a MySQL database. These
features included SrcIP, DestIP, SrcPort, DestPort and.
the length of time. We added an extra field to the table
for the decision, 0 for legitimate and 1 for illegitimate.

Our results shown in Figures 6 and 7, that we were
able to achieve a +90% of the known attack traffic,
while allowing 75% of legitimate traffic, with an
average of 6 false positives per test. This means that
our security detection is quite sensitive in detecting and
filtering out DDoS attack traffic. To confirm this result
we then further our experiment by testing our Neural
Network against the test data provide by [17]. In Table
5 and Figure 8 shows, we achieved with our Neural
Network an average 93.76% for our best result for
detecting legitimate traffic, while maintaining average
93.36% in detecting attack traffic. So these results
shows that our Neural Network is fairly sensitive and
effective with these types of attacks. This claim is
further backed up by the “worst” results, that even if

507

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on November 11, 2009 at 22:22 from IEEE Xplore. Restrictions apply.

our Neural Network is having a “bad” (so to speak), it
can detect an average of 72.80% legitimate and
85.37% attack, which is still fairly good against DDoS
attack.
Further analysis of why we achieved different results
with our Neural Network is the way that you have to
‘tune’ the training of the Neural Network. You do this
by changing a number of characteristics such as
Learning Rate, Momentum and Threshold. By
changing the Learning Rate, for example, you alter
how the Neural Network learns. This then affects the
results that are outputted, we selected for the ‘best’
results a Learning Rate of 0.2, Momentum 0.6, and
Threshold of
0.4. For the worse results we set the Learning Rate at
0.2, Momentum 0.3, and Threshold 0.7.

5. Conclusion

In this paper, we further extended upon our previous

work within multicore defense system, by applying the
UM Framework to our Bodyguard Defense System.
The goal of such a security system is to use the new
multicore machines that are coming out, but also, with
these machines they can be used to solve some of the
many problems of computer security. Based on the
results we have showed our defense system is
improved from 110% speedup, through the use of MPI
[19]. We, also, showed our test results of Farmer’s side
bodyguard (Back Propagation Neural Network), which
would than tell the forward bodyguard to filter the
attack traffic detected. The results show, based on 10
tests that we conducted over 4 hours of training the
system, we got an average of 94% of attack traffic
detected with an average of 6 false positives per test
that we conducted.

6. References

[1] Savage, S., Wetherall, D., Karlin, A., and Anderson, T.,
(2001), ‘Practical Network Support for IP Traceback’,
SIGCOMM'00, Stockholm, Sweden, 2000
[2] Belenky, A.,and Ansari, N., ‘Tracing Multiple Attackers
with Deterministic Packet Marking (DPM)’, Proc. of IEEE
Pacific Rim Conference on Communications, Computers and
Signal Processing
[3] Snoeren, A.C., et al., (2002), “Single-Packet IP
Traceback,” IEEE/ACM Trans. Networking, vol. 10, no. 6,
2002, pp. 721–734.
[4] Baba, T., and Matsuda, S., (2002). “Tracing Network
Attacks to Their Sources,” IEEE Internet Computing, vol. 6,
no. 3, 2002
[5] Bellovin, S., Leech, M., and Taylor, T., (2003), ‘ICMP
Traceback Messages,’ Internet Draft, Internet Eng. Task
Force, 2003; work in progress.

[6] Mankin, A., Massey, D., Wu, C.L., Wu S.F and Zhang,
L., (2001), “On Design and Evaluation of ‘Intention-
Driven’ ICMP Traceback,” Proc. IEEE Int’l Conf. Computer
Comm. and Networks, IEEE CS Press, 2001. pp. 159–165.
[7] Aljifri, M., (2003), ‘IP Traceback: A NewDenial-of-
Service Deterrent?’ Published By The IEEE Computer
Society 1540-7993/03 2003
[8] Chonka, A Zhou, W Knapp, K and Xiang, Y,
(2008), "Protecting Information Systems from DDoS Attack
Using Multicore Methodology", IEEE 8th International
Conference on Computer and Information
Technology, IEEE, 2008.
[9] Islam, R. M.D, Singh, J, Zhou, W., and Chonka, A.,
(2008) , “Multi-Classifier Classification of Spam Email on a
Multicore Architecture”, Proceedings of IFIP International
Conference on Network and Parallel Computing, 2008
[Accepted]
[10] Chonka, A, Zhou, W, and Ngo, L, (2008), “Ubiquitous
Multicore (UM) Methodology for Multimedia, Proceeding of
International Symposium on Computer Science and its
Applications
[11] Multi-Core from Intel – Products and Platforms. http:
//www.intel.com/multi- core/products.htm, 2006.
[12]AMD Multi-Core Products.
http://multicore.amd.com/en/Products/, 2006.
[13] Gorder, P.M, (2007), ‘Multicore processors for science
and engineering’, IEEE CS and the AIP, 1521-
9615/07/,March/April 2007
[14] Ou, S.H., Lin, T.J., Deng, X.S., Zhuo, Z.H., Liu, C.W.,
(2008), “Multithreaded coprocessor interface for multi-core
multimedia SoC’, Proceedings of the 2008 conference on
Asia and South Pacific design automation, Seoul, Korea
SESSION: University LSI design contest, Pages 115-116,
ISBN:978-1-4244-1922-7, 2008
[15] JaJa, J. (1992), ‘An Introduction to Parallel
Algorithms”, Addison Wesley, Reading, MA
[16]] MIT 1998 DARPA Intrusion Detection Evaluation
Data Set,
http://www.ll.mit.edu/mission/communications/ist/index.htm
l[17] Xiang, Y., and Zhou, W., (2004), ‘Trace IP packets by
flexible deterministic packet marking (FDPM)’, IP
Operations and Management, 2004. Proceedings IEEE
Workshop on 11-13 Oct. 2004
[18] Gropp, W., Lusk, E, Skjellum, A, (1996), “Using MPI:
Portable Parallel Programming with the Message-Passing
Interface”, Massachusetts Institute of Technology, 1994.
[19] Foster, I, (1994), “Designing and Building Parallel
Programs: concepts and tools for parallel software
engineering”, Addison-Wesley Publishing Company, (1994)
[20] Wilkson, B & Allen, M, (2005), “Parallel
Programming: Techniques and Applications using network
workstations and parallel computers”, Pearson Education,
Pearson Prentice Hall, (2005)

508

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on November 11, 2009 at 22:22 from IEEE Xplore. Restrictions apply.

