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Abstract

While the amount of data generated and collected keeps on growing rapidly,

the added value is not the data itself but comes from finding patterns and extracting

information and knowledge from the data. Analytical data management systems

are the primary tools to facilitate efficient analysis of huge data volumes.

The computing power of a single machine keeps improving at an unabated rate.

However, the increase of computing power no longer stems from increased clock-

speed, but rather from extensive parallelization inside the CPU including multi- and

many-core architectures. Consequently, (re-)designing existing and new software,

including data management systems, to efficiently and effectively using the entire

available computing power of rapidly changing and ever more complex hardware

architectures has become an important science and engineering challenge.

While analytical database query processing in principle lends itself well to par-

allelization, finding a good (let alone optimal) way of parallelizing an arbitrary

given query depends on numerous parameters including the kind and complexity

of the query itself, detailed characteristics of the ever more complex hardware ar-

chitectures, characteristics of the data and concurrent workloads (some of which,

in particular the latter two, might not be known upfront), and is known to be a

computationally hard problem.

The research reported in this thesis addresses several challenges of improving

the efficiency and effectiveness of parallel processing of analytical database queries

on modern multi- and many-core systems, using an open-source column-oriented

analytical database management system, MonetDB, for validation. In contrast to

the existing work we also broaden the research from focusing on individual opera-

tors and algorithms to consider the entire system and process holistically.

A prime prerequisite to achieving resource-efficient parallel query execution is

a detailed understanding of the impact of the various parameters sketched above.

Recognizing limitations of existing techniques and tools, we design and develop

new visual analysis techniques and tools that help to identify and rank performance

bottlenecks of parallel query execution on multi-core systems.

Deploying these tools in multiple showcases revealed that in particular as the

number of CPU cores grow rapidly with multi- (let alone many-) core CPUs, find-

ing an optimal degree of parallelization becomes increasingly difficult. Static par-

allelization techniques easily fail by using too low degree of parallelism, and thus

leaving resources (cores) unused, or using too high degree of parallelism, and thus

suffering from synchronization and other overheads.

This observation inspired us to design and develop a novel learning based adap-

tive technique for multi-core parallel plan generation using query execution feed-

back. This techniques proves to be particularly efficient with concurrent work-

loads, a scenario which is very common in practice but has been largely uncharted

in database query parallelization research.

To further increase the compute power of a single machine, multi-socket sys-

tems (accommodating multiple multi-core CPUs) have become a commodity. How-

ever, while providing transparent access from each CPU to the entire available

memory, access performance is non-uniform, i.e., each CPU has faster access to ”its
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own” local part of the memory, but slower access to the ”remote” memory of other

CPUs. Ignoring this non-uniformity in memory access in parallel database query

evaluation leads to non-optimal performance and undesired performance variations.

We show that using a simple technique where a multi-socket system is treated

as a distributed shared nothing database system, the remote memory accesses could

be constrained thereby having a controlled query execution performance.

Many-core system architectures are the latest trend to imitate GPU style par-

allel execution where there are 240 threads on 60 cores in a Xeon-Phi processor.

However, data transfer on the PCIe bus which connects Xeon-Phi co-processor to

the host, is a bottleneck due to the limited bandwidth. We analyzed the effect of

streaming execution of selected queries, to utilize PCIe bandwidth optimally, to

understand possibility of Xeon-Phi knights corner architecture usability in data an-

alytical workloads.

This thesis contributes to our understanding of the multi- and many-core CPU

landscape in the context of analytical database systems, exemplified by the Mon-

etDB columnar system. Many of the lessons, experiences and insights gained are

valuable for the emerging analytical database systems.
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Samenvatting

De hoeveelheid gegenereerde data blijft snel groeien, het vinden van betekenisvolle

patronen in zulke data is cruciaal. Analytische database systemen zijn een van de

belangrijkste hulpmiddelen om dit te bereiken.

De rekenkracht van computers neemt nog steeds snel toe. Niet door het ver-

hogen van de kloksnelheid, maar door het gebruik van parallelle verwerking mid-

dels multi- en many-core systemen. Het her-ontwerp van bestaande en nieuwe soft-

ware, waaronder database management systemen, om hier optimaal gebruik van te

kunnen maken is een belangrijke wetenschappelijke uitdaging.

Analytische database systemen gebruiken query parallellisatie als een standaard

techniek om de verwerkingstijd van analytische queries te verbeteren. Query par-

allellisatie is een wetenschappelijke uitdaging dat op een holistische manier moet

worden benaderd. Een van de eerste stappen is identificatie van performance bottle-

necks tijdens het uitvoeren van queries. Goede visualisatie technieken zijn hierbij

cruciaal om zulke bottlenecks snel te vinden. We hebben zo’n visualisatie tech-

niek ontwikkeld en daarmee het gedrag van de parallelle verwerking van queries

op MonetDB onderzocht.

Een van de belangrijkste factoren is het vinden van de optimale graad van par-

allellisme. Query plannen worden normaal gesproken gegenereerd zonder variaties

in runtime mee te nemen, waardoor de performance gedurende het parallel uitvo-

eren van queries lijdt onder de variabiliteit van runtime resources zoals CPU, mem-

ory, etc. Een statische parallellisatie techniek kiest vaak een te laag nivo, waarbij

cores ongebruikt worden, of leidt tot een te hoge parallelisatie graad met als gevolg

congestie op de toegang van cruciale hulpmiddelen. Deze observaties hebben ons

aangezet tot het introduceren een nieuwe techniek voor het genereren van mulit-

core parallelle executie plannen op basis van Machine Learning technieken, die

gebruik maakt van execution feedback.

Om de rekenkracht verder te verhogen zijn multi-socket machines geintro-

duceerd. Ogenschijnlijk bieden ze de programmeur transparente toegang naar elk

stuk van het geheugen, maar is de performance sterk afhanklijk van toegang tot lo-

cal of remote geheugen. Dit lijdt tot problemen met niet-uniforme memory access

en variatie in de prestaties van query verwerking. We hebben laten zien dat met een

simpele techniek, waarin een multi-socket systeem wordt behandeld als een gedis-

tribueerd database systeem, de remote memory acces kan worden beperkt met als

gevolg gecontroleerde query executie prestaties.

Many-core systeem architecturen zijn de laatste trend die probeert een GPU-

achtige parallelle executie te realiseren. Een voorbeeld is de Xeon-Phi processor

met 240 threads op 60 cores. Data transfer over de PCIe bus die de Xeon-Phi

coprocessor verbind met de host is echter een bottleneck door de beperkte band-

breedte. Om optimaal gebruik te kunnen maken van de beschikbare PCIe band-

breedte hebben we het effect van streaming executie van een aantal geselecteerde

queries geanalyseerd en om te begrijpen of het mogelijk is om de Xeon-Phi knights

corner architectuur te gebruiken bij data-analytische workloads.

Met dit proefschrift hebben we een bijdrage geleverd aan het beter uitnutten van

multi- en many-core CPUs in de context van een analytisch database systeem, geil-
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lustreerd aan de hand van het systeem MonetDB. De lessen, ervaringen en inzichten

zijn van groot belang voor de verdere ontwikkelingen in dit veld.
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Chapter 1

Introduction

”Information is not knowledge.” – Albert Einstein

1.1 Data is everywhere

The amount of data generated keeps on growing each year. Most of this data is

generated through web related activities such as automated logs, instant messages,

mail communication, media sharing in terms of photo, audio, video, etc. A large

amount of data is also generated through scientific experiments in the fields of

astronomy, seismology, particle accelerators and so on. The latest addition to the

data generation sources is through the Internet of things and wearable devices.

The data in itself is useless unless we can analyze it to find meaningful patterns

to extract knowledge. Hence, data analytics, also known as data science, is one of

the hottest research area today. The data analytics solution preference is largely

driven by the size and the volatility of the data in use. Statistical software packages

such as R are commonly used by data scientists for dealing with small data sets

that fit in a single machine’s memory [54]. Many data scientists also use Microsoft

Excel based spread-sheet solutions for small data sets [83]. Map-reduce based data

analytics solutions come into play for dealing with large peta-byte scale data sets

usually employed by Internet based companies [57].

Analytical database systems are one of the most critical pieces of infrastructure

in the technology stack. With growing memory sizes many data sets can be fitted

in the memory of a single powerful machine [31]. These database systems support

in-memory data processing, while leveraging decades of research in data manage-

ment. Unlike the file based storage supported data analytics solutions such as R,

in analytical database systems, data can be processed by applying different data

processing techniques. Furthermore systems use the widely popular SQL based

front-ends for defining analytical queries, which makes writing analytic queries

an easier job. Technology that helps to accelerate the process of database system

analytics, is thus immensely valuable.

1
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1.2 Data management in the hardware world

Data management using database systems is a software based solution. However,

software can never exist in isolation, and works in tandem with the hardware tech-

nologies to assist in processing, storage, and transfer of data between different ma-

chines. Innovation in software thus co-exists with emerging hardware technolo-

gies. New hardware technologies such as multi-core CPUs, flash memory storage,

NVRAM based storage, fast interconnects, are some examples of development in

the last decade, calling for an experimental driven science to access the old and the

new technologies. These developments lead to some important research questions

as follows.

Question 1: How well are the state-of-the-art database management system solu-

tions exploiting the available hardware resources?

The workloads that tackle data analytics problems are termed as the data an-

alytical workloads. One of the prime concerns during analytical workload pro-

cessing is to improve the query execution performance. Memory optimized an-

alytical database systems are designed with analytical query processing as their

focus. As they work on in-memory data, they are critically dependent on memory

bandwidth and CPU processing power. CPUs themselves have a wide range of

architectures that comprises of different type of caches, vector registers (SIMD),

micro-architectures, interconnects, etc., which affects how data is processed and

in turn affects the query execution performance. Optimized query processing thus

has to take into account dependency on the underlying hardware architectures. De-

signing hardware aware query processing optimizations for faster query execution,

using improved CPU processing and memory bandwidth are in high demand as

exemplified by the tier 1 conference proceedings such as VLDB, ACM SIGMOD,

DAMON etc.

Question 2: How to leverage multi-core systems to improve the performance of

analytical workloads?

In a multi-core CPU each core acts as an independent CPU. Multi-socket sys-

tems use multi-core CPUs in each socket connected through fast interconnect.

Now-days most multi-socket systems have two or four sockets.

Multi-core CPUs and multi-socket systems offer a many-fold of increased pro-

cessing power. How to utilize this processing power most efficiently for analytical

workloads is the prime focus of this thesis. Analytical systems use query paral-

lelization as one of the standard techniques to efficiently utilize multi-core CPUs.

The research reported in this thesis uses parallel query execution as the fundamental

building block. A large body of research work targets exploration of query execu-

tion performance improvement in non uniform memory access based systems. We

provide an overview of this work in Chapter 2.
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Question 3: How does the multi-core hardware affects the query optimizers?

Query optimization is a fundamental research problem in database systems

[88, 46, 86]. Optimized serial plan generation using heuristics or cost models

has been extensively researched. Some prominent techniques are mid-query re-

optimization [92], learning based optimization[138], and multi-query optimization

[127]. Query optimization for parallel databases in a distributed system setting has

been also around for a considerable time [29, 141, 117]. In a distributed system

setting the network interconnect between machines play a crucial role, as it affects

the bandwidth and the latency of the data transfer. Multi-core CPUs with mul-

tiple cores on a single chip are like a distributed system, however, with different

architectural properties in terms of its memory hierarchy, interconnects, etc. They

bring a new perspective in query optimization, as plan generation has to take into

account multiple CPU cores and their architectural properties as well. In this thesis

we focus on a new query optimization technique we developed for parallel plan

generation for multi-core CPUs.

Question 4: How to provide insights into the query execution performance bottle-

necks at a database system’s functionality level?

Identifying query execution bottlenecks is of critical importance to improve

performance. Hence, suitable debugging tools are of invaluable importance. Most

of the tools are designed keeping system specific functionalities in mind. However,

the generic principles they employ are applicable for a wide range of systems. We

elaborate on different use cases of improving query execution performance using

such tools.

We have highlighted the generic role of multi-core CPUs in query execution

performance improvement so far. Next we briefly summarize a more focused view

of the problems that arise during performance improvement using query paralleliza-

tion.

1.3 Query parallelization

Query parallelization is a standard technique for improving query execution per-

formance using multi-core CPUs. At a holistic level query parallelization involves

each CPU core executing a part of the query plan and aggregating results of indi-

vidual query plan execution. Query parallelization is a hard problem as it is closely

related to the query execution strategy, which gets influenced by the CPU architec-

ture in use. Some of the prominent problems in parallelized query execution are as

follows.

• Identification of the optimal degree of parallelism of a query plan, for CPU

architectures with a large number of CPU cores.
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• Generation of an optimal parallel plan using query optimization techniques

without considering the concurrent workload.

• Generation of an optimal parallel plan during concurrent workload execution,

taking into account the resource contention.

• Identification of execution performance bottlenecks during parallelized query

execution.

• The effect of non uniform memory accesses (NUMA) in multi-socket sys-

tems, on parallelized query execution performance.

This thesis explores the above problems in the context of the research ques-

tions raised in Section 1.2, in a multi-core CPU environment. Next we provide a

summarized overview of our contributions in this context.

1.4 Contributions and covered publications

Most research in multi-core query parallelization is focused on individual aspects

such as the effect of multi-core CPUs on the design and implementation of rela-

tional algebra operators and comparisons of these implementations from a speedup

perspective on multi-core systems. For example, the join operator is the most re-

searched operator in the literature [36]. However, a standalone operator performs

differently when executed in a full-fledged database execution engine, due to varia-

tions in the run-time resources such as the CPU cores and memory bandwidth used

by the other operators under execution. Hence, an important research question to

ask is what is the holistic effect of operator based optimizations in a database sys-

tem.

This thesis focuses on the exploration of the query parallelization problem in

a holistic sense in an established full-fledged column-store database system. The

exploration focuses on topics such as 1) visualization tools to identify performance

issues during query execution, 2) a new parallelization technique for improved

multi-core utilization, 3) detailed analysis of the new technique in isolated and con-

current workload environments while comparing with state-of-the-art systems, and

4) insights into utilization of new hardware characteristics such as NUMA aware

execution and many-core architecture execution.

We summarize the science question researched, the research methodology used,

and the corresponding publications list next.

• Visualization tools to identify performance bottlenecks.

Addresses research questions 1 and 4: Identifying execution performance

bottlenecks is of importance to improve parallelized query execution perfor-

mance. Insights at the functional level i.e. relational algebra level are needed.

Most database execution engines provide text-based analysis tools, which

work reasonably well for analyzing serial query execution plans. However,

parallelized query plans tend to be more complex. Other generic low level
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tools such as Vtune analyzer [126] that highlight CPU load, memory band-

width, IO etc. are insufficient to showcase database system specific require-

ments. Hence, any assistance that expedites the process of bottleneck identi-

fication in parallelized query execution is a crucial step in the research explo-

ration. Operator dependency in a query plan can be represented by a graph

based dependency order and a time based dependency order during execu-

tion. We explore how these two representations could be visualized to assist

in query execution performance bottlenecks identification.

The research methodology: Visualization tools are better, compared to text

based tools as they expedite the process of performance bottleneck identi-

fication. They quantify the information for an easy analysis using different

schemes such as color coding, clustering, shapes and sizes, interactive nav-

igation, etc. Operator’s execution flow can be visualized using graph based

dependency order or time based dependency order. The state of an operator’s

execution can be color coded to indicate the execution flow in an online and

offline manner. Online analysis gives an immediate understanding of where

the bottlenecks occur by a visual inspection using the color coding scheme.

More detailed insights per operator such as the execution time, resource con-

sumption, etc. can be obtained using an offline analysis. As parallel plans

tend to be more complex than serial plans, availability of such tools influ-

ences the research progress.

Important performance issues such as operator scheduling problems, resource

consumption problems which are impossible to identify using text-based

tools can be identified using such tools. The insights obtained can lead to

crucial changes in the system architecture components such as the operator

scheduler, the interpreter, different operator’s implementation, etc. This in-

spires development of similar tools suitable for other systems.

Gawade, Mrunal, and Martin Kersten. ”Stethoscope: a platform for inter-

active visual analysis of query execution plans.” Proceedings of the VLDB

Endowment 5.12 (2012): 1926-1929.

Gawade, Mrunal, and Martin Kersten. ”Tomograph: Highlighting query

parallelism in a multi-core system.” Proceedings of the Sixth International

Workshop on Testing Database Systems (DBTest). ACM, 2013.

• Adaptive query parallelization.

Addresses research questions 2 and 3: Identifying an optimal degree of

parallelization and an optimal parallel plan is a NP-hard problem. Most

systems follow the exchange [68] operator based plan parallelization, using

heuristic or cost model based approaches. Simple heuristics such as allo-

cating all cores to the parallelized query does not result in improved perfor-

mance. It could also lead to degradation due to overheads in management of

the extra resources and resource contention. The cost model based parallel

plans are very sensitive to operator cardinalities, hence do not generate opti-

mal parallel plans either. Identifying an optimal parallel plan is thus an open

science problem.
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The research methodology: A feedback based technique to identify the

optimal degree of parallelization and multi-core utilization in a parallelized

query execution environment therefore is a good research direction. It is

based on the methodology of learning from the past and is inspired by the

observation that most analytical queries use templates. When the same query

albeit with different parameters is fired, adaptive parallelization comes into

effect. During each query invocation the most expensive operator in the

query plan is incrementally parallelized, until an improved parallel plan is

identified. A convergence algorithm stops the feedback loop when the most

suitable parallel plan is identified. Adaptive parallelization improves multi-

core utilization compared to heuristic parallelization. It is a result of less

resource consumption as the number of data partitions in adaptive paralleliza-

tion are less compared to heuristic parallelization. As adaptive parallelization

uses the exchange operator [68] based approach, it can also be used in other

database systems that use the exchange operator based parallelization.

Gawade, Mrunal, and Martin Kersten. ”Adaptive query parallelization in

multi-core column stores.” Proceedings of the EDBT 2016.

• Concurrent workloads and query parallelization.

Addresses research questions 3 and 4: Most database systems generate a

parallelized query plan without taking into account run-time resource con-

tention due to a concurrent workload. Modeling run-time resource variations

is practically impossible. Investigating the effect of a concurrent workload on

a parallelized query execution is crucial to make progress in creating resource

contention aware parallel plans. Different types of concurrent workloads

generate different types of resource contention. Also the effect of resource

contention on a parallelized query execution varies significantly depending

on the query parallelization technique (intra-query / inter-query) under use.

Hence, investigating query parallelization under concurrent workload is a

critical problem in the query parallelization landscape.

The research methodology: A proven technique in the database research is

to design different types of workloads that create different levels of resource

contention. The effects of these concurrent workloads on individual par-

allelized query execution are analyzed using different query parallelization

techniques in the context of different database systems. It provides detailed

insights from thread variations, scheduling overheads, robustness of individ-

ual operator’s, and intra-query against inter-query parallelization perspective.

Insights are also obtained by quantifying the performance effects in terms of

microarchitecture hardware counters such as cache misses, pipeline stalls,

etc. Analyzing resource contention due to concurrent workload is challeng-

ing due to experimental setup complications, workload variations, ability to

isolate individualized query performance effects, etc. Such type of research

exploration in the context of analytical database systems for different paral-

lelization techniques does not exist so far. The insights obtained can be used

to create synthetic workloads that use intra-query or inter-query paralleliza-



1.4. CONTRIBUTIONS AND COVERED PUBLICATIONS 7

tion techniques and to understand the relative merits of different paralleliza-

tion techniques under resource contention.

Gawade, Mrunal, and Martin Kersten. ”Multi-core column stores under con-

current queries.”Proceedings of the Data Management on Modern Hardware

DaMoN(2016).

• NUMA effects on the memory mapped storage.

Addresses research questions 1 and 2: NUMA systems pose a particular

challenge to database engines as the memory access latency and bandwidth

varies based on the location of the data access. Most server-class systems

use 4 socket NUMA systems. The predominant approach taken to mitigate

the NUMA problem is to build new database systems from scratch, making

the individual database operators NUMA aware. However, rewriting the code

base of existing database engines to make them NUMA aware is a lot of effort

due to the legacy code-base. Hence, solutions that make existing database

engines NUMA aware are well sought after.

The research methodology: A promising research direction is to mitigate

the data affinity to memory banks problem, by letting the operating system do

the scheduling using the memory mapping feature. This research direction

can be explored further to analyze the NUMA effects on a memory mapped

storage system during parallelized query execution.

As remote memory accesses are the main culprit in NUMA performance,

minimizing them is crucial. Hence, a new distributed system based (shared

nothing) architecture is a good research direction. The data is horizontally

partitioned on each memory bank and each socket is affined with a database

engine execution instance (slaves), while a master database execution in-

stance coordinates the distribution to slaves. Though such an approach has

been explored in the context of transactional database systems [131], it is

novel for the analytical systems. This is a simple architecture, which does

not require major architecture level changes, hence legacy database systems

can use it.

Gawade, Mrunal, and Martin Kersten. ”NUMA obliviousness through mem-

ory mapping.” Proceedings of the Data Management on Modern Hardware

DaMoN(2015).

• Xeon Phi accelerated database.

Addresses the research questions 1: Use of new hardware such as GPUs

and Intel Xeon-Phi many-core processors as database accelerator is an active

research area. GPUs are programmed using CUDA and OpenCL program-

ming frameworks which are relatively new, compared to Xeon-Phi’s X86

based programming framework. Both GPUs and Xeon-Phis are used as a

co-processor attached to the PCIe bus and are primarily targeted towards the

high performance computing workloads, due to their high computing power.

Their memory bandwidth is very high (upto 500 GB/sec), however, they have

a limited device memory (upto 16 GB).



8 CHAPTER 1. INTRODUCTION

During database query execution data has to be either stored in the device

memory or transferred over the PCIe bus to the device. However, as database

workloads handle large data sizes, the limited device memory (up-to 16 GB)

and the limited PCIe bus bandwidth (upto 6 GB/sec, when compared with the

memory bandwidth), limit usage of these co-processor devices in database

workloads. Optimizing data transfer over the PCIe bus is thus an important

problem in the context of database workloads. The role of GPUs to accelerate

database query execution and optimized data transfer over the PCIe bus has

been explored quite well [120]. On the other hand the research exploring

Xeon-Phis as a database query execution accelerator is quite primitive.

The research methodology: We propose a many-core architecture based

(Intel Xeon-Phi) execution engine for database query acceleration, that gives

an outlook on the next wave of innovation in many-core systems. We inves-

tigate the PCIe bottleneck for data transfer to Xeon-Phi. A new streaming

based multi-threaded MPI based implementation of database execution en-

gine to accelerate a select operator on Xeon-Phi is proposed. Xeon-Phi prices

have dropped from thousand dollars to a hundred dollar, which intrigues us

to investigate their role in cluster based configuration, where more than one

Xeon-Phi is present in a single system. The MPI based implementation we

investigate is an exploration attempt in that direction.

1.5 Thesis overview

In Chapter 2 we provide a brief background on relational database management

systems, different multi-core CPU architectures, standard software parallelization

system libraries such as pthreads, and latest research overview of multi-core CPUs

in the context of database systems.

Many readers might be familiar with the background material already. The

overview of the state-of-the-art research towards the end of the Chapter might be

of specific interest to such readers.

Chapters 3 and 4 describe the visualization tools to identify query execution

bottlenecks in the parallel world. In Chapter 3’s Appendix we provide sample

query data flow graphs to help readers get an intuition of the complexity of the

parallel plans for the database system in use. In Chapter 4 we provide a detailed

background analysis of some sample analytical queries, with operator level details.

In both Chapters we provide different use cases to illustrate how visualization offers

quick help in identifying and analyzing performance problems during parallelized

query execution. These Chapters are based on the following peer reviewed publi-

cations.

Gawade, Mrunal, and Martin Kersten. ”Stethoscope: a platform for interactive

visual analysis of query execution plans.” Proceedings of the VLDB Endowment

5.12 (2012): 1926-1929.
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Gawade, Mrunal, and Martin Kersten. ”Tomograph: Highlighting query paral-

lelism in a multi-core system.” Proceedings of the Sixth International Workshop on

Testing Database Systems (DBTest). ACM, 2013.

In Chapter 5 we introduce a new feedback based parallelization technique,

called adaptive parallelization. In the first half of the Chapter we describe the

new parallelization technique along with a new convergence algorithm that identi-

fies an optimal parallel plan in minimal convergence runs. In the second half of the

Chapter, we provide an extensive experimentation comparing the new technique

with an existing technique under different experimental settings. This Chapter is

based on the following peer reviewed publication.

Gawade, Mrunal, and Martin Kersten. ”Adaptive query parallelization in multi-

core column stores.” Proceedings of the EDBT 2016.

In Chapter 6 we explore the effects of different types of concurrent workloads

on parallelized execution of a single query. We offer detailed operator level analy-

sis of some queries, along with summary notes, which users might find helpful for

an overview. We evaluate the resource contention effects of different concurrent

workloads on parallelized query execution using static, cost model, and adaptive

parallelization techniques, in the context of three different database systems. The

experiments address four independent questions, which readers are free to navigate

independently. This Chapter is based on the following peer reviewed publication.

Gawade, Mrunal, and Martin Kersten. ”Multi-core column stores under con-

current queries.”Proceedings of the Data Management on Modern Hardware Da-

MoN(2016).

The first half of the Chapter 7 explores the NUMA effects on parallelized query

execution of a memory mapped storage system (NUMA obliviousness), while the

second half compares the execution performance of NUMA oblivious architecture

with a new shared nothing architecture we propose, where we treat the multi-socket

system as a distributed database system. This Chapter is based on the following

peer reviewed publication.

Gawade, Mrunal, and Martin Kersten. ”NUMA obliviousness through memory

mapping.” Proceedings of the Data Management on Modern Hardware DaMoN(2015).

How to use many-core architectures such as Xeon-phi in the database work-

loads is an important problem for the future. Towards the end we try to categorize

such use cases.

The experimental approach used in this thesis led to many improvements in the

MonetDB system and provides a reference for other database systems. Research

in the hardware / software co-design from the database world perspective is thus a

never ending story.





Chapter 2

Relational databases and multi-core

CPU landscape

”Individually, we are one drop. Together, we are an ocean.” — Ryunosuke Satoro

In the first half of this Chapter we provide the background material on relational

databases to help understand their role in data management solutions. We cover the

landscape from the database system components, different types of workloads, and

different types of database architectures.

In the rest of the Chapter, we briefly overview different types of multi-core CPU

architectures, some of which are used during research exploration in this thesis.

We also overview different types of standard parallelization libraries being used

during workload parallelization on these CPU architectures. Finally, we provide

a brief survey of state-of-the-art research addressing multi-core CPU utilization in

different types of database system workloads.

2.1 Relational databases

Databases offer an elegant solution to data management problems. They are used

to store and retrieve data efficiently. The database schema imposes a structural

format on the stored data. The schema describes different types of data and the

relation between them using different forms of constraints. Based on the nature of

the schema the databases can be categorized into relational, graph, nosql databases,

and so on. Relational database systems are one of the oldest and the most popular

type of database systems [51]. In this thesis we focus on the relational database

management systems.

A relational database schema consists of different data attributes of different

data types stored in a table representation as shown in Table 2.1. When the data is

loaded in the database each data record is matched against the schema’s attribute

11
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data types, before being stored in the database. The query interface allows to query

the stored data for different types of analytics.

Table 2.1: A relational schema.

Id (Int) FirstName (Varchar) LastName (Varchar)

1 Mrunal Gawade

2 Pham Duc

3 Eleni Petraki

The database systems are a complex piece of software with different compo-

nents. The main components are the query language front end, the plan generator,

the query optimizer, and the query execution engine. We summarize each of these

components in brief next.

One of the most popular query languages is SQL (Structured Query Language),

which provides a standard interface for querying the data. An example SQL query

looks as follows.

Select Column from Table where Column data=1;

Most database systems use a relational algebra representation of the input SQL

queries, where the SQL query is converted into a relational plan representation.

The relational algebra plan representation for the query is shown in Figure 2.1.

Figure 2.1: Relational algebra plan

A relational algebra query plan represents logical ordering of different types

of relational algebra operators such as scan, selection, join, group-by, etc. These

operators are implemented using different algorithms, suitable for a particular log-

ical plan representation, depending on various characteristics such as the type of

data, the distribution of data, size of the data, presence of auxiliary structures such

as the indexes, the hardware characteristics, etc. For example, depending on the

characteristics of the data being accessed a select operator could use a scan select,

or index select operator algorithm.

Hence, depending on various factors such as the physical operator’s algorithm

being used, join ordering of operators, and other possible operator orderings there

are combinatorial choices for the available physical plans.

The query plan optimizer is one of the most critical components of a database

system, as it has to discard bad plans and choose a near optimal plan amongst all

possible plans. The query plan optimizers are categorized into cost based optimizer

and heuristic based optimizer. A cost based optimizer uses a cost model to decide
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the execution cost of various possible plans. A heuristic optimizer uses different

heuristic rules to select heuristically optimized plans. Cost based optimizers are

often complicated and can result in sub-optimal plans due to errors in estimation of

the operator cardinalities. Heuristic optimizers in comparison are simple and often

do not use operator result estimation cardinalities.

The query execution engine is responsible for the execution of the final plan se-

lected by the query optimizer. Most execution engines are interpreter based. How-

ever, a recent trend is to use just in time compiled plans for execution [116]. The

engines can be further classified into tuple-at-a-time, operator-at-a-time and vec-

torized execution. We elaborate about them further in Section 2.3.

The relational database systems can be further classified based on the types

of the workloads they support. The types of queries used in a database system

determines the workloads under use. Traditionally there are two types of relational

database workloads, transactional and analytical.

2.1.1 Transactional workload

The transactional workloads touch only a few records from the stored data per

query. A common example is a banking transaction, where the users bank balance

gets updated on credit / debit transaction. Since, transactional workload queries

touch a single record, and execute in a few milli-seconds mostly, the transactional

workloads are bench-marked on the basis of their throughput, that is the number

of transactions completed per second. TPC-C 1 is a standard benchmark used for

transactional bench-marking, also termed as OLTP (On line transactional process-

ing) benchmark.

2.1.2 Analytical workload

On the contrary in an analytical workload queries touch millions of records to ag-

gregate data from all the available records, to derive certain statistics. Aggregation

is mostly required only on a few columns of interest. Hence, analytical queries

take a longer time to execute and response time optimizations is one of the main

challenges in such workloads.

Benchmarks are used for a relative performance comparison of different database

systems. Transaction processing performance council organization (TPC) is an

organization that is responsible for different benchmarks used in the database re-

search. TPC has benchmarks for both analytical systems and transactional sys-

tems. The data generator tool allows generation of different sized data. TPC-H 2

is the benchmark for analytical systems. It has 22 analytical queries of different

complexity. Most analytical database systems use TPC-H queries for performance

comparison. TPC-DS is a relatively new benchmark with 99 queries that are more

diverse. In this thesis we prominently use TPC-H benchmark. TPC-DS benchmark

is also used some times to bring more diversity to the experiments.

1www.tpc.org/tpcc
2www.tpc.org/tpch

http://www.tpc.org/tpcc
http://www.tpc.org/tpch
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Figure 2.2: Row store vs Column store.

Having over-viewed relational database logical model and its architecture com-

ponents, next we provide a brief overview of the categorization of relational database

systems based on their storage layout format.

2.2 Database architectures and storage types

The layout of the stored data in the database systems gives rise different types of

storage architectures namely, 1. N-ary storage (row-store) 2. Decomposed storage

(column-store) 3. Partially decomposed storage (hybrid-store).

2.2.1 Row-store

In a row-store the entire record (tuple) consisting of multiple attributes (columns)

is stored adjacently in a single page [123]. This type of storage architecture is good

for transactional systems which touch only a single tuple using indexed look-ups.

Bringing a single page containing the relevant record into cache is efficient.

However, if a row-store architecture is used to process analytical queries, then a

lot of unnecessary data in the columns not needed for analysis is also brought into

the CPU caches for processing. It not only wastes the precious memory bandwidth,

but also disturbs the data locality in caches.

2.2.2 Column-store

On the contrary, in a column-store architecture each individual attribute (column)

of a tuple is stored in its own storage scheme [52]. Analytical queries use only

a few attributes (columns) from the complete schema. When queried, only the
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attributes required are brought into CPU caches for further processing. Column-

store architectures also help in better compression of the stored data as most data

tend to be co-related, for example, a column storing date type, will repeat the year

and the month for many records. Memory bandwidth is not wasted, as only the

needed data is brought into the CPU caches. Column-stores also allow simple loop

based processing while keeping the data in CPU caches, and improving the CPU

performance in terms of branch misprediction logic, cache misses, etc. Hence,

column-store systems are the predominant vehicles for analytic data processing.

Tuple reconstruction

As processing in a column-store occurs on individual columns, projecting the fi-

nal result calls for inter column access. The process of formation of the complete

record is known as the tuple reconstruction problem. Tuple reconstruction can be

done immediately after an operator execution or can be postponed till the final pro-

jection operation. Accordingly there are two types of tuple reconstruction methods

named as eager and lazy tuple reconstruction [84]. Tuple reconstruction could add

considerable cost depending on the method being used.

2.2.3 Hybrid-store

Row-stores are optimal for transactional workloads, while column-stores are opti-

mal for analytical workloads. However, not all workloads have such distinct char-

acteristics. Such mixed workloads (OLTP / OLAP) can show a mixed behavior

between row and column store architectures. Such workloads benefit from using

a partially decomposed storage model (PDSM) architecture (hybrid-store) [73]. In

this model database schemas are decomposed into (multi-attribute) partitions such

that a given workload is supported optimally.

Having overviewed the database architectures on the storage layout, next we

briefly categorize them based on their relational processing models.

2.3 Database architectures and relational processing model

Database architectures could be also categorized based on their relational pro-

cessing model. This aspect concerns the execution engine paradigm itself. Most

database systems use a pipe-lined execution engine where operators pass the data in

a pipe-lined manner in their logical ordering in the plan. Accordingly the execution

engines are classified as follows.

2.3.1 Tuple-at-a-time execution

This model was introduced by the Volcano system [70] and is also known as the

Volcano style query processing. Most database execution engines use a variant

of Volcano style query processing. It involves an open-next-close iterator model,

where an operator calls the open iterator, and then the next iterator to start receiving

the data from the next operator in the execution plan pipeline. However, this is a
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highly inefficient model from CPU performance as unpredictable function pointer

chasing during operator iterations, leads to branch mispredictions, pipeline flushes,

etc.

Row stores were popular with disk based system and used open-next-close it-

erator model to access tuples, since the latency of accessing a single tuple from

disk is high, so CPU performance did not matter much. However, the storage ar-

chitecture shifted to the column stores where CPU performance started to matter

as the column stores use in memory query execution engines [41], where the data

is stored in the memory. Hence, the disk access latency gets replaced by memory

access latency, and the CPUs memory access latency thus becomes important. This

gave rise to the bulk processing model, which we describe next[94, 41].

2.3.2 Operator-at-a-time execution

One of the early column stores MonetDB, uses the operator-at-a-time execution

model. This type of processing is also termed as bulk processing. Here precompiled

primitives are static loops without function calls that materialize all intermediate

results. In this model an operator executes completely before another dependent

operator in the pipeline starts execution [39]. Complete materialization however

increases the intermediate data size and uses a lot of memory, outweighing CPU

efficiency. To improve on this deficiency, vectorized bulk processing is used, as

described next.

2.3.3 Vectorized execution

To avoid the penalty of complete materialization, a vector-at-a-time execution en-

gine was proposed in the MonetDB-X100 system [42], which was later commer-

cialized as Actian database system. Vectorwise uses an open-next-close based pipe-

lined execution engine with vectorized execution where instead of fetching a tuple

at a time, a vector-at-a-time is fetched. Vectorwise uses CPU caches effectively by

keeping vector sizes cache conscious and thereby avoiding memory access latency.

Having looked at different database architectures and their query processing

paradigms, next we provide a brief overview of different query execution perfor-

mance improvement opportunities.

2.4 Query execution bottlenecks

Query execution response time is one of the main metrics to measure the query’s

execution performance. The query execution could get hampered due to different

problems arising due to inefficient operator algorithms, lack of indexes, resource

constraints at the CPU, the memory and the network level. The query execution

time can be improved in two ways, software level improvement, and hardware level

improvement.
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2.4.1 Software level improvement

In software level improvement the focus is on the design of new algorithms for

database operators, indexing techniques, query optimization techniques, etc. that

could reduce the query execution time. A lot of research is focused onto the

optimization of different join operators, scan operators, group-by operators. We

overview some of it in the context of multi-core CPUs in Section 2.8. In memory

indexing strategies such as adaptive indexing (cracking) [85] help mitigate the cost

of building an index. Imprints [136] allows to index in memory data at cache line

granularity. Adaptive query optimization [58] techniques help to correct problems

in cardinality estimations to create more optimal plans for execution.

Query execution bottleneck problems are difficult to identify. Hence, differ-

ent debug tools are used to get in-depth insights into the possible query execution

problems. Visualization tools help to identify the plausible problems.

A standard way to improve query execution performance is using plan paral-

lelization for the underlying multi-core CPU architecture.

Query parallelization

Traditionally there are two types of query parallelization techniques. Intra-query

parallelization and inter-query parallelization. During intra-query parallelization

individual operators in a query plan operate on partitioned data such that operators

working on independent data can operate in parallel. On the contrary during inter-

query parallelization multiple queries execute on individual cores in parallel, such

that each query executes only on a single core. This is a form of parallelization

where though individual queries execute serially on each core, as a whole multiple

queries execute in parallel on different cores.

2.4.2 Hardware level improvement

Another important field of interest is how the software behaves in co-ordination

with the emerging hardware technologies. New hardware such as the multi-core

processors, the memory technologies such as NVRAM, the storage technologies

based on flash, the network technologies based on new network inter-connects keep

on emerging. Hence, software evolves in tandem to make the most of the new

hardware features. A good example of this trend is the new processor architectures

with features such as super-scalar execution, out-of-order execution, deep pipe-

lining, branch-predictor logic, non-uniform memory access (NUMA) sockets and

their interconnects, different level of caches, hardware threading, etc. Database

software algorithms need to be able to effectively utilize all the available features

in the hardware to be able to effectively drive the query execution.

In this thesis we focus on query execution improvement by query parallelization

in the multi-core CPU context.
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2.5 Multi-core CPU landscape

CPU architectures continue to evolve from the single core CPUs to multi-core

CPUs, and multi-socket multi-core CPUs to many-core CPUs. Having done a brief

overview of the relational database systems background, we now provide a brief

overview of the multi-core CPU architecture landscape, some of which we use in

this thesis.

2.5.1 Multi-core CPUs

Multi-core CPU systems have multiple CPU cores on a single socket. The number

of cores per socket varies, however, 4 cores per socket are common in desktop level

processors. We use Intel Xeon based multi-core CPUs in this thesis, which have

private L1, L2 caches and shared L3 cache.

Figure 2.3: Different multi-core CPU architectures.

Figure 2.3 shows such sample cores with different CPU architectures. Each

core has different hierarchy of caches (L1 / L2 / L3). Cache is very small sized,

fast memory with very low access latencies compared to the main memory access

latency. The approximate access latencies are L1 = 4 cycles, L2 = 10 cycles, L3 =

60 cycles, the main memory = 120 cycles. In modern processors both L1 and L2

cache are usually on the core itself, whereas the L3 cache is shared across all the

cores. Modern processors also have integrated graphics processing unit on the die.

Figure 2.4: Hyper-threading architecture.
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Figure 2.5: 4 socket NUMA architecture.

The number of cores also appear to increase due to simultaneous multi-threading

(SMT). SMT is a technology for emulating multiple logical cores per physical core,

so that more than 1 thread can execute per core. Hyper-threading (HT) is a special

form of SMT in Intel processors where the register state per core is duplicated

so that one more thread can execute per physical core. Figure 2.4 shows a rep-

resentative diagram of hyper-threaded CPU compared with multiprocessor CPU.

Hyper-threading however need not improve performance always and is good when

there is overlap of memory bound and computational bound threads per core.

2.5.2 Multi-socket multi-core CPUs

The physical limitations restrict putting more number of cores on a single socket

due to problems such as heat dissipation, and transistor size. Hence, to accom-

modate more number of cores, more number of sockets are added in the system,

resulting in a multi-core multi-socket system. Each socket is connected with other

sockets through an interconnect technology by the CPU vendor. Quick path inter-

connect (QPI) is the Intel’s proprietary interconnect technology, whereas Hyper-

transport is the interconnect technology of AMD processors. Each of these inter-

connect technologies use different topology such as direct connection (single hop)

and indirect connection (multi-hop).

Figure 2.5 shows 4 sockets directly connected with all other sockets. There can

be configurations where each socket is connected only with its direct neighbors, as

we use in Chapter 7. Each socket is further connected with its own memory module.

The term NUMA arrives from the non-uniform memory access that arrives due to

asymmetric memory access by each socket. For example, consider in the example

configuration in Figure 2.5, the local memory access of a socket has much less

latency as compared to the remote memory access of a neighboring socket, as the

remote memory access has to go over the interconnect.

Intel announced NUMA compatibilities for its x86 and Itanium servers in late

2007, while AMD announced it with Opteron processors in 2003. 4 socket CPUs
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Figure 2.6: Intel Xeon Phi architecture.

are the most common at present in the server systems. NUMA can be also viewed

as a form of cluster computing. Virtual memory support in cluster based systems

could allow implementation of NUMA in software. As NUMA affects memory ac-

cess performance, softwares need to provide certain optimizations from scheduling

of threads close to the in-memory data. Linux provides support for NUMA based

memory allocation at the kernel level. Microsoft Windows and Windows server

2008 provides NUMA support. OpenSolaris models NUMA support with lgroups.

Java 7 has support for NUMA aware memory allocation and garbage collection.

2.5.3 Many-core CPUs

Many core systems are the next evolution in the area of multi-core systems. These

are the systems with many power efficient cores, which are connected through a

common interconnect. Intel Xeon Phi family of co-processors represent the many

core architecture (See Figure 2.6). Each individual core is based on the old Pentium

architecture with a frequency of around 1GHZ. The number of cores are around 60.

Each core can support 4 physical threads, hence a total of 240 threads can be hosted

on a 60 core architecture. Each individual core is simpler in architecture compared

to the complexity of Xeon cores. Each core has 2 pipelines, hence for optimal

usage of the logical units, a minimum of 2 threads are required per core. Xeon phi

architecture is code named Knights Corner architecture. The cores support in-order

processing compared to out-of-order processing of the Xeon cores.

Xeon phi architecture is designed keeping in mind the HPC workload with GPU

architecture as the main competitor. Each core has a 512 bit SIMD vector unit, 32

KB L1 cache, 512 KB L2 cache. The L2 cache is kept coherent through combina-

tion with the interconnect. The memory bandwidth ranges between 250 MB/s to

320 MB/s. Xeon phi in the current architecture is used as a co-processor by con-
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Figure 2.7: Cell processor architecture.

necting it over the PCIe bus. Hence, the PCIe bandwidth limitation comes into pic-

ture while doing the data transfer between the host and the co-processor. Database

oriented workloads tend to be large in size and hence could get constrained by the

amount of data being transferred over the PCIe bus.

Intel supports different modes for computation such as native mode, offload

mode, silk shared mode. Depending on the complexity of the job, and the amount

of data to be handled we can choose one of the modes. In the native mode entire

data fits in the device memory and entire computation occurs on Xeon-Phi. In

the offload mode, part of the computation gets offloaded along with data to Xeon-

Phi. While in Silk shared mode the offloading uses virtual shared memory space

between host and Xeon-Phi.

2.5.4 Heterogeneous core CPUs (Cell processor)

Another interesting architecture to consider is when heterogeneous cores are in-

volved. Cell processor is a good example of such an architecture (See Figure 2.7).

It contains 1 Power-PC Processing Element (PPE) core, and 8 Synergistic Process-

ing Elements (SPE) core. All SPEs are identical to each other but SPE and PPE are

different.

PPE is a simple core whose functionality is like a general purpose microproces-

sor. It has a 64KB L1 cache and a 512KB L2 cache and features SMT, similar to

Intel’s Hyper Threading. It also has an in-order core, which was present in original

Intel Pentium architecture. PPE is a 2-issue core, meaning at best it can issue 2 in-

structions simultaneously. PPE is designed to run at very high clock speeds. Since
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Figure 2.8: big.LITTLE ARM based mobile processor architecture.

Cell processor was designed from gaming market as a focus, the performance of

individual cores is not as high as a generic purpose micro-processor.

Majority of the die area is covered by SPE which are like PPE in terms of their

generic processing nature, but with a more focus. SPE is more simple than PPE,

and is not as generic as PPE. It does not have a cache but has 256KB of local

memory. Each SPE also has a total of 7 execution units, including one integer unit,

so the SPEs can perform integer math as well as SIMD floating point arithmetic. It

also can issue 2 instructions simultaneously. It has no branch predictor, and relies

solely on the software branch prediction.

Some of the applications of the Cell processor are in the video processing

card, blade server, PCI express board, console video games, home cinema, super-

computing, cluster computing, and distributed computing.

2.5.5 Heterogeneous core CPUs (Mobile based processors)

Driven by the consumer demand, the number of mobile based devices keep on in-

creasing per year. Many of these devices use Android based operating system, and

use ARM based processors, which use heterogeneous multi-cores with big.LITTLE

architecture.

The big.LITTLE architecture consists of two sets of cores. The big cores are

powerful cores, and the LITTLE cores are less powerful cores. The cores differ in

their power consumption and clock frequency. ARM’s marketing promises up-to

75% savings in power usage for some activities.

Typically only a single set of cores are active at once, but since all cores have

access to the same memory area the workload can be swapped back between big

and LITTLE dynamically. There are three ways in which processor cores can be

arranged in the big.LITTLE design by the scheduler.

Run state migration

• Clustered switching - In this mode the processor cores are arranged in iden-

tical sized clusters of big / LITTLE cores. The system changes the scheduled

cores based on the load activity. The scheduler uses only a single cluster at a

time. All relevant data is passed through common L2 cache, the first cluster

is powered OFF and the other cluster is activated. Cache coherent intercon-

nect is used. This is the most simple design. Samsung Exynos 5 Octa (5410)

uses this design.



2.6. TYPES OF PARALLELISM 23

• In-kernel switcher (CPU migration) - It involves pairing of a big and a

LITTLE core, which appear together as a single virtual core where only a

single core is active at a time. A more complex arrangement can involve

more than one big or LITTLE cores depending on the workload. NVidia

Tegra 3 SOC uses a design based on in-kernel switcher.

• Heterogeneous multi-processing - The implementation with most power

consists of usage of all cores where threads with high priority / computa-

tional intensity can be allocated to big cores, whereas the threads with less

priority / less computational intensity such as background tasks are assigned

to the LITTLE cores. Samsung Exynos 5 Octa, 7 Octa, and 5 Hexa uses this

implementation.

Having overviewed different types of multi-core CPU architectures, next we

provide a brief overview of different hardware micro-architecture level paralleliza-

tion features of the modern processors.

2.6 Types of parallelism

Query parallelism is mostly expressed using query plan level parallelism. How-

ever, the parallelism is also supported at the hardware architecture level through

different types of computer architecture features, such as instruction level paral-

lelism through instruction pipe-lining, data level parallelism through SIMD, task

level parallelism, and thread level parallelism. We describe each of these next.

2.6.1 Instruction level parallelism

Parallelism is supported at the hardware level by using different CPU architecture

level features. One of the most prominent feature is instruction level parallelism

(ILP), which is a measure of how many operations can be performed simultane-

ously in a program. It can be further categorized into software and hardware level

parallelism. How much parallelism exists in a program depends on the application

under consideration. For example graphics and scientific computing programs have

large scope for parallelism, where applications such as cryptography exhibit much

less parallelism.

Micro-architectural techniques used to exploit ILP are as follows.

1. Instruction pipe-lining - Execution of multiple instructions is partially over-

lapped.

2. Super-scalar execution - Multiple execution units are used to execute multiple

instructions in parallel.

3. Out-of-order-execution - Instructions execute in any order that does not violate

data dependencies.

4. Speculative execution - Execution of complete instruction or parts of instructions

before being certain this execution should take place.
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Figure 2.9: CPU instruction pipeline.

5. Branch prediction - Used to avoid stalling of instruction execution for due to

control dependencies. Used with speculative execution.

Instruction pipe-lining: We briefly describe the instruction pipe-lining technique

first. CPU execution unit can accommodate multiple instructions in a pipe-lined

architecture. A typical CPU instruction life time consists of the following stages.

1. Instruction fetch

2. Instruction decode

3. Instruction execute

4. Result write-back

While an instruction moves through these different stages one cycle at a time,

more instructions can be added to the previous stages, so that the pipeline stays

busy with instructions always. Thus, depending on the complexity of the pipe-lined

stages, a CPU can support more than 4 instructions in parallel. For the example

pipeline in Figure 2.8 the pipeline consists of 4 stages. Thus, per cycle there are 4

instructions active in the execution unit of the CPU.

2.6.2 Data level parallelism

Data level parallelism implies allowing multiple data items to be operated upon by

a single instruction. It is also termed as Single Instruction Multiple Data (SIMD)

parallelism. For example, consider an example where two 32 byte integers are

added using an add instruction. Lets assume that the integers are stored in 32 byte

registers. Instead of 32 byte registers if we have 512 byte registers, then 16 integers

of 32 bytes each can be stored. An add instruction that is aware of these 512 byte

registers hence will be able to add these 16 integers in parallel.

Data parallelism is supported at the processor level using SIMD instructions.

Intel supports MMX and iwMMXt, SSE, SSE2, SSE3 SSSE3 and SSE4.x instruc-

tion set that is SIMD enabled. Most modern CPUs support SIMD instructions for
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Figure 2.10: SIMD data parallelism.

data parallelism. Intel’s AVX SIMD instructions process 256 bits of data. Intel’s

Larrabee prototype microarchitecture includes more than two 512-bit SIMD regis-

ters on each of its cores. The 512-bit SIMD capability is being continued in Intel’s

future Many Integrated Core Architecture (Intel MIC).

An application that may take advantage of SIMD instructions is where the same

value is being added or subtracted from multiple data points.

Programming with SIMD might involve following challenges.

1. SIMD might have restrictions on data alignment.

2. Gathering / scattering data from / to multiple locations can be inefficient.

3. Instruction sets are architecture specific, so some processors might lack

them.

2.6.3 Task level parallelism

Task level parallelism involves dividing a task into multiple smaller granularity

tasks such that the smaller granularity tasks can be scheduled to execute in par-

allel by multiple processes or threads. Once a particular thread of execution is

finished with a particular task, it can start executing another task until all tasks

are completed. Task level parallelism involves work-stealing based approaches to-

wards scheduling tasks on different processes or threads of execution. Task is the

schedulable entity with respect to the available set of fixed processes or threads of

execution.

2.6.4 Thread level parallelism

Thread level parallelism involves multiple threads of execution that work on the di-

vided tasks. For example, consider a column of data being queried during database

execution. If there are n threads of execution operating in parallel, lets assume that

the column is divided into n equal pieces. Then each thread operates on its indi-

vidual pieces of data until it finishes its execution. Thus in thread level parallelism

the emphasis is on dividing the tasks equally on all the available threads, such that

each thread gets its piece of work.
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Thread level parallelization of software is further realized through different par-

allelization system libraries. We provide a brief overview next.

2.7 Parallelism support with system libraries

Thread level parallelism is supported at the system level through different types of

subsystems. Some examples being the posix threads (p-threads), OpenMP, thread-

ing building block (TBB), and Cilk / Cilk Plus.

These subsystems differ at the level of abstraction they provide for different

types of threading level interfaces for programs. For example, pthread library pro-

vides detailed api for thread management, whereas the OpenMP library provides

pragma based high level directives to manage threads, and takes care of api level

details of thread management internally. We describe some of these subsystems

here in brief.

2.7.1 Posix Threads

Posix threads is a posix standard for threads, and exists as an execution model in-

dependent of language. It provides APIs for creating and manipulating threads.

The API implementations is available on many POSIX compliant operating sys-

tems such as FreeBSD, NetBSD, OpenBSD, Linux, Mac OS X, Solaris, and also

Microsoft Windows.

Pthread prescribes a set of C programming language types, functions, and con-

stants, defined in pthread.h and a thread library. There are around 100 Pthreads pro-

cedure all starting with ”pthread ”. Some sample APIs are pthread create, pthread join,

pthread destroy. These can be categorized into following types.

1. Thread management

2. Mutexes

3. Condition variables

4. Synchronization between variables using read / write locks and barriers.

2.7.2 OpenMP

OpenMP describes an application programming interface (API) for multi-platform

shared memory multi-processing programming with C, C++, and Fortran. It sup-

ports most platforms, processor architectures, operating systems including Linux,

Solaris, AIX, HP-UX, OS X, and Windows.

OpenMP implements multi-threading where a master thread forks slave threads

and the system divides a task amongst them. Various preprocessor directives are

used to direct the multi-threading support. For example. the following directive

forks multiple threads which execute the printf statement.

#pragma omp parallel

printf(”Hello, world.”);
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After the execution of parallelized code the threads join back into the master

thread, which continues the execution further.

Each thread executes independently, however, work sharing constructs can be

used to divide the task amongst the threads so that each thread executes its allocated

part of code. Both task and data parallelism can be achieved in this way.

2.7.3 Threading building blocks

Threading building block is a C++ template library by Intel for multi-core proces-

sor based parallel programming. It consists of data structures and algorithms that

abstract away complications of using threads using native threading libraries such

as Posix threads. The library uses the concept of task based allocation to different

cores dynamically by the run-time engine. A TBB program creates, synchronizes,

and destroys the tasks from a graph based allocation based on algorithms. Tasks

are executed with graph dependencies.

TBB uses work stealing approaches for balancing the parallel workload to

cores. This allows it to increase multi-core utilization and scale better. Initially

the work is divided equally amongst the available cores, if one of the cores finishes

earlier, then some of the work from one of the busy cores is dynamically reassigned

to the idle core.

2.7.4 Message Passing Interface (MPI)

Message passing interface is a portable and standardized message passing system

designed to work in a shared memory and distributed clustered environment. The

standard defines different routines that can be used from multiple languages such

as C, C++, FORTRAN, Java. There are multiple implementation of MPI available,

some prominent ones being OpenMPI, MPICH, MVAPICH, and Intel MPI. It is

widely used in high performance computing environment.

MPI is a language independent communication protocol system designed to

be used in a clustered environment. It supports both point to point and collective

communication. MPI programs are regularly run over shared memory systems,

though its main usage is in clustered computing environment.

MPI programs work with processes (also called MPI rank), and it is common

to have a process allocated for a single core. MPI uses library routines such as

MPI Send and MPI Receive to send and receive data in buffered, synchronous,

asynchronous mode. Standard data types are supported during data transfer, but

MPI also allows custom data type creation.

MPI programs could show different performance behavior depending on the

type of setting being used. Different parameters that can be tuned for performance

optimizations are type of protocols used (eager / rendezeneous) for data transfer,

threshold parameter to chose these protocols, buffer sizes, collective algorithms,

etc.

MPI supports PMPI interface as the inbuilt interface to expose the performance

profiling options. However, PMPI interface has limitations in terms of the amount
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of information it could expose for profiling. A new interface called MPI T ex-

poses more information in terms of control and performance variables. The control

variables expose the possible tuning parameters whereas the performance variables

exposes the internals of MPI implementation libraries such as message sizes, buffer

sizes etc.

Having overviewed the background on relational database systems, multi-core

CPU architecture landscape, and software parallelization system libraries, next we

provide an overview of the state-of-the-art research in database systems to utilize

multi-core CPU architectures.

2.8 Database parallelization and multi-core research

Database systems are a complex piece of system software with components such as

query parser, query optimizer, operator’s physical implementation, buffer manager,

execution engine, log manager, etc. Different multi-core CPU architectures affect

each of these components in different ways thereby affecting the overall query exe-

cution performance. In the remaining Chapter we explore state-of-the-art research

exploring the related problems.

2.8.1 Multi-core parallelization of operators

As database systems use query interface to extract analytics out of stored data,

query plan parallelization plays important role during query execution, to minimize

the query response time. Depending on the architecture under use database systems

use different techniques such as intra-operator and inter-operator parallelization.

Intra-operator parallelization involves multiple instances of the same type of

operator working on different partitions of the data in parallel. Inter-operator par-

allelization involves different types of operators working in parallel. Intra-operator

parallelization is realized in the query plan using the exchange operator mecha-

nism. Most database systems use the exchange operator based parallelization. We

provide a brief overview of it next.

Exchange operator

The exchange operator based parallelization was introduced by the Volcano sys-

tem [68]. Volcano system also introduced the pipe-lined model of query execution

where logically ordered operators in a relational algebra plan use open-next-close

iterator model to fetch tuples from the dependent operators in the pipeline. During

query plan parallelization the query optimizer first selects a near optimal serial plan.

This plan is then parallelized by introducing exchange operators at strategic places

such that depending on the data partitioning technique used, the operator pipelines

are replicated to work on partitioned data, and the resulting tuples of individual

operator pipelines are combined using exchange union operators. Exchange union

operators thus heavily rely on data partitioning strategies. They allow an easy way

for plan parallelization where the logical plan representation does not change much

from the original input serial plan.
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Figure 2.11: Exchange union operator based parallelization.

An exchange union operator acts as the pipeline breaker, as it has to gather

tuples from different forked pipelines, and pass the aggregated results to the next

logical operator in the pipeline. In Figure 2.10 the projection operator starts exe-

cution by the open call, followed by the next call which invokes the open call for

the selection operator, followed by the next call to fetch tuples from A. When an

exchange union operator (U) is introduced to parallelize the selection operation it

breaks the above pipeline. Deciding the number of forked pipelines to be combined

by the exchange union operator hints at the degree of parallelism of the plan. As

the number of CPU cores continue to rise, finding an optimal degree of parallelism

thus becomes a crucial aspect of the plan parallelization process, as a sub-optimal

plan could result in over / under utilization of CPU cores as a resource, punishing

other possible concurrent operations during query execution.

A lot of research focuses on making individual relational algebra operators such

as the join operator multi-core efficient. However, in real systems a single operator

never executes in isolation, and gets affected by the run-time resource constraints

due to other operators under execution. Insights about a single operator execu-

tion from multi-core perspective still assumes importance. We explore the relevant

research for fundamental operators such as scan, join, and group-by.

Join operator

Join operator is one of the most important operators and hence is also the most

researched operator from multi-core parallelization perspective. It comes in differ-

ent flavors based on the type of join algorithm used during implementation. Some

common implementations are hash join [59], sort-merge join [69], radix join [109],

etc. A new research direction proposes that the modern hardware is smart enough

to make the join operator hardware oblivious [36]. In contrast there is research

that focuses on a hardware conscious join operator [32]. How to do join operation

efficiently on massive data sets is also another interesting research direction. We

briefly overview some of these research directions next.

One line of argument is to make the join algorithms hardware oblivious [36].

Especially tuning the partition phase, where the data is made to fit in the caches,

is not needed as the modern hardware can efficiently handle the memory hierarchy

latency differences. The algorithm builds a shared hash table on the build relation

using millions of hash buckets keeping latch synchronization overhead amongst
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the worker threads minimal. The probe phase accesses the hash table in read only

mode, hence does not require synchronization. This algorithm is robust to sub-

optimal parameter choices by the optimizer and does not need input characteriza-

tion knowledge. It uses intrinsic hardware optimizations to handle the skew. The

authors use two extreme architectures, the first one being from the Intel Nehalem

family and the second one UltraSPARK T2 with 8 simple cores that all share a

single cache. Each core can use 8 threads, for a total of 64 threads per processor.

In contrast there is research on tuning of the join algorithms based on the un-

derlying hardware architecture. In [32] authors demonstrate through experimental

analysis of various algorithms and architectures that hardware characteristics matter

considerably. The paper shows based on the selection effects (relative table sizes,

tuple sizes, the architecture in use, use of sorted data, use of SIMD, page sizes,

TLB sizes, tuning of the implementation, etc.) the hardware characteristics play a

significant role. According to the authors hardware obliviousness focuses only on

a small set of parameters. The authors verify the claims by [36] and conclude that

the shared hash table is built on a pre-sorted data making it easier to avoid cache

and TLB misses. The authors also can not verify the claims of the role of SMT

in hiding the cache misses. Finally the authors claim the fastest implementation

of the radix join with close to 200 million tuples per second. They use 4 different

hardware architectures comprising of older Intel Nehelam to the newer Intel Sandy

Bridge, AMD Bulldozer, and Sun UltraSPARK T2.

Continuing the hardware consciousness line of thought, the authors in [95] ex-

plore the effectiveness of sort vs hash based join algorithm and conclude that SIMD

is still not good enough to tip the decision in the favor of sort-merge join instead

of commonly used hash join algorithm. Their analytical model concludes that in

future as SIMD becomes wider (512 bit), sort-merge join will perform better. For

hash-join to perform better in wider SIMD environment, it needs hardware based

support for efficient scatter and atomic vector operations. Authors also implement

the fastest hash join and sort-merge join algorithm on latest hardware platform and

report 17x time improved performance than best reported hash-join performance

for CPUs and 8x faster for best reported GPU performance. They show at present

hash-join is superior on their platform compared to sort-merge join.

In [28] authors design NUMA aware massively parallel sort-merge (MPSM)

join algorithm that scales linearly with the number of cores, and outperform hash-

join implementations. It uses partial partition-based sorting. Compared to the clas-

sical sort-merge join, MPSM algorithm does not rely on a hard to parallelize final

merge phase to create a complete sort order. Authors show how the Wisconsin

hash join [37] which uses a shared hash table during build phase by using latches

gets affected due to NUMA accesses, and so is the classical radix hash join [108],

compared to the MPSM NUMA aware sort-merge join.

A lot of work focuses on NUMA related aspects of operator designs. In

citelang2015massively authors focus on designing NUMA aware massively scal-

able hash-join. They do this by optimizing the parallel hash table construction

via a lock-free synchronization mechanism based on optimistic validation, while

also considering an optimized NUMA aware storage layout for the hash table. In

[106] authors emphasize the need of being NUMA aware during fundamental op-
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erations such as data shuffling. In [48] authors discuss efficient implementation of

merge-sort algorithm from SIMD (128 bit) perspective. In [49] authors describe an

adaptive aggregation algorithm that decides the best aggregation strategy to use in

chip multiprocessor environment based on sampling.

Multi-core CPUs and multi-socket CPUs will continue to evolve in coming time

with faster interconnects, different memory hierarchies, different cpu core archi-

tectures, integrated CPU-GPU co-design architectures. How to utilize the existing

database system architectures and individual components of these architectures to

utilize the new multi-core CPU architectures will always provide for new research

opportunities.

2.8.2 Cell processor parallelization of operators

In [81] the authors test the feasibility of vectorized database engine on a cell pro-

cessor. Some prominent observations are 1. All computations should be performed

using SIMD on Synergistic Processing Elements (SPE). 2. All performance crit-

ical if-then-else branches need to be eliminated as SPEs don’t have a branch pre-

dictor, and there is high branch penalty. 3. The limit on code size is hard as SPEs

have a limited program code size which should not exceed 256KB. Authors exper-

iment with tuple-at-a-time Volcano style processing, MonetDB column-at-a-time

processing, and MonetDB-X100 vectorized processing. In all three models of ex-

ecution the interpreter is executed on Power Processor Element (PPE), whereas

the data processing is executed on the SPE. A performance comparison of TPC-H

Q1 shows vectorized execution on cell processor performing up-to 20 times faster

than the Itanium2 processor. Though cell processor exhibits an interesting archi-

tecture they are discontinued. However, the lessons learned from experience using

it, should provide new research directions on related architectures of future.

2.8.3 Many-core parallelization of operators

Intel’s many-core platforms are primarily used in high performance computing

workloads. Use of it in database workload is being explored as an active research

area. In the existing work [89], the authors compare the hash join performance

on Xeon-phi against the multi-core CPUs from hardware oblivious and hardware

conscious characteristics perspective. A primary finding is that architectural fea-

tures and software optimizations have different behavior on Xeon-phi compared

to multi-core CPUs, which asks for new optimizations and tuning on Xeon-Phi.

For example, a much larger performance improvement is observed on Xeon-phi

by tuning prefetching, TLB, partitioning, etc, than those on multi-core CPUs. An-

other observation is that hardware oblivious algorithms can outperform hardware

consciousness algorithms on a wide range of parameters.

One of the prominent features of Xeon-phi is the 512 bit SIMD registers. The

presence of these registers allows hardware assisted data parallelization, where

the same instruction operates on multiple data items. Authors in [121] provide

a detailed algorithmic setup for vectorized designs and implementation of different

common database operators such as join, selection, sorting using advanced SIMD
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operations such as scatter and gather. The new vectorized designs are shown to

be at least an order of magnitude faster than the state-of-the-art scalar and vector

designs. They also show energy efficiency benefits of such designs.

The attempts to port a complete database execution engine on Xeon-Phi are

not successful as Xeon-Phi has a limited device memory and the data needs to be

transferred over the PCIe bus for any accelerated computation. As Xeon-Phi is a

relatively young architecture, there are still many open research problems. Towards

the end of the thesis we show some preliminary work in the related context.

2.8.4 Query optimizer parallelization

Traditionally a cost based or heuristic based optimizer is used to generate paral-

lel plans. However, the cost based optimization time using dynamic programming

technique for finding join order of more than 10 tables can increase very rapidly.

Authors in [75] use a novel technique to find the join ordering of more than 10 ta-

bles by parallelizing the query optimization process on multi-core processors. They

also introduce a novel data structure called skip vector array that significantly re-

duces the generation of in-feasible join partitions. This parallel join enumeration

algorithm with skip vector array outperforms the traditional generate-and-filter dy-

namic programming based algorithm by up-to two orders of magnitude for star

queries. Query optimization is a challenging research area in itself. When com-

bined with multi-core parallelization the research challenge complexity of query

optimization parallelization grows further.

2.8.5 Hardware oblivious parallelization systems

Ocelot [80] takes an hardware oblivious approach to generate hardware specific

parallel plans. It uses a predefined set of hardware oblivious operators that are

compiled down to actual hardware at run-time. It uses OpenCL based parallel

programming environment which compiles plans for CPU and GPU specific oper-

ations. Using hardware specific tuning for individual hardware, generates efficient

database code, however, this approach is not portable and scalable with the increas-

ing number of different hardware types. Ocelot is implemented in MonetDB and

the comparison on TPC-H query execution with native MonetDB execution, shows

Ocelot performance matching on CPU, and exceeding on GPU. As diverse hard-

ware emerges, having an optimal database system implementation matching each

type of hardware could be really difficult from a portability perspective. Hardware

obliviousness as exhibited by Ocelot opens up interesting new research directions

in aligned fields such as cost model optimizations pertaining to individual hardware

types.

2.8.6 Multi-core scalability of new analytical systems

New commercial systems such as IBM DB2 BLU [124] and HyPer [93] are exam-

ples of grounds up approaches of new database architectures with a focus on multi-

core scalability for analytical workloads. Both systems use a kind of work-stealing
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based scheduling approach for dividing work amongsts worker threads, while pro-

viding flexibility towards degree of parallelism of plans. Traditional approaches

use the exchange operator based parallelism baked in the query plan at compile

time itself. It makes controlling the work division at run-time difficult as no guar-

antees for multi-core scalability could be provided based on the run-time resource

variations due to concurrent workload. The dynamic scheduling of work amongst

worker threads in Hyper allows provision for controlling the degree of parallelism.

IBM DB2 BLU [124] uses specially designed data structures that are multi-core

scalable, while, Hyper uses just-in-time compiled plans for efficient execution. As

the individual components of these new systems are designed from grounds-up for

multi-core scalability, they give rise to new interesting research problems in areas

such as the operator algorithms, the query optimizers, the execution engine effi-

ciency in terms of vectorization vs compilation, etc.

2.8.7 Multi-core scalability of transactional systems

Relational database workloads can be categorized into transactional and analytical

workloads. While the focus of this thesis is on analytical workloads, there is con-

siderable research exploring the effect of multi-core architectures on transactional

workloads. The system components, such as log manager, transaction manager,

buffer manager, lock manager etc. get considerably affected by the multi-core ar-

chitecture scalability problem. We review some relevant research next.

Shore transaction system scalability

Shore is an open-source storage manager designed in the era when multi-core CPUs

did not exist. Authors in [91] describe how Shore and other open-source storage

managers such a BerkeleyDB, MySQL, and PostgreSQL face severe scalability

issues with the latest multi-core architectures. Shore-MT is a new multi-core scal-

able storage manager, developed by removing critical bottlenecks from individual

components of Shore. The new system is called Shore-MT.

Shore exhibited severe multi-core scalability problems in individual system

components such as the buffer-pool, lock, log, and the transaction manager. One

of the main areas of contention in most of the component managers was a single

global mutex protecting the entire hash table. It was replaced by a mutex per hash

bucket. The main principles applied were shortening or removal of critical sections,

elimination of hotspots, and using the right synchronization primitives.

Hardware islands and transactional systems

In [122] authors treat multi-socket systems as hardware islands, in which a single

or multiple database systems could be made to run on a single socket. They test

different deployments of database systems on different multi-socket systems from

shared-everything to shared-nothing deployments. Traditional shared-everything

systems under-perform on modern multi-socket hardware as they incur too much

overhead due to excessive communication between various threads, and contention
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amongst threads. On the contrary shared-nothing systems face challenges in execu-

tion due to higher costs when distributed transactions are involved (if the commu-

nication occurs between slower links of CPU sockets), and load imbalance due to

skew. Authors explore the impact of perfectly partitionable and non-partitionable

workloads, with and without data skew on shared nothing deployments of various

sizes and shared everything deployments. The system being used is Shore-MT.

2.8.8 Open research problems

This research overview shows that a large fraction of multi-core architecture re-

search targets specific database operators, such as the join operator from scalability

perspective. Although understanding the operator’s behavior in isolated execution

case is important, the behavior changes during query execution as other operators

execute concurrently. As new multi-core architecture arrive in the market, testing

the feasibility of existing algorithms on these new architectures remains a focus

point for database systems. A lot of research also targets transactional systems’s

scalability in the multi-core context. When new systems are built up from scratch

for using the new hardware architectures optimally, they open up new research op-

portunities, as these systems use novel data structures, algorithms, architectures to

work optimally with the underlying hardware architecture.

However, there is a scope for interesting research exploring the effects of multi-

core architectures on the query execution performance of existing analytical sys-

tems, in a holistic manner as well. This is partially a result of the complex inter-

dependence of different database system components that play an effective role

during the query execution. Some prominent components are the query optimizer,

the interpreter, individual operator’s degree of parallelism, run-time resource avail-

ability in terms of CPU cores and memory, etc.

Identifying the degree of parallelism of the query plan using feedback based

mechanism involves interaction with all the above components. In the rest of the

thesis we explore research questions that are aligned in related fields, and that take

into account the role of different multi-core architectures from the analyical query

execution perspective in the existing database system architectures.

2.9 Conclusion

Multi-core CPUs come in different configurations and form a vast landscape. Un-

derstanding their hardware characteristics to design optimal performing software

is a challenging task. In this Chapter we provided a brief overview of many such

different types of multi-core CPU architectures, along with different software sub-

systems that can be used to leverage the parallelism offered by the multi-core

hardware. We also provide a brief overview of multi-core aligned research in the

database system context, and list some open problems. Making optimal use of

hardware with abundant number of cores needs efforts on multiple levels during

software execution stack. In the remaining of this thesis we explore several possi-

bilities for such hardware-software co-design.



Chapter 3

Query parallelization analysis

through graph visualization

”If you can not measure it, you can not improve it.” - Lord Kelvin

Effective tools are crucial to identify execution performance issues in the database

systems. Most existing tools use textual representation of the performance data,

thereby limiting their usability. A visualization approach however can provide

much better insights. Execution plans often use a graph representation. The pres-

ence of multi-core CPUs make these graphs grow even bigger due to plan paral-

lelization. Plan representations vary based on the system under use. The perfor-

mance troubleshooting tools hence are tied up with the system under consideration.

This Chapter 1 presents our effort to improve the analysis toolkit for database

query execution plans. The Stethoscope is a visual tool to inspect and analyze

query execution performance, both online and offline. It provides a convenient vi-

sual interface, capitalizing the data-flow graph representation of a query execution

plan augmented with query execution trace information. Stethoscope improves the

error prone and time consuming activity of analysis of textual execution trace. It

helps in understanding where time goes, how optimizers perform, and how parallel

processing on multi-core systems is exploited.

3.1 Motivation

Understanding database query execution traces is one of the most complicated is-

sues in a database system. Their analysis is needed to understand and to achieve

optimal query execution performance. Queries vary in their complexity and so do

their plans. While most systems use a straightforward physical algebra represen-

tation for plans, columnar systems like MonetDB use an alternate representation,

making plans very large, as they directly encode parallel processing steps.

1This Chapter is based on the publication ”Stethoscope: A Platform for Interactive Visual Analysis

of Query Execution Plans”, In Proceedings of VLDB 2012.

35
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Nevertheless, a query execution trace is a good starting point to reflect upon the

run-time behavior. In offline mode, the steps taken can be inspected in detail for

unanticipated behavior. In online mode, it can provide insight in the total system

behavior, e.g. influence of concurrent processes competing with the resources. Per-

formance analysis tools are often specific to the DBMS, because hooks deep in the

system are required.

We present Stethoscope, a platform to analyze [10] query plans and their exe-

cution traces. Each query plan shows a data-flow dependency, which allows it to

be represented as a directed graph. Such graphs could use a dot file format repre-

sentation [6]. In this graph representation, a node corresponds to an operator and

edges between nodes represents the data-flow dependency between them.

The query plan is executed by the database interpreter and in turn get reflected

in the form of an execution trace available for online/offline inspection. Stetho-

scope combines both into a powerful tool, which animates the execution trace and

provides navigational access to the portions of interest in the plan. This way, it can

be used to monitor long running queries and performance bottlenecks in the kernel.

3.2 Contributions

Searching for performance bottleneck patterns in an execution trace using text-

based tools is an error prone and time consuming activity [74]. Visualization tools

hence are crucial during parallelized query execution and form an important com-

ponent of the research ecosystem for parallelized query execution. Stethoscope

improves the performance bottleneck resolution abilities significantly by using vi-

sual representation of query execution trace. It is the first tool of its kind to provide

both online and offline analysis ability and has inspired similar tools in systems like

HP-Vertica [137] and SAP [132]. It provides an easy way to understand the perfor-

mance execution problems in query execution plans, using the following features.

• Interactive animated navigation in complex query plans. Being able to zoom

in and zoom out and navigate on specific portion of the graph.

• Color coded monitoring of query execution state changes. Color coding al-

lows easy identification of the bottleneck operators during query execution.

• Run time analysis of execution states using debug window, tool tip text, etc.

These features provide extra functionality from selective fine grained analy-

sis perspective.

• Flexible options for filtering of execution traces.

In the remainder of the Chapter, we provide a brief overview of the targeted

database system plans, the architecture of the stethoscope, and the possible use

cases for its application.
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function user.s1_2():void;
X_3 := sql.mvc();
X_10 := sql.bind(X_3,"sys","lineitem","l_tax",0);
X_13 := calc.oid(0@0);
X_18 := 1;
X_19 := sql.bind(X_3,"sys","lineitem","l_partkey",0);
X_20 := algebra.thetauselect(X_19,X_18,">");
X_22 := algebra.markT(X_20,X_13);
X_23 := bat.reverse(X_22);
X_24 := algebra.leftjoin(X_23,X_10);
X_25 := sql.resultSet(1,1,X_24);
sql.rsColumn(X_25,"sys.lineitem","l_tax","decimal",15,2,X_24);
X_32 := io.stdout();
sql.exportResult(X_32,X_25);

end s1_2;

Figure 3.1: A query plan in operator-at-a-time execution model.

3.2.1 Outline

In Section 3.3 we describe the architecture of Stethoscope.The work-flow of how to

use Stethoscope for doing query execution plan analysis is described in Section 3.4.

Different performance troubleshooting use case scenarios are illustrated in Section

3.5. We describe the applicability of the tool in other systems in Section 3.6. The

summary is provided in Section 3.7, while the chapter is concluded in Section 3.8.

3.3 Architecture

In this section we elaborate on the database system in use for the query execution

performance monitoring and the architectural components of the Stethoscope.

3.3.1 Query execution plans

Stethoscope is being used in MonetDB (default branch change-set c56e636745dd),

the open-source columnar database system with operator-at-a-time execution [10],

which is predominantly used for OLAP based workloads. Its operators materialize

the intermediate data completely, and are represented using the MonetDB Assem-

bly Language (MAL), an abstract intermediate language. For example, after a SQL

query is parsed, it is converted into a relational algebra representation. Next, this

algebra representation is converted into a MAL plan, which is further optimized

to derive an optimized plan. Finally the plan goes through an interpreted execu-

tion. Figure 3.1 displays such a plan for the following SQL query, from the TPC-H

schema.

select l tax from lineitem where l partkey=1;

The plan is a sequence of semantically arranged instructions. Each instruc-

tion acts as an operator. The literals starting with “X ” are variables, which are

assigned return values of statements. A statement has a syntax of the form “mod-

ule.function(variable1, variable2,...)”. For example, in the statement

“algebra.leftjoin(X 23,X 10)”, “leftjoin” is a function in the “algebra” module.



38

CHAPTER 3. QUERY PARALLELIZATION ANALYSIS THROUGH GRAPH

VISUALIZATION

MAL comprises of a set of modules and a set of functions supported by each mod-

ule.

MonetDB provides a GDB-like MAL debugger for fine grained analysis of op-

erator execution at run time. However, further improvements can be gained by

having a visual assistance tool, which also analyzes MAL execution traces. Stetho-

scope helps here by providing a set of functionalities to analyze MAL plans further,

in a fast and efficient manner.

3.3.2 System architecture

The Stethoscope is a Java application and is built upon open-source products such

as the GraphViz library [7], Zgrviewer component [21] of ZVTM tool-set [22], and

the MonetDB profiler module [10]. Figure 3.2 shows the architecture. We describe

each of these components in brief next.

Figure 3.2: Stethoscope architecture

Database server is the MonetDB database server [10]. It is the main compo-

nent which encapsulates the entire MonetDB execution environment. It works as a

background process and listens for the incoming client connections on user defined

ports. Stethoscope connects to Mserver as an ordinary client.

The profiler is a component in MonetDB kernel which profiles operator instruc-

tion executions. It supports profiling of events using several OS-specific properties,

such as IO behavior, memory usage and cpu state, and MAL statement state. The

profiler accepts filter options set through Stethoscope, which enables it to profile

only a subset of event types. The events are either sent over a UDP stream back to

the Stethoscope, or are dumped in a file, for offline analysis.

3.3.3 Graphviz

Graphviz is a graph generation library, and uses dot language to represent graphs.

Upon request, the server generates a dot file for each plan before the execution be-

gins. A dot file encodes a graph and describes the grammar for the representation

of nodes, and the association between nodes and edges [62]. GraphViz can con-

vert a dot file to a graph structure representation [7]. Stethoscope uses this graph

structure representation to setup different navigational strategies.
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3.3.4 ZGrviewer

ZGrviewer is an open source tool from the ZVTM tool set which provides inter-

active navigation functionality in a graph structure [21]. Its highlight is the zoom-

able interface which allows keyboard based and mouse scroll based navigation with

zooming ability on individual nodes and edges in a graph. It has a plethora of fea-

tures such as set of lenses viz. fish eye lens, etc. for visual interaction with graph

nodes. ZGrviewer is implemented in Java and Stethoscope uses ZGrviewer inter-

faces for interactive navigation in the graph structure. Stethoscope code integrates

with the ZGrviewer code base in a modular manner and provides interfaces for

extensibility.

ZGrviewer stores graphics related meta-information in multiple structured ob-

ject representations. Glyph is a structure representing a fundamental graphical ob-

ject [118]. For example, consider a two node graph, with one undirected edge

between them. Assume each node is represented with the shape of a circle and has

a text label associated with it. ZGrviewer uses a glyph object each, to represent

the shape, text, and edge. Thus for our example graph, it maintains the following

objects, shape (two objects), text (two objects), and edge (one object). Other im-

portant objects are a virtual space, which represents a canvas on which graphs are

dawn and a camera object, which shows different views at different zoom levels, in

a virtual space.

3.3.5 Textual stethoscope

The profiler information is accessed through a textual version of Stethoscope. It

uses a UDP socket interface to connect to the server, for receiving the execution

trace. The textual Stethoscope can connect to multiple MonetDB servers at the

same time to receive execution traces from all (distributed) sources. Its filter options

allow for selective tracing of execution states on each of the connected servers. The

profiler intercepted events on these servers are streamed back on a UDP connection

to the textual Stethoscope. A sample execution trace from a trace file looks as given

in the Figure 3.3.

3.3.6 Trace and dot file mapping

Each instruction is represented in the trace with two events. A “start” event marks

the start of the instruction and a “done” event marks the end of the instruction. The

program counter (pc) is an important field in the trace, and is used to map to a node

number in a dot file. For example, an instruction execution trace statement with

pc=1 maps to the node “n1” in the dot file. The “stmt” field in instruction execution

trace represents a instruction and maps to the “label” field in the dot file.

3.4 Work-flow

The Stethoscope works in both online and offline mode. Both modes share some
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Figure 3.3: A Trace File

fundamental steps, such as dot file parsing, conversion to an in memory graph rep-

resentation, and sequential reading of a trace file. First, the dot file gets parsed and

an intermediate scalar vector graphics (svg) representation gets created. In the next

step, the svg file gets parsed and an in memory graph structure gets created. The

root node of this graph structure is used for traversal in the graph at a later stage.

Both steps use the Graphviz library interface. As a next step, Stethoscope parses

the trace file in a sequential manner, storing attributes of the trace file. The “event”

attribute from the trace is used as an index to store the attribute contents. The “pc”

attribute is mapped to a node name, to search for the corresponding node in the

graph structure, during graph traversal.

3.4.1 Offline execution analysis

It needs access to a preexisting dot file and trace file. Once the off-line mode is

selected, and the initial dot file parsing to graph structure creation stage is over,

interactive analysis begins. The system uses event based programming interfaces

to monitor click events and takes appropriate action in response. Prominent actions

are navigate to the next node in the graph, change color of a node, and display tool-

tip text, etc. We describe the features related to these actions in the demonstration

section.

During the off-line execution analysis, both dot and trace files have to be present

in the same directory and should have the same name. For example, a valid path

for dot and trace file is “/tmp/1.dot” and “/tmp/1.trace”. A user can play with the

following features, to analyze plan execution trace.

• Step by step walk through in graph nodes, analyzing individual instruction

in trace using Stethoscope filter options window, debug options window, and

tool-tip text display.
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• Trace replay between two instruction execution states, with selective coloring

on instruction execution time threshold.

• Jump to a specified execution state node in the trace.

• Birds eye view of the entire graph, to understand the instruction execution

clustering, using coloring of nodes.

• Animation effects such as change of zoom level, variation in the transition

time between highlights of two nodes.

3.4.2 Online execution analysis

Both dot and trace files are generated at run-time by the database server. Online

mode components use a multi-threaded design. As a first step, the textual Stetho-

scope with all the filters options enabled is launched in a dedicated thread. The

textual Stethoscope awaits in a listening mode for the arrival of trace stream on

UDP connection. The trace received is redirected to a trace file.

The query whose execution plan needs to be analyzed is launched next in a

separate thread. As the query execution begins, the profiler generates the instruction

execution trace and sends to the textual Stethoscope. The monitoring thread filters

the trace and a trace file is generated. The trace file continuously receives the trace

stream from the textual Stethoscope, while the query execution is in progress. As

the trace file grows in size, its content is sampled in a buffer. The query plans

contain instructions where operator takes long time to execute, for example a join

operator. When this occurs, the execution trace might block, resulting in blocking

of the growth of the trace file.

The dot file is a prerequisite for the graph structure generation. The database

server generates the dot file content and sends it over on the UDP stream to the

textual Stethoscope, before query execution begins. A separate thread monitors the

received UDP stream for dot file and execution trace file content. It filters the dot

file content, generates a new dot file, and stores the content in it.

During query execution, the graph corresponding to query plan under execution

gets displayed in the display window. A user can analyze plan execution, in the

following ways.

• Monitor the progress of query plan execution using selective coloring of

nodes in “RED” or “GREEN” color, based on algorithm described in sec-

tion 3.4.3.

• Analyze and compare long running instructions using multiple instances of

debug options window.

We describe the algorithm to color code execution analysis next.



42

CHAPTER 3. QUERY PARALLELIZATION ANALYSIS THROUGH GRAPH

VISUALIZATION

Figure 3.4: A Display Window

3.4.3 Run-time analysis algorithm

Finding long running instructions in a plan is one of the main purpose of the Stetho-

scope. Lengthy instructions can be filtered either on server or client side. We focus

on the client side filtering. Lengthy instructions can be represented by color cod-

ing, progress window, and pop-ups, etc. We focus on coloring of nodes to represent

state change.

Coloring graph nodes in an online stream is a complex task due to rendering

limitations from the Java system. The Stethoscope uses the Java Event Dispatch

thread queuing framework for queuing up nodes to render. This introduces a delay

of up-to 150ms between rendering of consecutive nodes. A node is colored RED

or GREEN based on the instruction status of “start” or “done” respectively.

Most instructions in the execution trace occur in sequence of pairs of “start” and

“done” events. A consecutive “start” and “done” event status for the same instruc-

tion, with presence of more instructions afterwards, indicates that the instruction

under analysis executed in least time. Hence, it is not a costly instruction. All such

instructions are not colored. An instruction which does not appear in a sequence

of pairs of “start” and “done” event is colored. For example, consider an execution

trace buffer with fields such as {status,pc} representing 6 instruction statements

{start,1},{done,1},{start,2},{done,2},{start,3},{start,4}. The graph nodes corre-

sponding to first four statements will not be colored, as the two instructions cor-

responding to pc=1 and pc=2 occur in a pair, in a sequence. However, the graph

node corresponding to the fifth instruction with pc=3 will be colored in RED. Thus

this graph node coloring algorithm doesn’t check a specific instruction execution

threshold time. We provide another algorithm which allows the user to specify an

instruction execution threshold time.
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3.5 Performance problem identification

Stethoscope helps in identifying various execution performance issues such as the

execution skew in threads, blocking operators identification, top k expensive op-

erator identification, identification of the operators that were executing in parallel

with a specific operator to get the total resource consumption snapshot, operator

scheduling issues, etc. We discuss a few of these in detail next.

Operator scheduling issues

The data flow graphs represent operator dependencies. Ideally an operator should

start execution as soon as its inputs are available. The inputs arrive from the parent

operators execution. Consider a simple example for a select operator represented

by the instruction X 3 = algebra.uselect(X 1, X 2); During a visual analysis when

X 1 and X 2 inputs are available, the nodes representing them turn GREEN. If

both these nodes are GREEN, ideally the node representing X 3 should turn RED,

indicating its execution is in progress, and then should turn GREEN to indicate

the end of the execution. However, during some of the query execution we found

that even though all input nodes were GREEN, some operators accepting these

inputs did not turn RED for a long time. This indicates possible scheduling issues,

which are very difficult to find otherwise in any manner. Run-time query execution

visualization thus is immensely helpful in identifying performance critical issues

to improve the system performance.

Execution skew identification

A visual inspection of the parallel graph representation shows distinct operator

chains. For example consider query 8 from Figure A.3 in Appendix which shows

four vertical dependency chains. The operators in these chains are executed by a

single thread, such that 4 threads execute in parallel. By inspecting the start and end

of the execution coloring in these chains, the execution skew is easily identifiable.

The operator chain which takes longest to turn GREEN, shows skewed execution.

Thus, the graphical representation of the multi-core execution indicates possible

problems due to the execution skew.

3.5.1 Lessons learned

Considerable time was spent in integrating the code base of ZGrviewer with Mon-

etDB trace, to apply the correct logic for coloring of individual graph objects, in

online and offline mode. Rendering of nodes in tune with the online trace flow is

a challenge, due to refresh rate related limitations of system. It required a lot of

experimentation to get to a working state. We also encountered some synchroniza-

tion issues during coloring and used locks to avoid it. A dot file parsing method

from Graphviz tool set, which generates a simple graph structure as compared to

the present one we use, was found to be faulty. User interface and event based pro-

gramming in general involves tedious manual testing approach. Overall, we found

the entire process a lot challenging than our initial anticipation suggested.
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3.5.2 Future work

Stethoscope, as a platform provides interfaces to add new extensible features. Some

of the main features planned are an analytic interface for micro analysis of trace

information, gradient coloring of graph nodes to display a range of execution times

based on their expensiveness, and selective pruning of plan to remove unimportant

administrative instructions. Many trace analytic based features can be added easily.

An important observation is about the layout of the graph nodes. At present

the layout is controlled by the graphviz graph generation algorithms, where the

nodes could get an arrangement such that even though they indicate the data flow

dependency, they might not follow the time order dependency. An example is,

when one node executes in the top portion of the graph, while the next data flow

dependent node executes in the bottom portion of the graph, while there are plenty

of nodes laid out in between.

Thus Stethoscope falls short of identification of time ordered execution of oper-

ators. In the next Chapter we discuss our attempt to address this issue, by providing

a visualization scheme that renders operator execution in a time ordered manner.

3.6 Applicability to other systems and related work

Performance analysis tools play a very important role in performance bottleneck

identification. Most tools are designed with a system architecture specific focus

and are used in different contexts such as troubleshooting problems in operating

systems, database systems, compilers, etc. They offer functionality and features

not necessarily needed in other contexts. For example, Intel Parallel Studio of-

fers rich MPI based functionalities not necessarily needed in the database system

context [35]. However, their generic usability principles and abstractions could be

applied and tuned to benefit other systems. Visualization tools in parallelized query

execution are critical as they allow parallelized execution bottlenecks to be iden-

tified easily, which otherwise is impossible using textual debugging tools. While

Stethoscope’s design favors MonetDB’s plan representation, the concept of visual-

izing the plan execution is generic and can be applied to other columnar systems

with appropriate modifications.

The HP-Vertica query analyzer [137] is a visualization platform that uses the

Vertica column-store database with pipe-lined execution engine. In [137] authors

use TPC-DS query execution in a clustered Vertica database engine. The Vertica

query analyzer collects detailed thread level performance metrics for the operators

of a running query. Some metrics are specific to the CPU usage, the memory us-

age, and the number of rows produced, while other metrics are operator specific

such as network bytes sent per operator. The query analyzer uses principles sim-

ilar to Stethoscope, in providing an interactive query execution analysis tool in a

distributed database setting. Overall, it is inspired by Stethoscope.

Authors in [132] illustrate a 3D visualization tool for analyzing query execu-

tion plans in a clustered execution environment in SAP Hana in-memory database.

Query execution 3D (QE3D) is a Java application based on a stand-alone archi-

tecture. It is installed on a client machine and processes interactive visualizations.
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The usual process of performance analysis of different queries involves looking at

various different diagram types in parallel, where each of them focuses on different

aspects of a distributed query plan (e.g. network communication, physical opera-

tor interleaving, host utilization, temporal operator interleaving). Q3ED provides a

holistic view of the entire query plan and enables analysis of different performance

aspects in a single 3D space.

Another example is Vectorwise, a leading analytical database system which

uses pipe-lined vectorized query execution. Vectorwise plans use a static graph

representation with per node statistics, without any kind of interactive support. Inte-

grating Stethoscope like interactive features in Vectorwise would enable interactive

plan execution analysis for Vectorwise. One of the senior members of the Vector-

wise team has investigated how Stethoscope could be integrated for Vectorwise.

Other columnar systems can also benefit from interactive plan execution analysis

inspired by Stethoscope.

3.7 Summary

The research question: In this Chapter we address question 1, ”How well are the

state-of-the-art database management system solutions using the available hard-

ware resources?” and question 2, ”How to provide insights into the query execution

performance bottlenecks at a database system’s functionality level?”

Identifying parallelized query execution performance bottlenecks is crucial to

be able to improve parallelized query execution performance. Most database exe-

cution engines use text based analysis tools, which work reasonably well for small

serial query execution plan analysis. However, parallel query plans tend to be much

more complex. Hence, any assistance that expedites the process of parallelized

query execution bottleneck identification is a crucial step in the research explo-

ration.

Research contributions: We introduced Stethoscope a graph visualization tool

to identify and analyze performance bottlenecks in parallelized query execution

in a multi-core CPU environment. Graph visualization of the query execution

trace combined with interactive analysis makes Stethoscope a valuable tool in trou-

bleshooting query execution performance problems. Comparison of visualization

tools is difficult as tools are custom built for individual systems. However, in a

holistic sense, compared to the textual trace analysis tools which most database

systems use, Stethoscope makes the performance bottleneck identification easier.

This is one of the first of its kind tool available in the database research context,

that allows both offline and online interactive analysis of query execution traces.

Expedited identification of query execution performance problems is critical, hence

such tools are a valuable research contribution.

We list important features that make Stethoscope a powerful tool, and high-

light some use cases of performance troubleshooting to resolve them. The insights

obtained using Stethoscope has led to crucial changes in the system architecture

components such as the operator scheduler, the interpreter, different operator’s im-

plementation, etc. It has also inspired development of similar tools in commer-
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cial systems such as Vectorwise and HP Vertica [137]. A strong interest to adapt

Stethoscope to suit the Vectorwise query execution analysis tool was exhibited by

a Vectorwise core team member.

3.8 Conclusion

Being able to pinpoint the performance problems in parallelized query execution

is extremely crucial for performance improvements for any research related to par-

allelized query execution. Stethoscope is an extensible platform for parallelized

query evaluation analysis. Developing a visual front end platform for analyzing

textual execution trace for MonetDB, using open-source tools has been a challeng-

ing task. The principles of visualization are applicable to other columnar systems

as well as could be seen from similar tools that were inspired by Stethoscope for

other database systems. Its online and offline modes helps to identify and ana-

lyze some of the key query performance bottleneck issues, otherwise not possible

using only textual trace analysis. Some of the prominent issues are identification

of the expensive operators, execution skew in parallelized operators, and operator

scheduling. Visualization based systems thus are a key component of the research

ecosystem for multi-core parallelized query execution.

3.9 Sample TPC-H query data flow graph

In Figure 3.5 we list a query execution data flow graph to give a perspective of

the complexity of the execution plan, when parallelized using static paralleliza-

tion heuristic in MonetDB. A point to note is as the database system continuously

evolves with better optimizer choices, efficient operator implementations etc., the

plans become more compact, resulting in less complex graphs. The rectangles rep-

resent operators while the edges represent the data-flow. The aim here is to show

the complexity of data plan in terms of its data-flow graph representation, without

details about individual operators. Many of the operators are administrative oper-

ators, which have negligible cost, but need to be present for column store specific

data flow dependencies.
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function user.s1_1(A0,A1,A2,A3,A4);

    X_37 := calc.lng(A0,15,2);     X_45 := calc.lng(A1,15,2);     X_46 := calc.lng(A2,15,2);

    X_13 := mtime.date_sub_msec_interval(A3,A4);

    X_310 := batcalc.-(X_37,X_306);    X_309 := batcalc.-(X_37,X_305);     X_308 := batcalc.-(X_37,X_304);     X_307 := batcalc.-(X_37,X_302);    X_331 := batcalc.-(X_45,X_306);     X_330 := batcalc.-(X_45,X_305);     X_329 := batcalc.-(X_45,X_304);     X_328 := batcalc.-(X_45,X_302);    X_345 := batcalc.+(X_46,X_341,false,true);     X_344 := batcalc.+(X_46,X_340,false,true);     X_343 := batcalc.+(X_46,X_339,false,true);     X_342 := batcalc.+(X_46,X_336,false,true);

    X_201 := algebra.thetauselect(X_159,X_13,"<=");    X_202 := algebra.thetauselect(X_161,X_13,"<=");     X_203 := algebra.thetauselect(X_162,X_13,"<=");    X_204 := algebra.thetauselect(X_163,X_13,"<=");

    X_26 := nil:bat[:oid,:str];

    X_26 := algebra.leftjoin(X_25,X_19);

    X_75 := sql.resultSet(10,1,X_26);

    sql.rsColumn(X_75,"sys.lineitem","l_returnflag","varchar",1,0,X_26);

    X_74 := nil:bat[:oid,:wrd];

    X_74 := algebra.leftjoin(X_25,X_73);

    sql.rsColumn(X_75,"sys.lineitem","count_order","wrd",64,0,X_74);

    X_72 := nil:bat[:oid,:dbl];

    X_72 := algebra.leftjoin(X_25,X_71);

    sql.rsColumn(X_75,"sys.","avg_disc","double",53,0,X_72);

    X_65 := nil:bat[:oid,:dbl];

    X_65 := algebra.leftjoin(X_25,X_64);

    sql.rsColumn(X_75,"sys.","avg_price","double",53,0,X_65);

    X_57 := nil:bat[:oid,:dbl];

    X_57 := algebra.leftjoin(X_25,X_56);

    sql.rsColumn(X_75,"sys.","avg_qty","double",53,0,X_57);

    X_50 := nil:bat[:oid,:lng];

    X_50 := algebra.leftjoin(X_25,X_49);

    sql.rsColumn(X_75,"sys.","sum_charge","decimal",19,6,X_50);

    X_44 := nil:bat[:oid,:lng];

    X_44 := algebra.leftjoin(X_25,X_43);

    sql.rsColumn(X_75,"sys.","sum_disc_price","decimal",19,4,X_44);

    X_36 := nil:bat[:oid,:lng];

    X_36 := algebra.leftjoin(X_25,X_35);

    sql.rsColumn(X_75,"sys.lineitem","sum_base_price","decimal",15,2,X_36);

    X_32 := nil:bat[:oid,:lng];

    X_32 := algebra.leftjoin(X_25,X_31);

    sql.rsColumn(X_75,"sys.lineitem","sum_qty","bigint",32,0,X_32);

    X_27 := nil:bat[:oid,:str];

    X_27 := algebra.leftjoin(X_25,X_21);

    sql.rsColumn(X_75,"sys.lineitem","l_linestatus","varchar",1,0,X_27);

barrier X_442 := language.dataflow();

exit X_442;

    X_7 := sql.mvc();

    X_159:bat[:oid,:date]  := sql.bind(X_7,"sys","lineitem","l_shipdate",0,0,4);

    X_145:bat[:oid,:str]  := sql.bind(X_7,"sys","lineitem","l_returnflag",0,0,4);

    X_164:bat[:oid,:str]  := sql.bind(X_7,"sys","lineitem","l_linestatus",0,0,4);

    X_161:bat[:oid,:date]  := sql.bind(X_7,"sys","lineitem","l_shipdate",0,1,4);

    X_151:bat[:oid,:str]  := sql.bind(X_7,"sys","lineitem","l_returnflag",0,1,4);

    X_166:bat[:oid,:str]  := sql.bind(X_7,"sys","lineitem","l_linestatus",0,1,4);     X_162:bat[:oid,:date]  := sql.bind(X_7,"sys","lineitem","l_shipdate",0,2,4);

    X_154:bat[:oid,:str]  := sql.bind(X_7,"sys","lineitem","l_returnflag",0,2,4);

    X_167:bat[:oid,:str]  := sql.bind(X_7,"sys","lineitem","l_linestatus",0,2,4);

    X_163:bat[:oid,:date]  := sql.bind(X_7,"sys","lineitem","l_shipdate",0,3,4);

    X_157:bat[:oid,:str]  := sql.bind(X_7,"sys","lineitem","l_returnflag",0,3,4);

    X_168:bat[:oid,:str]  := sql.bind(X_7,"sys","lineitem","l_linestatus",0,3,4);

    X_173:bat[:oid,:int]  := sql.bind(X_7,"sys","lineitem","l_quantity",0,3,4);

    X_179:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_extendedprice",0,3,4);     X_193:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_discount",0,3,4);

    X_199:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_tax",0,3,4);    X_172:bat[:oid,:int]  := sql.bind(X_7,"sys","lineitem","l_quantity",0,2,4);     X_178:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_extendedprice",0,2,4);

    X_190:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_discount",0,2,4);

    X_198:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_tax",0,2,4);    X_171:bat[:oid,:int]  := sql.bind(X_7,"sys","lineitem","l_quantity",0,1,4);

    X_176:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_extendedprice",0,1,4);     X_187:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_discount",0,1,4);

    X_197:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_tax",0,1,4);

    X_169:bat[:oid,:int]  := sql.bind(X_7,"sys","lineitem","l_quantity",0,0,4);

    X_174:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_extendedprice",0,0,4);

    X_182:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_discount",0,0,4);     X_195:bat[:oid,:lng]  := sql.bind(X_7,"sys","lineitem","l_tax",0,0,4);

    X_218 := algebra.leftjoin(X_214,X_145);

    X_223 := algebra.leftjoin(X_214,X_164);

    X_220 := algebra.leftjoin(X_215,X_151);

    X_224 := algebra.leftjoin(X_215,X_166);

    X_221 := algebra.leftjoin(X_216,X_154);

    X_225 := algebra.leftjoin(X_216,X_167);

    X_222 := algebra.leftjoin(X_217,X_157);

    X_226 := algebra.leftjoin(X_217,X_168);

    X_285 := algebra.leftjoin(X_217,X_173);

    X_295 := algebra.leftjoin(X_217,X_179);

    X_306 := algebra.leftjoin(X_217,X_193);     X_341 := algebra.leftjoin(X_217,X_199);    X_283 := algebra.leftjoin(X_216,X_172);

    X_294 := algebra.leftjoin(X_216,X_178);

    X_305 := algebra.leftjoin(X_216,X_190);     X_340 := algebra.leftjoin(X_216,X_198);    X_281 := algebra.leftjoin(X_215,X_171);

    X_293 := algebra.leftjoin(X_215,X_176);

    X_304 := algebra.leftjoin(X_215,X_187);     X_339 := algebra.leftjoin(X_215,X_197);    X_280 := algebra.leftjoin(X_214,X_169);

    X_292 := algebra.leftjoin(X_214,X_174);

    X_302 := algebra.leftjoin(X_214,X_182);     X_336 := algebra.leftjoin(X_214,X_195);

    X_205 := algebra.markT(X_201,4,0);    X_207 := algebra.markT(X_202,4,1);     X_209 := algebra.markT(X_203,4,2);    X_212 := algebra.markT(X_204,4,3);

    X_214 := bat.reverse(X_205);

    (X_227,X_228) := group.new(X_218);

    X_250 := algebra.leftjoin(X_249,X_218);

    X_270 := algebra.join(X_18,X_218);

    (X_235,X_236) := group.done(X_227,X_228,X_223);

    X_248 := algebra.leftjoin(X_247,X_223);

    X_275 := algebra.join(X_18,X_223);

    X_288 := aggr.sum(X_280,X_236,X_247);

    X_363 := batcalc.dbl(X_280);

    X_297 := aggr.sum(X_292,X_236,X_247);

    X_311 := batcalc.*(X_292,X_307,false,true);     X_332 := batcalc.*(X_292,X_328,false,true);    X_385 := batcalc.dbl(2,X_292);     X_407 := batcalc.dbl(2,X_302);

    X_263 := mat.pack(X_250,X_254,X_258,X_262);

    X_269 := mat.pack(X_270,X_271,X_272,X_273);

    X_247 := bat.mirror(X_235);

    X_323 := aggr.sum(X_315,X_236,X_247);

    X_358 := aggr.sum(X_350,X_236,X_247);

    X_372 := aggr.sum(X_367,X_236,X_247);     X_381 := aggr.count(X_367,X_236,X_247);     X_395 := aggr.sum(X_390,X_236,X_247);    X_402 := aggr.count(X_390,X_236,X_247);     X_419 := aggr.sum(X_413,X_236,X_247);    X_424 := aggr.count(X_413,X_236,X_247);    X_430 := aggr.count(X_236,X_236,X_247);

    X_266 := mat.pack(X_248,X_252,X_256,X_260);

    X_274 := mat.pack(X_275,X_276,X_277,X_278);

    X_249 := bat.mirror(X_247);

    X_287 := mat.pack(X_288,X_289,X_290,X_291);     X_296 := mat.pack(X_297,X_298,X_299,X_300);     X_322 := mat.pack(X_323,X_324,X_325,X_326);

    X_357 := mat.pack(X_358,X_359,X_360,X_361);

    X_371 := mat.pack(X_372,X_373,X_374,X_375);     X_380 := mat.pack(X_381,X_382,X_383,X_384);     X_394 := mat.pack(X_395,X_396,X_397,X_398);    X_401 := mat.pack(X_402,X_403,X_404,X_405);     X_418 := mat.pack(X_419,X_420,X_421,X_422);    X_423 := mat.pack(X_424,X_425,X_426,X_427);    X_429 := mat.pack(X_430,X_431,X_432,X_433);

    (ext49,grp47) := group.done(X_264,X_265,X_266);

    X_215 := bat.reverse(X_207);

    (X_229,X_230) := group.new(X_220);

    X_254 := algebra.leftjoin(X_253,X_220);

    X_271 := algebra.join(X_18,X_220);

    (X_237,X_238) := group.done(X_229,X_230,X_224);

    X_252 := algebra.leftjoin(X_251,X_224);

    X_276 := algebra.join(X_18,X_224);

    X_289 := aggr.sum(X_281,X_238,X_251);

    X_364 := batcalc.dbl(X_281);

    X_298 := aggr.sum(X_293,X_238,X_251);

    X_312 := batcalc.*(X_293,X_308,false,true);     X_333 := batcalc.*(X_293,X_329,false,true);    X_386 := batcalc.dbl(2,X_293);     X_408 := batcalc.dbl(2,X_304);

    X_251 := bat.mirror(X_237);

    X_324 := aggr.sum(X_316,X_238,X_251);

    X_359 := aggr.sum(X_351,X_238,X_251);

    X_373 := aggr.sum(X_368,X_238,X_251);     X_382 := aggr.count(X_368,X_238,X_251);     X_396 := aggr.sum(X_391,X_238,X_251);    X_403 := aggr.count(X_391,X_238,X_251);     X_420 := aggr.sum(X_414,X_238,X_251);    X_425 := aggr.count(X_414,X_238,X_251);    X_431 := aggr.count(X_238,X_238,X_251);    X_253 := bat.mirror(X_251);

    X_216 := bat.reverse(X_209);

    (X_231,X_232) := group.new(X_221);

    X_258 := algebra.leftjoin(X_257,X_221);

    X_272 := algebra.join(X_18,X_221);

    (X_240,X_241) := group.done(X_231,X_232,X_225);

    X_256 := algebra.leftjoin(X_255,X_225);

    X_277 := algebra.join(X_18,X_225);

    X_290 := aggr.sum(X_283,X_241,X_255);

    X_365 := batcalc.dbl(X_283);

    X_299 := aggr.sum(X_294,X_241,X_255);

    X_313 := batcalc.*(X_294,X_309,false,true);     X_334 := batcalc.*(X_294,X_330,false,true);    X_387 := batcalc.dbl(2,X_294);     X_410 := batcalc.dbl(2,X_305);

    X_255 := bat.mirror(X_240);

    X_325 := aggr.sum(X_318,X_241,X_255);

    X_360 := aggr.sum(X_353,X_241,X_255);

    X_374 := aggr.sum(X_369,X_241,X_255);     X_383 := aggr.count(X_369,X_241,X_255);     X_397 := aggr.sum(X_392,X_241,X_255);    X_404 := aggr.count(X_392,X_241,X_255);     X_421 := aggr.sum(X_415,X_241,X_255);    X_426 := aggr.count(X_415,X_241,X_255);    X_432 := aggr.count(X_241,X_241,X_255);    X_257 := bat.mirror(X_255);

    X_217 := bat.reverse(X_212);

    (X_233,X_234) := group.new(X_222);

    X_262 := algebra.leftjoin(X_261,X_222);

    X_273 := algebra.join(X_18,X_222);

    (X_243,X_244) := group.done(X_233,X_234,X_226);

    X_260 := algebra.leftjoin(X_259,X_226);

    X_278 := algebra.join(X_18,X_226);

    X_291 := aggr.sum(X_285,X_244,X_259);

    X_366 := batcalc.dbl(X_285);

    X_300 := aggr.sum(X_295,X_244,X_259);

    X_314 := batcalc.*(X_295,X_310,false,true);     X_335 := batcalc.*(X_295,X_331,false,true);    X_388 := batcalc.dbl(2,X_295);     X_412 := batcalc.dbl(2,X_306);

    X_259 := bat.mirror(X_243);

    X_326 := aggr.sum(X_320,X_244,X_259);

    X_361 := aggr.sum(X_355,X_244,X_259);

    X_375 := aggr.sum(X_370,X_244,X_259);     X_384 := aggr.count(X_370,X_244,X_259);     X_398 := aggr.sum(X_393,X_244,X_259);    X_405 := aggr.count(X_393,X_244,X_259);     X_422 := aggr.sum(X_416,X_244,X_259);    X_427 := aggr.count(X_416,X_244,X_259);    X_433 := aggr.count(X_244,X_244,X_259);    X_261 := bat.mirror(X_259);

    X_18 := bat.mirror(ext49);     X_73:bat[:oid,:wrd]  := aggr.sum(X_429,grp47,ext49);     X_66:bat[:oid,:dbl]  := aggr.sum(X_418,grp47,ext49);    X_67:bat[:oid,:wrd]  := aggr.sum(X_423,grp47,ext49);    X_59:bat[:oid,:dbl]  := aggr.sum(X_394,grp47,ext49);    X_60:bat[:oid,:wrd]  := aggr.sum(X_401,grp47,ext49);    X_51:bat[:oid,:dbl]  := aggr.sum(X_371,grp47,ext49);     X_52:bat[:oid,:wrd]  := aggr.sum(X_380,grp47,ext49);     X_49:bat[:oid,:lng]  := aggr.sum(X_357,grp47,ext49);    X_43:bat[:oid,:lng]  := aggr.sum(X_322,grp47,ext49);    X_35:bat[:oid,:lng]  := aggr.sum(X_296,grp47,ext49);    X_31:bat[:oid,:lng]  := aggr.sum(X_287,grp47,ext49);

    (X_264,X_265) := group.new(X_263);

    X_370 := algebra.selectNotNil(X_366);     X_320 := algebra.selectNotNil(X_314);     X_349 := batcalc.*(X_335,X_345,true,true);    X_393 := algebra.selectNotNil(X_388);     X_416 := algebra.selectNotNil(X_412);

    X_355 := algebra.selectNotNil(X_349);

    X_348 := batcalc.*(X_334,X_344,true,true);     X_347 := batcalc.*(X_333,X_343,true,true);     X_346 := batcalc.*(X_332,X_342,true,true);

    X_19 := algebra.join(X_18,X_269);

    X_21 := algebra.join(X_18,X_274);

    X_71:bat[:oid,:dbl]  := batcalc./(X_66,X_70,true,true);

    X_68:bat[:oid,:bit]  := batcalc.==(X_67,0:wrd);     X_69 := batcalc.dbl(X_67);

    X_64:bat[:oid,:dbl]  := batcalc./(X_59,X_63,true,true);

    X_61:bat[:oid,:bit]  := batcalc.==(X_60,0:wrd);    X_62 := batcalc.dbl(X_60);

    X_56:bat[:oid,:dbl]  := batcalc./(X_51,X_55,true,true);

    X_53:bat[:oid,:bit]  := batcalc.==(X_52,0:wrd);    X_54 := batcalc.dbl(X_52);

    X_22 := algebra.sortTail(X_19);

    X_23 := group.refine(X_22,X_21);

    X_24 := algebra.markT(X_23,0@0:oid);

    X_369 := algebra.selectNotNil(X_365);     X_318 := algebra.selectNotNil(X_313);     X_392 := algebra.selectNotNil(X_387);     X_415 := algebra.selectNotNil(X_410);

    X_353 := algebra.selectNotNil(X_348);

    X_368 := algebra.selectNotNil(X_364);     X_316 := algebra.selectNotNil(X_312);     X_391 := algebra.selectNotNil(X_386);     X_414 := algebra.selectNotNil(X_408);

    X_351 := algebra.selectNotNil(X_347);

    X_367 := algebra.selectNotNil(X_363);     X_315 := algebra.selectNotNil(X_311);    X_390 := algebra.selectNotNil(X_385);     X_413 := algebra.selectNotNil(X_407);

    X_350 := algebra.selectNotNil(X_346);

    X_25 := bat.reverse(X_24);

    sql.exportResult(X_114,X_75);

    X_70:bat[:oid,:dbl]  := batcalc.ifthenelse(X_68,nil:dbl,X_69);    X_63:bat[:oid,:dbl]  := batcalc.ifthenelse(X_61,nil:dbl,X_62);    X_55:bat[:oid,:dbl]  := batcalc.ifthenelse(X_53,nil:dbl,X_54);

    X_114 := io.stdout();

end s1_1;

Figure 3.5: Query 1, 220 nodes.





Chapter 4

Query parallelization analysis

through operator’s execution order

visualization

”‘I do not seek. I find.” — Pablo Picasso

Effective and controlled parallelization of database query plans on multi-core

CPU’s is a difficult problem. The problems arise due to the legacy software archi-

tectures designed for single core CPU systems, hardware architectural limitations

such as limited memory bandwidth per core, lack of efficient scheduling models

for multi-core CPU’s, potential degree of parallelization problems, and inefficient

heuristics about resource consumption and load balancing.

A fine grained analysis of where times goes during parallel query execution

helps in identifying some of these issues. In this Chapter 1 we present “Tomo-

graph”, a tool to provide operator execution ordering based visualization, in an

operator-at-a-time execution model columnar system. Tomograph visualization

aligns operator execution with CPU, memory, and IO utilization in a multi-core en-

vironment. We classify and analyze the TPC-H query set, on the basis of query par-

allelization characteristics using Tomograph graphs. We identify issues in schedul-

ing, partitioning, and resource utilization by operators, in parallelized query plans.

As a solution, we discuss and experiment with the intra-operator parallelism us-

ing map-reduce multi-threaded approach. For the system under use, we find it less

suitable than the inter-operator parallelism approach. We share the possible opti-

mization opportunities for improvements and our learnings.

1This Chapter is based on the publication ”Tomograph: highlighting query parallelism in a multi-

core system”, In Proceedings of DBTest, SIGMOD 2013.
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CHAPTER 4. QUERY PARALLELIZATION ANALYSIS THROUGH

OPERATOR’S EXECUTION ORDER VISUALIZATION

4.1 Motivation

Query execution performance analysis tools assume a very important role for tuning

database systems [5][135]. Some of the common methods for performance analysis

are explain plan based operator statistics analysis [45][1], profiler based SQL query

analysis [53], and query execution trace based fine grained analysis [11]. Explain

based analysis often involves a visualization of query plans in a static graph format,

annotated with operator statistics. Execution trace based analysis involves filtering

of trace attributes and front end visualizers which aggregate trace information to

provide a condensed view [87]. The volume of information contained in a trace,

both in terms of number of attributes and quantity of information, could grow very

large. The query performance analysis using the methods described before are

well suited for SQL / operator statistics based analysis. However, parallel query

execution analysis on the basis of operator time ordered issues is difficult using

these methods.

Hence, operator execution ordering based visualization methods are critical in

the world of query parallelization research ecosystem. During parallel query exe-

cution operator’s execution ordering provides a lot of insight about the state of the

system. Identifying problems such as computational skew in parallel threads is easy

by visualizing the execution time-line of each thread side by side, as compared to

deciphering it from statistics of individual operators in a graph visualization. Prob-

lems such as wrong operator scheduling in a complex plan which are very difficult

to pinpoint otherwise can be spotted quickly by visualizing the operator execution

ordering. Getting an insight about the possible parallelism problems is thus a matter

of coming up with a correct visual scheme.

In this Chapter we introduce a new visual tool the Tomograph, that helps in

identifying performance bottlenecks in a parallel query execution, on a single can-

vas. Tomograph provides a coherent operator’s execution ordered view, cpu usage,

memory usage, and disk IO activity. It improves the ability to pinpoint the perfor-

mance issues during parallel query execution. We use it to explore the operator-at-a

time execution model of the MonetDB execution engine [39].

4.2 Contributions

Text based tools do not give insights into the execution order of operators during

query execution. We introduce a new tool, Tomograph, first of its kind, that vi-

sualizes the execution order of operators on a time-line, during query execution.

Tomograph helps to identify where time goes at the granularity of an individual op-

erator’s level, during multi-core intra-query parallel plan execution. It also provides

resource utilization information for the memory and the CPU. We briefly sketch the

main contributions of this Chapter.

• Visual representation of parallelization behavior of operators in a query. To-

mograph is the first tool to visualize operator’s execution order during query

execution.
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function user.s1_1():void;
X_2 := sql.mvc();
X_3 := sql.bind(X_2,"sys","lineitem","l_tax",0);
X_8 := sql.bind_dbat(X_2,"sys","lineitem",1);
X_10 := bat.reverse(X_8);
X_11 := algebra.kdifference(X_3,X_10);
X_16 := sql.resultSet(1,1,X_11);
sql.rsColumn(X_16,"sys.lineitem","l_tax",15,2,X_11);
X_22 := io.stdout();
sql.exportResult(X_22,X_16);

end s3_1;

Figure 4.1: A serial plan in operator-at-a-time execution model.

• Classification and analysis of TPC-H queries on the basis of parallelization

characteristics. This is the first analysis of its kind in analytical systems.

• Identification of performance issues and possible solutions to resolve them,

such as multi-threaded map-reduce based intra-operator parallelization.

4.2.1 Outline

The rest of the Chapter layout is as follows. In section 4.3 we provide a brief back-

ground of different existing query parallelization techniques. Section 4.5 focuses

on architecture of Tomograph. Section 4.6 provides a detailed analysis of TPC-H

benchmark queries. In section 4.7 we describe the experiments to improve paral-

lelization in selected queries. Related work is described in Section 4.8. We provide

a summary in section 4.9 and conclude in section 4.10.

4.3 Types of parallelization

Query parallelization can be categorized into two types, namely inter-query and

intra-query parallelization.

Inter-query parallelization: Parallelization resulting from execution of two or

more queries in parallel is termed as inter-query parallelization. All database sys-

tems when used in sequential / serial execution mode can provide inter-query par-

allelization, by executing one instance / thread on each core.

Intra-query parallelization: Intra-query parallelization is parallelism within a

query. It can be further classified as inter-operator and intra-operator paralleliza-

tion.

Inter operator parallelization is exhibited by two operators executing in paral-

lel. Inter-operator parallelization is implemented using the exchange operator [68]

about which we describe next. The pipe-lined query execution model also implic-

itly offers an inter-operator parallelization [70], as multiple operators execute in

parallel during query execution.
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Execution of a single operator in a multi-threaded set-up results into intra-

operator parallelization. Most database systems do not offer intra-operator par-

allelization, due to difficulties in scaling issues, such as memory bandwidth limits.

Exchange operator: Most systems use the exchange operator for intra-query par-

allelization, as introduced by the Volcano system [68]. An exchange operator al-

lows introducing parallelization in a query plan without modifying an operator’s

implementation. A query plan re-writer introduces multiple exchange operators

in a query plan based on degree of parallelization needed. An exchange operator

establishes a producer consumer relationship between itself and the original plan

operator, which has now become its child. It forks a new thread / process for ex-

ecuting the child sub-plan. The total number of threads / processes forked control

the degree of parallelism for the sub-plan. The data exchange between the two op-

erators occur through a shared buffer / port [70]. Apart from the exchange operator

based parallelism, the pipe-lined execution model itself offers an inherent parallel

behavior. The parent operator consumes tuples as they are available from child

operator. Hence, the blocking behavior is avoided.

4.3.1 Exchange operator in operator-at-a-time execution

In an operator-at-a-time execution model [41] an operator executes completely, ma-

terializing intermediate results. The operators in a query plan have a data flow

dependency. This introduces a producer consumer relation between them. For ex-

ample the serial plan in Figure 4.1 has operators following data flow dependency,

where for example, instruction (X 10) can not execute until instruction X 10 has

finished execution completely. However, not all operators follow the dependency

pattern. Some operators are independent. The data flow dependency amongst oper-

ators establishes a serial order of execution on these operators. Only those operators

can be executed in parallel which do not follow the data flow dependency. Estab-

lishing parallelization in operator-at-a-time execution model thus depends on the

presence of data flow independent operators. Explicit parallelization is introduced

in operator-at-a-time-execution model plans by introducing exchange operators in

the plans, about which we describe next.

In our setup, operator-at-a-time execution operates on a decomposed storage

model representation of data. The operators materialize the intermediate data com-

pletely. Plans are complex compared to traditional physical algebra representations,

as they use one operator per column operation leading to too many operators, and

also encode all operations such as tuple reconstruction using explicit operators. As

the plans are represented in an abstract language, they undergo a series of optimiza-

tions (in compiler optimization style) using multiple optimizers. Parallelization is

thus a result of applying a set of parallel plan generation optimizers called Mitosis

and Mergetable, which introduce the exchange operator equivalent operators in the

plan. Figure 4.1 shows a serial plan, whereas Figure 4.2 shows the corresponding

partitioned plan generated by using Mitosis optimizer. In the previous Chapter we

have illustrated how to read an operator-at-time-execution plan. The plan in Figure

4.1 corresponds to the following query.
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function user.s1_2():void;
X_2 := sql.mvc();
X_3 := sql.bind(X_2,"sys","lineitem","l_tax",0);
X_36 := sql.bind(X_2,"sys","lineitem","l_tax",0,0,8);
X_39 := sql.bind(X_2,"sys","lineitem","l_tax",0,1,8);
X_41 := sql.bind(X_2,"sys","lineitem","l_tax",0,2,8);
X_44 := sql.bind(X_2,"sys","lineitem","l_tax",0,3,8);
X_47 := sql.bind(X_2,"sys","lineitem","l_tax",0,4,8);
X_50 := sql.bind(X_2,"sys","lineitem","l_tax",0,5,8);
X_53 := sql.bind(X_2,"sys","lineitem","l_tax",0,6,8);
X_56 := sql.bind(X_2,"sys","lineitem","l_tax",0,7,8);
X_3:=mat.new(X_36,X_39,X_41,X_44,X_47,X_50,X_53,X_56);
X_8 := sql.bind_dbat(X_2,"sys","lineitem",1);
X_10 := bat.reverse(X_8);
X_11 := algebra.kdifference(X_3,X_10);
X_16 := sql.resultSet(1,1,X_11);
sql.rsColumn(X_16,"sys.lineitem","l_tax",15,2,X_11);
X_22 := io.stdout();
sql.exportResult(X_22,X_16);

end s1_2;

Figure 4.2: A range-partitioned query plan in operator-at-a-time execution

model.

select l tax from lineitem.

In the rest of this section we describe the optimizer set which generates the

parallel plans.

4.3.2 Mitosis

Mitosis partitions the base data on the largest table to generate an intermediate par-

allel plan. It uses an optimal serial plan as an input, and uses a heuristic using

the available memory, the largest table size, and the number of cores to decide the

number of data partitions. This design is influenced from the OLAP workloads

in data warehouses, which use a star schema, with a large fact table and multi-

ple dimension tables. The fact table is partitioned across multiple machines and

dimension tables are stored locally on each machine. This helps in localizing par-

allel computations and avoiding large scale data transfers on the network. Mitosis

uses a similar principle. One such sample partitioned plan is shows in Figure 4.2,

where, l tax column from the lineitem table is range partitioned into eight pieces.

To maintain the original plan semantics across the plan, all the partitioned columns

are joined together by a mat.new operator, which is similar to an exchange.union

operator.

4.3.3 Mergetable

Mergetable identifies instructions in the partitioned plan with a dependency on

the original instruction on which partitions were created. The original instruction

in Figure 4.2 is X 3 := sql.bind and the dependent instruction is X 11 := alge-

bra.kdifference. Mergetable expands the partitioned plan from Mitosis further by

introducing new dependent instructions, to preserve the semantics of the original
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function user.s1_2():void;
X_2 := sql.mvc();
X_3 := sql.bind(X_2,"sys","lineitem","l_tax",0);
X_8 := sql.bind_dbat(X_2,"sys","lineitem",1);
X_10 := bat.reverse(X_8);
X_37 := sql.bind(X_2,"sys","lineitem","l_tax",0,0,8);
X_58 := algebra.kdifference(X_37,X_10);
X_40 := sql.bind(X_2,"sys","lineitem","l_tax",0,1,8);
X_59 := algebra.kdifference(X_40,X_10);
X_42 := sql.bind(X_2,"sys","lineitem","l_tax",0,2,8);
X_60 := algebra.kdifference(X_42,X_10);
X_45 := sql.bind(X_2,"sys","lineitem","l_tax",0,3,8);
X_61 := algebra.kdifference(X_45,X_10);
X_48 := sql.bind(X_2,"sys","lineitem","l_tax",0,4,8);
X_62 := algebra.kdifference(X_48,X_10);
X_51 := sql.bind(X_2,"sys","lineitem","l_tax",0,5,8);
X_63 := algebra.kdifference(X_51,X_10);
X_54 := sql.bind(X_2,"sys","lineitem","l_tax",0,6,8);
X_64 := algebra.kdifference(X_54,X_10);
X_57 := sql.bind(X_2,"sys","lineitem","l_tax",0,7,8);
X_65 := algebra.kdifference(X_57,X_10);
X_11:=mat.pack(X_58,X_59,X_60,X_61,X_62,X_63,X_64,X_65);
X_16 := sql.resultSet(1,1,X_11);
sql.rsColumn(X_16,"sys.lineitem","l_tax",15,2,X_11);
X_22 := io.stdout();
sql.exportResult(X_22,X_16);
end s1_2;

Figure 4.3: A range-partitioned query plan with operator dependency propa-

gation, in operator-at-a-time execution model.

serial plan. Thus, eight new algebra.kdifference instructions are introduced as seen

in Figure 4.3. A mat.pack instruction finally combines work from all partitioned

instructions. Mat.pack operator is similar to the exchange.union operator from the

exchange operator family set of operators.

A data flow scheduler identifies the data flow independent instructions in the

plan and schedules them for execution by the interpreter. If an instruction’s input

parameter is derived from an output variable of another instruction, dependency ex-

ists. As an example, consider instructions from the plan in Figure 4.3 with output

variables (X 37,X 58), (X 40,X 59),(X 42,X 60),(X 45,X 61),(X 48,X 62),

(X 51,X 63),(X 54,X 64),(X 57,X 65). Instructions in a pair are dependent. How-

ever, instructions across pairs are independent. Hence, they can be executed in par-

allel. Effective parallelism thus depends on identification of such dependencies and

scheduling them efficiently. In a complex plan with many instructions, some times

non-optimal scheduling decisions are taken. To some extent, Stethoscope, about

which we described in the last Chapter, helps in identification of such problems

[63].

4.4 How does operator’s execution ordered visualization help?

Query parallelization helps to improve the response time of a query by dividing

large computations amongst parallel processing units. Each query exhibits different



4.5. ARCHITECTURE 55

resource requirements. Analysis of individual operators from resource consump-

tion perspective is often difficult as it gets affected by other operators executing in

parallel. Better insight can be obtained by understanding a holistic system view,

at any particular instance, where operators execution is ordered on a time scale.

Operator-at-a-time execution model also offers better prospects for profiling and

quantifying the performance of an individual operator, as it does not suffer from the

profiling overheads associated with the tuple-at-a-time pipe-lined execution model.

Next we briefly describe the visualization interface that orders operators execution

on a time scale.

Visualization interface

Operator’s execution ordered visualization provides a canvas to analyze the relation

between operator execution, resource consumption and its effect on query perfor-

mance. It is a consolidated graph which showcases the following.

1. Total number of active threads.

2. The start and end time of each operator.

3. The CPU activity per operator per thread.

4. The memory consumption by all operators.

5. IO consumption by all operators.

Figure 4.4 shows one such graph for TPC-H Q1. Each query operator is repre-

sented by a color. Execution of an operator is represented using a color box on a

thread line. The length of the box indicates duration of operator’s execution. The

presence of a white space indicates no operator is under execution. In an ideal case

there should be no white spaces in the graph during execution, indicating complete

utilization of CPU cores. The CPU core activity is displayed in the top portion of

the graph. Memory and IO utilization also get their own graphical representation.

4.5 Architecture

Tomograph is a command line client implemented in C, that connects to a Mon-

etDB server (default branch change-set c56e636745dd), to receive profiled query

execution trace. While the communication between server and client uses a UDP

channel, the visualization is done using Gnuplot. Tomograph’s work-flow can be

split into the following stages.

1. Setting up the connection with the MonetDB server.

2. Collection and parsing of query execution trace data received from the server.

3. Preparation of the data for visualization.

4. Setting up Gnuplot based scripts to generate a consolidated graph.

On initialization Tomograph establishes a UDP connection with the MonetDB

server and registers with the MonetDB profiler. The profiler starts when the query

is launched. The default CPU profile interval of 50 milliseconds can be varied

through Tomograph’s beat option. While the CPU activity is sampled from the
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/proc file system, the rest of the resources such as the memory and the disk IO are

profiled at the start and the end of each operator’s execution. Each statement in

the query execution trace contains information such as the instruction counter, the

instruction start / end state, the operator’s name, the thread id, the elapsed time,

and the memory and IO utilization. A query execution trace event is sent to the

Tomograph, at the start and the end of each operator’s execution. Since, CPU

profiled events are generated at varying intervals, they are sent in a ping message

header, on the same channel.

Tomograph listens for events from the MonetDB server in a loop and parses

trace statements to retrieve information. The events are categorized in two types,

the CPU events and the query events. The query event attributes are stored in an

in memory data structure. When both start and end state of an operator is received,

the association between an operator and it’s visualization parameters such as place-

ment, elapsed time, etc. is done. The CPU events data is stored in a separate file

as number of events received can be very large. The listening continues till the

query execution ends, or an interrupt is received from the user. Once the complete

profiled data is available, the visualization phase begins.

Tomograph uses Gnuplot to generate multi-plots of profiled attribute informa-

tion. The Gnuplot scripts are created based on received attribute information. The

CPU core data is mapped to represent the CPU core activity, in an zero to one inter-

val. The memory and the IO events similarly get their own representation. A box

of varying length with a filled color is used to represent an operator’s execution.

The box length is determined on the basis of operator’s execution interval. Most

operators in an instruction have an execution interval, that is below the granularity

of a box width display. Hence, only expensive operators gets a representation in

graphs. A static color map is used to map operators to their colors.

4.5.1 Operator mapping

There are two types of operator in operator-at-a-time execution model. Relational

algebra semantics operators (scan, join, aggregation, group, sort, and projection),

and tuple reconstruction semantics operators. Administrative operators reconstruct

the original tuple orders, from intermediate operations on individual columns.

The type of a query and the amount of partitioning has a direct effect on number

of operators in a plan. However, most of these operators are inexpensive adminis-

trative operators. We classify the expensive operators next, and provide a mapping

to their relational algebra semantics.

1. Select - algebra.uselect, algebra.thetauselect

2. Join - algebra.join, algebra.leftjoin, algebra.semijoin

3. Aggregation - aggr.sum. aggr.count, aggr.groupby, mat.pack

4. Arithmetic - batcalc.-, batcalc.+,batcalc.*

5. Groupby- group.multicolumn, group.sort

MonetDB stores base data and intermediate operation’s data in binary associ-

ation tables (bat). algebra.leftjoin is one of the most frequent operators in query
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plans. It is used to do positional look-up on bats. For example, consider selec-

tion predicates l orderkey=o partkey and l returnkey= R on TPC-H schema. Being

a point select, if the second predicate gets evaluated first, it’s returned results are

stored in a bat. l orderkey column would benefit from the reduced selectivity from

l returnkey results. Hence, a leftjoin operation is used on l orderkey and returned

results of l returnkey= R. A join operator is then used for evaluating the results

between results of leftjoin and the o partkey column.

MonetDB uses highly optimized physical operators, implemented in “C”. How-

ever, operators in a parallel setting affect each others behavior and performance gets

less optimal. A visual overview by Tomograph of the time spent, provides deep in-

sight into individual operator’s behavior. In the next section we analyze individual

TPC-H queries, to gain insights into their parallelization behavior.

4.6 TPC-H queries classification

Query parallelization is beneficial if the benefits outweigh the overheads of par-

allelization. Prominent overheads during query parallelization include the cost of

partitioning and transfer of data, administrative and synchronization overhead of

thread management, and the result merging cost. In a query that executes for a long

time these overheads become negligible, however, a query that executes for a short

time, the overheads stand out. Hence, parallelization does not benefit short run-

ning queries. TPC-H queries however, are a mix of long and short running queries.

Having an insight into how long running TPC-H queries behave after paralleliza-

tion helps to improve their performance. We classify the TPC-H queries on the

basis of their degree of parallelization and analyze each query with respect to the

following dimensions.

1. Degree of query parellelization.

2. Multi-core utilization by each operator.

3. Limitations of scheduling of operators.

4. Effect of blocking operators on query response time.

5. Intra-operator parallelism opportunities.

6. Limitations of operator implementations and partitioning policies.

The experimental setup is specified in Section 4.9. As degree of paralleliza-

tion decides the number of CPU cores under use, it directly affects the multi-core

utilization during query execution. We define multi-core utilization as follows.

Multi-core utilization: It is the sum of the execution time of all operators executed

on all active threads, divided by the total time of execution from the start to the end

for all active threads.

We provide a classification of selected TPC-H queries next using Tomograph’s vi-

sualization scheme.
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Figure 4.4: TPC-H query 1 execution time-line on 10 GB data-set.

Query 1: It is a simple query, which works on a single table lineitem. The most

expensive operators are algebra.thetauselect, group.multicolumns, algebra.leftjoin,

aggr.sum, and aggr.count. The query is dominated by aggregation and algebraic

operators. At 97.5% the query shows extremely efficient multi-core utilization.

As lineitem is the only table present, it is partitioned. Parallelization of the plan

is simple as there are no joins and the workers are evenly distributed. The prominent

operations are group by and aggregations on the columns from the lineitem table.

The selection operators work on the partitioned data, later followed by the group

by operators, and further by the algebraic and the aggregation operators.

Overall, the query shows excellent parallelization, as it has a single large par-

titioned table and no complex operations like joins. As the intermediate data gen-

erated is large, the time spent in algebraic and aggregation operations is high and

contributes maximally to the total query time. The multi-core utilization stays high

due to computationally bound algebraic and aggregation operations.
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Figure 4.5: TPC-H query 9 execution time-line on 10 GB data-set.

Query 9: It is nested and more complex than query 1. Along with the lineitem ta-

ble, it also has five other dimension tables. The most expensive operators are alge-

bra.join, algebra.letfjoin, group.multicolumns, and aggr.sum. At 91.5% the query

shows less multi-core utilization than query 1. This is evident from the presence of

empty blocks towards the end of the query execution, before the group-by operator.

Idle cores during execution mostly represent lack of available instructions, due to

data flow dependent operator blocking.

Most joins in the inner query are present on the columns of the lineitem table.

Hence, a partitioned lineitem table column is propagated in the plan to match parti-

tioned join attribute column from other dimension tables. The inner query joins on

lineitem table column’s get evaluated first. Algebraic operations like subtraction,

multiplication are done on some of the partitioned attributes from these tables on

the inner query next. After a group-by on these results, the outer query does one

aggregation before projection of results. Plan for this query is thus more complex

than the first query due to presence of the joins and the inter-dependency of op-

erations from the inner query to the outer query. However, the total data that is

materialized from the joins in the inner query is relatively small. Also there are not

many computational operations in projections to work on this data. Overall, the

query has more memory bound operations like join than computational operations.
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Figure 4.6: TPC-H query 18 execution time-line on 10 GB data-set.

Query 18: It is nested and more complex than the previous queries. Along with

the presence of the lineitem table in both the inner and the outer query, there are

two more dimension tables present. The most expensive operators are group.done,

aggr.sum, mat.pack (exchange union), and algebra.join. At 61.3% the query shows

less multi-core utilization than the previous queries. Seven cores are idle when

aggr.sum executes, making aggr.sum the blocking operator. There are instances of

bad scheduling. For example. the second aggr.sum operator on the thread 12 should

have been scheduled on the thread 10.

This query has a complex plan. The inner query has a group-by clause with

an aggregation operation on the having clause. The columns involved are from

the lineitem table, which provides an opportunity for partitioning. However, the

plan becomes complex due to the tuple reconstruction phase due to the presence of

group-by, having, aggregation and selection clause in a single predicate. The inner

query also has two join clauses. They are present in the beginning on thread 8. This

query can be distinctly divided into two regions. The region before, and after the

blocking operator “aggr.sum”, where parallelization is visible. The query spends

more time on memory bound operations such as joins, than computational bound

operators such as sum. The query also shows some unnecessary IO activity.

A complex plan thus offers less parallelization opportunities, as it has more

data flow dependencies. Identifying blocking operators and exploring a possible

intra-operator parallelization option on them is one possible approach to improve
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Figure 4.7: TPC-H query 10 execution time-line on 10 GB data-set.

parallelization as described in Section 4.7.4. “Aggr.sum” if partitioned can work on

independent ranged partitions and could provide good parallelization opportunities.

Being a computational operator it’s efficiency depends on how fast it can access

data from memory. Hence, memory bandwidth support during parallel execution

could play an important role. Packing of results from different partitions could also

be another bottleneck.

Query 10: It is relatively simple compared to query 18. Along with the lineitem

table it also has three more dimension tables. The most expensive operators are

algebra.uselect, algebra.leftjoin, algebra.join, group.multicolumns, aggr.sum, and

mat.pack. At 64.9%, multi-core utilization is almost similar to the query 18. This

is evident from white spaces during query execution. An analysis of the multi-core

utilization offers deep insight into possible problems and future improvements. We

discuss this later in “Incorrect scheduling and parallelization policies”.

The query plan is relatively simple. The presence of a selection predicate on

partitioned lineitem column triggers it’s initial execution. Other selection predi-

cates which involve a column from the lineitem table are data flow dependent on

the previous selection predicate’s result. Leftjoin (tuple reconstruction) operator

works on the result of first selection predicate, and the lineitem table columns in

the rest of the selection predicates for doing filtering. Join operations execute once

leftjoin (tuple reconstruction) produces input for joins. The results are grouped by,

and an aggregation operator is applied to find sum on lineitem table column. The
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Figure 4.8: TPC-H query 4 execution time-line on 10 GB data-set.

query is blocked by multiple operators throughout execution. Select is one of the

blocking operators.

Overall, the query shows good parallelization for most part of the execution.

This can be attributed to the relatively simple plan which works on selection and

join predicates on four tables in a partitioned manner. However, towards the end,

the query shows blocking behavior. Whether it can be resolved by doing intra-

operator parallelization of blocking operators needs to be explored.

Query 4: It is a simple nested query, whose multi-core utilization is 54.3% as the

total number of active threads are too low. It shows the least parallelism, although

the lineitem table is present. The reason being prevention of the plan parallelization

as a precautionary measure to avoid too many join operators in the plan. Section

4.7.2 discusses more details about it. The query has a few expensive operators

namely batcalc.<(comparison), algebra.uselect (selection), algebra.join, and al-

gebra.leftjoin (tuple reconstruction).

The outer query has a selection predicate on the orders table. Note that the

orders table is not partitioned as the lineitem table is also present, and only the

largest table gets partitioned by Mitosis. The “algebra.uselect” operator evaluating

this predicate executes first, due to selection push down rule. The inner query

has a join predicate and a selection predicate on the two columns of the lineitem

table. The “batcalc.<” operator executes next, evaluating the comparison on the

two lineitem table columns. “The “algebra.uselect” operator executes next, and it

materializes the selection done by batcalc operator. Preparation for join predicate
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Figure 4.9: TPC-H query 7 execution time-line on 10 GB data-set.

evaluation happens next. It consists of an intermediate join between l commitdate

and l receiptdate, the two columns in selection predicate. It gets represented on

thread line after uselect operator execution. “Algebra.leftjoin” operation between

the result of this join and l orderkey happens next. The leftjoin does selection

of values for l orderkey. The main join predicate in where clause of inner query

evaluates next. There is also an exist clause in the main query, which evaluates next.

The “algebra.semijoin” operator represent execution of the exist clause. It’s input

is the result of the main join predicate, and the selection predicate on o orderdata

in main query. Groupby and count clauses evaluate next.

We expect that since the query involves computational operators such as batcalc

and uselect, if parallelized, the speedup should be good. The query involves many

intermediate joins even in the present form. These are used during intermediate

stages, for tuple reconstruction. We discuss the case of “join” explosion further in

section 5.1.2.

Query 7: It is a complex nested query which shows the least parallelism though

it has the lineitem table. Like query 4, the optimizers do not parallelize the query

plan, as it leads to the query plan explosion. The multi-core utilization is 23% as

two threads stay active till the end. One thread is completely occupied, however

the second thread gets to work only towards the end of the query execution. The

query has a few expensive operators namely algebra.uselect, algebra.leftjoin, and

algebra.join.
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The inner query has multiple inter-dependent selection and join predicates. Join

order resolution decisions are taken based on the predicate selectivity dependency.

Due to selection push down rule, first a uselect on the lineitem column gets ex-

ecuted. Multiple join predicates in the rest of the predicates has a column from

lineitem. Thus, they become dependent on the result of the first uselect. The de-

pendency continues across columns from other tables which are used in join. The

dependency chain continues till the last selection predicate on nation table gets re-

solved. This predicate gets executed in parallel as two separate independent uselect

operations are involved.

A partitioning attempt on lineitem leads to a large plan expansion with ex-

pensive join operations. The plan explosion occurs due to the tuple reconstruction

phase for intermediate operations, which are heavily inter-dependent. This prevents

parallelizing the query.

4.7 Experiments

The experimentation platform is a machine equipped with Intel Core i7-2600 CPU

@ 3.40GHz, 16 GB DDR3 Dual channel RAM, and 7200 RPM 1 TB SATA hard

disk, running Fedora Core 16 operating system. MonetDB default branch change-

set c56e636745dd is used. All the queries execute in memory on a TPC-H scale

factor 10 GB data-set. Tomograph connects as a client to the MonetDB server.

Queries are fired from a separate client to generate the graphs.

The experiments are intended to show that various performance bottleneck is-

sues identified during visual classification of the TPC-H queries can be resolved

using different parallelization solutions in the context of MonetDB. Some of these

bottlenecks are as follows.

1. Limitations of operator scheduling.

2. Limitations of static data partitioning.

3. Limitations of static heuristic.

4. Blocking operators.

A detailed analysis of some of the queries, on the above factors and possible

solutions for their improvement are discussed next.

4.7.1 Scheduling and partitioning policy limitations

Q10 in Figure 4.7 is a good example of problems in operator scheduling and data

partitioning. The query has one scan select operation on the lineitem and the orders

table column (black). Since MonetDB parallel plan optimizer always partitions

columns in the largest table, the presence of 8 CPU cores leads to 8 equi-range

disjoint partitions of the lineitem table column. While one select operator works on

each partition, a single select operator works on the orders table column, since it is

not partitioned.

With the 8 execution threads, the scheduler has two possible scheduling choices.

First, to schedule 8 select operators on the 8 way partitioned column, or to sched-

ule 1 select operator on the non-partitioned single column and 7 select operators
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on 8 way partitioned column. We observe that the scheduler uses the 2nd choice

by scheduling a single select operator (topmost left black) on thread 13 and 7 par-

titioned select operators (black) on threads 6 to 12. The 8th select operator gets

scheduled on thread 12 after the first select operator scheduled on it finishes its ex-

ecution. While the select operators on threads 6 to 11 finish first, they continue to

wait until the select operation on the non-partitioned column (thread 13) finishes.

This wait introduces idle time on multi-cores. The partitioned join operator which

is scheduled next (purple) needs results from both types of (non-partitioned column

and partitioned column) select operators as its input. The join operators following

the 6 select operators (thread 6 to 11) start execution as soon as the select operator

on thread 13 finishes.

Solution

This case shows the problem of incorrect scheduling order and incorrect number of

partitions. One possibility is to parallelize the select operation on the single non-

partitioned column of the orders table and schedule it to execute first. This would

serialize the execution of select operations on the orders and the lineitem table,

thereby removing the waiting time.

The other possible resolution is by identifying the correct number of partitions.

For example, instead of 8 partitions of the lineitem table column, use only 7 par-

titions. This would avoid waiting time for other threads, as they wait for the 8th

select operation to finish.

Identifying exact data partitioning range such that optimal load balancing is

achieved is a difficult problem, as resource consumption changes dynamically. In a

simple case, if the lineitem table partitions are reduced from eight to seven, each of

the seven select operators get more range of data to work on. Hence, their execution

time increases. This could keep the seven threads busy till the select operator on

thread 6 finishes.

However, the decision to reduce number of partitions dynamically is difficult,

as it involves run time monitoring and synchronization amongst all executing op-

erators and needs a continuous load balancing strategy. The plan generation at

present is static and dynamic monitoring and adaptation infrastructure does not ex-

ist. However, we identify this as a possible future research direction to solve such

type of problems.

As MonetDB does not use a cost based optimizer, an important question is,

if a cost based optimizer could have identified the correct number of partitions. In

Chapter 6 we discuss the role of correct number of partitions in plan parallelization.

We also checked the query plan for Vectorwise, a leading analytic system, since it

uses a cost based optimizer. It uses both the lineitem and the orders table in a

partitioned manner. It is able to partition the tables correctly.

4.7.2 Static heuristic limitations

The problem of queries involving the lineitem table not getting parallelized, as

seen in the query 4 case (See Figure 4.8), compelled us to investigate such type of
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Figure 4.10: TPC-H query 4, forced expanded parallel plan execution on 10

GB data-set. The timing is improved by 3 times the timing of query 4 without

forced plan expansion.

queries. Query 4 does not get parallelized due to the problem of “join” explosion

in a large plan expansion. Based on the properties of the data (unique, random) the

amount of work done by “join” operator varies. If the optimizer detects a possible

cross product during join, then the total complexity of the join calculation increases,

due to too many joins. The heuristic in parallel plan generation optimizer checks for

such conditions, and if matching conditions are found, it rolls back the expanded

plan to a sequential plan.

Solution

We do an experiment to check the severity of the join explosion problem by forc-

ing a plan expansion for the query 4. The heuristic condition in the plan re-writer

that checks for the “join” explosion condition is deactivated. The resultant ex-

panded plan contains 424 instructions with 60 new join operators, while for the

non-expanded plan there are 117 instructions. The expanded plan however, exhibits

very good parallelism as seen in Figure 4.10, with the query execution improved

from 6 seconds to 2 seconds, i.e. by three times. Execution time of individual op-

erators also decreases by around 4 times. This case shows that static heuristics in

parallelization decisions can be sub-optimal.
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4.7.3 Blocking operators

Blocking operators is one of the most prominent visible bottleneck. They arise

due to data flow dependency amongst operators in operator-at-a-time execution

model, where until all the input parameters are available an operator can not start

it’s execution. A “sort” operator in relational algebra is a blocking operator, as

sorting requires availability of the entire range of input.

However in MonetDB context, depending on the other operators under execu-

tion and resource availability normal operators could show blocking behavior. A

broad level categorization is based on partial blocking or complete blocking be-

havior. The select operator on the orders table predicate in query 10 in Figure 4.7

(Thread 13) shows a partial blocking behavior. While its under execution 7 threads

on the lineitem table column execute select operators, until the join operator (pur-

ple) dependency arrives. In contrast, when the operator “aggr.sum” in query 18

(Figure 4.6) executes, it blocks all operations, showing a complete blocking be-

havior. There are non-blocking partitioned sum operators in the same query. The

complete blocking operator behavior results, as the blocking operator receives all

the data flow dependency operators as its input.

Solution

Blocking operators if parallelized in an intra-operator manner, could improve the

query response time. “algebra.uselect” and “aggr.sum” show blocking behavior in

many query plans. We focus on “algebra.uselect” as it occurs more frequently in

different contexts. In the next experiment we describe its intra-operator paralleliza-

tion.

4.7.4 Parallelization of blocking operators

Operator parallelization uses either inter-operator or intra-operator parallelization.

In both the input is range partitioned and selectivity condition is applied on each

partition. Inter-operator parallelization has multiple operators operating in parallel.

MonetDB supports inter-operator parallelization by default, with a single threaded

operator execution.

On the contrary, intra-operator parallelization uses a multi-threaded implemen-

tation of an operator. An operator could have multiple implementations to sat-

isfy different cases, for example, MonetDB uses variants of the operator alge-

bra.uselect. An optimal implementation is chosen on the basis of properties of

data such as sortedness, uniqueness, etc. However, the intra-operator operator par-

allelization does not benefit all of them. Parallelization of uselect makes sense

only in those cases where sufficient computational opportunities are present. Since

range selection over random data is one such case, we focus on the intra-operator

parallelization of the select operator, for this case.
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Figure 4.11: The comparison of Intra-operator uselect, with serial and parallel

reducer phase.

Intra-operator parallelization

“Algebra.uselect” operator is parallelized using a multi-threaded map-reduce ap-

proach [125][105]. Mapper functions are forked on multiple threads to do range

based selection. A multi-threaded reducer phase combines these results. The re-

ducer produces the final buffered results by combining data from different mappers

either in a serial or parallel manner. Thus, based on the type of reducer used, we cat-

egorize the intra-operator parallelization of uselect in two types. The intra-operator

serial version and the intra-operator parallel version. The total time in both version

can be divided as below.

1. Forking of mapper and reducer threads.

2. Computational work by mapper threads.

3. Buffer copy by reducer threads.

To understand the time division in intra-operator parallel phases, we conduct a

simple experiment. A simple query “select count(*) from table where a >1” is

used on an in memory cached server. The table contains random data of a single

attribute of type “long”. Data sets of size 1GB, 2GB, and 4GB are used. Selectivity

of the query is 100%. Both the serial and parallel versions of intra-operator uselect

are compared. The graph in Figure 4.11 displays the time division for the mapper

phase, reducer phase, and total time for the query. Following observations are

made.

1. Mapper threads take less time than reducer threads.

2. Serial version reducer takes more time than parallel version reducer.

3. The proportion of total mappers and reducers time, to the total query response

time is more in serial version, than in parallel version.
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4. The query response time does not increase in proportion to the data-set size in-

crease.

Mappers: Eight threads are forked in each mapper and reducer stage. Thread

forking is a lightweight activity and takes around twenty microseconds per thread.

To save thread forking costs, another alternative is to use a thread pool. Mapper’s

spend their time in computation and memory access, where the computation in the

current case is of comparison type. Since memory access is always slower than

CPU clock speed [27], the time spent in reading and writing the data is memory

bandwidth dependent. It varies based on resource contention amongst competing

threads. Hence, the increase in time for mappers across different data sets, is not

in proportion with the increase in data set size. Memory access optimization could

thus improve mapper performance further. This is further discussed in Section 4.7.5

in memory bandwidth measurement.

Reducers: Merging results from multiple mappers to a final buffer in the reducer

phase is always a bottleneck. Copying time is spent in reading various buffers from

different memory addresses, and writing data at a separate location. Depending on

the size of the data to be copied, the timing of copy could vary considerably. Buffer

copying is expensive if done in a serial manner. Each reducer thread copies data

serially to the destination buffer. Parallel copying reduces the cost significantly, as

multiple threads copy simultaneously.

For small data sets sized 1GB and 2GB, the parallel version is an order of

magnitude faster than the serial version. However, for the 4GB data set the query

execution time is 45 sec in serial, and 26 sec in parallel version. This is attributed

to the disk IO effect and operating system noise. MonetDB allocates intermediate

buffers (bat), using heap or a memory map based allocation. For small data size

up-to a few hundreds of MB’s, bat’s use a heap allocation. For larger size, bat’s use

a memory mapped allocation. Memory mapped allocation could trigger a disk IO,

based on the memory pressure. The operating system with its background process

activity could also trigger flushing of memory. We suspect these two factors leads

to the bad performance of intra-operator parallel version.

The proportion of all mappers and reducers time, in comparison to the entire query

execution time, is an important metrics. Apart from “uselect” other important op-

erators in the query are “leftjoin”, and “sum”. In the serial version, the combined

time of mappers and reducers is 60% of the total query time. In parallel version

this proportion is just 40%. The overhead of other instructions in parallel version

emphasizes the effectiveness of uselect parallelization. It calls for an efficient im-

plementation of other instructions as well.

Query 4 uselect intra-operator parallelization

Query 4 is another good candidate to test intra-operator parallelization of the “us-

elect” operator. Out of it’s six uselect operators, only two are expensive and con-

tribute up-to 2.65 seconds. The experiment is intended to observe the effect of
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Figure 4.12: Query 4 with intra-operator uselect parallel version. The uselect

operator time has improved by two times, as compared to uselect operator

time in query 4 without intra-operator uselect.

intra-operator parallel uselect, on improving the response time of a TPC-H query.

The graph in Figure 4.12 shows the result. The total time for uselect is reduced to

1.34sec from 2.65 sec. This is an improvement by two times. We expect an im-

provement of at least up-to four times, due to the presence of four physical cores.

The time for mapper and reducer phases are stable and together contribute around

700 ms. We suspect memory bandwidth can be an issue, hence measure it next.

4.7.5 Memory bandwidth measurement

Parallelization of operators such as select also depends on the memory bandwidth,

as too many operators accessing memory in parallel puts pressure on the memory.

The Intel i7 core 2600 quad-core processor has a peak bandwidth of 21GB /sec. The

graph in Figure 4.13 plots the read / write memory bandwidth experiment results.

We measure the effective bandwidth of a single, two, four, and eight threads. Some

of the important observations are.

1. Maximum read bandwidth is 17.39GB/sec.

2. Maximum write bandwidth is 8.5GB/sec.

3. Read bandwidth for four and eight threads is similar.
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Figure 4.13: Read / Write memory bandwidth comparison.

4. Write bandwidth for two, four, eight threads is similar.

The experiment uses GCC 4.6.3 compiler. An array variable of type int is

allocated 4GB memory and initialized. In order to measure the read bandwidth,

loop unrolling for 16 times is done to compute “sum = array[i] + 1”. At the end

all individual “sum” are added to nullify the effect of dead code elimination by the

compiler. The write bandwidth is measured using the expression “array[i]=sum”.

The experiment is conducted in both single thread and up-to 8 threads case. In the

multi-threaded setup each thread works on a range of the array. The experiment

is first carried without any compiler optimizations, and then repeated with the -o1,

-o2, and -o3 optimizations. However, no noticeable differences are observed in the

execution times.

Hyper-threading provides a logical core along with an existing physical core. In

Figure 4.13 4 threads represent physical core threads, whereas 8 threads includes 4

hyper-threads. It benefits the thread in using the idle CPU execution units, when the

thread executing on the physical core is busy. However, as shown in Figure 4.13,

it has no effect on the memory bandwidth. This explains the reason both four and

eight threads show similar read / write bandwidth. Read experiment bandwidth for

four/ eight threads is around four times better than the single thread bandwidth, and

is close to the theoretical bandwidth of 21 GB/sec. At 8.5GB/sec write bandwidth

is around half of the read bandwidth. Hence, writes are expensive and any opti-

mization in saving writes in mapper phase should improve mapper’s performance.

Write bandwidth stays almost constant after two threads. We are unable to explain

why write bandwidth is so low.

We have given an overview of different performance bottleneck issues during

parallelized query execution using time ordered visualization for selected TPC-H

queries. The visualization scheme proposed by us has helped us identify these

issues. Tomograph is the first tool in the database system context to propose such a
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visualization scheme for time ordered analysis of query execution.

4.8 Related work and applicability to other systems

Most systems use the “Explain” command for parallel query plan visualization.

Other auxiliary tools also use the explain semantics with added functionality, such

as operator node statistics and color coding [5]. Microsoft SQL server uses a suit of

tools titled “SQL server management studio” [18]. Vectorwise uses a graphviz gen-

erated static visualization plan tree, with color coding. Postgres uses similar tools

[17]. However, none of these tools provide a visual parallel execution overview

of operators, in a time ordered manner, in a multi-core setting. Problems in paral-

lelization of query plans are detected by manual analysis of statistics provided in

each operator. Often color coding is used to highlight problematic operators in a

plan. For example, Vectorwise uses gradients of a single color to paint nodes in

an execution plan tree. In a parallel plan, dark gradient color represents a skewed

node, whereas a normal node gets light color. Further analysis is done using statis-

tics from each node.

The closest tool similar to Tomograph in the context of database system is

Q3ED, [132], which is a 3D visualization tool for analyzing query execution plans

in a clustered execution environment in SAP Hana in-memory database. Query

execution 3D (Q3ED) is a Java application based on a stand-alone architecture. It

is installed on a client machine and processes interactive visualizations. The usual

process of performance analysis of different queries is looking at various different

diagram types in parallel, where each of them focuses on different aspects of a dis-

tributed query plan (e.g. network communication, physical operator interleaving,

host utilization, temporal operator interleaving). Q3ED provides a holistic view

of the entire query plan and enables to analyze different performance aspect in a

single 3D space. It is inspired by the Stethoscope and Tomograph tools.

Intel Vtune analyzer is another tool that allows visualization of any process

under execution, hence could be used also for visualization of database execution

engine process. It provides different generic visualization themes such as the part

of the code where most of the time is spent, etc., however, none of these schemes

are specifically designed with a focus on the database query execution unlike To-

mograph.

A direct comparison with other such tools can not be done because lack of such

tools, and even if they exist they are specific to the system under use. Tools are

always used to assist in the progress of the subject research area, and should help

improve the overall research ecosystem by providing better abstraction and generic

principles that could be utilized in other systems, rather than from the perspective

of their absolute effectiveness in comparison with similar tools.
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4.9 Summary

The research question: In this Chapter we address the questions, ”How well are

the state-of-the-art database management system solutions using the available hard-

ware resources?” and ”How to provide insights into the query execution perfor-

mance bottlenecks at a database system’s functionality level?”

Query execution bottlenecks result from different factors such as operator schedul-

ing problems, operator implementation problems, run-time resource contentions,

etc. The user interface of the text based performance analysis tools is not sufficient

to identify problems arising due to these factors. Identifying parallelized query

execution performance bottlenecks is crucial to be able to improve their perfor-

mance. Hence, any assistance that expedites the process is a crucial step in the

research exploration. In this Chapter we have investigated how visualizing opera-

tor’s execution order on a time-line can assist in identification of query execution

performance bottlenecks.

Research contributions: We introduced Tomograph, a visualization tool to iden-

tify and analyze the performance bottlenecks in parallelized query execution in a

multi-core CPU environment. Visualization of execution order of operators on a

time-line allows easy identification of crucial bottleneck problems such as operator

scheduling, multi-core utilization, hence it acts as a valuable tool in troubleshoot-

ing query execution performance problems. We have analyzed a selected set of

TPC-H benchmark queries for different types of performance bottleneck problems.

This kind of visual analysis is done for the first time in the database world, and we

provide different use cases to show its effectiveness.

A relative comparison between tools is hampered by their context. They are

custom built. Closest comparison could be with VTune analyzer [126], a profiler

and visualization tool from Intel for generic process performance issue identifica-

tion. Tomograph is one of the first of its kind tool catered specifically towards

multi-core database systems. Its generic visualization principles are applicable to

be used in other systems as well. Expedited identification of query execution per-

formance problems during research explorations are critically dependent on such

tools, hence such tools are a valuable research contribution.

Stethoscope, the visualization tool we described in Chapter 3, does not pro-

vide insights into an operator’s execution order dependencies with respect to time.

Tomograph’s visualization approach was inspired by this deficiency. Visualizing

an operator’s execution dependencies with resource utilization (CPU core utiliza-

tion and memory utilization) with respect to time provides crucial insights into the

run-time behavior of the system. It helps to analyze the run-time issues during an

operator’s execution with respect to scheduling, robustness, degree of paralleliza-

tion and multi-core utilization, memory utilization, etc. Tomograph has inspired

the development of similar tools in commercial systems such as SAP Hana [132]

and HP Vertica [137].
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4.10 Conclusion

Tomograph is a new tool in the database research world that provides a visual ap-

proach to identify problems in query parallelization in a multi-core setting. It helps

to understand and analyze where time goes during operator execution in a multi-

core query execution setting. We classify and analyze the TPC-H query set on the

degree of query parallelization and multi-core utilization. We classify the possible

problems hampering parallelization as limitations of scheduling and partitioning

decisions, limitations of the static heuristic rules, and blocking operators. Solutions

to these bottleneck issues are proposed. Tomograph has inspired similar visualiza-

tion approaches in other database systems.



Chapter 5

Adaptive query parallelization in

multi-core column stores

“Change is the end result of all true learning.” - Leo Buscaglia

With the rise of multi-core CPU platforms, their optimal utilization for in-

memory OLAP workloads using column store databases has become one of the

biggest challenges. Some of the inherent limitations in the achievable query paral-

lelism are due to the degree of parallelism dependency on the data skew, the over-

heads incurred by thread coordination, and the hardware resource limits. Finding

the right balance between the degree of parallelism and the multi-core utilization is

even more trickier. It makes parallel plan generation using traditional query opti-

mizers a complex task.

In this Chapter 1 we introduce adaptive parallelization, which exploits execu-

tion feedback to gradually increase the level of parallelism until we reach a sweet-

spot. After each query has been executed, we replace an expensive operator (or a

sequence) by a faster parallel version, i.e. the query plan is morphed into a faster

one. A convergence algorithm is designed to reach the optimum as quick as possi-

ble.

The approach is evaluated against a full-fledged column-store using micro-

benchmarks and a subset of the TPC-H and TPC-DS queries. It confirms the fea-

sibility of the design and proofs to be competitive against a statically optimized

heuristic plan generator. Adaptively parallelized plans show optimal multi-core

utilization and up to five times improvement compared to heuristically parallelized

plans on the workload under evaluation.

1This Chapter is based on the publication ”Adaptive query parallelization in multi-core column

stores”, In Proceedings of EDBT 2016.

75
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der concurrent workload (32 hyper-threaded cores).

5.1 Motivation

Column store databases are designed with a focus on analytical workloads. Almost

all database vendors these days have a column store implementation. A recent study

by Microsoft showed that a majority of real world analytic jobs process less than

100 GB of input [31]. This can be accommodated by an in-memory solution on

a single high-end server. They come with an abundance of CPU power using tens

of cores [130, 113]. Query parallelization is one of the ways to utilize multi-cores.

This calls for a renewed look at the traditional query parallelization techniques,

such as the exchange operator based parallelization [68], since the state-of-the-art

column store systems such as IBM BLU accelerator [124], HyPer [142] use work

stealing based approach for multi-core scalability.

An important issue is the degree of parallelism (DOP) of a plan which reflects

the maximum number of parallel operator executions. With tens of cores on CPUs,

finding the optimal degree of parallelism of a query plan using heuristic and cost

model based exchange operator approach is difficult [30]. Some of the prominent

problems are a huge multi-core aware plan search space, parallelism aware accu-

rate cost model estimations, and the optimal placement of exchange operators in

the plan. The degree of parallelism problem becomes even more difficult under a

concurrent workload due to competition for shared resources, such as CPU cores,

memory, and memory controllers. This forces many systems to take a conserva-

tive approach towards plan parallelization decisions, as a sub-optimal parallel plan

could often degrade performance. Often a serial plan is preferred as long as it

ensures a robust performance [19].

For example, consider Figure 5.1, which shows execution of three TPC-H heuris-

tically parallelized queries for different DOP under a heavy concurrent CPU bound

workload, which ensures 0% CPU core idleness (Scale factor 10 on 256 GB RAM

with 32 hyper-threaded cores). The queries show varying performance under dif-

ferent DOP. The traditional plan generation approaches based on heuristic and cost

model [61] fall short, as the plans do not reflect run-time resource variations, mak-

ing them sub-optimal under a concurrent workload.

We introduce adaptive parallelization, a new mechanism to generate range par-



5.2. CONTRIBUTIONS 77

titioned parallel plans using query execution feedback, while taking into account

the run-time resource contention. Adaptive parallelization generates a better plan

(P1) from an old plan (P0) in a greedy manner, by parallelizing the most expen-

sive operator from P0, under repeated query invocations. The inspiration is de-

rived from the observation that in real world systems the same query templates get

reused multiple times only changing some parameters. Starting with a serial plan,

each successive query invocation results in a new parallel plan, until a near min-

imal execution time parallel plan is detected, which ensures a near optimal DOP.

Adaptive parallelization under concurrent workload reflects resource contention,

making adaptive parallelized plans resource contention aware [12]. The success of

adaptive parallelization depends on its ability to converge quickly, while ensuring

a near minimal execution parallel plan.

Adaptive parallelization also allows to analyze the relation between DOP and

multi-core utilization. Multi-core utilization represents the fraction of actual CPU

cores used versus the available cores during query processing. Maximum multi-

core utilization however need not improve performance, as it might lead to mem-

ory bandwidth pressure due to parallel operator executions [107]. Hence, finding

the right balance between the DOP and multi-core utilization is important. Since

adaptive parallelization generates new parallel plans incrementally, it enables us to

analyze the relation between DOP and multi-core utilization. Adaptive parallelized

plans have minimal multi-core utilization and a near optimal degree of parallelism,

which helps in achieving better response time during concurrent workloads.

5.2 Contributions

Both heuristic based parallelization and cost model based parallelization do not

generate an optimal parallel plan due to their inability to identify the correct de-

gree of parallelization. Adaptively parallelized plans overcome this limitation. We

summarize our main contributions as follows.

• We introduce adaptive parallelization, a new execution feedback based par-

allel plan generation technique, that ensures a near optimal degree of paral-

lelization. We show that near optimal degree of parallelization is not always

equal to the number of CPU cores, however, could vary between one and the

total number of CPU cores.

• We introduce an adaptive parallelization convergence algorithm for different

scenarios, that finds a good plan in minimal convergence runs.

• We analyze the parameters affecting the speedup of the core relational alge-

bra operators. We focus on the select and the join operator.

• A near optimal degree of parallelization allows adaptive parallelized plans to

show up to five times response time improvement compared to heuristically

parallelized plans.
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5.2.1 Outline

The Chapter is structured as follows. In Section 5.3 we describe the architecture of

adaptive parallelization. We also provide parallelization heuristics for operators and

illustrate the dynamic partitioning scheme and discuss related problems. Section

5.4 describes the convergence algorithm to find the near minimal execution parallel

plan along with various convergence scenarios. In Section 5.5 we provide a detailed

experimental evaluation. Related work is described in Section 5.6. We conclude

citing the major lessons learned in Section 5.7.

5.3 Architecture

Adaptive parallelization can be used by any columnar database system as long as

its plan representation allows identification of individual expensive operators.

5.3.1 Run-time environment

It consists of a scheduler, an interpreter, and a profiler. The scheduler uses a data-

flow graph based scheduling policy, where an operator is scheduled for execution

once all its input sources are available. While an interpreter per CPU core executes

the scheduled operators, the profiler gathers performance data on an executed oper-

ator basis. The profiling overhead is minimal due to vectorized nature of execution.

The profiled data consists of operator’s execution time, memory claims, and thread

affiliation id. Cost model based plan generation approaches often suffer from in-

correct cardinality estimates. We use a heuristic plan generation approach where

parallelization decisions are based on execution time feedback, without a need for

operator’s cardinality statistics.

Figure 5.2: Adaptive parallelization work-flow.
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The execution time is a good metric for parallelization decisions as it reflects

the system state such as the memory bandwidth pressure and the processor usage.

Though the presence of system noise might affect execution time, such disturbances

level out during adaptation.

5.3.2 Infrastructure components

The Adaptive Parallelization (AP) infrastructure is implemented using the follow-

ing components a) operator stubs to morph a plan based on past behavior, b) the

plan administration policies to choose a suitable plan from the plan history, and c)

the AP convergence algorithm, which we describe in Section 5.4.

5.3.3 Work-flow

The adaptive parallelization work-flow is summarized in Figure 5.2. The first phase

is similar to most systems [82] where an optimal serial plan (Figure 5.3 Plan 1) is

generated. Our approach differs in the second phase where the the query is cached,

plan is fed to the framework, executed, and the profiling information such as the

query execution time, the operator execution time, the number of invocations, etc.

are stored. On the next query invocation a new parallel plan (Figure 5.3 Plan 2) is

derived from the immediate old plan (Plan 1) by parallelizing the most expensive

operator (Select on input A). The AP process iterates by invoking the same query

again and generating parallel plans in an incremental manner by parallelizing the

most expensive operators in successive steps. The number of iterations to find

the minimal execution time parallel plan is controlled by a convergence algorithm

described in Section 5.4.

5.3.4 Why a feedback based approach?

Like parallel databases, multi-core CPUs make the parallel plan search difficult

[101]. The main problem is finding the optimal number of partitions per operator

for an optimal input serial plan. Finding an optimal input serial plan is out of the

scope of this paper. During parallelization when an operator’s data is partitioned,

there are combinatorial possible choices for the partition size. For example, in the

worst case, each operator’s data can be partitioned in a single tuple, such that the

total number of operators equal the number of tuples. In the best case a single

operator could work on the entire non-partitioned input. The possible partition

size choices for different operators represent multiple parallel plans with different

execution times, making this a combinatorial plan search problem. The plan search

space exploration is usually done using a combination of both the heuristic and

the cost model based approach. It allows to prune the search space for an efficient

search. Overall, finding an optimal multi-core aware parallel plan using traditional

approaches is difficult. In comparison the feedback based approach we propose is

relatively easy, as the assumption is the input serial plan we start with is an optimal

plan. Since the approach explores the search space in a guided way by parallelizing

only the most expensive operator, we avoid a large space of uninterested plans.
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5.3.5 Plan mutation

We refer to the process described in the work-flow as plan mutation. Plan mu-

tation can be guided by different policies. In this paper we use parallelization of

the expensive operator in a plan as the guiding principle. An operator is consid-

ered expensive if its execution time is the highest amongst all operators. Based

on the complexity, we categorize mutation in three types as Basic, Medium, and

Advanced.

A1 A2A

Serial Plan Parallel Plan

Figure 5.3: Basic mutation select operator.

Figure 5.4: Basic mutation join operator.

Basic mutation

Basic mutation involves parallelization of an expensive operator by introducing two

new operators of the same type, called expensive operator’s cloned operators. The

cloned operators work on the expensive operator’s partitioned data. Partitioning is

cheap when it involves no data copy, but introducing range partitioned sliced view

of the columnar data. (Value / hash based partitioning needs the presence of a par-

tition operator, about which we discuss in Section 5.6) An exchange union operator
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(either a newly introduced or an existing one) combines the result of the cloned op-

erators. In Figure 5.3 we see one such example for select operator parallelization.

The two most popular algorithms for the join operator are the hash join and the

sort merge join. We analyze the hash join implementation as it suits most workloads

due to the omnipresence of non-sorted data. We consider adaptive parallelization

of the join operator plan (Figure 5.4 Plan 1) when only the larger (outer) input

is split into equi-range partitions on consecutive runs. Figure 5.4 Plan 2 shows

the parallelized plan with the two new join cloned operators. An exchange union

operator combines the output of the cloned operators.

Figure 5.5: Medium mutation.

Medium mutation

Medium mutation handles plan parallelization when the exchange union operator

(U) itself turns out to be expensive, as a result of intermediate data copying due to

low selectivity input. This mutation stage arises, when the exchange union operator

is introduced as a result of the basic mutation.

Figure 5.5 shows one such example where Plan 1 with an expensive exchange

union operator is mutated into Plan 2. The mutation process involves propagating

the inputs to the exchange union operator, to its data flow dependent operators. The

data flow dependent operators are cloned to match the exchange union operator’s

input. Finally a newly introduced exchange union operator combines the result of

the cloned operator’s output.

Advanced mutation

Advanced mutation involves parallelization of operators such as group-by and sort,

that do not exhibit the filtering property (selectivity = 0).

Figure 5.6 shows parallelization of a group-by operator with the advanced mu-

tation. The expensive operator (group-by) is parallelized by introducing two cloned

operators on its equi-range partitioned data. Next the aggregation operators such
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Figure 5.6: Advanced mutation.

as sum and average are parallelized by introducing two aggregation cloned opera-

tors. The cloned operators (group-by) result is propagated to the aggregation cloned

operators (sum). Finally, an exchange union operator combines the parallelized ag-

gregation operators result. Since the aggregation cloned operators always show

very high filtering property, the exchange union operator combining their result is

cheap.

Summary: A relational operator gets parallelized in two cases. In the first case, the

operator itself might be expensive and gets parallelized using either the basic or the

advanced mutation. In the second case, operator parallelization occurs as a result of

using the medium mutation, where the operator is in the data flow dependent path

of the expensive exchange union operator. In both cases identifying and resolving

the parallelizable operator’s output propagation dependency across the entire plan

is an essential step.

The three mutation schemes we described cover all possible mutations as an

operator could either get parallelized due to its own expensiveness or as a result of

its presence in the data flow path of another parallelizable operator.

5.3.6 Making plans simpler to mutate

Most columnar systems [19, 34, 42, 99] use a simple representation of plan with

operators represented using physical algebra. The operators use standardized in-

terfaces for individual columnar data and related argument passing. Column store

specific functionality such as operations on multiple columns and tuple reconstruc-

tion are mostly hidden away as the internal logic in the execution engine frame-

work. Some column stores like the open-source system MonetDB, however use an

abstract language to represent plans [40], where column store specific functional-

ity such as the tuple reconstruction and other columnar operations is exposed in the

plan representation itself. Use of operators with different semantics and specialized

operators such as the tuple reconstruction operators is common. Figure 5.7 shows

one such plan with complex data flow dependencies.
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function user.s1_14(A0,A1,A2,A3,A4,A5,A6,A7);

    X_43 := calc.*(A0,X_42);

    X_170 := batstr.like(X_166,A1);     X_171 := batstr.like(X_167,A1);    X_172 := batstr.like(X_168,A1);     X_173 := batstr.like(X_169,A1);

    X_30 := calc.lng(A2,15,2);

    X_34 := calc.lng(A3,19,4);

    X_40 := calc.lng(A4,15,2);

    X_110 := algebra.uselect(X_93,A5,X_23,true,false);     X_111 := algebra.uselect(X_95,A5,X_23,true,false);    X_112 := algebra.uselect(X_96,A5,X_23,true,false);     X_113 := algebra.uselect(X_97,A5,X_23,true,false);

    X_23 := mtime.addmonths(A6,A7);

    sql.exportValue(1,".","promo_revenue","decimal",19,2,8,X_43,"");

    X_174 := batcalc.isnil(X_170);

    X_178 := batcalc.ifthenelse(X_174,false:bit,X_170);

    X_175 := batcalc.isnil(X_171);

    X_179 := batcalc.ifthenelse(X_175,false:bit,X_171);

    X_176 := batcalc.isnil(X_172);

    X_180 := batcalc.ifthenelse(X_176,false:bit,X_172);

    X_177 := batcalc.isnil(X_173);

    X_181 := batcalc.ifthenelse(X_177,false:bit,X_173);

    X_208 := batcalc.-(X_30,X_204);     X_211 := batcalc.-(X_30,X_205);    X_213 := batcalc.-(X_30,X_206);     X_215 := batcalc.-(X_30,X_207);

    X_220 := batcalc.ifthenelse(X_178,X_216,X_34);     X_221 := batcalc.ifthenelse(X_179,X_217,X_34);    X_222 := batcalc.ifthenelse(X_180,X_218,X_34);     X_223 := batcalc.ifthenelse(X_181,X_219,X_34);

    X_235 := batcalc.-(X_40,X_204,false,true);     X_236 := batcalc.-(X_40,X_205,false,true);    X_237 := batcalc.-(X_40,X_206,false,true);     X_238 := batcalc.-(X_40,X_207,false,true);

    X_114 := algebra.markT(X_110,4,0);     X_120 := algebra.markT(X_111,4,1);    X_124 := algebra.markT(X_112,4,2);     X_128 := algebra.markT(X_113,4,3);

    X_43 := nil:lng;

barrier X_268 := language.dataflow();

exit X_268;

    X_10 := sql.mvc();

    X_93:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,0,4);

    X_79:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,0,4);

    X_16:bat[:oid,:int]  := sql.bind(X_10,"sys","part","p_partkey",0);

    X_13:bat[:oid,:str]  := sql.bind(X_10,"sys","part","p_type",0);

    X_98:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,0,4);

    X_103:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,0,4);

    X_95:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,1,4);

    X_84:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,1,4);

    X_100:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,1,4);

    X_105:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,1,4);

    X_96:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,2,4);

    X_88:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,2,4);

    X_101:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,2,4);

    X_106:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,2,4);

    X_97:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,3,4);

    X_91:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,3,4);

    X_102:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,3,4);

    X_107:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,3,4);

    X_136 := algebra.leftjoin(X_132,X_79);

    X_18 := bat.mirror(X_16);

    X_166 := algebra.leftjoin(X_161,X_13);     X_167 := algebra.leftjoin(X_162,X_13);    X_168 := algebra.leftjoin(X_163,X_13);     X_169 := algebra.leftjoin(X_164,X_13);

    X_200:bat[:oid,:lng]  := algebra.leftjoin(X_260,X_98);

    X_204:bat[:oid,:lng]  := algebra.leftjoin(X_260,X_103);

    X_137 := algebra.leftjoin(X_133,X_84);

    X_201:bat[:oid,:lng]  := algebra.leftjoin(X_261,X_100);    X_205:bat[:oid,:lng]  := algebra.leftjoin(X_261,X_105);

    X_138 := algebra.leftjoin(X_134,X_88);

    X_202:bat[:oid,:lng]  := algebra.leftjoin(X_262,X_101);    X_206:bat[:oid,:lng]  := algebra.leftjoin(X_262,X_106);

    X_139 := algebra.leftjoin(X_135,X_91);

    X_203:bat[:oid,:lng]  := algebra.leftjoin(X_263,X_102);    X_207:bat[:oid,:lng]  := algebra.leftjoin(X_263,X_107);

    X_132 := bat.reverse(X_114);

    X_260 := algebra.leftjoin(X_196,X_132);

    X_140 := algebra.join(X_136,X_19);

    X_145 := bat.reverse(X_140);     X_186 := algebra.markT(X_140,4,0);

    X_19 := bat.reverse(X_18);

    X_141 := algebra.join(X_137,X_19);    X_143 := algebra.join(X_138,X_19);     X_144 := algebra.join(X_139,X_19);

    X_146 := bat.reverse(X_141);     X_189 := algebra.markT(X_141,4,1);    X_147 := bat.reverse(X_143);     X_191 := algebra.markT(X_143,4,2);     X_148 := bat.reverse(X_144);     X_193 := algebra.markT(X_144,4,3);

    X_149 := algebra.markT(X_145,4,0);     X_196 := bat.reverse(X_186);

    X_161 := bat.reverse(X_149);

    X_225 := algebra.selectNotNil(X_220);

    X_216 := batcalc.*(X_200,X_208,false,true);     X_239 := batcalc.*(X_200,X_235,true,true);

    X_243 := algebra.selectNotNil(X_239);

    X_217 := batcalc.*(X_201,X_211,false,true);    X_218 := batcalc.*(X_202,X_213,false,true);     X_219 := batcalc.*(X_203,X_215,false,true);     X_240 := batcalc.*(X_201,X_236,true,true);    X_241 := batcalc.*(X_202,X_237,true,true);     X_242 := batcalc.*(X_203,X_238,true,true);

    X_252 := aggr.sum(X_243);

    X_226 := algebra.selectNotNil(X_221);    X_227 := algebra.selectNotNil(X_222);     X_228 := algebra.selectNotNil(X_223);

    X_230 := aggr.sum(X_225);

    X_229 := mat.pack(X_230,X_231,X_232,X_233);

    X_234 := algebra.selectNotNil(X_229);

    X_133 := bat.reverse(X_120);

    X_261 := algebra.leftjoin(X_197,X_133);

    X_154 := algebra.markT(X_146,4,1);     X_197 := bat.reverse(X_189);

    X_162 := bat.reverse(X_154);

    X_246 := algebra.selectNotNil(X_240);

    X_253 := aggr.sum(X_246);

    X_231 := aggr.sum(X_226);

    X_134 := bat.reverse(X_124);

    X_262 := algebra.leftjoin(X_198,X_134);

    X_157 := algebra.markT(X_147,4,2);     X_198 := bat.reverse(X_191);

    X_163 := bat.reverse(X_157);

    X_248 := algebra.selectNotNil(X_241);

    X_254 := aggr.sum(X_248);

    X_232 := aggr.sum(X_227);

    X_135 := bat.reverse(X_128);

    X_263 := algebra.leftjoin(X_199,X_135);

    X_159 := algebra.markT(X_148,4,3);     X_199 := bat.reverse(X_193);

    X_164 := bat.reverse(X_159);

    X_250 := algebra.selectNotNil(X_242);

    X_255 := aggr.sum(X_250);

    X_233 := aggr.sum(X_228);

    X_37:lng  := aggr.sum(X_234);

    X_38 := calc.lng(4,X_37,19,8);

    X_42 := calc./(X_38,X_41);

    X_251 := mat.pack(X_252,X_253,X_254,X_255);

    X_256 := algebra.selectNotNil(X_251);

    X_41:lng  := aggr.sum(X_256);

end s1_14;

Figure 5.7: Complex operator dependencies in TPC-H Q14 parallel plan. Rect-

angles represent operators, and edges between them represent the dependen-

cies. The graph gives a high level perspective of the plan’s complexity, ab-

stracting individual operator details. [63] shows graphs where operators are

visible.

Plan mutations using either the medium or advanced mutation involves resolv-

ing parallelized operator’s propagation dependencies. Hence, care has to be taken

to resolve parallelized operator’s propagation dependencies. To make plan mu-

tations simpler, modification of some of the operator’s semantic representation is

needed. We describe the related aspects in the rest of the section.

Adaptive parallelization and operator semantics

Operators can have different semantics depending on primitives being used. Adap-

tive parallelization could further add more information such as as the partition un-

der use, total number of partitions, etc. Plan mutations thus generate combination

of different operator semantics.

For example, consider the case of the filter operator. A simple optimization

involves generation of a bit-vector of the filtered tuples, to be fed to another de-

pendent filter operator. Hence, the filter operator can be represented using two

primitives depending on the number and the type of inputs. Depending on the data

flow dependency, a suitable filter operator gets parallelized during plan mutations.

Adaptive parallelization uses different parallelization rules catered to different

operator semantics. Since any operator can be expensive, resulting in its paral-

lelization, the challenge for different mutation schemes lies in how well they are

able to resolve the data flow dependencies across different operator semantics.
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Figure 5.8: Dynamic partitioning of a column.

Plan rewriting

One of the techniques to ease the mutation process is to modify the original input

serial plan from the SQL compiler using a query re-writer. The re-writer substitutes

original operators (for example, aggregation operators and tuple reconstruction op-

erators) with new adaptively parallelization aware operators. These new operators

use modified implementation of operators such as group-by, aggregation operators

(sum, avg), and sort, by keeping their original semantics, but with changed argu-

ments ordering, to resolve possible operator propagation dependencies. For sys-

tems with simple plan representations the operator propagation dependencies due

to multiple columns can be handled in the execution engine framework logic.

5.3.7 Adaptive parallelization aware partitioning

In a column store the operators operate on an array or vector representation of the

data. For readability, we consider the array representation with range partition-

ing. It involves creating read only slices on the base or the intermediate column.

Creating slices involves marking the boundary ranges for the base or intermediate

columnar data and is cheap, as there is no data copying involved. This technique

can be also used during vectorized execution where the vectors are derived from the

partitioned range of the base and intermediate input. We briefly describe a value

based partitioning approach use case in Section 5.6.

Dynamic partitioning

Adaptive parallelization generates dynamically sized partitions on the base or in-

termediate column, as any operator can be parallelized during successive iterations.

In contrast a heuristically parallelized plan often uses a fixed number of partitions

based on the available CPU cores. To explain dynamic partitioning of a column

using a select operator, we use Figure 5.8.

When the select operator on the column in 5.8A turns expensive, the column is

sliced in two partitions represented by 5.8B. When the select operator on partition 1

in 5.8B turns expensive, two new partitions are introduced, represented by 2nd and

3rd in 5.8C. Now there are three select operators, one on 0th partition of 5.8B and
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two on 2nd and 3rd partition of 5.8C. When the select operator on 2nd partition

in 5.8C becomes expensive, it is divided further and two new partitions 4th and

5th in 5.8D are introduced. So now there are total 4 select operators working on

0th partition of 5.8B, 3rd partition of 5.8C and 4th,5th partition of 5.8D. Please

note that the partitions are of different sizes and their boundaries are aligned on

the base column in 5.8A. Maintaining the alignment during dynamic partitioning is

important, as misalignment could lead to problems such as a) repetition of data b)

omission of the data across different operator partitions. Thus, dynamic partitioning

allows the operators to work on different sized partitions of the same column in

parallel.

Figure 5.9: Tuple reconstruction between two columns.

Dynamic partitioning and tuple reconstruction

Tuple reconstruction is a well known problem in column stores [84] and is im-

plemented as join look-up. Column stores use either early or late materialization

strategies for column projection using tuple reconstruction, which involves using

row-ids to fetch values from the column that needs projection. For example, con-

sider the columnar representations in Figure 5.9, which shows head (H) and tail (T)

columns grouped as Left (L) and Right (R). The head column (LH / RH) contains

row-ids, whereas the tail column contains either row-ids (LT) or actual values (RT).

The @ indicates a row-id. When the head column (LH / RH) contains consecutive

row-ids, it is not materialized and used as a virtual column. During tuple recon-

struction, the row-ids in the left tail (LT) are used as an index in (RH) to fetch the

corresponding values from the right tail (RT). For example, row-ids 2, 4, 5, 7 from

LT are probed in the RH, whose corresponding values in RT are 12, 11, 20, and 13.

One important aspect is the effect dynamic partitioning has on the tuple recon-

struction due to possible misalignment between LT and RH. When row-ids from LT

are used as an index to fetch values from RT, the row-ids in LT should be a subset

of row-ids in RH. If not, then a look-up using row-id in LT, for the row-id index in

RH does not exist, resulting in an invalid access.

Since adaptive parallelization generates variable sized partitions, it gives rise to

different alignment scenarios as shown in Figure 5.10 (B,C,...F). Consider the mis-

alignment example in Figure 5.9. Here LT start row-id=2, which is greater than
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Figure 5.10: Different alignment scenarios during tuple reconstruction due to

dynamic partitioning.

RH start row-id=1, and LT end row-id=8, which is greater than RH end row-id=7.

Hence, LT’s upper boundary starts after RH’s upper boundary, whereas LT’s lower

boundary extends beyond RH’s lower boundary as represented in Figure 5.10D. In

Figure 5.10 the lengths of columns provide just a logical representation of over and

undershooting of boundaries, and do not represent the actual content. To main-

tain the alignment the lower boundary of LT is adjusted by removing row-id=8, to

match the lower boundary of RH. The correct boundary alignment is represented

by dashed lines in Figure 5.10D. Adaptive parallelization depending on the opera-

tor semantics uses one of the alignment scenarios, to make sure that the partitions

align correctly. Fixed size partitions always lead to correct alignment (See Figure

5.10A), resulting in a valid access.

Another important aspect arises when the output of operators working on the

dynamically partitioned data is packed together. Here the exchange union opera-

tor must maintain the correct ordering to avoid the incorrect results. The correct

ordering is maintained, as the operators whose results are packed follow the muta-

tion sequence order, hence the results being packed together follow the same order.

Adaptive parallelized plans can become very large due to successive partitioning

and operator propagation, which could make partition misalignment related prob-

lems, if any, hard to identify and resolve.

Plan explosion

As adaptive parallelization involves propagating the parallelized operator’s output

on its dependent operators, the plans could quickly grow large. Plan explosion re-

sults as a side effect of the exchange union operator removal during the medium

mutation. For example, when a descendant of the same type of operator stays ex-

pensive during successive invocations, it gets parallelized and a single exchange

union operator combines the output of all such parallelized operators. As a result

the number of input parameters to the exchange union operator can become very

large. Eventually if the exchange union operator itself turns expensive, it is re-

moved using the medium mutation. This leads to a plan explosion, as the medium

mutation propagates inputs of the exchange union operator on its data flow depen-

dent operators. For each operator in the data flow path, new instructions (operators)
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Figure 5.11: Adaptive parallelization convergence algorithm scenarios for join

operator parallelization.

which equals the number of the exchange union operator inputs are added in the

plan. Hence, if the number of input parameters to the exchange union operator is

large, the plans could grow very large.

The growth of large plans is suppressed by not removing the exchange union

operator if its input parameters cross a certain threshold. The threshold in the cur-

rent implementation is 15 parameters, chosen on the basis of empirical observations

from different parallelization cases. Suppressing the exchange union operator re-

moval however stops further plan parallelization, as the exchange union operator

stays the most expensive operator in all further query invocations.

We have described adaptive parallelization aware infrastructure changes so far.

Obtaining a minimal execution parallel plan however depends on how fast the adap-

tive parallelization process converges. In the next section we describe a new algo-

rithm that ensures convergence in different scenarios.

5.4 Algorithm

In this section we introduce the heuristics for the global minimum execution iden-

tification from the set of available plans and the corresponding convergence al-

gorithm. The algorithm is loosely inspired by the hill climbing approach [129].

Figure 5.11 shows different cases of the presence of minima, plateaus, and up-hills

in the execution times, during adaptive parallelized runs of a join operator plan. We

refer to the minimal execution time amongst them as the global minimum execu-

tion (GME). Like most systems that generate parallel plans, our base assumption

is an optimal input serial plan. Hence, the focus of parallelization is to identify

the optimal number of partitions for operator’s data in the input plan. Problems

such as sub-optimal parallel plans due to poor join ordering which might require

backtracking are not considered, as the input is an optimal serial plan.

The convergence algorithm should be able to find the GME in all cases of min-

ima, plateaus, and up-hills in the execution time, and converge in minimal number
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of runs. Next we formally define the GME first, the convergence algorithm next,

and then illustrate different convergence scenarios.

5.4.1 Global minimum execution (GME)

As the runs progress, the GME is the minimal execution time amongst so far ob-

served runs, and keeps on changing, during an active adaptive parallelization in-

stance.

We denote the current run’s execution time as CurExec. The execution time

improvement (CurExecImprv) at the current run is calculated with respect to 0th

run’s (SerialExec) execution time.

CurExecImprv = |(SerialExec− CurExec)|/SerialExec.

To calculate the first GME improvement, we initialize GME to the first run’s exe-

cution time after the serial execution (0th run).

GMEimprv = |(SerialExec−GME)|/SerialExec.

As the runs progress, new GME needs to be identified. A new run’s execution time

becomes the new GME, if the run’s execution time improvement is better than the

current GME’s execution time improvement by a certain threshold.

GME = CurExec
{if(CurExecImprv −GMEimprv)>threshold}.

As the runs progress, the new execution times can be slightly lower than the ex-

isting GME, hence, selecting the correct threshold is important in discarding such

new execution times, which otherwise can become the new GME. For example,

consider a hypothetical adaptive parallelization instance. Let CurExecImprv at the

8th run be 96%, GMEimprv at the 3rd run = 90%, and threshold = 5%, then (CurEx-

ecImprv - GMEimprv) >5. Hence, the Current run Execution time at the 8th run

is considered the new Global Minimum Execution (GME). Correct tuning of the

threshold parameter is thus crucial as it helps to discard multiple possible GMEs

and to chose the optimal execution time amongst them, as the new GME.

Finding GME can be also difficult due to the presence of many local minima,

about which we illustrate next.

The global minimum detection problem:

The problem can be formally stated as finding the global minimum execution from

many local minima that occur as the runs progress. When the execution time of a

run is more than its previous run, a local minimum results at the previous run. For

example, a local minimum occurs at the 4th run in Figure 5.11. The convergence

algorithm has to overcome many such local minima during its exploration of the

global minimum. We use the rate of improvement in the execution time of the runs

as a heuristic, to avoid the local minimas.

The execution time of consecutive runs could improve or worsen depending on

the run-time conditions (execution skew, operating system interference), giving rise

to positive or negative rate of execution time improvement (ROI). The ROI of a run
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is defined with respect to its previous run’s execution time (PrevExec). We define

ROI as follows.

ROI = (PrevExec− CurExec)/MAX(CurExec, PrevExec).

In Section 5.4.2 while describing the core convergence algorithm, we illustrate

how to use ROI to avoid local minimas. Finding GME is difficult, however, another

equally difficulty task is to find it in the minimal convergence runs, about which we

illustrate next.

The minimal run convergence problem:

The problem can be formally stated as finding GME in a minimal number of runs,

during consecutive query invocations. Too few runs have a risk of non-occurrence

of the global minimum and the algorithm converging on a local minimum. Too

many runs might ensure a global minimum at the cost of a slow convergence.

Hence, finding the right balance between the minimum convergence runs and the

GME is of prime importance for the convergence algorithm.

5.4.2 Convergence algorithm

We describe the convergence algorithm using the context described so far in Section

3. The aim is to find the GME in minimal number of convergence runs. We model

the number of convergence runs (Convergence Runs) using the parameters credit

and debit. A credit reflects the number of runs accumulated at each run due to a

positive ROI. A debit reflects the number of runs accumulated at each run due to a

negative ROI.

Credit = Credit+ (ROI ∗Number Of Cores).
Debit = Debit+ (|(ROI)| ∗Number Of Cores).

The value of (credit - debit) at each run reflects the balance (Convergence Runs)

available for the system to converge. Hence, the next run is allowed only if the

balance is positive i.e. ((credit - debit) >0).

Convergence Runs = Credit−Debit = f(ROI).

The algorithm starts with the value of credit = 1 and debit = 0. When parallelism

reduces the execution time, the ROI of the first run is positive and very high (Fig-

ure 5.11 - The algorithm starts with the 0th run). With an increase in runs, the ROI

decreases. During the initial few runs the algorithm should ensure availability of

sufficient runs as a balance, to avoid premature convergence. During the later runs,

as the ROI slows down, the algorithm should ensure as few balance runs as possible,

to ensure fast convergence. From the formula above, as both credit and debit are

dependent on ROI, they are a function of ROI, which makes the Convergence Runs

also a function of ROI. The algorithm convergence is hence guaranteed, since the

heuristic Credit - Debit >0, which decides the available Convergence Runs be-

comes invalid eventually. Next we describe various convergence scenarios and how

the heuristic Credit - Debit >0 becomes invalid, which guarantees the algorithm’s

convergence.
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5.4.3 Convergence scenarios

We identify three scenarios during which the algorithm should ensure the conver-

gence, 1. No premature convergence in a local minimum before identifying a global

minimum. 2. No extended convergence, and 3. The convergence in a noisy envi-

ronment. We expect these scenarios to cover the entire spectrum as the aim is

to find the global minimum, and the possible problems for the convergence algo-

rithms can be its early termination, late termination, and termination during noisy

environment. We describe these scenarios next.

No premature convergence

When parallelism improves the execution time, the first run always has a very high

ROI (Figure 5.11 - The algorithm starts with the 0th run). Hence, the credit accu-

mulated after the first run is very high with an upper limit of (Number Of Cores

+ 1). This ensures that there are sufficient runs available as a balance in the sys-

tem during the initial stages to overcome plateaus and up-hills. Each run after the

first run contributes more credit, ensuring more runs. This is also analogous to

the concept of accumulation of the potential energy by a body when it falls from

great heights. The greater the height, the higher the potential energy. The energy

allows the body to keep moving in plateaus and climb high hills, as long as there is

a balance energy.

No extended convergence

Accumulation of high credit in the few initial runs on a stable system could result in

a state where the algorithm never converges. In a stable system the execution time

variations are minimal, leading to fewer debits being made. In such a system, the

proportion of accumulated credit will always be much higher than the accumulated

debit after a few initial runs. For example, consider Figure 5.11. After 15 runs

the ROI is minimal, ensuring that no new significant credit or debit is introduced.

However, the accumulated credit till 7 runs is very high, as the ROI till 7 runs is

very high. This situation leads to non-convergence as there are always balance runs

available i.e. (credit - debit<= 0) is never true.

Leaking debit: To ensure the algorithm converges in a finite number of runs we

introduce the concept of leaking debit. In this scheme after a threshold on the

number of runs is crossed, a constant debit gets deducted from the available credit

at each run. It ensures the available credit is drained to 0, so that the algorithm

converges in a finite number of runs. Hence, leaking debit is a function of the

available credit at the threshold run. The threshold run value is calibrated to be

the Number Of Cores on the CPU. It ensures at least those many runs are used to

find the optimal execution time. The Leaking Debit is calculated by dividing the

available credit at the threshold run amongst the possible remaining number of runs

during the global minimum search.

Remaining Runs = Extra Runs ∗Number Of Cores.

Leaking Debit = Credit/Remaining Runs.
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Based on plan complexity, some queries converge early, while some take longer

after crossing the threshold run reference. To avoid premature convergence, the

system specific tunable parameter Extra Runs is used, which ensures that the re-

maining number of runs to search the global minimum are sufficient. Note that

Remaining Runs is just an approximate bound. Plan representations vary consid-

erably across systems. Hence, based on empirical observations from different par-

allelization cases, and multiple experimental runs (five), for the current platform,

Extra Runs=eight is considered a safe boundary value to avoid the premature con-

vergence. Higher values result in an extended convergence.

Convergence in a noisy environment

Depending on the stability of the run-time environment (operating system process

interference, memory flushes, etc.) the execution time of an individual run could

vary considerably. The execution time of some of the runs in a noisy environment is

often greater than the serial plan execution time. One such peak is visible in Figure

5.11 at the 30th run. Most peak executions are followed and preceded by a normal

execution. If care is not taken such peaks will make the algorithm halt immediately

as the debit due to peak ascent will be higher than the accumulated credit. Hence,

the algorithm should converge gracefully in such a noisy environment.

Our solution is to mark all such unique peaks as outliers, and ignore their pres-

ence. The algorithm incorporates this by allowing the immediate next run to exe-

cute. This ensures the balance runs stay unaffected, as the debit made during the

peak ascent is compensated by an equivalent credit during the peak descent, dur-

ing the next run. Concurrent workload could also affect the convergence, however,

tuning the Extra Runs parameter to find the leaking debit should take care of it.

Global minimum plan identification proof

The convergence algorithm should ensure a global minimum plan while converg-

ing in a reasonable number of runs. The lower bound on the convergence runs

is Number Of Cores + 1, while the upper bound approximates between (Num-

ber Of Cores + 1 + Remaining Runs) and extra runs added to the previous upper

bound, if any, due to a large credit accumulation. The convergence runs are directly

influenced by the Leaking Debit, and credit / debit accumulation.

The global minimum plan’s existence beyond the upper bound of the conver-

gence runs is not possible. We provide a proof by contradiction. If such a plan

exists then its execution should be significantly better. In that case the correspond-

ing expensive operator should have been identified much earlier, even before the

first upper bound on the convergence runs is reached. If multiple such plans exists,

then that indicates improved execution with each run. Such improvement should

then add extra runs (more credit) to the first upper bound on the convergence runs,

which would prolong the global minimum search further, to find a more optimal

plan. Hence, no matter the situation, a near global minimum plan is identified in

the available convergence runs. In all the convergence scenarios when the heuris-

tic Credit - Debit >0, that decides available Convergence Runs, turns invalid, the

algorithm converges.
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CPU Sockets / Threads L1 / L2 Shared L3 Mem OS

Xeon E5-2650@ 2.0GHz 2 / 32 32 / 256KB 20MB 256GB Fedora 20

Xeon E5-4657Lv2@ 2.4GHz 4 / 96 32 /256KB 30MB 1TB Fedora 20

5.5 Experiments

Adaptive parallelization is implemented in MonetDB, being the only full fledged

open-source columnar system, with memory mapped columnar representation for

the base and the intermediate data. The operators are represented in an intermediate

language called MonetDB Assembly Language (MAL) [40], with their implemen-

tation in C. The operators have variable number of arguments depending on their

semantics, and form complex data flow patterns in MAL plans, as shown in Figure

5.7.

Table 5.1 summarizes our experimental hardware platform, which consists of

two types of machines, with two and four socket CPUs each. All experiments, un-

less mentioned, use in-memory data (without disk IO) on the two socket machine.

Heuristic parallelization unless mentioned uses 32 threads. Each graph plots an

average of four runs of the same experiment. We use the four socket machine to

test one of the workload’s scalability from NUMA perspective.

The experimental section is divided into two broad categories. In the first we an-

alyze how parallelization gets affected by various operator level parameters. In the

second we analyze it at the SQL query level. We use a mix of micro-benchmarks,

simple, and complex SQL queries to gain parallelization behavior insights.

We use TPC-H and TPC-DS workload for SQL query level performance com-

parison. We observe the TPC-H isolated execution of both the adaptive and the

heuristic parallelization shows similar performance. However, adaptive plans are

better as they use fewer number of cores, which helps during concurrent workload.

Adaptive plans show better performance than the heuristic plans for the TPC-DS

workload isolated execution, due to optimal number of partitions, and the presence

of the skewed data. In the rest of the section we describe the experimental details.

5.5.1 Operator level analysis

Since adaptive parallelization uses expensive operator parallelization as a heuristic,

analysis of an operator’s behavior gives insights into parallelization issues such as

the execution skew. The execution skew occurs when at least one of the parallelized

operators takes longer to execute than the rest. An operator’s execution time varies

on the basis of type of computation, amount of data being read / written, type of

data access (serial / random), and memory hierarchy of the access (cache / main

memory / disk IO). We analyze some of the factors that influence these parameters

next.

Data skew

This experiment highlights the role of dynamic sized partitions to avoid execu-

tion skew during parallelized execution, when the data distribution is non-uniform
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Figure 5.12: Parallelized select operator execution on skewed data using static

and dynamic (adaptive) sized partitioning. The second bar indicates a work

stealing based approach.

(skewed). The execution skew occurs when at least one of the parallelized operators

takes longer to execute than the rest.

Static partitioning (equi-range partitioning) of skewed data leads to execution

skew as some partitions have more matches than the rest. Adaptive parallelization

performs well in skewed data scenario as the operator with the skewed partition

turns expensive, and gets parallelized until expensiveness balances out.

Figure 5.12 shows the execution time when parallel select operators work on

statically or dynamically (adaptively) partitioned skewed column of type long (8

bytes). The number of tuples in the input column are 1000 million (M) (size =

8GB). Figure 5.13 shows the column’s data distribution with 500 million random

tuples in the first half. The second half contains skewed data with 5 sequential

clusters of 100 million identical tuples. We vary the select operator’s condition to

generate the execution skew.

Figure 5.13: Data distribution for a skewed column.

Figure 5.12 shows execution with 8 threads on 8 dynamically sized partitions

(black) is up to 60% better than the execution with 8 threads on 8 static partitions

(khaki). One may argue that the work stealing approach [38] could solve the prob-

lem of execution skew due to the static partitions. We analyze it by creating a large

number of smaller partitions (128) operated upon by 8 threads. Large number of

smaller partitions allows those threads that finish work early to operate on remain-

ing partitions, while threads on skewed partitions stay busy. Identifying the optimal

combination of static partitions and threads is however non trivial, as in some cases

more partitions might lead to plan blow-up resulting in scheduling overheads. In

contrast we observe that the dynamic sized (adaptive) partitioning approach with

8 threads and just 8 partitions fares competitively with static 8 threads, 128 parti-

tioned approach.
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Figure 5.14: Effect of variations of data size (20GB,10GB) and selectivity on

the speed-up of the parallelized Select operator plan.

Summary: Skew handling is a natural property of adaptive parallelization. It is a

result of dynamically sized range partition creation, and a side effect of the expen-

sive operator parallelization heuristic.

Selectivity, Input size and Exchange union operation

In this experiment we analyze the effect of selectivity, input size and the exchange

union operation on the speed-up of select and join operators. Speed-up is defined

as the ratio of serial to parallel plan execution time. The experiment also allows

analysis of increasing the number of threads from 1 to 32 and its effect on the

speed-up. This is possible since with each iteration one more partition gets added

and is available for one more execution thread (from a pool of 32 threads) to operate

in parallel.

Exchange union operation

Many systems use the exchange operator based parallelism [68], where one of the

concerns is to identify the correct placement of the exchange operator in a plan, to

minimize its overhead [30]. Most systems use a cost model based approach for this

decision. A good example is [142], where Vectorwise is shown to have a limited

speed-up due to the exchange operator overheads.

As the exchange union operator combines parallelized operator’s result, its ex-

pensiveness varies depending on the size of the data being packed. Low selectivity

reflects more matching data, hence more data to be packed. The packing overhead

is minimized by pushing the exchange union operator as high as possible. It ensures

the final data to be packed is relatively small, as it gets filtered by the intermediate

operators.

Adaptive parallelization enables to analyze the exchange union operator’s place-

ment with successive iterations of parallelized plans, as it directly affects the speed-

up. In the next two experiments we observe that the AP plan’s speed-up is com-

parable to the speed-up of the heuristically parallelized (HP) plans. The speed-

up gets hindered due to operator dependencies that form critical paths, which can

not be parallelized. The real benefit for AP plans is in its optimal multi-core

utilization due to less partitions, which ensures improved concurrent execution

performance, as we describe in Section 4.2.3
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Figure 5.15: Effect of variations of data size (100GB) and selectivity on the

speed-up of the parallelized Select operator plan.

Select operator adaptive parallelization

We use query 6 from the TPC-H benchmark to analyze the speed-up of the select

operator (See Table 5.2). Query 6 is a simple query with only selection predicates

on the Lineitem table. We vary the selectivity by varying the parameter l quantity

from the selection predicate. Figures 5.14 and 5.15 plot the execution time of adap-

tively parallelized plans on the Y axis with respect to iterations (X axis), when

selectivity is varied from 0% (all output) to 100% (no output), and scale factor is

varied from 10 GB to 100 GB.

From Table 5.2 as the selectivity increases the speed-up decreases. During

low selectivity a single select operator in a serial plan writes a large number of

output tuples, as compared to its parallel plan counterparts. This results in the large

speed-up as serial execution time is much higher, whereas parallel execution time

is much lower. During highest selectivity (100%) since there is no output the serial

execution is less expensive as compared to 0% selectivity serial execution. This

results in lower speed-up. The speed-up increases with a decrease in the input size.

This is a result of lower minimum time during parallel execution, due to less input

data. With increased selectivity the speed-up for AP is less compared to HP. This is

due to the presence of less expensive exchange union operators, which do not get

pushed higher in the plan.

Table 5.2: Select operator plan speed-up (compared to serial execution) using

adaptive and heuristic parallelization.

AP = Adaptive, HP = Heuristic parallelization

Selectivity

0% 50% 100%

Size (GB) AP HP AP HP AP HP

100 10 10 8.5 10 7 9

20 10.5 12 8.5 12 8 12

10 16 11 14.5 11 12 9.5
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Join operator plan. Outer input partitioned and inner input used to build hash

table.

Join operator adaptive parallelization

For the join operator (hash) plan parallelization analysis, we partition the outer

input and build up the hash table on the inner input. We use a micro-benchmark

for a fine grained control, where the outer input has 400 M, 250 M, and 80 M (M =

Millions) random tuples of type long (8 bytes), and the inner input has 8 M and 2 M

tuples. The outer inputs stay larger than the inner input of size 16 MB (2 M tuples)

even after 32 partitions (threads on CPU). The 16 MB input fits in the shared L3

cache (20 MB).

Figure 5.16 shows the join operator plan speed-up and Table 5.3 quantifies it.

The speed-up of 16 MB input join is more than the 64 MB input join, as the 16

MB input join’s hash table fits partially in the L3 cache (20 MB), which improves

the probe phase, due to reduced cache thrashing. Speed-up also decreases as the

outer table size decreases, as the serial execution time is directly proportional to

the outer table size. For all sizes the best speed-up is obtained when the number of

partitions are 32, with 32 threads (hyper-threading enabled). Maximum speed-up

observed is around the number of physical cores (16). Both AP and HP show a

similar performance unlike the previous select operator plan analysis case, as the

join plan contains only join and pack operators.

Table 5.3: Join operator plan speed-up (compared to serial execution) using

adaptive and heuristic parallelization.

AP = Adaptive, HP = Heuristic parallelization

Size (MB) 64 16 (Smaller Input)

(Larger Input) AP HP AP HP

3200 15.75 14 18.5 18

2000 15 13.5 17.75 17.75

640 13.75 13 17 15

Summary

Adaptive parallelization works for both the select and the join operator and these

operators scale linearly with the number of physical cores. Input size, selectivity,
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and properties such as cache consciousness affects the speed-up.

Operating system noise

This experiment highlights the influence of the operating system’s interference on

an operator’s cost. In an ideal and stable environment each operator working on

an equi-range partition with an uniform data distribution should exhibit similar

execution cost.

However, when the operating system noise (background process scheduling, mem-

ory flushes, IO, etc.) interferes with the execution of an individual operator, the

execution time increases. This results in the individual operator execution skew,

thereby degrading parallelization performance. The execution time at the 5th run

in Figure 5.11 is more (uphill) than the 4th run, as a consequence of the operating

system noise interference. The 30th run in Figure 5.11 is an outlier and a result

of disk IO due to memory flush. Isolating operating system’s interference is diffi-

cult. Related problems and solutions can be found from the work on multi-tenant

database-as-a-service in [115].

Having considered individual operator level analysis so far, in the next section

we focus on holistic complex SQL query level analysis from execution performance

and convergence perspective, in the context of TPC-H benchmark queries.

5.5.2 SQL query level analysis

Since the TPC-H benchmark is considered the de-facto workload for performance

comparison, in this section we use a subset of queries (see Table 5.4) from TPC-

H (scale factor 10). TPC-H has uniformly distributed data. The adaptively paral-

lelized group-by operator implementation at present supports single attribute group-

by queries. Hence, we modify some queries so that they have a single attribute

group-by representation. Since we use the same set of queries to evaluate multi-

ple parallelization approaches, the comparison is fair. We plot an average of four

executions using the experimental set-up described towards beginning of Section 4.

Table 5.4: TPC-H queries.
Simple Q6 Q14

Complex Q4 Q8 Q9 Q19 Q22

We compare adaptive parallelization (AP) with heuristic parallelization (HP),

the default parallelization technique in MonetDB, under isolated execution setting.

HP uses parameters such as the number of threads, physical memory size, and the

largest table size to identify the number of partitions for the largest table in the serial

plan. A plan re-writer generates a parallel plan from a serial plan by propagating

the partitions to data flow dependent operators. Though both HP and AP start with

the same serial plan, the final parallel plan is different for both techniques as in AP

only the most expensive operator gets parallelized unlike in HP, where all possible

parallelizable operators are parallelized. In Figure 5.17 the first two bars show HP

vs AP performance when queries execute in isolation. All AP queries except Q9

and Q19 show similar performance as HP. Q9 and Q19 show a degraded perfor-

mance due to the presence of some non-parallelizable operators, which prolong the
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Figure 5.17: Heuristic vs adaptive parallelization performance in isolated and

concurrent workload environment for MonetDB and Vectorwise.

query execution. Though the execution performance of adaptive plans is similar

to the heuristic plans, the adaptive plans are better as they use much fewer num-

ber of partitions (See Table 5.5). It helps during concurrent workload execution,

where adaptive plans exhibit better execution performance due to better resource

utilization.

Table 5.5: AP and HP Q14 plan statistics.

AP HP

# Select operators 10 65

# Join operators 16 32

% Multi-core Utilization 35 75

TPC-DS queries

TPC-DS benchmark has 25 tables, out of which 6 tables are relatively large (above

1GB in size), in a scale factor 100 dataset. The benchmark supports 99 query

templates. We use a few modified queries. These queries are a subset of the original

TPC-DS queries and are chosen such that they contain the large tables and a few

smaller dimension tables. Since we compare both the adaptive and the heuristic

parallelization technique with the same queries, the comparison gives a perspective

of their respective performance.

We experiment on both the two socket and the four socket machine (See Table

5.1 for configuration) with 100GB dataset, to get a perspective of the NUMA ef-

fects. Graphs in Figures 5.18a and 5.18b show the comparison. Adaptive plans ex-

hibit a maximum of 5 times better performance compared to heuristic plans, which

can be attributed to correct partitioning by adaptive parallelization compared to

heuristic parallelization and the skewed data distribution. The execution time for

both two and four socket machine shows similar time, which indicates minimal

NUMA effects. As authors in [65] observe, since MonetDB uses a memory mapped

representation for the buffer data, as the number of partitions increase, we expect

them to get assigned to the memory modules of the sockets on which operator exe-

cution gets scheduled. We also observe a limit on the execution improvement, even
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Figure 5.18: Isolated execution performance of TPS-DS queries on a) 2 socket

machine with 2.00 GHz CPU b) 4 socket machine with 2.40 GHz CPU, on

100GB data.

though a higher number of cores are used, which indicates increased parallelism

need not improve performance beyond a threshold.

Concurrent workload execution

This experiment highlights the effectiveness of adaptively parallelized plans com-

pared to heuristically parallelized plans in a concurrent workload setting. Con-

current query executions in batch workload leads to resource contention, which in

turn affects the degree of parallelism of individual queries under execution. Re-

source contention varies with random workload, however for the current set-up we

consider a homogeneous concurrent workload. In Figure 5.19 the 4th and 5th bar

shows HP vs AP execution under a concurrent workload. The workload consists of

random simple and complex queries from the TPC-H benchmark, where 32 clients

fire queries repeatedly. AP Q8 shows 50% improved execution compared to HP

Q8. Simple queries such as Q6 and Q14 show around 90% execution improvement

in AP. HP plans have too many partitions compared to the AP plans as shown in

Table 5.5 AP plans also reflect the resource contention through execution feedback.

Hence, AP plans are more robust and better performing under a concurrent work-

load, compared to statically generated HP plans. In [12] we discuss HP vs AP plans

comparison under different concurrent workload resource contention scenarios in a

detailed manner.

Comparison with Vectorwise

We compare the concurrent workload performance of Vectorwise (version 3.5.1

with histogram build feature enabled to generate optimized plans), a leading an-

alytical columnar database using vectorized execution [42], with adaptive paral-

lelization in MonetDB. Vectorwise uses cost model based exchange operator de-

pendent parallel plans. The resources are allocated based on the number of con-

nected clients and the system load. During a heavy concurrent workload (32 clients

invoking random TPC-H queries repeatedly), the first client’s query gets all the re-

sources, while the queries from the remaining clients get less resources based on

an admission control scheme. Figure 5.17 shows MonetDB adaptive parallelized
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Figure 5.19: Heuristic vs adaptive parallelization performance in isolated and

concurrent workload environment for MonetDB and Vectorwise.

query execution performance is better than the Vectorwise execution performance,

during the concurrent workload. MonetDB does not have explicit resource control

based plan generation scheme, which helps in the current case. We hypothesize

that as workload queries are invoked repeatedly, Vectorwise queries under analysis

execute serially due to lack of resources.
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Figure 5.20: Adaptive parallelization multi-core utilization (35%) during iso-

lated execution of TPC-H Q14.

Multi-core utilization

This experiment highlights that an AP plan is better than a HP plan from the multi-

core utilization perspective. Multi-core utilization represents the fraction of actual

CPU cores used versus the available cores during query processing. AP ensures
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Figure 5.21: Heuristic parallelization multi-core utilization (75%) during iso-

lated execution of TPC-H Q14.

minimal multi-core utilization as each operator is parallelized with a different de-

gree of parallelism unlike HP. Figures 5.20 and 5.21 visualize a portion of AP vs

HP plan execution of TPC-H Q14, in an isolated execution setting. Similar graphs

are described in detail in [64] for further reference. The length of a colored box rep-

resents an operator’s execution interval (In an operator-at-a-time execution model

an operator executes completely.) The black color represents a join, the black color

represents a select, while the brown color represents the exchange union operator.

A white space indicates no execution. The amount of white space in Figure 5.20 is

much more than in Figure 5.21, indicating lower multi-core utilization for AP. In

the HP execution (Figure 5.21) the length of the join operators is much longer than

the corresponding operators in the AP execution (Figure 5.20), which hints at the

memory pressure.

The degree of parallelism per operator thus influences the overall multi-core

utilization. For example, while only ten select operators execute in AP, many more

execute in HP. Since AP shows lower multi-core utilization (35%) during isolated

execution, the spare resources ensure better response time and throughput during

concurrent workload, as we further elaborate in [12].

5.5.3 Convergence algorithm robustness

Adaptive parallelization not only should converge in minimal number of runs, but

also should exhibit robustness. The robustness implies during multiple adaptive

parallelization invocations of a query a) the total number of convergence runs b)

the run at which the global minimum occurs, and c) the global minimum execution



102

CHAPTER 5. ADAPTIVE QUERY PARALLELIZATION IN MULTI-CORE

COLUMN STORES

 0

 40

 80

 120

 160

4 6 8 9 14 19 22

N
u
m

b
e
r 

o
f 
R

u
n
s

TPC-H Queries

1st Invocation
2nd Invocation
3rd Invocation

Figure 5.22: Convergence runs for adaptively parallelized query execution.
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Figure 5.23: Global minimum run for adaptively parallelized query execution.

time should not show much variations. In this experiment we test the robustness of

the convergence algorithm in an isolated execution setting.

Graph 5.22 shows the number of convergence runs to find the optimal execution

time for three invocations (experiments). Except for Q6 and Q22 all other queries

show minimal variations for convergence runs. Q6 is the most simple query in the

given set of queries. It shows the most speed-up amongst all queries, but that also

makes it vulnerable to external factors such as operating system noise interference,

etc. Since, the global minimum time is very low, even small interference affects

its performance. Q22 is a complex query where join operator is always the most

expensive operator.

Graph 5.23 shows the run where the global minimum time occurs during three

invocations of the query set under evaluation. Depending on the resource con-

tention and the run-time interference from the operating system we get small vari-

ations across different runs for all queries. The highest difference is observed be-

tween the first and the third run for Q19. However, overall the number of runs do

not show much deviations.
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Figure 5.24: Global minimum time for adaptively parallelized query execution.

Graph 5.24 shows the global minimum time for adaptively parallelized queries

for three invocations. The global minimum time for all queries is almost stable

across multiple invocations. This indicates the robustness of the generated plans.
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Figure 5.25: Difference between the global minimum run and convergence

runs, for adaptively parallelized query executions.

Graph 5.25 shows the difference between the run at which global minimum

occurs vs the total convergence runs. Different types of queries show different

convergence properties and the algorithm gets tuned to converge in least possible

number of runs. For example, Q8, Q14, and Q22 show the global minimum at

less than 40 runs, while the total convergence runs are around 100. The slow con-

vergence is a result of the Leaking Debit being too low, which leads to the credit

getting drained slowly. The convergence runs are close to 60 for the same global

minimum, when the Leaking Debit is high.

How to have lower number of convergence runs? As we do plan parallelization

by introducing one operator per invocation, the number of convergence runs tend to

be on the higher side. They can be made much lower if even number of operators
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are introduced per invocation. We avoid it at present to analyze the parallel plan

evolution with each new operator addition.

5.5.4 Adaptive parallelization and pipe-lined execution

Most analytical systems use columnar storage with vectorized pipe-lined execution

[143, 42, 102]. Adaptive parallelization could turn out to be much simpler in pipe-

lined execution, as plans tend to be much simpler with very few operators unlike

MonetDB plans. As the base operators such as select become expensive, its cloned

operators working on disjoint data partitions are introduced in its place. An ex-

change union operator combines the cloned operator’s result. As operators such as

the exchange union operator become expensive they get pushed up in the plan, fur-

ther parallelizing the dependent operators. If an operator in the middle of the plan

such as the join becomes expensive, a hash based partition operator first partitions

its input and new cloned operators work on the partitioned data. The convergence

is also expected to be much faster due to much less number of operators unlike

MonetDB plans.

5.5.5 Future work

As MonetDB uses an intermediate language (MAL) for plan representation, the

plans tend to be complex (See Figure 5.7) and their dynamic manipulation is non-

trivial. It reflects in many of the decisions we make. A promising approach is plan

level parallelization, based on learning from the historical plans. At present the

input plan is considered to be near optimal with a heuristic based join ordering. We

intend to explore the effect of feedback on join orderings. For the feasibility scope

we restrict ourselves by invoking the same queries, however, another interesting

aspect is to reuse the plan sub-templates to optimize similar queries. As MonetDB

plans have complex operator dependencies (Figure 5.7), it makes pattern identifi-

cation for adaptive plan aware query re-write non-trivial. We intend to be able to

generalize the process to get more queries working in the future.

5.6 Related work and applicability to other systems

The basic optimizer approach of “optimize once and execute many” as proposed by

System R has reached its limits [134]. Hence, adaptive query processing techniques

are being proposed to address query optimization problems due to unreliable car-

dinality estimates, data skew, parameterized query execution, changing workload,

complex queries with many tables, etc. [58]. In this section we describe some

state-of-the-art adaptive techniques.

Adaptive aggregation is used by the authors in [49] to handle different group-by

based parallelization cases. The operator performs a lightweight sampling of the

input to choose the best aggregation strategy with high accuracy, at run-time. Al-

gorithmic approaches are based on using independent and shared hash tables with

locking and atomic primitives to minimize hash table access contention. Three

cases are identified that affect performance based on the average run-length of
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identical group-by values, locality of references to the aggregation hash table, and

frequency of repeated access to the same hash table location. This work targets

adaptivity from a single operator’s perspective, whereas our work targets it at the

plan level. The approach used here can be combined with our adaptive approach to

improve per operator performance.

Vectorwise uses micro-adaptivity to improve query execution time by using run-

time execution feedback [128]. Micro-adaptivity is defined as the ability to choose

the most promising execution primitive at run-time, based on real time statistics.

Most methods, like adaptive parallelization, use plan level modification, whereas

micro-adaptivity uses the available execution primitives at run time. It chooses

primitives based on the platform, instance, and call adaptivity using parameters

such as compiler, branch prediction, selectivity, loop unrolling, etc.

The Learning Optimizer (LEO) in DB2 uses query execution feedback for cardi-

nality estimation corrections [138]. It uses learning and feedback based infrastruc-

ture to monitor query execution and generates feedback for correction in the car-

dinality estimation and related statistics. More learning helps in better cost model

predictions. LEO has improved query execution performance by orders of mag-

nitude. MonetDB does not use cardinality related statistics, however if used with

the statistics correction methods, the selection of operator’s to parallelize can be

improved further.

In [34] authors illustrate adaptive parallel execution in Oracle for big data an-

alytics. In Oracle problems such as reliance on query optimizer estimates are han-

dled by changing the data distribution decisions adaptively, during query execution.

Column store architectures differ in various aspects such as plan representation,

partitioning strategy, scale out support, etc. Encompassing all the requirements in a

single architecture is not possible due to their architectural confinements. While de-

scribing the related state-of-the-art column stores, we also describe the possibility

of adaptive parallelization’s application to them.

Vertica uses a value based partitioning approach [99]. It uses a Read Optimized

Store (ROS), where the data is stored in multiple ROS containers on a standard

file system. Two files per column within a ROS container are stored, one with the

actual column data and the other with position index. This representation is very

similar to the representation in Figure 5.10, where RH is the index, while RT is the

actual value. Vertica also supports grouping multiple columns together in a file,

however this hybrid row-column storage is rarely used in practice because of the

performance and compression penalty it incurs.

Vertica execution engine uses a multi-threaded pipe-lined vectorized execution

where the execution plan consists of standard relational algebra operators. Opera-

tors such as StorageUnion are used for partitioning data across operators. Hence,

StorageUnion is equivalent to a partition operator. Operators such as ParallelUnion

are used for directing execution to multiple threads and to combine the parallelized

operator’s results. Hence, ParallelUnion is equivalent to an exchange union opera-

tor.

To understand the feasibility of applying adaptive parallelization in Vertica,
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let’s assume that the execution starts with a serial plan and incrementally intro-

duces value based partitions to partition the expensive operator’s data. For example,

when a select operator becomes expensive and needs to be parallelized, a partition

operator is introduced which creates two value based partitions, which would be

consumed by two new select operators. The two new select operator’s output is

combined using an exchange union operator. This is similar to the basic mutation

scheme with the addition of a partition operator that feeds two newly introduced

select operators.

When one of the newly introduced select operators itself becomes expensive,

we further partition that operator’s data into two more value based partitions, by in-

troducing a new partition operator in the data flow path after the previous partition

operator, and before the input of the expensive select operator. Thus in a hypo-

thetical case when one of the select operators stays expensive during consecutive

invocations, new partition operators would keep on getting added to the existing

plan. We expect the cost of the partitioning operator to be small considering its

presence in the existing Vertica execution plans. Quantifying the exact cost is dif-

ficult due to lack of sufficient references. Similar logic can be applied for other

operator’s parallelization.

Apollo creates column store indexes in a traditional row store database like SQL

server [102]. It is the first database which uses the existing row store to create new

column store indexes. The method involves creation of batches of rows to create

segments from which individual columns are stored in individual column represen-

tations. The column segments information is stored in the directory structure, with

a catalog.

The columns are compressed and encoded using different types of encoding.

New operators called batch operators are introduced which get called if there is

bulk data to be processed. The valid rows to process are noted down in bitvector

formats.

Apollo uses range partitioning of data. Since traditional SQL server uses cost

model based exchange operator induced parallelization, Apollo leverages the exist-

ing SQL server parallelization technique using the exchange operator based paral-

lelization.

To understand how adaptive parallelization might be applied in Apollo type

of column store, we need to find similarities between adaptive parallelization and

Apollo architecture. Both do range partitioning of data, hence the fundamental

assumption of range partitioned access stays the same, and could change in the

way individual operators are implemented. For example, the operations like the

join operator consists of separate build and probe operators, where build uses a

shared hash table, where all threads build a hash table, and then probe operator

probes it in parallel. As Apollo extends the exchange operator based parallelization

as used in SQL server, we expect adaptive parallelization to be useful, due to its

dependence on the exchange operator based parallelization.

Hyper uses LLVM [103] generated Just In Time (JIT) compiled plans. The longest

pipeline in a plan is identified, by looking for a pipeline breaker operator. The oper-

ators in the longest pipeline are fused using JIT compilation such that their highly
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efficient machine language code represents a single task. The fusing allows tuples

to be kept in registers to process them without generating intermediate results. Hy-

per’s morsel driven parallelism uses work stealing based approach to assign the

fused pipeline tasks to a fixed number of pre-created threads. The task allocation

based approach allows controlling the number of tasks executing in parallel dy-

namically, at run-time, and allows better control over resource allocation during

concurrent execution of queries.

Adaptive parallelization technique is based on the fundamental assumption that

an expensive operator is always identifiable in an execution plan. This is a basic

requirement since plan parallelization is a result of incrementally parallelizing the

expensive operator during successive query invocations, until a global minimum

plan is identified.

Identification of a single expensive operator is not feasible in Hyper’s execution

plans due to the JIT compiled fused nature of operator’s pipeline, which prevents

a direct application of adaptive parallelization. However, in a broader sense if the

entire task is considered to be expensive and treated as an expensive operator, appli-

cation of the adaptive parallelization logic can be possible. Hence, the feasibility

of adaptive parallelization technique in Hyper depends on how to categorize the

expensiveness metric.

DB2 BLU accelerator [124] uses evaluator chains, which comprises DB2 BLU op-

erators working on columnar data. The data is accessed in strides. It uses novel

data structures that minimize latching allowing seamless scaling with multi-cores.

Parallelism involves cloning of evaluator chains once per thread, where the num-

ber of threads is decided by cardinality estimates, system resources and system

load. Each thread requests strides for its evaluator chains until no more strides are

available. DB2 BLU also uses work stealing based approach where worker threads

operate on tasks comprising of evaluator chain based work.

5.7 Summary

The research question: In this Chapter we address the questions, ”How to lever-

age multi-core systems to improve the performance of analytical workloads?” and

”What is the effect of multi-core hardware on the effectiveness of the query opti-

mizers?”

Identifying an optimal degree of parallelization and an optimal parallel execu-

tion plan is a difficult problem as the number of CPU cores increase. Allocating all

cores to the parallelized query does not result in improved performance. It could

also lead to degradation due to overheads in management of the extra resources.

Cost model based parallel plans are very sensitive to operator cardinalities, hence

do not generate optimal parallel plans either. Identifying an optimal parallel plan is

thus a challenging problem.

The research contribution: We introduced adaptive parallelization, a feedback

based technique to identify near optimal degree of parallelization and multi-core

utilization in a parallelized query execution environment. It is inspired by the ob-
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servation that most analytical queries are template based. When the same query

gets fired multiple times, adaptive parallelization comes into effect. During each

invocation the most expensive operator in the query plan is incrementally paral-

lelized, until a good parallel plan is identified.

We introduced a convergence algorithm that stops the feedback loop when a

good enough parallel plan is identified. Using extensive experimentation we have

shown that adaptive parallelization generates better plans. We have shown that the

convergence algorithm is robust in identifying a good plan. An important finding

is how adaptive parallelization improves multi-core utilization which helps during

concurrent workload execution as it uses less resources due to less number of data

partitions compared to heuristic based plan parallelization. Adaptive paralleliza-

tion has generated interest from industry leaders such as the Oracle Labs, the HP

Labs, and IBM research. It has inspired further research from research groups

such as the University of Athens, Federal university of Parana, Brazil, University

of Luxembourg, and others. In Section 5.6 we summarize how it could be used in

existing database systems that use the exchange operator based parallelization by

doing suitable adaptations.

5.8 Conclusion

Adaptive parallelization uses query execution feedback to generate resource con-

tention and skew aware range partitioned multi-core parallel plans. It helps in find-

ing the right balance between the multi-core utilization and the degree of paral-

lelism for the exchange operator based parallel plans. We observe a near linear

speed-up with the number of cores while analyzing the parallel plan evolution us-

ing parameters such as the partition range, the input size, and the selectivity. During

TPC-DS isolated workload, the adaptively parallelized plans show up-to five times

better performance compared to heuristically parallelized plans. During TPC-H

concurrent workload, they show minimal multi-core utilization, allowing better re-

source utilization. They also fare competitively with work stealing based schedul-

ing approach.

Using different convergence scenarios we show that the adaptive parallelization

convergence algorithm behaves robustly, and converges in a reasonable number of

runs.



Chapter 6

Multi-core column store

parallelization under concurrent

workload

”Everyone has a plan until they’ve been hit.” – Joe Lewis

Columnar database systems are designed for an optimal OLAP workload per-

formance. They strive for maximum multi-core utilization under concurrent query

executions. However, most of them generate a multi-core parallel plan in isolation,

which during concurrent query execution leads to sub-optimal performance. To

get better insights into how resource contention affects individual multi-core query

performance, there is a need to analyze its effects on the intra-query and inter-query

parallelized plans.

In this Chapter 1, we analyze the concurrent workload resource contention ef-

fects on multi-core plans using three intra-query parallelization techniques, static,

adaptive, and cost model parallelization. We focus on a plan level comparison of

selected TPC-H queries, using in-memory multi-core columnar systems. Excessive

partitions in statically parallelized plans result in heavy L3 cache misses leading to

memory contention, degrading query performance severely. The operating sys-

tem’s default scheduling policy influences the degree of parallelism of static plans.

Overall, adaptive plans show more robustness, less scheduling overheads, and an

average 50% execution time improvement compared to statically parallelized plans,

and cost model based plans.

1This Chapter is based on the publication ”Multi-core column-store parallelization under concurrent

workload”, Under submission.
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6.1 Motivation

The ubiquitous presence of multi-core CPUs calls for an analysis of their optimal

utilization by database systems, under OLAP workloads [130, 113]. Most systems

use either intra-query or inter-query parallelization to maximize multi-core utiliza-

tion. Multi-core utilization represents the fraction of actual CPU cores used versus

the available cores during query processing. Inter-query parallelization involves

executing individual queries on each core, as used by e.g. Postgres [139, 13]. Intra-

query parallelization involves parallelization of a query plan using the exchange

operator, to execute on the available cores, as introduced by the Volcano system

[70], and used in most commercial systems. An issue ignored in most cases is that

the performance of an individual query is strongly affected by the presence of a

concurrent OLAP workload, which leads to resource contention, as queries com-

pete for shared resources such as CPU, memory, and IO bandwidth [24]. Higher

resource contention leads to extended query execution times, thereby increasing the

multi-core utilization, and in turn decreasing the overall query throughput [24]. A

simple solution that can be deployed is to limit the degree of parallelism of plans.

As run time resource contention is difficult to model, static and cost model

based approaches can not consider it during plan generation. Hence, quantifying

the effect of a concurrent workload on an individual query’s performance is difficult

[144, 76]. One of the fundamental approaches is to use workload variation mod-

els to analyze their resource contention effect on a sequential query performance

[60, 25]. The resource contention problem becomes even trickier to handle during

parallel plan execution, as the contention could negate the gains due to parallelism,

and make identification of the degree of parallelism difficult. To gain better insights

we categorize different types of workloads in a broad manner based on inter-query

or intra-query parallelization modes, and analyze how the resource contention af-

fects an individual parallelized query’s performance.

We evaluate three types of intra-query parallel plan generation techniques, static

[64], adaptive [2], and cost model [20], under concurrent OLAP workloads, using

in-memory multi-core columnar database systems. Static parallelization involves

row-id based range partitioning, without accounting for the resource contention.

Adaptive parallelization is a new feedback based plan generation technique that

performs incremental query parallelization, since many workloads use template

based repeated queries. Repeated query invocations introduce more partitions in an

already parallelized plan, until a plan with minimum execution time is identified.

When adaptive parallel plan generation happens in the presence of a concurrent

workload, it reflects the impact of resource contention. While our focus is on the

static and the adaptive technique, we also compare both these techniques with a

cost model based intra-query parallel plan generation technique.
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6.2 Contributions

Most database systems generate an optimal parallel plan without taking into ac-

count the run-time resource contention, as modeling run-time resource contention

is very difficult. However, it leads to the plans behaving sub-optimally under con-

current workload. There is not much research literature giving insights into the

effect of concurrent workload execution on parallelized query execution. We ana-

lyze the effect of three intra-query parallelization techniques in the context of two

columnar database systems, and also compare it with inter-query parallelization

technique. Our main contributions are as follows.

• We evaluate the performance of intra-query parallel plans, under different

types of in-memory concurrent workloads. More data partitions in static

plans result in heavy L3 cache misses leading to memory contention. Adap-

tive plans with less data partitions show up to 50% better performance. Cost

model plans with admission control result in severely degraded performance.

• We provide a categorization of workloads based on their average CPU core

idleness (which reflects their multi-core utilization), when the concurrent

workload server executes in either inter-query or intra-query parallel mode.

We show that even a broad workload categorization as we do, helps in get-

ting critical insights into performance behavior of parallelized queries under

analysis.

• We show that a workload with random queries generates less resource con-

tention than a workload with similar queries, when the execution engine does

not have support for intermediate data sharing.

• Finding robust query execution plans is a critical requirement during work-

load analysis. We analyze the robustness of parallelized plans under concur-

rent workloads, where the select operator plans exhibit more robustness than

the join operator plans. Overall adaptive plans show more robustness than

static plans. On the other hand, inter-query parallelization as used by Post-

gres shows degraded performance compared to the column stores, however,

its overall behavior is more robust.

• We highlight the influence of the operating system’s default thread schedul-

ing policy on the degree of parallelization of parallelized plans.

Observations from this research can help in mixing workloads such that the re-

source contention due to them is not as bad as some workload combinations that we

illustrate. The experimentation provides good insights into two types of paralleliza-

tion techniques (intra-query parallelization and inter-query parallelization), in the

context of columnar database systems. The generic observations from them such as

restricting the number of data partitions to a minimum during parallelization could

be applicable to other columnar systems as well, to minimize resource contention.
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A1 A2A

Serial Plan Parallel Plan

Figure 6.1: Serial and Parallel plan.

6.2.1 Outline

The Chapter is structured as follows. In Section 6.3 we provide a brief background

of the static, cost model, and adaptive parallelization techniques. In Section 6.4 we

describe the set-up for the concurrent workload to generate resource contention.

We provide a detailed experimental analysis to understand the effect of resource

contention in Section 6.5. Related work is described in Section 6.6. In Section 6.7

we conclude summarizing the main lessons learned.

6.3 Plan parallelization techniques

Multi-core parallel plan generation using the exchange operator [70] is a two stage

process in most database systems. During the first stage an optimal serial plan is

generated, while in the following stage partitions are introduced using the exchange

operator, to generate a multi-core aware parallel plan.

We use two exchange operator based columnar systems, MonetDB the open-

source operator-at-a-time execution system and Vectorwise, a leading analytic sys-

tem with pipe-lined vectorized execution. Being the only open-source columnar

system, both, static and adaptive parallelization techniques are implemented in

MonetDB. Plans are represented using an abstract intermediate language called

MonetDB Assembly Language (MAL) [40], with operator’s implementation in

“C”. Vectorwise on the other hand uses a cost model based parallel plan gener-

ation. Plans use normal physical algebra operator representations. A dedicated

buffer manager with predictive buffer management and co-operative scan support

helps in concurrent workload disk IO sharing. MonetDB on the other hand relies

on the operating system managed memory mapped buffers.

6.3.1 Static parallelization

Static parallelization (SP) already exists, and is the default parallelization technique

in MonetDB. It is done in two steps. First, the largest table in the plan is partitioned

such that the number of partitions equal the number of
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Figure 6.2: An adaptively parallelized plan execution sequence for TPC-H

Q14.

cores [64]. Next, the operators in the data flow dependent path of the partitioned

base operator’s data are parallelized such that the data flow pattern is maintained.

In Figure 6.1, Plan 1 shows a simple serial plan with the selection on A. Plan

2 shows the parallel plan derived by row-id based equi-range partitioning of A,

with two new select operators. An exchange union operator (U) combines the par-

allelized operator’s result. Based on the query complexity, the plans could have

complex dependency patterns, and multiple exchange union operators. Aggrega-

tion is postponed as much as possible. Static parallelization is simple and fast, but

can be less accurate than the cost model based parallelization.

6.3.2 Cost model based parallelization

The cost model based plan generation in Vectorwise involves predicting the cost of

execution of a plan using an operator’s input type and estimates about its cardinal-

ities, to choose supposedly the optimal plan. Size of the data is one of the biggest

deciding factors, but memory hierarchy and access pattern, processor character-

istics, and concurrent query execution affects the overall prediction considerably.

Parallel plan generation uses the exchange operator based partitioning of an optimal

input serial plan. A combination of branch and prune and dynamic programming

techniques are used in the search strategy for the parallel plan. An elaborate dis-

cussion on the related topics is in [20][4][147].

Both static and cost model based techniques are sub-optimal since the run-time

resource variation can not be accounted for. In contrast, adaptive parallelization

takes into account resource contention through execution feedback.

6.3.3 Adaptive parallelization

Adaptive parallelization (AP) [2] is a new parallelization technique developed in

MonetDB, inspired by the observation that most systems use a relatively small
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number of parameterized query templates repeatedly. While the technique is com-

pletely described in [2], we provide a brief overview here.

AP uses execution feedback to incrementally parallelize a query plan with each

successive query invocation. A parallel plan (P1) is generated from a previous plan

(P0), by parallelizing the most expensive operator from P0. The AP infrastruc-

ture stores previously executed plans along with the profiled information such as

the operator execution time and resource claims. Under concurrent workload the

execution feedback reflects the resource contention making adaptive parallel plans

more robust compared to SP plans, as we show during the experiments.

Figure 6.2 shows an AP plan execution sequence in action where the X axis

represents the consecutive invocations (iterations) of the same query. In the current

setup, for the feasibility scope purpose, we repeatedly use the same query, though

most systems re-use query templates. Each vertical bar in the graph represents

the plan execution time corresponding to a particular invocation. The 0th invoca-

tion corresponds to a serial plan execution, while the 1st invocation corresponds

to the plan derived by parallelizing the most expensive operator from the 0th invo-

cation plan. With consecutive invocations more operators in consecutive plans get

parallelized leading to an execution time improvement until a global minimum is

reached (the 19th iteration). More parallelization afterwards leads to a performance

degradation. In an ideal scenario each successive plan provides better performance

than its predecessor. In practice the execution skew due to introduction of only two

partitions in successive iterations prevents it, and prolongs the convergence.

Convergence: Depending on the query complexity the number of iterations taken

by AP to converge could vary. For the ease of the experimental set-up we use a

fixed 250 iterations as it covers all possible query convergences. The convergence

algorithm and various convergence scenarios are discussed in detail in [2]. For ex-

ample, TPC-H Q14 shows minimal execution time at the 19th iteration (See Figure

6.2). However, the convergence runs for other queries could vary between 50 to

100 iterations.

Global Minimum: The speed-up of a plan is measured with respect to its serial

execution. We term a plan as the global minimum plan if its speed-up is better than

all other minimal plans observed earlier during the global minimum search. We run

multiple experiments and consider the average of the global minimum plan’s wall

clock time.

6.4 Workload set-up

In this section we describe the concurrent workload set-up to generate resource

contention for shared resources such as the CPU cores, to analyze its impact on a

parallelized query. We use batched OLAP queries to generate the workload. The

number of concurrent OLAP queries in a batch decides the multi-programming

level (MPL) of the system. First we elaborate on the client setup, then the work-

load server setup, and next the query set used in the workload from MonetDB and

Vectorwise perspective.
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Figure 6.3: The workload set-up.

6.4.1 Client setup

The concurrent workload consists of 32 clients (MPL = 32) connected to a Mon-

etDB execution instance (S1 in Figure 6.3). As our experimental platform uses 32

CPU cores (Hyper-threaded), the number of clients are limited to 32 to ensure each

CPU core has at least 1 connection. We do not aim to test the scalability aspect

at present. The clients repeatedly fire TPC-H queries (scale factor 10) from one of

the three query mix batches as shown in Table 6.1. The intention is not to measure

throughput, but to keep the system always busy. The long queries execute in more

than 1 second, where the slowest query executes in around 10 seconds. In contrast

the short queries execute in less than 1 second.

Table 6.1: Query mix batches.

B1 B2 B3

Same Random RandomLong

All queries in the batch B1 are the same, and match the parallelized query under

the resource contention impact analysis. The batch B2 has a mix of eight short and

eight long queries, and the batch B3 has ten long queries. There can be many other

possible batch configurations [55], however the aim here is to show that the broad

workload categorization also provides good insights into the resource contention

effect on individual parallelized queries. For example, when clients use queries

from B1, the aim is to imitate the scenario when the concurrent workload consists

of queries that work on similar data.

6.4.2 Server setup

We use two MonetDB execution instances S1 and S2 (See Figure 6.3), for the ease

of experimental setup. The MonetDB execution instance (S1) for concurrent client

connections is executed in either sequential (Inter-query) or statically parallelized

(Intra-query) mode.
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Table 6.2: % CPU core idleness for MonetDB and Vectorwise workloads(To be

read as - ServerExecutionMode QueryMix). Note.* - Different queries have

different CPU core idleness, hence not shown.

Seq Same Seq Random Seq RandomLong Par Same Par Random Par RandomLong

15 % (M) *(V) 22% (M) 27% (V) 26% (M) 12.6% (V) 0% (M) *(V) 13%(M) 27% (V) 0%(M) 10.6% (V)

Table 6.3: System configuration

CPU Sockets / Threads L1 / L2 Shared L3 cache Mem OS

Intel Xeon E5-2650@ 2.00GHz 2 / 32 32 / 256 KB 20MB 256GB Fedora 20

Intel Xeon E5-4657Lv2@ 2.40GHz 4 / 96 32 / 256KB 30MB 1TB Fedora 20

In sequential (SQ) mode, S1 executes a query per core such that with 32 clients,

32 queries execute on 32 cores (hyper-threaded), leading to inter-query paralleliza-

tion. With this set-up we try to imitate the scenario where some database systems

try to maximize multi-core utilization by executing a single query per core [139].

In statically parallelized (SP) mode, S1 does an intra-query partitioned parallel

execution, such that depending on the number of row-id based range partitions, a

query could get parallelized to execute on all the available cores. As a result during

the concurrent workload of 32 clients, 32 queries execute in SP mode on all the

available cores.

Depending on S1’s execution mode and the query mix type (B1 / B2 / B3), 6

workloads are possible as listed in Table 6.2. Our aim is to analyze the resource

contention effect of these workloads on a single query’s (Q) parallelized perfor-

mance.

To achieve that we use a dedicated MonetDB instance (S2) (See Figure 6.3) to

execute Q in AP or SP mode, in the presence of the concurrent workload executing

on S1. For an AP execution a client connected to S2 repeatedly executes the same

query Q for 250 iterations. Both AP and SP execution in S2 works on in-memory

data without any disk IO (hot runs).

Why use separate S1 and S2 instances? Separate instances of the servers S1 and

S2 allows us better instrumentation abilities for measuring the hardware events for

the parallelized query (Q) under analysis. The MonetDB profiler does not use per

client based connection, but has a global view of the entire execution engine. Sepa-

rating S1 and S2 instances allows isolating Q’s profiler statistics from the statistics

of the 32 concurrent queries.

Separate execution instances however does not affect the resource contention

impact from S1 on S2, as the resources such as caches, memory, and CPU cores

are shared globally. MonetDB does not use a dedicated buffer manager, but uses

a memory mapped based buffer management infrastructure. Hence, the operating

system handles buffer management, thread scheduling etc. at the holistic system

level.

6.4.3 Query set (Q)

MonetDB query plans tend to be complex due to data flow dependencies of multiple

operators, represented in MonetDB Assembly Language (MAL). Hence, we iden-

tify a subset of TPC-H queries (scale factor 10) to support adaptive parallelization,
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to analyze the concurrent workload’s resource contention effect on them. The scale

factor 10 is used as it provides sufficient insights about the resource contention ef-

fect. Our attempts to use higher scale factor such as SF-100 resulted in heavy disk

IO, due to large intermediates in MonetDB. The current implementation supports

a single group-by attribute queries. Hence, we modify some of the existing TPC-H

queries to suit this need. Since the performance of both SP and AP is analyzed

using the same set of queries, the comparison is fair.

Table 6.4: Query set (Q) categorization

Simple Q6 Q14

Complex Q4 Q8 Q9 Q19 Q22

6.4.4 Vectorwise setup

During Vectorwise experiments we use a single database instance (10GB), on which

32 concurrent clients execute queries using one of the workloads as shown in Ta-

ble 6.2. The query Q is invoked on the same instance unlike MonetDB, so that

Vectorwise plan generation resource allocation scheme could take into account the

load, in terms of the number of concurrent clients. MonetDB plan generation does

not take into account the run-time clients, hence having two instances S1 and S2,

does not affects its plan generation. We use Vectorwise version 3.5.1 in the default

configuration with the parallelism set to 32 and the histogram statistics support

enabled. We also use the clustered index.

6.4.5 Workload and CPU core idleness

Concurrent workloads have different multi-core utilization depending on the query

mix, which in turn leads to varied CPU core idleness. Multi-core utilization repre-

sents the fraction of actual CPU cores used versus the available cores during query

processing [64]. The higher is the multi-core utilization the lower is the idleness. In

our setup the operating system allocates idle cores to the parallelized query under

analysis allowing it to progress. When not idle, CPU cores are either busy with

computations or memory access. Table 6.2 lists the average CPU core idleness for

different types of workloads, measured as an average of 3 batches of 20 samples at

1 second sampling period, using the sar command.

Table 6.2 shows when using MonetDB (M), S1 executes parallely, CPU cores

are mostly busy compared to when S1 executes sequentially. This is expected as

when S1 executes in parallel, many parallelized operators from multiple queries

execute concurrently. Context switching leads to the operators getting scheduled

on multiple cores, resulting in cache thrashing which leads to constant memory

access, keeping the CPU cores constantly busy. As the sequential execution has

relatively less concurrent executions, it leads to considerable less cache thrashing

and less memory access, resulting in idle CPU cores.



118

CHAPTER 6. MULTI-CORE COLUMN STORE PARALLELIZATION

UNDER CONCURRENT WORKLOAD

6.5 Experiments

Table 6.3 lists our experimental hardware platform details, which consists of two

types of machines, with two and four socket CPUs each. All experiments unless

otherwise mentioned use a hot execution run (no disk IO) on in-memory data, on

the 2 socket machine. We use the 4 socket machine in a few selected experiments

to show the NUMA effect. We repeat the experiments four times and report the

average. We use perf tools [56] to measure hardware events that reflect the resource

contention impact on a subset of the queries. For the rest of the queries we use their

response time as a measure to reflect the resource contention impact.

Different concurrent workloads lead to different resource contention scenarios,

thereby changing the parallelized query Q’s execution time. The aim is to iden-

tify robust parallel plans which get minimally affected due to resource contention

under different concurrent workloads. With this fundamental goal we explore the

following questions in the context of different concurrent workloads.

1. How the number of partitions influence plan parallelization ?

2. Which plans perform better and exhibit more robustness?

3. Where does time go during resource contention?

4. Which is better inter-query or intra-query parallelization?

In the rest of the section we analyze each of these questions in detail.

6.5.1 How the number of partitions influence statically parallelized

plans?

As statically parallelized plans in MonetDB are relatively simple to generate, if

made resource contention aware, they could offer an easy solution to the plan par-

allelization problem. In this section we analyze if a heuristic optimizer can generate

better parallel plans under concurrent workload, by tuning parameters such as the

number of partitions.

The optimizer controls the number of partitions by controlling the number of

threads. Hence, using fewer threads lead to a different plan with fewer partitions.

The hypothesis is, this plan might show better concurrent workload execution per-

formance, as it puts less pressure on the shared resources such as the CPU cores,

and the memory bandwidth due to fewer partitions. NUMA effects also could play

a role. Hence, we test the hypothesis using the 2 socket and the 4 socket machine.

2 Socket NUMA

Figure 6.4a shows the MonetDB query execution times for varying degree of par-

allelism, when the concurrent workload = Parallel Random on the 2 socket NUMA

machine. It nullifies our earlier hypothesis as irrespective of the number of threads

in use, the minimal time occurs at 16 or 32 threads, where physical cores are 16,

and 32 includes hyper-threads. Similar observations are made for other type of

workloads.

This behavior can be explained by the fraction of the idle CPU cores available

during the concurrent workload. When workload = Parallel Random each CPU
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Figure 6.4: Effect of degree of parallelism on query execution under concur-

rent workload a) MonetDB static parallelization on a 2 socket machine (10GB

data). b) MonetDB static parallelization on a 4 socket machine (100GB data).
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Figure 6.5: Effect of degree of parallelism on query execution under concur-

rent workload a) Vectorwise cost model parallelization on a 2 socket machine

(10GB data) b) Best execution time for MonetDB vs Vectorwise using execu-

tion times from 6.4a and 6.5a.

core has an average idleness of 13% (See Table 6.2), which is available for the

parallelized query to progress. The default operating system scheduling policy

(CFS) ensures a load balanced fair share from all the CPU cores to the parallelized

query. Hence, a 16 or 32 threaded execution (with 16 or 32 partitions) performs

better than a fewer threaded execution. The queries which show better performance

for 32 threads get benefited from the hyper-threads. Change of thread priorities in

the Linux scheduler could alter this behavior, however we do not explore it, as we

use out of the box settings.
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4 Socket NUMA

Figure 6.4b shows that when the same experiment is repeated on the 4 socket

NUMA machine on a 100GB dataset, the results are quite different. No explicit

NUMA aware data partitioning is used as MonetDB uses memory mapped stor-

age [65]. Execution with up-to 48 threads uses the physical threads (12 threads on

each socket with numactl [15] process and memory affinity), whereas 72 and 96

threaded execution also uses the hyper-threads. The behavior of each query is quite

different as depending on the query complexity and NUMA access, different exe-

cution pattern is observed. For most queries around 96 threads leads to the minimal

execution time, except for Q22, which shows a distinct different behavior. Decid-

ing exact number of partitions to give best execution is difficult[3], so partitions

equal to total number of hyper-threaded cores can be a reasonable heuristic in the

multi-socket machines.

Number of partitions and cost model plans

Figure 6.5a repeats the experiment for Vectorwise cost model based execution on

the 2 socket machine with 10GB dataset. The first observation is irrespective of

the number of threads the query execution time does not change much. We did not

anticipate this behavior, because in an isolated execution setting with increasing

number of threads we did see the query execution time improving with increas-

ing threads up-to 8 threads, and then staying almost constant. We do not plot this

graph due to the space constraints. The scaling problems beyond 8 cores in iso-

lated execution can be explained by [20], due to exchange operator scalability, lock

synchronization issues, etc. In a concurrent workload we hypothesize the following

things might be happening. Vectorwise’s cost model based parallelization approach

takes into account the load on the system in terms of the number of clients. Hence,

heavy concurrent workload leads to an almost sequential execution as only a sin-

gle core gets allocated for the queries under analysis. Hence, change of number of

threads does not change the execution time.

Figure 6.5b shows the best execution time obtained using varying number of

threads for MonetDB is much better than the Vectorwise time, which indicates

cost model plan generation using resource allocation control might not lead to best

performance under heavy concurrent workload.

We saw the influence of the number of partitions on the parallelized execution.

The operating system’s thread scheduling policy also has an important role to play

in this setup. The micro-experiment we describe next gives more insight.

CPU core idleness and OS scheduling

As the concurrent parallelized queries execute on all CPU cores, controlling each

CPU core’s idleness is not possible, which makes the operating system’s scheduling

role analysis difficult. The next micro-experiment allows us a fine grained control

over each CPU core’s idleness, using a concurrent workload called, Infinite Loop.

Infinite Loop workload: The workload consists of a CPU core hogging program

such as a while(1); loop, executing on individual CPU cores, thereby keeping them
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Figure 6.6: Q9 with 100% busy cores when concurrent workload = Infinite

Loop.

100% busy. Optimization is turned off to make sure the compiler does not optimize

the loop. The workload allows us to have a fine grained control over the number

of busy cores at any instant. We observe the execution time of all queries on a 32

threaded statically parallelized database instance, while the Infinite Loop workload

is active. (Fewer or more than 32 threads does not give better performance). We

do not enumerate cores in any specific order (like logical CPU order, socket / core/

HT order), but let the operating system use its default scheduling policy. Figure

6.6 plots the execution time (Y-axis) for query 9, while varying the number of

100% busy CPU cores (X-axis). Query 9 is the longest running query in Q, hence

is expected to show the largest performance variations with CPU resource share

variations.

Figure 6.6 shows as the number of exclusive busy cores are increased, Q9 ex-

ecution time increases by around 0.6 seconds. Though the cores are made 100%

busy in a stepped manner, the operating system does ensure some quanta of re-

sources on even the busy cores. Hence, the busy cores also contribute towards the

parallel query execution. The idle cores contribution depends on the type of the

query (CPU / memory bound). When 24 cores are made busy, we observe that

the operating system changes its scheduling policy and does load balancing such

that now all the cores are busy. However, the cores are not 100% busy, thereby

introducing some idleness on each of them.

When 32 cores are made 100% busy, since there are no more spare resources

available, we do see all cores 100% busy again. However, the share of CPU re-

sources allocated to Q9’s execution does not change after the 24 busy core case.

Hence, the query execution time does not change when 32 cores are made 100%

busy. Some other queries do show an increase in execution time when all 32 cores

are made busy. We also overload each of the CPU cores with multiple CPU core

hogging programs to observe its effect on the query execution time. However, we

get similar results as shown in Figure 6.6.

Summary: Overall we observe that the operating system ensures a load balanced

fair CPU resource share guarantee on a 2 socket machine. It ensures the best result

is obtained when the number of threads equals physical cores (16) or the number

of hardware contexts (32). In a NUMA setting depending on the query complexity,
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lel RandomLong b) Parallel Same.

different execution times are observed, largely due to remote accesses. However,

for many queries when partitions equals either physical cores (48) or the number of

hardware context (96), the best execution time is observed. Overall, hyper-threads

benefit some queries. Vectorwise shows scalability issues beyond 8 threads, but

performs reasonably compared to MonetDB.

6.5.2 Which is better, static, adaptive or cost model parallelization?

In this section we analyze how different plans compare from execution performance

and robustness perspective. We showed that in MonetDB static plans with parti-

tions equal to number of hardware context provides the best execution time dur-

ing concurrent workload. However, these plans need not offer good performance

due more resource consumption, since all parallelizable operators in it use a fixed

degree of parallelism. In contrast adaptive parallelized (AP) plan’s operators are
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Figure 6.9: Adaptive parallelized execution normalized with statically paral-

lelized execution when concurrent workload = Parallel Random.

parallelized individually using the execution feedback, thereby allowing each par-

allelizable operator to have a different degree of parallelism, which helps during

concurrent workload. We expect the cost model plans to show performance in be-

tween static and adaptive plans due to degree of parallelism decision based on the

cost model.

Isolated execution: As a baseline reference we use isolated execution com-

parison (See Figure 6.7a), where a single query executes in the system without

any concurrent workload. Most queries do not show much improvement in AP

compared to SP and cost model plans. As a worst case Q19 even shows a much de-

graded performance in AP. It results from the presence of some non-parallelizable

operators. On the other hand Q9 takes much more time in MonetDB static paral-

lelization due to multiple joins in relatively large table attributes, as only lineitem

table is partitioned in static parallelization. Parallelization using partitioning in iso-

lation can improve performance only up-to a threshold, which can be seen, since

all techniques show a comparable performance, except a few. Rest depends on how

optimal plans are in terms of resource consumption, which is where AP fares better

under concurrent workload. We analyze it in the rest of the section.

Performance

Adaptively parallelized plans perform better than the static and cost model based

parallel plans, during concurrent workload due to optimal multi-core utilization,

about which we illustrate next.

Figure 6.9 gives an overview of the performance gains in AP compared to SP

when the concurrent workload = Parallel Random. For better readability the AP

execution time is normalized with respect to SP, such that, when SP execution of

Q19 is 1 second, the AP execution is 0.6 seconds. While the simple queries benefit

the most as is evident from Q6 and Q14 which show around 90% improvement

(Green), on an average AP shows 50% improvement compared to SP for most

queries. To gain better insights about individual query’s performance we do an

operator level analysis of some of these query plans, using Figure 6.7 to 6.8.

Query 8: Figure 6.7b shows when workload = Parallel Random, Q8 performs
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better in AP than in SP. The query plan contains join as the most dominant operator.

Plan analysis shows that the number of tuple reconstruction and join operators in the

SP plan are an order of magnitude more compared to the AP plan. In many column

stores tuple reconstruction operators are implemented as join operators, so they

do random look-ups. Too many join and tuple reconstruction operators executing

concurrently in SP plan causes costly random memory access, and leads to memory

bandwidth pressure. AP plan performs better as it has much less number of join and

tuple reconstruction operators. Vectorwise plans execute sequentially under heavy

concurrent workload, as its plan generation logic uses the number of active clients

to decide CPU core resource allocation for the newly admitted queries.

Query 19: Figure 6.7b shows when workload = Parallel Random, Q19 appears to

perform better in AP than in SP. However, a comparison with AP from the isolated

execution (See Figure 6.7a) shows AP execution timings does not change much.

AP performance looks better as SP execution is three times expensive compared to

its isolated execution.

The cause is that Q19 has the select operators as the dominant operators, whose

parallelization during AP invocations results in the addition of new exchange union

operators for combining their results. Based on the input selectivity the exchange

union operator becomes an expensive operator after a few invocations, and gets

pushed higher in the plan. However, the data flow dependencies due to a system

specific non-parallelizable operator does not allow it and prevents further paral-

lelization of Q19 plan. The SP plan does not faces this problem due to its use of the

static partitions, which ensures the presence of the exchange union operators much

higher in the plan.

Though AP performance does not change under concurrent workload, SP shows

a degraded performance as a result of the resource contention due to the presence of

more number of operators, as was the case in Q8. We provide a detailed quantitative

analysis of the resource contention effect on Q19 SP execution using a subset of

hardware event measurements, in the Section 6.5.3.3.

In cost model plans Q19 benefits due to the co-operative scans based data shar-

ing in all the workloads, hence get minimally affected, as we illustrate in the Section

6.5.3.3.

Summary: We observe that the AP plans show better response time than the SP

plans, and cost model plans. The static plans (SP) have too many operators working

on fixed sized partitions, which creates scheduling and resource contention over-

head under concurrent workload. Since in AP the old plan is mutated into a new

plan by partitioning the most expensive operator’s data, only a few operators get

parallelized, where the generated partitions are dynamically sized. Some AP plans

could however perform lower than the SP plans due to the presence of inherently

non-parallelizable operators. Cost model plans show worst performance as dur-

ing resource contention they execute sequentially, due to admission control policy

based plan generation.
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Robustness

Robustness is the ability of the database system to perform well under a variety of

conditions including adverse run-time conditions due to data volume, data skew,

and resource contention [144, 72]. Our focus is on the robust query processing

during resource contention arising due to shared CPU cores. We consider a query

plan to be robust if it gives minimal variations in the execution time under changing

run-time conditions [71]. We analyze the query execution robustness by comparing

its SP / AP isolated execution against the concurrent workload execution for Par-

allel Random (CPU core idleness = 13%) and Parallel RandomLong (CPU core

idleness = 0) workload. Overall, the SP plans show more rapid degradation than

the AP plans during concurrent workload.

Select operator: First we compare the AP execution of the queries where the select

operators are dominant. Queries 4, 6, and 19 get minimally affected when workload

= Parallel Random (See Figure 6.7b), while they slow down by around a factor of

two when workload = Parallel RandomLong (See Figure 6.8a). Select operators

involve either a point select or a range select operation on sequential data. As the

Parallel Random workload has average CPU core idleness = 13%, the select opera-

tors get sufficient CPU resources to execute, compared to the Parallel RandomLong

workload which has 0% average CPU core idleness.

Join operator: During AP execution the queries 8, 9, and 22 where the join op-

erators are dominant, execute around 2 and 3 times slower for Parallel Random

and Parallel RandomLong workloads respectively. The join operators are expen-

sive compared to the select operators as they do random memory access keeping

the CPU cores busy. As the average core idleness changes from 13% to 0% across

the two workloads, their execution degrades due to insufficient CPU resources.

During the Parallel Random and the Parallel RandomLong workload the SP

execution of the complex queries (4, 19, 8, 9, and 22) show a slowdown of 3.5

and 5 respectively, while the simple queries (6 and 14) slowdown 7 and 10 fold.

The lack of CPU resources to execute many concurrent operators and the memory

bandwidth pressure due to concurrent access is one of the main reasons for their

rapid performance degradation. However, as the SP queries have too many select

and join operators, isolating the exact reason for the degraded performance per

operator level is difficult to access.

In cost model plans we are not able to find any concrete relation between the iso-

lated execution and the execution under Parallel Random and Parallel RandomLong

workload. Since the execution is expected to be almost sequential due to the heavy

load, the queries could show at least 16 times degraded performance compared to

their isolated execution (16 is the number of physical cores). Based on our obser-

vations of isolated query executions, the cost model parallelized plans use varying

degree of parallelism, unlike static parallelization in MonetDB. This gives rise to

overall varying CPU core idleness compared to MonetDB for concurrent workload,

thereby making the performance under different workloads less robust.
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Figure 6.10: Adaptive parallelization query performance for different concur-

rent workload scenarios. Table 6.2 gives the legend description.

Query 14: AP execution of Q14 represents a special case for the Parallel Random

and the Parallel RandomLong workload. Its plan contains a mix of both the select

and the join operators as the dominant operators, unlike the other queries which we

analyzed earlier in this section. The join operators however work on much less data

as it gets filtered by the select operators, making them overall less expensive. The

number of select and join operators in the AP plan is much less than the SP plan,

as a result Q14 gets minimally affected across both the Parallel Random and Par-

allel RandomLong workload. Much less number of operators allow it to progress

even in minimal CPU resources while incurring minimal memory bandwidth pres-

sure, while exhibiting a robust behavior across the workload changes.

Summary: We observe that for AP and SP, the query execution robustness under

resource contention is strongly influenced by the parameters such as the number

of operators, the type of operators, and the available CPU resources. As the select

operators are cheap compared to the join operators, plans where the select operators

are the dominant operators show more robust behavior compared to the plans with

the join operators. Overall, the AP plans are more robust than the SP plans. Cost

model plan’s robustness is difficult to judge from the available observations.

Having seen the performance and the robustness comparison of the paralleliza-

tion techniques, next we investigate how the resource contention affects them.

6.5.3 Where does time go during resource contention?

work / data sharing

Concurrent workloads often involve queries that overlap computation and data ac-

cess. Standard techniques for work / data sharing include cache (data / instruction)

and operator sharing as used in StagedDB and QPipe [78, 77], multi-query opti-
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Figure 6.11: Sequential query execution performance for different MonetDB

concurrent workloads, when workload server (S1) executes in sequential

mode.

mization as used in SharedDB [66], and shared scan techniques [147]. In the ab-

sence of these techniques each concurrent query competes for the shared resources

such as CPU caches (data / instruction), memory and disk IO bandwidth, etc. Since

we do not employ any of the work / data sharing techniques, we do not expect in-

dividual range partitioned parallelized queries to perform better under concurrent

workload. However, quantifying and analyzing the negative effects due to lack of

work / data sharing still assumes importance as most database systems do not use

work / data sharing techniques.

MonetDB sharing: Figure 6.10 shows how the concurrent workload degrades the

performance of AP queries, evident from the isolated execution case (black - first

bar), which shows the minimal execution time in all the workload scenarios. We

do not plot query 6 as it shows minimal variations. We also do not plot the graph

for SP execution as it exhibits a similar behavior, where the isolated execution has

the minimal time.

Past research shows that in a batched serial query execution, depending on the

query mix type, some queries get sharing benefits resulting in their performance

improvement compared to their isolated execution [24]. We test it in our setup by

using the concurrent sequential workloads. Figure 6.11 plots the sequential query’s

execution time when the concurrent workload server S1 also executes in a sequen-

tial mode in MonetDB. The isolated query execution shows the best execution time.

Hence, in our query mix combinations the concurrent sequential workload does not

help the sequential query execution.

Vectorwise sharing: Figure 6.12 shows for Vectorwise irrespective of the mode of

execution (sequential / parallel), when the workload contains the same queries (Se-

qSame / ParSame) the query execution time is similar. This confirms our hypothesis

that under heavy concurrent workload even parallelized Vectorwise queries execute

near sequentially. However, execution under both SeqRnd and ParRnd workloads

show more time (Q8,Q9,Q19,Q22) which indicates that some sharing opportunities

might be existing when the workload contains the same queries. In order to under-
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Figure 6.12: Query execution under Vectorwise concurrent workloads.

stand if cooperative scan technique which is designed for IO sharing can be helping

in any manner at cache level sharing, we conduct a micro-experiment.

Table 6.5: Buffer size impact on Vectorwise Q1 execution.

Buffer size (MB) Isolated (sec) ParSame (Sec)

300 2.67 5.1

500 0.35 4.67

65000 0.33 4.68

Micro-experiment: Table 6.5 shows when we reduce the buffer size from the de-

fault 65GB to 300MB the isolated execution shows degraded performance. When

the buffer size is increased till we get improved isolated execution performance

(500MB), the performance under the concurrent workload does not increase much.

Using [4] measurements as a reference, for 10GB non-compressed data-set, Q1

uses 463MB of compressed data, which fits in 500MB buffers, which explains the

isolated execution performance difference for varying buffer sizes. The concurrent

execution however does not show corresponding improvement, which verifies that

cooperative scan technique does not help the in-memory context.

In the random workload (SeqRnd & ParRnd) there is minimum data sharing

opportunity, as also confirmed from [4], where the authors show that TPC-H queries

have minimum sharing opportunities. We expect the execution under RandomLong

workload (SeqRndLng / ParRndLng) to take the highest time, but instead it takes

the lowest time. Our discussion with Vectorwise team could not provide more

insights into the overall observed behavior for Figure 6.12.

In the rest of the section we explore where does time go during resource con-

tention.
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Software / hardware level resource contention

The resource contention can be broadly classified into the software contention and

the hardware contention.

The software contention arises due to the overheads in managing the shared

resources such as the operating system scheduler, the lock contention manager, etc.

We focus on the query scheduling overheads as the read only workload minimizes

the lock contention. The waiting time a query spends in-order to get scheduled on

100% busy CPU cores provides the query scheduling overhead.

The hardware contention includes data sharing conflicts resulting in (data / in-

struction) cache thrashing, page fault handling, TLB invalidation, context switch-

ing, etc. [50] and the CPU contention conflicts resulting in pipeline invalidation,

internal units access stalls, etc. [119].

The parallelized query execution time can be dissected into the query’s iso-

lated execution time, the software and the hardware contention overhead. We com-

pare execution under Parallel RandomLong workload and the Infinite Loop work-

load. Both workloads have 0% CPU core idleness, however differ in their work.

Their difference indicates the hardware contention due to the Parallel RandomLong

workload, while the difference between execution under Infinite Loop workload

and isolated execution indicates query scheduling overhead. Next we illustrate how

to find software and hardware contention overheads.

Software contention overhead: The hardware contention impact of the Infinite

Loop workload on a parallelized query execution is negligible. Since the instruction

foot print of a while loop program is minimal, only a few CPU units such as the

ones that deal with the instruction execution logic are busy during Infinite Loop

workload, while the rest of them are idle. Lack of data access activity results in

no cache or memory level contention. It is further confirmed from the observations

in Table 6.6, which shows minimal difference in query execution hardware event

measures under the Isolated execution and the Infinite Loop workload, for the SP

execution of Q9.

Table 6.6: Contention measure for Q9’s statically parallelized execution under

the Infinite Loop workload.

Isolated Infinite Loop

L1 Miss % 6.6 6.5

L3 Miss % 66 58

Instructions/Cycle .35 .41

StalledCycles/Instr 2.32 2.02

Since the hardware contention is negligible, the execution difference between

the Infinite Loop workload and the Isolated execution indicates the query schedul-

ing overhead.

Figure 6.13a shows during the SP execution the simple queries (Q6 and Q14)

have minimal scheduling overhead compared to rest of the complex queries. As
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Figure 6.13: a) The query execution time difference between Paral-

lel RandomLong (ParRndLng) and Infinite Loop workload reflects the re-

source contention impact on Statically b) Adaptively parallelized queries in

MonetDB.

the operators in the simple queries execute for a very short duration, they incur

minimal scheduling overheads. The SP plans have too many operators compared

to the AP plans which gets reflected in their corresponding scheduling overheads.

For example, Q4 and Q19 show considerable scheduling overhead in SP execution

(See Figure 6.13a) compared to their AP execution (See Figure 6.13b).

Hardware contention overhead: The hardware contention impact of the Paral-

lel RandomLong workload on a parallelized query execution is very high. The

workload’s high data access activity gives rise to heavy contention for the shared

L3 cache, resulting in a large number of L3 cache misses, as can be seen in Table

6.7 for Q19’s SP execution. It also results in heavy CPU level contention in terms

of the high number of stalled instructions. We use Q19 to provide a perspective

of the resource contention impact in terms of hardware performance events. For

the other queries we use increased response time as a reflection of the resource

contention impact.

In comparison the hardware level contention for the Infinite Loop workload is

negligible. For simplicity we assume the query scheduling overhead for both the

workloads is similar, though we expect Parallel RandomLong workload’s query

scheduling overhead to be relatively more than the Infinite Loop workload’s over-

head, as the concurrent queries use more time quanta during their schedule. Hence,

the execution difference between the Parallel RandomLong and the Infinite Loop

workload indicates the hardware contention overhead.

The contention overhead during AP execution (See Figure 6.13b) is much less

compared to the SP execution (See Figure 6.13a) as fewer range partitioned op-

erators execute in AP plans compared to SP plans. Fewer operators induce less

scheduling overhead, and less cache thrashing.

Summary: In our concurrent workload setup, the SP / AP query under analysis

does not benefit from the work / data sharing, as we do not employ explicit sharing
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techniques. We segregate the contention overhead in the query scheduling over-

head and the hardware contention overhead. AP plans show less scheduling over-

head compared to SP plans. The hardware contention due to the concurrent query

workload is responsible for the much degraded SP execution. L3 cache thrashing

is the major source of contention in SP execution.

Having established the approximate resource contention overheads in SP and

AP execution in a holistic manner, we now focus on the analysis of an individual

query’s SP and AP execution.

Workload specific resource contention

We analyze the workload specific resource contention effects on the query execu-

tion by comparing the Parallel Same (Figure 6.8b) and the Parallel RandomLong

(Figure 6.8a) workloads. Since the average idleness per CPU core is zero 2 for

both the workloads, one hypothesis is, the query execution time for both should be

similar. However, since that is not the case, it hints at the possibility of workload

specific effects on the query execution. We explain it in the context of Q19 next.

Query 19: The analysis of the SP execution of Q19 in both workloads shows the

execution is two times slower for the Parallel Same workload, compared to the

Parallel RandomLong workload. AP execution for both the workloads on the other

hand does not show much variation.

The SQL level analysis of Q19 shows the where clause contains a union of the

results of the three sub-queries. Each of the sub-query has a range based selection

predicate on the same lineitem table attribute (Lineitem is the largest table in the

TPC-H schema), with an overlapping range. The generated plan for this query takes

care of maximizing sharing of the selection predicates, so that the redundant work

is avoided.

When workload = Parallel Same, since the concurrent workload involves the

same query, and since the query has shared predicates, it leads to access to the

same base data. Since MonetDB uses memory mapped storage, these data files get

shared mapping in the memory. However, storing and loading of the intermediates

as they are not shared across queries generate memory bandwidth pressure. Table

6.7 quantifies the contention impact on Q19 and provides insight for its slow down.

It shows the percentage of the L3 cache misses is very high (73%). Very high

value of L3 cache misses also indicates the pressure on the memory bandwidth. The

processor pipeline is heavily stalled during the cache misses resolution, resulting in

its very low utilization as seen from the Instructions per Cycle and Stalled Cycles

per Instruction values. Low value of instruction cache misses (79934) compared to

the isolated execution (142079) indicates the instruction cache sharing. However,

any gains due to it are subdued by the dominance of the L3 cache thrashing.

2An exception is Q4 and Q8 in Parallel Same workload, where average idleness is 10% and not

0%. It explains why Q4 and Q8 show much less degradation compared to other queries, where average

idleness is 0%.
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Table 6.7: Contention measure for Q19’s statically Parallelized execution un-

der different concurrent workloads.

Isolated ParRandLng ParSame

L1 Miss % 11 15 18

L3 Miss % 4 46 73

Instructions/Cycle 1.16 .21 .16

StalledCycles/Instr .5 4.12 5.76

iCache Misses 142079 86415 79934

In comparison when the workload = Parallel RandomLong, the concurrent work-

load contains a mix of queries accessing different base tables. The workload also

has multiple instances of Q17. Q17 contains a selection predicate on the same at-

tribute of the lineitem table as in Q19. Hence, we expect some possible sharing at

the memory mapped level. In [4] authors show a matrix of TPC-H query sharing,

where Q19 shares maximum data with other queries. Due to the random workload

the intermediates generated are however of different sizes unlike the Parallel Same

workload thereby generating less L3 cache misses (46%), leading to a better per-

formance. CPU utilization is also relatively more compared to the Parallel Same

workload.

Summary: Depending on the workload and the query type queries exhibit dif-

ferent sharing patterns, such as possible instruction cache sharing. However, no

data cache sharing is observed as stores and loads of the non-shared intermediates

lead to heavy last level cache thrashing, thereby degrading the SP execution per-

formance. Q19 shows heavy L3 cache thrashing with up-to 73% L3 cache misses,

resulting in its performance degradation during the Parallel Same workload.

Vectorwise resource contention

Figure 6.14 shows that for most queries the parallelized Vectorwise query execu-

tion under Parallel Random workload (Yellow) is on an average six times slower

than the isolated parallelized query execution (Grey). The performance degrada-

tion under concurrent workload results due to resource contention and the resource

allocation scheme in Vectorwise, where the queries get resources such as CPU

cores based on the existing system load. The first query gets all the available CPU

cores and the subsequent queries get less cores based on a certain heuristic. We

hypothesize that in the existing scenario where the concurrent workload consists of

continuously executing 32 queries, the degree of parallelism for the single query

under analysis gets restricted to one, making its execution sequential.

To verify it we plot the sequential query execution in an isolated setting (Dark

Green), which shows around two times speed-up compared to the concurrent work-

load execution. The execution time difference indicates the possible resource con-

tention due to the concurrent workload on a sequential query execution. We also

plot the parallelized query execution under an Infinite Loop workload executing on

all CPU cores, to get an indication of the scheduling overhead for the parallelized
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Figure 6.14: Parallelized query execution (Yellow) performance under concur-

rent workload (Parallel Random) in Vectorwise database system degrades by

around 6 times compared to the parallel execution in Isolated setting (Grey).

The Y axis uses a log scale.

query. The query execution time degrades by around two times compared to the

isolated parallelized execution due to the scheduling overhead.

Summary: Vectorwise parallel query execution under heavy concurrent workload

of random TPC-H queries shows a degradation by around six times compared to

the isolated parallelized execution. In a similar setup the MonetDB queries show

a slow down by around three times. The observations suggest that a hard core

heuristic on admission control as used by Vectorwise need not be always optimal

under a heavy concurrent workload.

6.5.4 Which is better, inter-query or intra-query?

Systems such as Postgres [139] maximize multi-core utilization by executing a sin-

gle query per core. Since multiple queries execute concurrently, queries execute

in the inter-query parallelization mode. On the other hand most systems such as

MonetDB, Vectorwise, Tableau, and SQL Server[43, 23, 19] use intra-query paral-

lelization, using the exchange operator [70], where a single query could execute on

more than one core. Use of an appropriate technique is mostly driven by the system

architecture in use.

Setup: In this experiment we compare the inter-query parallelization performance

of Postgres with Vectorwise and MonetDB on 10GB data-set on the two socket ma-

chine. Both Vectorwise and MonetDB are used in sequential execution to serve the

32 concurrent clients firing random queries (SeqRnd workload). The query Q under

analysis is also executed in the sequential mode. We use Postgres version 9.4 and

configure the parameters such as shared buffer size using pgtune [16] tool recom-

mendations. Postgres forks 32 server processes to serve the 32 concurrent clients
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Figure 6.15: a) Inter-query parallelism comparison of Postgres, MonetDB and

Vectorwise for isolated sequential execution and for sequential execution un-

der SeqRnd workload for 32 clients. (P- Postgres, M- MonetDB, V- Vector-

wise). b) Postgres execution performance when number of concurrent clients

under SeqRnd workload are 31, 32, and 64.

firing continuous random queries. The client that fires query Q under analysis thus

becomes the 33rd concurrent connection.

Performance: Figure 6.15a plots the execution performance of queries when exe-

cuted in isolation vs under concurrent workload execution (SeqRnd), for the three

database systems (P- Postgres, M- MonetDB, V- Vectorwise). Postgres perfor-

mance in both isolated and under concurrent workload is always much lower than

the corresponding MonetDB or Vectorwise performance. The much degraded per-

formance of Postgres isolated execution is a result of its tuple-at-a-time execution

engine architecture, which is not optimized for in-memory execution, unlike Mon-

etDB and Vectorwise. An interesting observation is under concurrent workload all

Postgres queries always show around two times degradation than its isolated execu-

tion. This indicates that though Postgres shows much degraded performance, still

its queries show a relatively robust behavior under concurrent workload execution.

Robustness: To test Postgres robustness behavior further, we conduct another ex-

periment where 31 and 64 clients fire random queries under SeqRnd workload.

When 31 clients fire random queries, the query Q under analysis is fired by the

32nd client. The aim of this experiment is to understand when resource of one core

is available, whether the query Q gets full core for its execution and behaves simi-

lar to isolated execution, since all the 31 clients are busy with 31 cores. However,

the results from Figure 6.15b do not indicate that. The execution performance of

queries when 31 clients are active is slightly better than when 32 clients are active.

This indicates, possible sharing of 31 cores among 31 available clients due to lack

of explicit core affinity, which prevents a dedicated single core allocation to 32nd

client for the query Q under analysis. When 32 clients are active we see the CPU

core idleness to be always 0%, while when only 31 concurrent clients are active we

do see some idleness across random CPU cores.
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The execution time of queries increase by two times compared to isolated ex-

ecution, for 32 concurrent client workload (SeqRnd). On the other hand, for 64

clients it increases by around 4 times, except for Q9. This verifies the earlier claim

that Postgres query execution under heavy concurrent workload is relatively robust,

as it shows linearly degraded performance for almost all queries, with increasing

number of clients.

Overall, both MonetDB and Vectorwise inter-query execution shows between

5 to 30 times better performance than Postgres under concurrent workload. In con-

trast the adaptive parallelized execution of MonetDB under Parallel Random work-

load shows between 10 to 50 times improvement compared to Postgres execution

under concurrent workload.

Summary: Inter-query parallelization as used by Postgres shows much degraded

performance than inter-query sequential execution by columnar systems such as

MonetDB and Vectorwise. Postgres suffers due to tuple-at-a-time execution archi-

tecture.

Overall, intra-query parallelized execution under parallel workload provides

better performance than inter-query sequential execution under sequential work-

load. Best performance is obtained when the parallel workload consists of a mix

of random queries, as the concurrent random query execution does not stress the

memory bandwidth. MonetDB’s plan generation without explicit resource control

fares better than Vectorwise, which uses concurrent client connections, as a refer-

ence during plan generation.

6.6 Related work

The related work is categorized into two broad levels. The first one is query inter-

actions in concurrent workload using model based approaches. The second one is

analyzing the resource contention effect of concurrent workloads in the multi-core

CPU setting.

A lot of past work deals with identifying the correct multi-programming level

(MPL) and aligned problems. MPL decides maximum number of queries that can

simultaneously execute in a system without degrading the overall system perfor-

mance. Many times a scheduling based approach is used to model different possi-

ble query mix interactions, as used in [26]. In [140] the authors use an admission

control and model based approach to decide the most suitable MPL. Other research

includes work by [25, 55, 98, 97, 96, 112] to model the query interactions and con-

current workload effect on individual OLAP queries. Feedback based approach in

transactional workloads, as used in [133] also gives overall idea of possible tech-

nique that can be applied in OLAP workloads.

Identifying the resource contention effect on an individual query performance

has been explored in the context of sequential query execution, in the context of

pipe-lined parallelism. Pipe-lined parallelism minimizes intermediate data unlike

the operator-at-a-time execution. Authors in [90] explore the trade-offs of work

sharing vs pipe-lined parallelism in multi-core systems in sequential query execu-

tion. Simultaneous threads (SMT) on multi-core processors can be considered as

contributing to a concurrent workload. In [146] the authors investigate the effect



136

CHAPTER 6. MULTI-CORE COLUMN STORE PARALLELIZATION

UNDER CONCURRENT WORKLOAD

of SMT on database workloads. In [76] the authors do a thorough analysis of con-

tention in chip multi-processors at different CPU cache levels. However, none of

this work explores the problem of resource contention in range partitioned paral-

lelism in an in-memory muti-core setting. One of the reasons being partitioning is

difficult to set-up and can suffer from changing data as re-partitioning is not easy.

state-of-the-art systems such as Hyper [104] use morsel driven work stealing

based run-time adaptive parallelism. In Hyper terminology, controlling the number

of partitions is equivalent to controlling the size of a morsel. It allows the degree

of parallelism variations of an individual query elastically. However, a direct com-

parison under heavy concurrent workload with adaptive parallelism is not feasible,

due to lack of availability of Hyper for our experimental setup.

In [67] the authors propose a new mechanism to minimize resource utilization

and to maximize performance and predictability while deploying query plans on

multi-core systems. They propose resource activity vectors to characterize individ-

ual database operator’s behavior. A new deployment algorithm uses these vectors

with data-flow information from the query plan for the optimal assignment of the

relational operators to the cores. In [44] the authors introduce a new scheduling

mechanism for multi-core systems where instead of CPU core oriented scheduling

focus, they propose on-chip memory focused scheduling. The threads are sched-

uled across cores based on their data objects usage of the on-chip memory. In [79]

the authors propose Callisto, a resource management layer for parallel run-time sys-

tems. The authors illustrate how Callisto eliminates most of the scheduler-related

interference between concurrent jobs, and allows jobs to claim otherwise-idle cores.

Applicability to exchange operator based systems: Most systems use the ex-

change operator based parallelism approach where number of partitions is the main

parallelization decision metric [43, 19, 23, 39]. Hence, our observations about per-

formance and robustness with respect to the number of partitions and operators are

directly applicable. Unless explicit work / data sharing techniques are used the shar-

ing opportunities are minimal, reflecting our observations for resource contention.

Many systems use customized schedulers, making the software level contention

overheads vary based on specific implementation.

6.7 Summary

The research question: In this Chapter we address the questions, ”What is the

effect of multi-core hardware on the effectiveness of the query optimizers?” and

”How to provide insights into the query execution performance bottlenecks at a

database system’s functionality level?”

Most database systems do not take into account run-time resource contention

during plan generation. Modeling run-time resource variations is very difficult

which makes the generated plans sub-optimal under concurrent workload. Inves-

tigating the effect of a concurrent workload on a parallelized query execution is

crucial to make progress in creating resource contention aware parallel plans. Dif-

ferent types of concurrent workloads generate different types of resource contention

for CPU cores, memory bandwidth, etc. Also the effect of resource contention on
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a parallelized query execution varies significantly depending on the query paral-

lelization technique (intra-query / inter-query) under use.

The research contribution: We introduce 6 different types of workloads that cre-

ate different levels of resource contention at CPU cores and memory bandwidth

level. We analyze the effects of these concurrent workloads on individual paral-

lelized query execution using three query parallelization techniques in the context

of three database systems. We provide detailed insights from thread variations,

scheduling overheads, robustness of individual operator’s, and intra-query versus

inter-query parallelization perspective. We also quantify the performance effects in

terms of microarchitecture hardware counters such as cache misses, pipeline stalls,

etc. Analyzing resource contention due to concurrent workload is very challenging

due to experimental setup complications, constant workload variations, ability to

isolate individualized query performance effects, etc. This is the only work so far

known to us that explores concurrent analytical workload effects on individual par-

allelized query execution in the different areas mentioned, in the context of three

full-fledged database systems.

The insights obtained can be used 1) to design new concurrent workloads and

query combinations with minimal resource contention, 2) to decide between intra-

query and inter-query parallelization on the basis of performance robustness, 3) to

understand why adaptive parallelization performs better than heuristic based par-

allelization, etc. One of the key findings is less number of data partitions lead to

better resource utilization, which can be used while taking decisions during query

optimization phase combined with statistics based approaches such as cost model

optimization. Unless the database system has data sharing abilities, using work-

loads that have similar queries does not help, as these workloads generate more

resource contention compared to workloads with random queries. Most database

systems do not use data sharing abilities, so it should help during the workload

selection.

6.8 Conclusion

Getting insights into the concurrent workload effects on a parallelized query execu-

tion is a very important problem in the field of query parallelization research. The

research in this Chapter investigates it using state-of-the-art systems and provides

some critical insights, such as the role of the number of partitions of a parallelized

plan in reducing overall resource contention. We compared three intra-query par-

allelization techniques, static, adaptive and cost model based parallelization, under

different concurrent workloads, using two in-memory multi-core columnar sys-

tems. We show that even a broad categorization of concurrent workloads, co-related

with average CPU core idleness as a metrics gives good insights into parallelized

query execution performance. We show that random queries based workloads gen-

erate less resource contention compared to workloads that contain similar queries,

when intermediate data sharing is not supported by the execution engine.

Adaptive plans show overall better performance during resource contention as
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they generate less partitions compared to static plans. The static plans show min-

imal time when the number of partitions equals the physical cores. Adaptively

parallelized plans show more robustness and an execution time improvement of an

average 50% compared to the statically parallelized plans. Too many partitions in

statically parallelized plans leads to severe resource contention amongst the com-

peting threads, resulting in a large number of L3 cache misses, resulting in the

memory bandwidth contention. Cost model based parallelization shows the high-

est time as the queries are allocated minimal CPU cores due to heavy concurrent

workload. An important finding is the behavior of inter-query parallelization from

robustness perspective, where the inter-query parallelization shows a much robust

behavior compared to the intra-query parallelization.



Chapter 7

NUMA obliviousness through

memory mapping

”The world around me was oblivious, but for once, I felt absolute” – Rebecah

McManus

With the rise of multi-socket multi-core CPUs a lot of effort is being put into

how to best exploit their abundant CPU power. In a shared memory setting the

multi-socket CPUs are equipped with their own memory module, and access mem-

ory modules across sockets in a non-uniform access pattern (NUMA). Memory

access across socket is relatively expensive compared to memory access within a

socket. One of the common solutions to minimize across socket memory access is

to partition the data, such that the data affinity is maintained per socket.

In this Chapter 1 we explore the role of memory mapped storage to provide

transparent data access in a NUMA environment, without the need of explicit data

partitioning. We compare the performance of a database engine in a distributed set-

ting in a multi-socket environment, with a database engine in a NUMA oblivious

setting. We show that though the operating system tries to keep the data affinity

to local sockets, a significant remote memory access still occurs, as the number of

threads increase. Hence, setting explicit process and memory affinity results in a

robust execution in NUMA oblivious plans. We use micro-experiments and SQL

queries from the TPC-H benchmark to provide an in-depth experimental explo-

ration of the landscape, in a four socket Intel machine.

7.1 Motivation

Most low end servers are equipped with two socket CPUs. In contrast, most high

end servers tend to have four or eight socket CPUs, in a shared memory setting.

1This Chapter is based on the publication ”NUMA obliviousness through memory mapping”, In

Proceedings of DaMoN, SIGMOD 2015.
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Figure 7.1: Schematic diagram for Intel Xeon E5-4657LV2 @2.40GHz CPU

The memory access latency in a two socket CPU is relatively low, however, in four

and eight socket CPUs it is considerably expensive, if the memory being accessed

is remote.

Figure 7.1 shows a shared memory four socket CPU system where each CPU

socket is associated with its own memory module (DRAM), and can also access

a remote DRAM through Quick Path Interconnect (QPI) [9]. The memory access

latency thus varies considerably based on whether the memory being accessed is

local or remote. For example, the process residing on socket 0 accesses its local

memory much faster than the remote memory on socket 2, as socket 2 is 2 hops

away from socket 0. Non-uniform memory access (NUMA) [100] is thus a result

of different memory access latency across sockets, in a shared memory system.

The graph in Figure 7.2 shows such an example for TPC-H Q1 (Scale factor

100 GB on four socket CPU). We plot an average of 6 runs (minimal variations are

observed between consecutive runs), clearing the buffer cache between independent

query executions. The database server process (using memory mapped storage) is

allowed to execute strictly only on two sockets (0 and 1), by pinning the process’s

affinity to both sockets, using the tool numactl [15]. On the other hand, the memory

allocation for the process is allowed to take place on different sockets (0 to 3), using

numactl’s memory binding option, to emphasize that the locality of data and the

memory access distance matters, and affects the execution time.

When the memory allocation is local (socket 0 and 1), the execution time is

lowest, as there is minimal cross socket data access. The execution time is highest

when the memory allocation occurs only on socket 2, as memory on socket 2 is 2

hops away from socket 0, and 1 hop away from socket 1. The operating system

does not allocate memory pages in an uniform manner across sockets, hence the



7.1. MOTIVATION 141

 0

 5

 10

 15

 20

 25

 30

 35

0,1 0 0,2 1,2 2 0,3 3

T
im

e
 (

s
e
c
)

Sockets on which memory is allocated

Figure 7.2: Response time variations for TPC-H Q1 (100GB) on a 4 socket

CPU, when the database server process is spawned across both sockets 0 & 1,

while the memory allocation is varied between sockets 0 to 3.)

part of the process executing on socket 0 tends to access more pages, compared

to process execution on socket 1. This also explains why the execution is second

highest when memory allocation occurs only on socket 3. Memory on socket 3 is

only one hop away from process on socket 0, compared to the process on socket 1.

From Figure 7.2 the execution time for the rest of the memory allocation affinities

is more or less similar.

Database systems try to mitigate the data affinity problem in NUMA config-

uration by partitioning the data across CPU sockets either using range or hash

partitioning[104]. For example, in a star schema, while the fact tables are horizon-

tally range partitioned, the dimension tables being relatively small are replicated.

As an example consider a 100 GB data set, where the data is horizontally parti-

tioned in 25 GB piece each, affiliated with the sockets by introducing correspond-

ing query plan partitions. The thread affinity is set to the corresponding sockets.

This design however requires query plan level changes to introduce data location

aware partitions in the plan, to maintain the data affinity to the sockets.

The observations from Figure 7.2 show minimal variations except for socket2.

This motivates us to explore the viability of an alternate approach using memory

mapped storage, to minimize the need for explicit data partitioning across sockets.

Memory mapped IO uses the operating system’s virtual memory infrastructure to

control mapping of disk files to the memory. Memory mapped IO ensures that only

the portion of the file gets loaded when its access is required. For example, during

execution of a binary file the first step by the operating system is to do memory

mapping of the disk file. As and when page faults occur, the corresponding portion

from the file is brought to the memory based on the mapping. The same logic can

be used to load data from disk files into memory such that locality with respect

to sockets is maintained. Hence, we expect through memory mapped storage the

operating system could offer an oblivious access to the data, while maintaining its

locality with sockets, in a NUMA setting [14].

Consider the case of columnar database systems [110, 43, 99], where memory
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mapped storage can be used to represent in memory columnar data, backed on

disk by a suitable file representation. During in memory data access the data is

brought to the memory from disk and stays in memory as long as there is no need

to swap it out. As an example of a possible mapping, consider the case when two

select operators work on a column that is partitioned into two equal halves. If the

first operator is scheduled to execute on the socket 0, then its data is mapped onto

the memory module for the socket 0. Whereas, if the second operator’s execution

is scheduled on socket 1, then its data gets mapped on the memory module for the

socket 1. The operating system thus tries its best to keep the data affinity to sockets,

depending on the source of access.

7.2 Contributions

Most legacy database systems are designed without taking into account the non-

uniform memory access on multi-socket systems. Making these systems NUMA

aware requires changes in their system architecture, which might not be practical

due to code legacy and the amount of engineering effort involved. We investigate

how the NUMA problems could be mitigated in the context of traditional database

systems using support from the operating system features such as memory map-

ping. We also propose a simple shared nothing architecture to make current systems

NUMA aware. Our main contributions are as follows.

1. We investigate the behavior of different types of query plans (NUMA oblivious

vs NUMA aware) under NUMA settings. We show that the NUMA oblivious query

plans using memory mapping feature, provide reasonable performance compared

to NUMA aware partitioned plans.

2. We investigate the effect of memory mapping in the context of NUMA setting

and provide insights into the behavior of memory mapped columnar storage.

3. We show that remote memory accesses lead to performance degradation in

NUMA oblivious plans. To minimize remote memory accesses, we propose a sim-

ple NUMA aware architecture that can be used by existing legacy systems without

changing their architecture. In this architecture a multi-socket system is configured

as a shared nothing database system, resulting in minimal remote memory accesses,

improving the execution performance by up to 3 times.

7.2.1 Outline

The Chapter is structured as follows. In Section 7.3 we briefly describe the NUMA

oblivious and NUMA aware plans. In Section 7.4 we provide the experiments to

analyze the memory mapped IO behavior in a NUMA setting. In Section 7.5 we

provide a perspective compared to a leading database system. Section 7.6 describes

the related work. We conclude in Section 7.7 citing major lessons learned.
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7.3 NUMA oblivious vs NUMA aware plans

Columnar database systems are a good experimental platform since the columnar

storage can be represented in a memory mapped file. MonetDB, the only open-

source columnar database system is a good choice, since it uses a memory mapped

columnar storage for base tables and intermediate data. It uses operator-at-a-time

execution model, completely materializing the intermediate results.

We use three separate configurations to test the effect of NUMA oblivious data

partitioning vs NUMA aware data partitioning. We describe these configurations

next.

NUMA oblivious data partitioning: MonetDB uses a simple heuristic such that a

parallel plan is generated from a serial plan by range partitioning the largest ta-

ble in the plan. The number of equi-range partitions equal the number of the

available cores. Operators in MonetDB plans operate on the range partitioned

data, where they get scheduled on the available cores using the default operat-

ing system scheduling policy (CFS). This scheme represents multi-core intra-query

parallelism, where data partitioning is done at plan level, without explicit socket

knowledge. The operating system takes care of scheduling the operators on the

sockets such that the memory affinity is maintained in a NUMA setting [100, 14].

This scheme thus does not involve any kind of explicit NUMA related optimiza-

tion with respect to explicit horizontal data partitioning, and hence is termed as

NUMA Obliv.

NUMA aware data partitioning: To explore the effect of socket aware partitioned

data access we use a modified implementation of MonetDB tailored towards the

socket based data locality. The data is partitioned horizontally in 4 pieces such

that the lineitem and the orders table are partitioned across sockets, while the rest

of the tables are replicated. This modified implementation of MonetDB uses an

optimizer that generates socket aware partitioned plans. Inspired by [131] we use

MonetDB in a distributed master slave architecture. We name this implementation

NUMA Distr.

We assign one MonetDB server instance per socket which acts in a slave con-

figuration, whereas a Master MonetDB server instance executes on any one of the

four sockets. Thus we have a total of five MonetDB server instances, one of which

is a master and the rest four are slaves. Slaves execute when master is not exe-

cuting, hence the presence of a separate master does not involve resource sharing.

The slaves carry out the execution of partitioned plan corresponding to their parti-

tioned data, while the master is responsible for the final aggregation of individual

results from each of the four slaves. Each one of the slaves in turn operates on

an intra-query partitioned plan where maximum partitions are the number of cores

per socket. The intra-query partitioned plans that each one of the slave uses are

generated using the same NUMA oblivious parallel plan generation logic. Thus the

NUMA Distr mechanism essentially limits the access of data locally and prevents

across socket interference.

We also use another variation of plans which are similar to NUMA Distr plans

in their physical representation, however in their execution behavior are similar to
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NUMA Obliv. In this scheme a single MonetDB instance uses horizontally par-

titioned data (lineitem and orders tables) across four sockets. The parallel plans

generated in this manner are socket aware, however since we do not use any kind

of thread binding across sockets, the operating system is free to schedule the threads

based on its default scheduling policy, thereby making them behave in a NUMA Obliv

configuration. We name this mechanism as NUMA Shard, because it works on

sharded data like in NUMA Distr scheme, however without the master slave con-

figuration. This configuration is used to overcome the partitioning problems in

NUMA Obliv configuration, that arises due to lack of partitions on the orders ta-

ble. In Section 3.1 we elaborate it using TPC-H Q4 as an example.

Summary: Note that all these three configurations use memory mapped storage, as

MonetDB uses memory mapped files to store columnar base and intermediate data.

Though in NUMA Distr separate database servers execute on each socket, the indi-

vidual operators in the plan work on the memory mapped stored data, restricted to

each socket. Hence, execution performance comparison of these techniques reflect

the effect of memory mapping.

7.4 Experiments

The hardware comprises of Intel Xeon E5-4657L v2 @2.40GHz with 4 sock-

ets, 12 cores per socket for a total of 96 threads (Hyperthreading enabled), L1

cache=32KB, L2 cache=256KB, and shared L3=30MB, and 1TB four channel

DDR3 memory where each socket is attached to 256 GB memory. The operat-

ing system is Fedora 20. The results are an average of 6 runs. The buffer cache is

cleared 2 between successive query executions to allocate new memory mapped

pages, to avoid interference from previously pinned pages. As MonetDB uses

memory mapped columnar storage for base and intermediate data, memory map-

ping is always enabled for all three configurations, NUMA Obliv, NUMA Shard,

and NUMA Distr.

We use the tools numactl and Intel PCM to get insights into the effects of local

vs remote memory accesses.

Numactl: We use numactl [15] to control the process and memory allocation affin-

ity to individual sockets. An example command to set the database server process

affinity to sockets 0,1 and memory affinity to socket 2 is as follows.

numactl -N 0,1 -m 2 database server process

Intel PCM: We use Intel Performance Counter Monitor (PCM) tool [8] to mea-

sure the CPU performance events. PCM is different from frameworks such as PAPI

[114] and Linux Perf [56] because it not only supports core but also uncore events.

The uncore is the part of the processor that deals with integrated memory con-

trollers, the Intel QuickPath interconnect, and the IO hub. We use the executable

pcm-numa to measure the local and remote DRAM access, of cache-line size unit.

Linux Perf [56] tool is used to measure the CPU migrations.

2echo 3 — sudo /usr/bin/tee /proc/sys/vm/drop caches
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Figure 7.3: Query execution performance of NUMA oblivious vs NUMA aware

partitioned plans, for scale factor 100.

7.4.1 SQL query analysis

We use a subset of SQL queries from the TPC-H benchmark on a 100 GB data-

set, to analyze their execution performance in NUMA oblivious vs NUMA aware

partitioned plans. We then switch to micro-benchmark queries for a fine grained

analysis of the observations from the SQL queries.

Setup: NUMA Obliv setup uses a single instance of MonetDB with varying num-

ber of threads, executing on 96 cores, with default operating system scheduling

policy (CFS). The NUMA aware plan execution setup (NUMA Distr) uses four in-

stances of MonetDB with 24 threads each, bound to each one of the four sockets,

using numactl tool. The client invokes queries on a separate MonetDB instance

which acts as a master. The other NUMA aware plan setup (NUMA Shard) also

uses a single instance of MonetDB with varying threads, on 96 cores, with sharded

lineitem and orders table. The dimension tables are not replicated.

Figure 7.3 shows query execution time comparison for selected TPC-H queries.

We use this query set as it provides sufficient insights into the overall behavior of

the techniques under comparison.

The first observation is NUMA Distr shows the best execution time in all the

queries. This is expected because of minimum cross socket interference due to

master slave configuration.

Next we analyze individual queries by focusing on Q6 first, where NUMA Distr

shows around 3 times improvement compared to the other two configurations. Both

NUMA Obliv and NUMA Shard show similar times. Q6 has a single lineitem

table with only select operations, which get parallelized easily. The difference in

execution with NUMA Distr is due to cross socket traffic, as both

NUMA Obliv and NUMA Shard does not have explicit data affinity in plans, as

their threads get scheduled according to the default operating system scheduling

policy.

NUMA Obliv shows highest time for Q4, due to MonetDB’s parallel plan gen-
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eration limitation. Q4 has both the lineitem and the orders table. Orders table is

the second largest table in TPC-H after lineitem table. As MonetDB optimizer par-

titions only the largest table for generating a parallel plan, only the lineitem table

is partitioned. Q4 has a join on the lineitem and the orders table attribute, which

contributes to the lengthy execution as the orders table is not partitioned. In both

NUMA Shard and NUMA Distr versions both the lineitem and the orders table are

partitioned, which explains why both of these configuration are much faster.

Query 19 illustrates the effect on a more complex query over two tables, the

lineitem and the part table. However, in NUMA Shard only the lineitem table

is being partitioned into four pieces using row-id ranges. The part table is not

partitioned. This implies that all cores involved in the join will randomly access the

part table, increasing the intra-core memory accesses. A hash-based partitioning

could alleviate this overhead, but is currently not part of the MonetDB standard

repertoire.

As observed from Q6 and Q19 we expect NUMA Obliv configuration to be

competitive to NUMA Distr configuration provided majority of the tables in the

plan are correctly partitioned. The NUMA Shard configuration is used just to prove

this point, since otherwise as can be seen in Q4, NUMA Obliv execution looks too

expensive. For a drilled down analysis of the effect of the memory mapped IO in a

NUMA setting, we focus on Q6.

Why focus on Q6? Q6 is a simple query with select operation on the largest table,

lineitem. Parallelized select operators are expected to execute with memory affinity

maintained to sockets due to memory mapped storage. Hence, analyzing it gives a

baseline to analyze the numa effects. We hypothesize that the difference in timings

for Q6 (See Figure 7.3) is due to cross socket interference. This is confirmed from

Table 7.1 which shows that NUMA Distr has much less number of remote memory

accesses compared to NUMA Obliv. Hence, we investigate where do these remote

memory accesses arrive and if they can be curtailed to improve the NUMA Obliv

execution further.

Table 7.1: Q6 memory accesses (cache line size unit).

#Local accesses #Remote accesses

NUMA Obliv 69 Million (M) 136 M

NUMA Distr 196 M 9 M

7.4.2 Micro-experiments

We use a modified Q6 from the TPC-H benchmark. Q6 operates on the largest table

lineitem. The query is modified to have only a single select operation, without any

output. It allows us to experiment with the read only aspect of the memory mapped

IO. The query is as follows.

select count(*) from lineitem where l quantity >24000000;
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The select operator acts as a good example to demonstrate the effects of mem-

ory mapped IO in a NUMA setting. It is easily parallelizable by range partitioning

of the data, such that each partition is operated upon by one select operator. Since

each partition uses a memory mapped storage representation, we hypothesize that

the operating system would schedule select operators on sockets, such that the data

affinity is maintained, resulting in NUMA obliviousness.

To test our hypothesis we control the socket allocation for memory and database

server process execution. The 4 socket CPU has 12 physical cores and 12 hyper-

threads per socket, in the following order.

Table 7.2: CPU core allocation across sockets.

Socket 0 Socket 1 Socket 2 Socket 3

Cores 0-11 12-23 24-35 36-47

Cores 48-59 60-71 72-83 84-95

Execution with numactl affinity setting

Setup: The graph in Figure 7.4a quantifies the remote vs local memory accesses,

when process execution and memory allocation affinity is set using numactl. The

process affinity is set on the sockets in steps of 12 threads, as per the core order

in Table 7.2. The memory affinity to sockets is also allocated in increments of

one socket each. For example, when 12 threads execute on socket 0, the memory

allocation is also pinned to socket 0, whereas when 36 threads execute on three

sockets (as per core order in Table 7.2), the memory allocation is pinned to three

sockets. The corresponding command for 36 threads is as follows.

numactl -C 0-11,12-23,24-35 -m 0,1,2 Database Server

First observation in Figure 7.4a is when 12 threads execute on the socket0, their

remote memory access is almost negligible, and the entire memory access arrives

from the local memory. As the number of threads increase across the sockets, the

local memory access decreases, while the remote memory access increases until

60 threads are in use. Note that in Table 7.2, hyper-threads form the range 48-

95. Hence, 60 threads on-wards both remote and local memory accesses almost

stabilizes. Figure 7.4b, shows the corresponding execution time, which also almost

stabilizes after 60 threads of execution.

Figure 7.5 shows the proportion of pages mapped on each socket as the number

of sockets increase. Consider the case, when 24 threads execute on the socket0 and

the socket1. Since only around 30% pages are mapped on the socket0, almost two

third of the threads executing on the socket0 do remote memory access to access

pages from the socket1, rest do local access. Since socket1 has all its pages mapped,

we expect all threads on socket1 to do local access. This indicates the remote access

is around 1/3rd of the total page accesses, while the local accesses are 4/6th of the

total accesses. However, the numbers from the 24 thread case, in Figure 7.4a does

not reflect it. Remote accesses are higher, than local accesses. Digging deeper in
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Figure 7.4: Process and memory affinity to sockets controlled using numactl,

for modified Q6. Buffer cache cleared.
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Figure 7.5: Proportion of memory mapped pages on each socket when threads

and memory allocation per socket is increased by including sockets one by one,

using numactl, for modified Q6.

/proc/process id/numa maps shows some of the remote accesses also arrive from

the memory mapped libraries for the database server process.

We also expect some of the remote accesses to arrive due to cache coherency

and thread migrations. As the number of threads increase, their migrations across

sockets also increase, as shown in Figure 7.7. Numactl just prescribes the affinity

across sockets, but at run-time the operating system is still free to do migrations

to do load balancing [14]. For example, when process affinity is pinned to socket0

and socket1, operating system will not schedule threads on socket2 and socket3,

however, it is free to migrate threads across socket0 and socket1, if the need arises.

This explains why with an increase in the number of threads, the remote memory

accesses increase, while the local memory accesses decrease.
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Figure 7.6: Without process and memory affinity to sockets. a,c) Buffer cache

cleared. b,d) Buffer cache not cleared.

Execution without explicit affinity setting

Setup: Both Figures 7.6a and 7.6b show the number of local vs remote memory

accesses, when the process or memory affinity is not set using numactl. The only

difference being in 7.6a after each independent run, 3 the buffer caches are cleared

using a kernel utility 4. This is a crucial setting as if caches are not cleared mem-

ory mapped pages might stick around on previously allocated sockets, preventing

their new locality based allocation. Figures 7.6a and 7.6b makes the difference

prominently visible.

Figure 7.6a shows a pattern similar to Figure 7.4a, where the local memory

accesses decrease with an increase in the number of threads. However, the change

of both local and remote accesses for 12,24,36, and 48 threads in 7.6a is gradual,

compared to a sudden change in Figure 7.4a. This indicates that when explicit

affinity is not set, and when buffer caches are not polluted, the operating system

does a good job of executing the process on sockets to maintain data locality. Both

in 7.6a and 7.6b, the memory access pattern stabilizes when execution also uses

hyper-threads starting from 60 threads, and almost matches the memory access

3An independent run occurs after 6 runs on the same configuration to take an average.
4echo 3 — sudo /usr/bin/tee /proc/sys/vm/drop caches
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pattern in Figure 7.4a.

Consider the case of 12 threads from Figure 7.6a, where the number of local

accesses are less compared to Figure 7.4a. This is a result of the lack of process and

memory affinity in Figure 7.6a execution. An important observation is unlike Fig-

ure 7.4a, the local memory accesses stay dominant than remote memory accesses

until 36 threads, which indicates the operating system does an overall good job of

scheduling. However, this does not get reflected accordingly in the execution times

from Figures 7.4b and 7.6c, where for 24 and 36 threads, Figure 7.6a execution

time should have been better than 7.4a. We are unable to explain this behavior.

Figure 7.6b offers an interesting perspective as well, as it shows without setting

process and memory affinity to sockets, and without buffer cache cleared, both local

and remote accesses almost stay constant irrespective of the number of threads in

use. However, the execution time (See Figure 7.6d) does change and shows best

time of around 150 sec, when 60 threads are in use. This seems very good as it

indicates, without much efforts, just by choosing the correct number of threads,

better execution can be obtained. However, finding the correct sweet spot in terms

of the number of threads might not be that easy [3]. On the other hand, execution

time for Figure 5a almost stabilizes after 48 threads are in use, which seems like a

more robust approach.

Summary: Overall, we conclude that setting explicit process and memory affinity

in NUMA oblivious plans, leads to a more robust execution as seen from Figure

7.4b, where the execution time stabilizes after 48 threads are in use. However, exe-

cution without process and memory affinity, without clearing buffer cache seems a

more practical approach, and Figure 6d shows, it does offer similar execution time,

but finding the exact number of threads to get the best execution can be tricky [3].

We also observe that the presence of hyper-threads has a negligible effect on the

number of local and remote memory accesses.

Why remote memory access is bad? From Figure 7.8, the execution perfor-

mance of modified Q6 in NUMA Distr configuration is two times better than the

NUMA Obliv configuration. This indicates NUMA Obliv shows relatively good

performance overall. The loss of performance can be mainly attributed to the high

number of remote memory accesses in NUMA Obliv. This can be verified as fol-

lows. When the memory access is prominently local as in the case of 12 threads

(See Figure 7.4a), the execution time is around 320 ms (See Figure 7.4b). If we

divide the time by 4, since there are 4 sockets, the new time per socket is 80 ms,

which matches with the NUMA Distr execution of modified Q6 from Figure 7.8.

7.5 Pipe-lined execution comparison

Comparable performance is a subjective term. In our context we consider up-to

4 times difference as a comparable performance, whereas an order of magnitude

improvement is considered worth the effort of a new system design.

Vectorwise (version 3.5) is a leading column store analytic system that uses pipe-

lined vectorized execution. As it uses a dedicated buffer manager, rather than mem-
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Figure 7.8: More remote memory access in NUMA Obliv slows down execution

of modified Q6 by 2 times, compared to NUMA Distr.

ory mapped storage, a comparison with Vectorwise (See Figure 7.9) provides a

perspective of the possible role of NUMA in its execution performance. The only

configuration change we made is to enable histograms to generate better plans, and

set parallelism level=96.

Vector Def is the single instance default parallel execution without NUMA

awareness and without affinity control. We compare it with MonetDB’s NUMA Shard

configuration in Figure 7.9. Note that NUMA Shard has just the lineitem and the

orders table sharded and represented accordingly in the plan, however, the plan it-

self does not have any socket affinities as a single database instance is used. Hence

NUMA Shard configuration also represents NUMA oblivious execution (as under-
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Figure 7.9: Vectorwise’s parallel execution compared to MonetDB’s parallel

execution (NUMA Distr), for scale factor 100.

lying storage is memory mapped), which we compare with Vector Def configura-

tion.

Vector Def is relatively faster except for Q4, which hints at the executions with

a NUMA oblivious buffer manager perform better than the executions with memory

mapped buffers, as in MonetDB. We hypothesize that Vectorwise performs better

even without NUMA awareness, due to its pipe-lined vectorized execution, and

making it NUMA aware could improve its execution further. Depending on the

query we observe a wide range of multi-core utilization (as reflected in CPU idle-

ness using the top command), which we believe is a result of the cost model based

parallel plan generation in Vectorwise. In [30] the authors illustrate problems of

Vectorwise scalability beyond 8 cores due to locking and synchronization related

overheads. We believe a NUMA aware approach similar to NUMA Distr would

benefit systems like Vectorwise to scale further, as it incurs minimal changes at the

architectural level.

Vectorwise does not have a NUMA aware plan generation. As we do not have

source code access to implement it, to get a perspective of the NUMA aware par-

titioned execution, we partition the lineitem table in four pieces. As query 6 is

the simplest parallelizable query with select operations on the lineitem table, we

measure its execution time on each of these pieces, and plot the highest time as

Vector Distr. We expect minimal aggregation overhead as the only aggregation op-

eration is the sum of the four numbers from the four sockets, which is negligible

compared to the individual select operation’s time. Compared to Vector Def, we

observe an execution improvement of around 2 times.

Hyper’s morsel driven parallelism is NUMA aware, where morsels from hash par-

titioned data are fed to the just in time compiled fused operator pipelines. From

[104] Q6 takes 0.17 sec on 100 GB data-set on a 64 core (hyper-threaded) four

socket, Intel Xeon X7560 @ 2.3GHz machine, with maximum QPI hop=1. While
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Hyper’s Q6 execution time is same as NUMA Distr, its Q4 and Q19 execution is

just 2 times faster, which can be due to less QPI traffic during join, due to hash

based data partitioning in Hyper. Hyper is designed from scratch for optimal multi-

core utilization and uses LLVM [103] generated just in time compiled fused oper-

ator pipelines. However, LLVM code generation also makes its code base much

more complex.

In contrast, the promising query execution time for the queries 4, 6, and 19 by

MonetDB’s NUMA Distr approach prompted us to explore more queries. We plot

their execution time in Figure 7.10. It shows that the query execution performance

of MonetDB’s NUMA Distr approach is comparable to Hyper’s parallel execution

performance for the query set under evaluation. In Figure 7.10 MonetDB uses 96

threads in total. To match Hyper’s hardware configuration we restricted MonetDB’s

execution to 64 threads. Even with this change MonetDB’s NUMA Distr numbers

do not show much variations compared to execution times in Figure 7.10.

Overall, considering its simplicity, NUMA Distr approach looks promising for

existing database architectures to control the problem of remote accesses, which

results in a lower execution performance.

7.6 Related work

In [107] the authors evaluate the memory performance of NUMA machines. One of

the main findings is how guaranteeing data locality to sockets need not be optimal

always, due to increased pressure on local memory bandwidth. Authors provide use

cases to show how a balance of remote and local memory accesses tend to balance

out bandwidth for an optimal performance. Our calculations indicate for the Figure

7.4a, a local bandwidth of up-to 15 GB/sec for 12 threads, and a cumulative remote

bandwidth of up-to 20GB/sec in 48 threads. In [111] authors also offer a detailed

evaluation of memory performance in NUMA machines.

In [131] the authors treat the multi-socket system as a distributed system of in-

dividual database servers, in a master slave configuration. However, unlike our

analytic workload, authors primarily explore the transactional workloads, from
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throughput and client scalability perspective. Authors first elaborate how the tra-

ditional databases like MySQL and PostgreSQL fail to scale with NUMA systems

and then propose a new middle-ware based system called Multimed that solves this

problem, by using multiple database instances in a master-slave configuration. Data

is replicated across all slaves, such that read only queries are handled by slaves,

whereas the master handles update queries. Resource contention due to latching

and synchronization in multi-cores is avoided by using multiple satellite database

servers, instead of a single server. In our case by using multiple database servers

affiliated with individual sockets, we try to minimize the remote memory accesses

in analytical workloads, which we show is the prominent reason for the decreased

query execution performance.

In [122] the authors treat sockets as hardware islands and explore the effect

of different shared nothing database deployments from transactional workload per-

spective. The work is done in the context of SHORE-MT transactional system with

a distributed transaction coordinator using two-phase commit protocol. Different

possible deployment configurations are considered with different possible island

formations, to explore its effects on the throughput of the transactional workloads

by varying parameters such as the database size, granularity of partitions, skew, etc.

This work is different from our work because we use analytical workloads which

have different characteristics with long running queries, unlike transactional work-

loads where the queries are short and access a few rows only. We emphasize on

improving the response time of individual queries by using query parallelization by

range partitioning the data, while the transactional workloads prominently empha-

sis on the overall throughput. While the authors of [122] experiment with different

possible database deployment sizes with different granularity of partitions, we use

only two deployments, namely shared-everything (NUMA Obliv & NUMA Shard)

and shared-nothing (NUMA Distr), where we partition the large tables (lineitem &

orders) in 4 partitions across the 4 sockets.

The NUMA architecture also influences new operating system designs. A new

architecture, called multi-kernel [33] treats NUMA machine as a small distributed

system of processes that communicate via message passing.

In [106] the authors show the case of NUMA aware algorithms, with a focus

on data shuffling. A lot of work also focuses on NUMA aware operators, such as

joins.

7.7 Summary

The research question: In this Chapter we address the questions, ”How well are

the state-of-the-art database management system solutions using the available hard-

ware resources?” and ”How to leverage multi-core systems to improve the perfor-

mance of analytical workloads?”

NUMA systems pose a challenge to database engines as the memory access

latency and bandwidth vary based on the location of the data access. Most server

class systems use 4 socket NUMA systems. The approach taken to mitigate the

NUMA problems is to build new database systems from scratch, making the in-
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dividual database operators NUMA aware. However, most legacy database archi-

tectures can not afford to re-write their execution engines to make the operators

NUMA aware, as its a massive engineering effort to re-write the legacy code. Mak-

ing the legacy database systems perform optimally in a NUMA setting is thus a

challenging problem.

The research contribution: How to affiliate data to memory banks to minimize

cross socket data transfer is a fundamental problem in NUMA systems. The data

affinity to the memory banks problem can be mitigated by letting the operating

system do the scheduling using the memory mapping feature. Hence, we analyze

the NUMA effects on a memory mapped storage system during parallelized query

execution, and provide detailed insights into the observed behavior.

Based on these observations we propose a new shared nothing architecture,

where the data is horizontally partitioned on each memory bank and each socket is

affined with a database engine execution instance (slaves). A master database exe-

cution instance coordinates the distribution to slaves. This thesis proposes and ana-

lyzes the master-slave shared nothing architecture for the first time in the analytical

database engine setup, while there is some related work in transactional database

engines [131, 122]. Our proposed architecture is simple and does not require ma-

jor architecture-level changes, hence, legacy database systems can make use of it

to overcome NUMA related issues. The architecture brings down the cross-socket

memory access interference, thereby improving the performance, which compares

well with the latest state-of-the-art architecture, the Hyper database system [93].

We also show a micro-benchmark example of how Vectorwise [42], a leading

database system can benefit from such an approach.

7.8 Conclusion

We analyzed the role of memory mapping in a NUMA system, by comparing

NUMA oblivious vs NUMA aware plan execution in a database engine that uses

memory mapped columnar storage. NUMA oblivious plans that execute using the

operating system’s default scheduling policy show relatively good performance.

Remote memory accesses are identified as the main culprit in NUMA oblivious

plans. When the database engine is used in a NUMA aware configuration by treat-

ing multi-socket CPU as a distributed system, remote memory accesses are mini-

mal, leading to up-to 3 times improvement on the TPC-H queries tested. For the

query set under evaluation, the distributed system based NUMA aware approach

competes with the parallelism approach by the state-of-the-art systems such as Hy-

per.





Chapter 8

Database parallelism in many-core

architectures

Query parallelization is traditionally done using CPU architectures that support

multi-core, multi-socket, and GPU based architectures. Both multi-core and multi-

socket CPUs have complex and powerful individual cores which are used either

for intra-query or inter-query parallelization. GPU’s offer a different level of par-

allelism where a portion of the query is accelerated using thousands of weak GPU

cores. However, GPUs use a specialized programming paradigm which might be

different from the traditional database engine programming paradigm.

The latest in the trend are the many-core CPUs from Intel also named Xeon-Phi,

which offer a middle-ground between multi-core architectures and GPU architec-

tures, by using X86 based programming over the GPU like architectures. In this

Chapter we explore how to use the traditional database engine architectures to ben-

efit from accelerated processing of many-core CPU architecture. The PCIe bus is

a bottleneck when it comes to transfer of data between CPU and many-core CPUs.

We compare different implementations to understand the effects of the PCIe bottle-

neck, and explore the plausible solutions to avoid them.

8.1 Motivation

The multi-core revolution is here. The number of cores keep on growing from tens

of cores for single socket CPUs to hundreds of cores for multi-socket CPUs. The

latest addition is the many-core CPU architecture by Intel, named as Xeon-Phi.

This architecture acts as an accelerator in addition to the existing main proces-

sor, and is similar to a GPU based architecture. However, unlike GPUs, it uses a

X86 based programming paradigm, making writing programs much easier as X86

programming is well established in terms of the availability of the tools, libraries,

build environments, programming expertise, etc. One of the main application areas

for the increasing number of cores is in the high performance computing (HPC)

domain, however, other areas such as data analytics aligned fields also stand to

benefit, and needs further exploration.
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An interesting problem to explore is how to use Xeon-Phi’s many cores to ac-

celerate query processing in database systems. Query parallelization is a standard

mechanism to improve analytic query execution. Query parallelization on tradi-

tional multi-socket multi-core CPUs face problems such as NUMA based access,

finding an optimal degree of parallelism due to large number of cores, etc. The

device memory on Xeon-Phi ranges between 6 GB to 16 GB depending on the

model type, hence not all data can fit in the device memory. As Xeon-Phi acts as

a co-processor on a PCIe bus alongside the normal host processor, one of the main

problems is data transfer over the PCIe bus, so that the many cores of Xeon-Phi

can work in parallel on this data. Limited device memory and constrained build

environment due to cross compilation issues might also not allow execution of a

complete database engine on Xeon-Phi. Hence, acceleration of specific database

operators is of special interest.

In this Chapter we explore the possible ways to optimally do database operator

accelerations on the Xeon-Phi co-processor by transferring data to the Xeon-Phi

device memory, over the PCIe bus. We focus on the select operator’s acceleration

as our aim is to understand the data transfer properties over the PCIe bus. Offload

processing is an in-built mode from Intel for Xeon-Phi based processing where the

computation and data is automatically offloaded from Xeon based host over PCIe

bus to the Xeon-Phi processor. In order to overcome the limitations of the offload

mode, we implement a MPI based solution, and compare it with the offload mode

based solution. We provide a detailed analysis of different types of data transfer

over PCIe bus related experiments to get a better insight into related problems.

8.2 Contributions

PCIe bandwidth is a bottleneck during data transfer to Xeon-Phi. Low cost avail-

ability of Xeon-Phi prompts us to investigate if PCIe bottleneck could be mitigated

such that instead of using a single Xeon-Phi, they could be used in a clustered con-

figuration in a single system. Hence, we explore different possible implementations

of data transfer over the PCIe bus to get further insights. Although our findings do

not show performance improvement, we get some crucial insights into how the

PCIe bottleneck behaves under different custom data transfer implementations.

The Chapter is structured as follows. In Section 8.3 we briefly describe the

details of the Xeon-Phi architecture. Section 8.4 describes the offload mode of

computation and the MPI based implementation. In Section 8.5 we provide the

experimental results.

8.3 Xeon Phi architecture

The Xeon-Phi architecture code-name is Knights Corner. The co-processor is con-

nected to an Intel processor also known as the ”Host” through a PCI Express (PCIe)

bus. Since the Xeon-Phi runs a Linux operating system, a virtualized TCP/IP stack

can be implemented over the PCIe bus, which allows the co-processor to be used

as a network node. Multiple co-processors can be installed in a single host system,
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Figure 8.1: Xeon-Phi with ring interconnect.

and can communicate with each other over PCIe peer-to-peer interconnect without

intervention from the host.

The individual cores in Xeon-Phi are based on the Pentium architecture, and

are relatively much simpler than the complex powerful cores on the Xeon proces-

sors. One of the main reasons to use simple cores is to keep a low power profile.

There are total 60 cores on Xeon-Phi and each core can use 4 hardware threads

simultaneously, as shown in Figure 8.1, resulting in 240 hardware threads. It is rec-

ommended to run at least 2 threads per core as each core has 2 execution pipelines,

and hence need at least 2 threads to utilize them fully. Xeon-Phi architecture is

primarily composed of processing cores, caches, memory controllers, PCIe client

logic, and a high bandwidth bidirectional ring-interconnect. Each core has a 32 KB

instruction and data L1 cache, and 512 KB L2 cache that is kept fully coherent by a

global distributed tag directory. The memory controllers and the PCIe client logic

provide a direct interface to the GDDR5 memory on the co-processor and the PCIe

bus. All the components are connected together by the ring interconnect.

An important unit is the vector processing unit (VPU), which features a 512

bit SIMD instruction set. Thus VPU can execute 16 single precision (SP) or 8

double precision (DP) operations per cycle. VPU also supports Fused Multiply

Add (FMA) instruction and hence can execute 32 SP and 16 DP operations per

cycle. It also provides support for integers.

The interconnect is implemented as a bi-directional ring. Each direction com-

prises of three independent rings. The largest is data ring, with 64 bytes width data

to support high bandwidth transfer for cores. The address ring is smaller and is

used to transfer read / write commands and memory addresses. The smallest ring

is acknowledgment ring to send flow control and acknowledgment messages.

When a L2 cache miss occurs, the address request is sent on address ring to the

tag directories. The memory addresses are uniformly distributed amongst the tag

directories on the ring to provide a smooth traffic on the ring. If the requested data

block is found in another core’s L2 cache, a forwarding request is sent to that core’s

L2 over the address ring, and the request block is forwarded on the data block ring.
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Figure 8.2: Xeon-Phi core architecture.

If the requested data is not found in any caches, a memory address is sent from the

tag directory to the memory controller.

8.4 Data transfer over the PCIE bus

Xeon-Phi has a device memory that ranges between 6 to 16 GB based on the model

type. The device memory is not sufficient to hold large data sets, and hence data

needs to be transferred from the main memory of the host CPU to the device mem-

ory of the Xeon-Phi for doing any computation. PCIe bus however has a limited

bandwidth and hence can not handle large data transfers.

We use two techniques, the Offload mode based and the MPI based, to transfer

data between the host memory and the co-processor memory. We describe each of

these techniques next.

8.4.1 Offload mode

Offloading is a technique by Intel to send the data and computation seamlessly

to the Xeon Phi accelerator, from the Xeon based host, using the compiler’s as-

sistance. Offloading is done using pragma based directives as a part of the code

generation. Intel provides an offloading supportive run-time environment which

handles the necessary infrastructure. The offloaded code can be further parallelized

using OpenMP based parallelization.

The offload pragma keyword specifies the clauses that contain information rel-

evant to offloading to the target device. Target(mic:MIC DEV) is the target clause

for the compiler to generate code for both the host processor and the specified of-

fload device. Offloading to multiple co-processors is possible using the correct

target. The data to be copied to and from the Xeon-Phi is specified using In (var-

list-modifier) and Out(var-list-modifier) clauses. The var-list-modifiers contains the

information about the data to be transferred. Off-loading involves the overheads

of marshaling of data, reserving and copying buffers on the host and co-processor
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sides, and hence can be expensive as compared to a native execution. Native execu-

tion involves complete execution from the data stored in the device memory itself.

Hence, off-loading is preferred if the overheads of transfer can be compensated by

overlapping of data transfer with computations, and there is sufficient computa-

tional complexity. Some of the techniques used to avoid data transfer is to reuse

the transferred data, and to reserve the buffers across multiple transfers. Next we

provide a code snippet of the offloaded code.

_Pragma("offload target(mic) in(p,q,o,cnt,off,vl,

src[p:q]) out(cnt,dst[0:BATcap])")

{

_Pragma("omp parallel num_threads(120)")

{

_Pragma("omp for reduction(+:cnt)")

for (;p < q; p++)

{

o = (p+off);

v = src[o-off];

dst[cnt] = o;

cnt += (v>=vl);

}

}

}

The offload mode of execution handles the data transfer seamlessly using Intel’s

offload run-time environment, thereby making it difficult to have a control over the

data transfer. In-order to be able to get more insights into the data transfer, we

device our own implementation of data transfer using the message passing interface

(MPI). We describe about it next.

8.4.2 MPI Mode

Message passing interface (MPI) is a language independent distributed message

communication protocol used in a distributed system setting. MPI uses explicit

data transfer routines to transfer data between multiple processes (also known as

ranks) on the same / multiple nodes in a cluster. MPI’s goals are high performance,

scalability, and portability.

There are multiple MPI implementations in use, such as OpenMPI, MPICH,

MVAPICH, and Intel MPI, being prominent ones. The implementations consists

of specific set of routines directly callable from C,C++,Fortran and any other lan-

guage able to interface with its libraries, including C#, Java, Python. MPI Send

and MPI Receive APIs are used to transfer data between different processes. Both

of these APIs use blocking or non-blocking mode of data transfer. We use the

open-source MPICH3.1 implementation due to its support for multi-threading and

profiling in Xeon-Phi environment.
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We devise our own implementation of data transfer between the host memory

and the Xeon-Phi device memory using MPI. We categorize it into a single buffer

transfer mode and a streamed buffer transfer mode. In a single buffer transfer mode,

the computation on Xeon Phi has to wait until all the data is available in the device

memory. It also does not utilize the bi-directional PCIe bandwidth optimally, as the

PCIe bus is busy in the data transfer only in a single direction. These problems are

avoided in the streamed buffer transfer mode, where the data is split into multiple

vectors, and each vector is sent one by one. When the first vector arrives at Xeon-

Phi, the computation could start using it, while the next streamed vectors are being

transferred on the PCIe bus concurrently.

8.4.3 MPI profiling

Being a distributed message passing protocol, MPI is highly susceptible to perfor-

mance problems due to optimal tuning. Some of the prominent tuning parameters

include the message size, the buffer size, the collective algorithms, the underlying

protocols to use. MPI offers a profiling interface as a part of its standard distribu-

tion, which can be used to profile applications making MPI calls. This interface

is called PMPI. The PMPI interface calls match the standard MPI calls but with a

different name and act as a wrapper to set the relevant tuning parameters around

the regular MPI calls.

Though PMPI interface is standard on all MPI implementations, it does not

provide details on the internals of the MPI library performance. Another new inter-

face which provides these details is MPI T, which is based on profiling variables.

This interface allows to probe for two types of variables, control and performance

variables. The control variables are used for controlling the MPI performance such

as the ”eager limit” threshold which controls whether the eager protocol or ren-

dezeneous protocol is chosen, based on the size of the message buffer. The perfor-

mance variables are used for probing the MPI library internal details such as the

message size, buffer size, etc.

Next we describe the architecture of our implementation for MPI based data

transfer over the PCIe bus.

8.5 MPI data transfer Architecture

Due to the constraints on the Xeon-Phi device memory size and possible cross

compilation issues during the build environment, having a full fledged database

execution engine executing on Xeon-Phi is not practical as of yet.

Hence, we choose the model of operator based acceleration where a few op-

erators are accelerated on Xeon-Phi. For example, in the current implementation

we use a selection operator acceleration, where the input data to the select operator

is transferred to the Xeon-Phi device memory from the host memory. The selec-

tion operator’s computation is accelerated on Xeon-Phi and the generated output is

shipped back to the host memory.
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Figure 8.3: Multi-threaded architecture.

We use MPI based data transfer between the host memory and Xeon-Phi device

memory, where we use a single host and a single Xeon-Phi accelerator. Another

possible variation is single host and multiple Xeon-Phi accelerators.

8.5.1 Single host- Single Phi acceleration

Figure 8.3 shows the example of single host - single phi based acceleration. Here

the Xeon based host uses a multi-threaded implementation with a separate sender

and receiver thread to transfer and receive the streamed data to and from the Xeon-

Phi co-processor. The Xeon-Phi also uses a multi-threaded receiver and sender to

receive and send the data from and to the Xeon based host. The computation on

the received data is done in a separate thread. Two separate queues are used to

gather the data received from the host and to be sent to the host after computation

on it is done. The receiver thread on Xeon-phi receives streamed data, and puts in

a receiver queue. The compute thread picks up the streamed data from the receiver

queue as it becomes available and does the computation to generate the output

streamed data, which it puts in the sender queue. The sender thread picks up the

data from the sender queue and sends it to the Xeon host.

8.6 Experiments

We use MonetDB, the open-source column store database for our evaluation. Our

experimental platform consists of a Xeon based host with Intel(R) Xeon(R) CPU

E5-2650 0 @ 2.00GHz with two sockets with 8 cores each with hyper-threading

enabled. 256 GB of DDR3 memory and Enterprise Linux 7 Operating System

installation. The Xeon-Phi model being used is 5110P with 8GB of device memory.

All experiments use 120 threads of execution on Xeon-Phi.

During the experiments we do a comparison of offload mode of data transfer

against our MPI based data transfer over the PCIe bus for select operator accelera-

tion using different dataset sizes.

We use TPC-H benchmark data sets of varying sizes to get a perspective of the

effect of the data set size. We use a single simple query to analyze different cases.

Select count(*) from part where p size >5;
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Figure 8.4: Single thread vs 32 threaded vs offloaded execution.

8.6.1 Offload-data transfer based execution

In this experiment we measure the query execution time using offload mode of data

transfer. During offload mode of data transfer only the loop that does selection on

the columnar data is offloaded automatically using compiler generated code.

Graph 8.4 shows the execution time for a single threaded execution, 32 threaded

execution on Xeon host, and offloaded execution with 1 thread on Xeon based host

and 120 threads on Xeon-Phi. Please note that the Y-axis is log scale.

For 1 GB scale factor when the execution on Xeon based host goes from serial

execution to 32 threaded parallelized execution, timing improves but not as much

as it improves for 100 GB scale factor. The Offloaded execution uses a single thread

on Xeon based host side, whereas the Xeon-Phi uses 120 threads to parallelize the

selection based for loop code using OpenMP pragmas. We can observe that the

offloaded execution does not improve the execution time much compared to serial

execution on Xeon. Most of the time is spent in data transfer over PCIe as seen

from Table 8.1.

Table 8.1: Offload execution time split-up

Computation Data transfer

1 GB 1 ms 8.5 ms

100 GB 40 ms 1110 ms

During offloaded execution a single buffer gets transferred over the PCIe bus to

the Xeon-Phi. To understand the effect of a streamed execution we vectorized the

single buffer and vectors are passed over the PCIe bus so that execution can start

on individual vectors. The vectorized implementation uses MPI to do data transfer,

which we explain next.
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Figure 8.5: Single thread single vector (no-mpi) vs MPI based streaming exe-

cution.

8.6.2 MPI based data transfer with streaming execution

Graph 8.5 shows the execution time of a non-MPI single vector based execution

compared with a MPI based streaming execution with a single vector and 16 vec-

tors. Single vector indicates lack of vectorization where the entire buffer is trans-

ferred over PCIe as a single vector compared to when the buffer is vectorized into

16 vectors.

In both 1GB and 100 GB scale factor case no-mpi based execution where execu-

tion happens over a serial plan performs better than mpi based executions. Digging

into literature indicates MPI has too much overhead when the TCP stack is used to

do data transfer due to kernel context switches and buffer copying.

To investigate if the TCP stack overhead could be mitigated one possible so-

lution is to use a different fabric using Infiniband stack for communication over

RDMA. Our efforts to configure an Infiniband stack fabric for Xeon-Phi were not

successful due to heavy dependencies on SDK versions, kernel versions, and con-

stant ongoing development to improve the fabric drivers. However, this remains a

future investigation possibility.

8.6.3 MPI tuning

Our experiments to analyze the effect of tuning of different MPI tuning parameters

on the MPI performance did not result in significant differences. We were specifi-

cally interested in the parameters that include the message size, the buffer size, the

collective algorithms, the underlying protocols to use.

We experimented with ”eager limit” threshold which controls whether the ea-

ger protocol or rendezeneous protocol is chosen, based on the size of the message

buffer. However, we did not observe a significant difference in execution times.



166

CHAPTER 8. DATABASE PARALLELISM IN MANY-CORE

ARCHITECTURES

For 100 GB data-set, the size of the individual vector (vector size) passed on

PCIe was 5000004 bytes. The eager protocol gets used when the tuning parameter

MPIR CVAR CH3 EAGER MAX MSG SIZE >vector size

(MPIR CVAR CH3 EAGER MAX MSG SIZE=6000004 ). The total execution

time in micro-seconds is 1137231.

The rendezeneous protocol gets used when the tuning parameter

MPIR CVAR CH3 EAGER MAX MSG SIZE <vector size

(MPIR CVAR CH3 EAGER MAX MSG SIZE=1000004). The total execution time

in micro-seconds is 1001207.

The execution time difference of 0.1 seconds is a result of the ”eager limit”

threshold tuning.

8.7 Summary

The research question: Intel Xeon-Phi is a many-integrated-core (MIC) architec-

ture primarily targeted towards high performance computing (HPC) workloads. Ex-

ploration of Xeon-Phi as a co-processor to accelerate database query execution is an

active research area [89, 47, 145]. First generation Xeon-Phis (Knights Corner ar-

chitecture) have a limited device memory (up-to 16 GB) and work as a co-processor

attached to the PCIe bus, which has severe constraints on the data bandwidth (up

to 6GB/sec practically observed when compared with the memory bandwidth). It

limits their usage in data heavy workloads. Hence, optimizing PCIe bandwidth us-

age is an important problem in the context of database workloads.

The research contribution: We propose a many-core architecture execution en-

gine for database query acceleration. We investigate the PCIe bottleneck for the

data transfer to Xeon-Phi. Our proposed execution engine uses a streaming based

multi-threaded MPI implementation to accelerate a select operator on a Xeon-Phi.

As Xeon-Phi prices have dropped from thousand dollars to a hundred dollar, more

than one Xeon-Phi could be used in a cluster configuration in a single system for

acceleration. Our MPI based implementation is an exploration attempt in that di-

rection.

At the time of writing this thesis a new advanced architecture, Knights Landing,

has been launched in the market, and it takes care of the PCIe bottleneck as the new

architecture can work as a standalone processor, instead of only as a co-processor

on the PCIe bus. The hardware landscape thus evolves rapidly. However, the cheap

prices of the old architecture compared to the new architecture still makes it attrac-

tive to use them in a clustered configuration in a single system.

8.8 Conclusion

Intel’s many-core architecture offers large number of cores at low energy footprint

with 512 bit SIMD registers. Xeon-phi still has a long road to go to become useful

in the database world where large sized data-sets are often a norm. Xeon-phi is

useful for compute heavy functions that could be possibly accelerated such as spe-
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cial statistical functions in python, R etc. inside databases. The main hurdle is data

transfer over the PCIe bus since the device memory of Xeon-Phi still remains rela-

tively small in size to fit database analytical data-sets. Our efforts to understand the

effect of data transfer using offloaded mode of execution and a MPI based stream-

ing based execution did not provide breakthrough results in terms of performance

improvement, however, it provided us with detailed understanding of the MPI based

performance issues and possible ways to resolve them, which should help in any

future investigations of related topics. Intel’s knights-landing architecture which

is due in 2016, promises to remove many bottlenecks such as the device memory

size bottleneck by providing a much larger device memory size and a standalone

processor. It hopefully will help database analytical workloads to make better use

of these many-core architectures.





Chapter 9

Summary and future directions

The multi-core CPU landscape is vast. Most database researchers exploring multi-

core related research focus on individual operators and study their behavior, pro-

pose new algorithm implementations, and analyze the speedup of comparable algo-

rithms using different number of cores and CPU architectures. Most of the research

literature comprises of such papers.

However, often this research lacks a perspective to look at the problem of

database query parallelization in a holistic manner, which involves taking into ac-

count the combined effects of system execution of an entire database execution

engine. Query parallelization is a very hard problem and most systems struggle to

get it correct due to different factors involved such as software complexity, hard-

ware complexity, CPU architecture dependency, etc. For example, a join operator’s

performance is different in an isolated setting in a standalone implementation, com-

pared to when executed in a full-fledged execution engine. The performance gets

affected due to run-time resource contention, changing workloads, type of queries

under execution, different operators degree of parallelism, etc.

This thesis focuses on the entire ecosystem of query parallelization and related

problems in the context of a well established columnar database system. It pro-

poses techniques for improvement and provides detailed experimentation compar-

ing with state-of-the-art columnar systems such as Hyper and Vectorwise. Colum-

nar database systems are preferred for studying analytical query execution unlike

row-based database systems, as columnar database systems are designed and opti-

mized from grounds up for analytical query processing. The research in this field

hence comprises of creating an ecosystem of different aspects such as 1) new tools

to identify performance bottlenecks in execution engines and propose solutions, 2)

proposing new plan parallelization techniques based on the observed behavior and

validating the proposed techniques through detailed experimentation, 3) analyzing

the effects of these techniques on the latest hardware, and 4) exploring the latest

hardware characteristics to understand their effect on query execution improve-

ment.

Gaining access to a full-fledged columnar database system’s source code and

source code related expertise is difficult. As a result, no PhD thesis in the database

169
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systems literature explores the analytical query parallelization problem in a holistic

manner the way this thesis explores it. Making a complex piece of software like a

database execution engine work perfectly is very difficult and any holistic explo-

rations provide new insights and techniques into its improvement. The research in

this thesis contributes towards it. Wherever possible the experiments use state-of-

the-art systems such as Vectorwise [42] and Hyper [93] for comparison and provide

suggestions on how these systems could be improved further. Database architec-

ture systems research is mostly applied systems research, and this thesis takes the

applied approach, as modeling an entire database execution engine is known to be

in-feasible.

The first part of this Chapter summarizes the research explorations undertaken

in this thesis, providing the highlights of the scientific contributions of each Chap-

ter.

The second part of the Chapter provides a brief overview of the upcoming new

trends in the hardware, and the role of database system integration and related

research problems.

9.1 Chapter 3 & 4

If I have seen further it is by standing on the shoulders of giants - Isaac Newton

Research in applied sciences such as Computer Science and Database Systems

is mostly engineering driven. Database systems are a complex piece of software,

and tools that assist in getting insights into their behavior is a crucial part of the

research ecosystem. Chapters 3 & 4 describe two such tools Stethoscope and To-

mograph, that we implemented to visualize execution of the parallel query plans.

Parallel plans quickly become too complex for performance troubleshooting analy-

sis. Most database systems still rely on text based tools, which are good for analyz-

ing serial query plans, but are poor for parallel plan analysis due to their complexity.

As the number of cores increase, effective analysis of these plans is a crucial step in

improving the performance of the parallel plan execution. We analyze different use

cases of performance bottlenecks and provide possible solutions for improvement.

Hence, visualization of query execution plans acts as stepping stone in the parallel

query execution research ecosystem. The techniques we propose in the rest of the

thesis derive from our observations of different plans analyzed using these tools.

Our work has inspired similar tools in commercial systems such as Vectorwise,

HP Vertica, and SAP Hana.

9.2 Chapter 5

Query execution engines are a complex beast. Query parallelization is a well known

technique to make query execution faster. The degree of parallelism of operators in

the query execution plan is the most influential factor in query execution. Hence,

getting it correct is crucial. Most systems use a cost model or a heuristic based

approach to determine the degree of parallelism of a query plan. We propose a



9.3. CHAPTER 6 171

new technique that is adaptive and feedback-based called adaptive parallelization.

When the same query pattern is fired multiple times, adaptive parallelization comes

into effect. It involves incrementing the degree of parallelism of the most expensive

operator with each execution feedback.

The process of adaptive parallelization should also converge. We propose a new

convergence algorithm that stops the feedback loop when the optimal degree of par-

allelism for the query plan has been determined, and a global minimum execution

time has been reached. Detailed experimentation shows that the adaptive plans per-

form comparably to heuristic plans under isolated execution. Adaptive plans also

exhibit much better multi-core utilization which helps during concurrent workload

execution. The convergence algorithm shows consistency in observed convergence

runs, hence behaves robustly.

Though adaptive parallelization seems like a relatively simple technique, get-

ting it to work correctly in a complex column store architecture like MonetDB is a

major challenge due to the complexity of MonetDB plans. Plan modification based

on feedback quickly becomes very complex due to operators interdependence. We

modify implementations of all the fundamental relational algebra operators and

some auxiliary operators that are column store specific to make them adaptively

parallelizable aware.

We provide details about how adaptive parallelization could be used by other

Exchange operator-based database systems. Crucial insights are provided describ-

ing the effects of correct number of data partitions on the multi-core utilization,

resulting in less resource contention for adaptive plans compared to heuristic plans.

The convergence algorithm we propose is relatively simple and should be easy to

adapt to other systems. Adaptive parallelization has generated good interest into

research community as observed during conference discussions and follow up re-

search undertaken at other research centers.

9.3 Chapter 6

Query parallelization is challenging because determining the optimal degree of par-

allelism is a difficult problem. It also gets affected drastically due to run-time

resource variations during concurrent workload. Almost all database systems gen-

erate a query plan without taking into account the concurrent workload, as mod-

eling a concurrent workload during query plan generation is really complex. The

query plan generated in this manner thus behaves sub-optimally under concurrent

workload due to run-time resource constraints put by concurrent queries under ex-

ecution.

Getting insights into how a parallelized query plan behaves under concurrent

workload is thus very crucial and the research exploring this problem is very lim-

ited. In Chapter 6 we compare three different database parallelization techniques

(cost model, heuristic, and adaptive parallelization) using three different database

systems to gain insights into how a single parallelized query gets affected by con-

current queries under execution. A key finding is that the total number of data

partitions in adaptive plans being less put less resource constraints on the resources
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such as the CPU cores and the memory, allowing adaptive plans to perform better.

We provide detailed insights into hardware characteristic effects at the architecture

level by quantifying L1 / L3 cache misses, pipeline stalls, etc. to show the effect of

different workloads on performance characteristics of query execution. We show

that inter query parallelization as used by legacy systems such as Postgres perform

very poorly compared to intra-query parallelization by systems such as MonetDB

and Vectorwise. However, Postgres shows robust behavior compared to these other

systems. Overall, adaptive plans perform better. We show that using random work-

load leads to less resource contention compared to workload with similar queries,

when the database systems do not employ data sharing techniques. This is a crucial

insight when it comes to mixing of different types of workloads during concurrent

executions. No other research has studied this problem in such a depth from an

analytical query execution perspective so far. Hence, this Chapter provides crucial

scientific contributions in understanding how concurrent workloads affect paral-

lelized query execution.

9.4 Chapter 7

As addition of more cores to an existing CPU socket has reached threshold, new

architectures based on multi-socket systems are becoming a norm in server class

systems. These systems are termed non-uniform memory access (NUMA) sys-

tems, as each socket’s data access time varies based on the memory bank being

accessed. Query execution on multi-socket systems quickly runs into problem as

data access latency and bandwidth across sockets vary depending on the memory

being accessed.

We explore if the memory mapping feature by the operating system can resolve

these issues, as operating system takes care of mapping data affinity to different

memory banks of different sockets. We perform a thorough analysis of the re-

sulting access patterns to get insights. Based on this analysis we propose a new

distributed shared nothing architecture based on master-slave configuration. The

multi-socket system is treated as a shared nothing system by horizontally parti-

tioning data across different memory banks and restricting one database execution

instance on each socket, in coordination with a master node. We show that this

master-slave architecture helps with restricting cross socket memory accesses. This

results in improved query execution performance comparable to the latest state-of-

the-art system, Hyper. We elaborate how this simple scheme could turn any existing

database system into a distributed database system in a multi-socket environment.

We provide a sample use case with the state-of-the-art system Vectorwise. This is

the only research work in the context of analytical database systems that introduces

a shared nothing architecture, while similar work exists for transactional database

systems.
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9.5 Chapter 8

In this Chapter we explore how columnar database systems can exploit a new CPU

architecture termed ”Intel Many-Core architecture” pioneered by Xeon-Phi family

of co-processor CPUs. Xeon-Phi is primarily targeted at HPC workloads, however,

how to utilize their large number of low power cores in database workloads is an

interesting question to investigate. Xeon-Phi acts as a co-processor connected to

the main processor through the PCIe bus. PCIe bus is well known for its bandwidth

bottleneck problem where practical bandwidth of up to 6GB/sec could be reached

using standard benchmarks.

We investigate how can we further optimize the use of the PCIe bus for data

transfer for an operator’s acceleration in a database execution engine, by using

MPI based vectorized multi-threaded streamed execution. We compare this with

the offload based execution provided by default by Intel. The PCIe bottleneck is

well known for data transfer, however, since Xeon-Phi prices have dropped from

thousands to a mere hundred dollars, they could possibly be used in a clustered

configuration in a single system. The MPI based streamed execution engine is a

step in that direction. Our experiments using MPI run into issues of MPI overhead

due to TCP stack overheads, which we had not anticipated before. Similarly setting

up an Infiniband based setup also ran into issues due to version dependency on

kernel and related problems. This is the first of its kind of study that implements

an MPI based streamed vectorized execution engine and hence provides crucial

insights into what could go wrong with such a system. Though results do not show

improvements, it shows how bleeding edge technology requires time before it could

be fully exploited in a database system.

The author’s internship experience at Oracle Labs in Silicon Valley on a new

software-hardware co-design based columnar multi-core system engine is also valu-

able in this context. For a couple of years Oracle Labs is designing a low power

multi-core hardware chip to be used in distributed clustered setting with a colum-

nar database accelerator execution engine. It also acts as a proof that new hardware

takes a long time to mature, before it could be optimally used by the software.

Having done an overview of the scientific contributions of the thesis, next we

provide a brief overview of how hardware is evolving and what role the database

systems have to play in this evolution.

9.6 Knights landing- Many core architecture

Knights Landing is the next generation architecture after Knights Corner architec-

ture in Intel’s Xeon Phi family of many-core processors. Along with 72 Atom based

cores (4 threads per core), it also has a 16 GB of on-board high speed memory (MC-

DRAM), which Intel claims to be 5 times more power efficient than GDDR5 and 3

times more dense. There are 6 memory channels of 384GB DDR4 memory. It also

has 36 PCIe lanes which can host 2 Knight’s Corner architecture cards. The large

device memory allows to fit the big data sets in the device memory itself for the

native execution, thereby getting rid of the need for the data transfer over the PCIe
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bus.

Another major upgrade is, Xeon Phi can now act as a solo processor in its own

socket, with a fully functional operating system. It can also continue to act as a

co-processor over the PCIe bus. A new interconnect called Omni-connect is also

introduced with 100Gbps bandwidth and is supposedly faster than the Infiniband

interconnect.

The main problem faced by database systems while using the Knights corner

architecture is the lack of sufficient device memory to fit the big data-sets. This

requires copying of data over the PCIe bus. The presence of 348 GB of device

memory solves this problems to a larger extent as many data-sets can now fit in the

device memory itself.

Since Xeon-Phi is a processor with many-core architecture, the database sys-

tems software needs to be cross-compiled to be able to execute on it. Depending on

the complexity of the build requirements dependency, cross-compilation could get

tricky, and in turn hamper the attempts to build the database system for Xeon-Phi.

The presence of 4 threads per core on a 60 core Xeon-Phi allows the total num-

ber of threads to be 240. How to effectively parallelize the query plans to utilize so

much compute power is a challenge. Xeon Phi has a new type of memory called

on-chip MCDRAM memory (16GB). The presence of this memory changes the

traditional cache based memory access patterns considerably, as this memory now

acts like a L3 cache. NUMA aspects of data access also have to be considered.

Hence, the Knights Landing architecture brings new aspects to the database

system execution engine design and relevant research needs to be done to make

optimal utilization of this HPC targeted many-core CPU for database workloads.

The results described in Chapter 8 can provide a reference in this direction.

9.7 Internet of things hardware

The computer industry has gradually transitioned from PCs, laptops, smart phones,

and tablets to sensor based ubiquitous devices. Internet of things is the name for

the sensor based technology ecosystem trend under development. The devices that

fall under Internet of Things include fitness wearable devices, home automation

devices, retail sensor analytical devices, etc. The estimation is that there will be

around 50 billion objects forming part of the Internet of Things infrastructure by

2020.

As the individually connected objects grow, they would also need distributed

hubs with processing power, that could act as miniature versions of the powerful

servers. We can already see a trend for this miniature server type of systems, in

the form of system on chips and small form factor single board computers. These

would be the processing nodes for the ubiquitous devices of the Internet of Things

infrastructure. Examples of some single board computers include Raspberry Pi,

Intel Galilio, Intel Edison, Cubieboard, Parallella, Arduino and other system on

chips. Most of these boards have sufficient power in their small form factor, with at

least two processing cores, 1GB RAM, 2 GB flash ROM, etc. For example, Rasp-

berry Pi 2 model B has a quad core 900MHz ARM based CPU and a VideoCore
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GPU. Intel Edison has a dual core Intel Atom 500 MHz CPU and a quark proces-

sor, 1GB RAM, 4GB flash, onboard wifi and blacktooth, and SD card sized form

factor, which is extremely crucial for embedded devices.

The Internet of Things objects are going to generate a constant stream of data.

This data needs to be stored, processed, and analyzed to derive meaningful analytics

out of it. The single board systems we saw earlier are going to play a crucial role

in this development where they could form a middle layer before the data is finally

stored on the back-end infrastructure. These single board computers already have

parallel hardware in terms of multiple cores, and the number of cores are going to

increase substantially as can be seen already by the trend in Raspberry Pi where

there are now 4 cores compared to 2 cores when it was introduced 2 years earlier.

Another board named Parallella has two ARM based cores, whereas 16 cores form

its on-board co-processor. As these computer boards start getting more number of

cores, they will give rise to new challenges in parallel processing.

However, unlike the desktop or server based systems these boards would have

constraints on their power usage, device memory, persistent storage, etc. and the

softwares designers need to take that into account. Since one of the main func-

tions of these boards would be to act as data aggregators before sending the data to

higher level infrastructure, the role of database systems become crucial from data

processing perspective. Hence, their design needs to be thought from new hard-

ware requirement perspective. The embedded database systems and stream based

database systems might be able to fit the requirements of Internet of Things based

ecosystem. Already attempts are being made to tune the existing designs or develop

new database engines from scratch to suit the streaming nature of data in Internet

of Things infrastructure.

This opens up new research directions to design the database system compo-

nents such as the query language, query optimizers, cost models for new hardware,

buffer management schemes, query execution engine paradigms, query plan paral-

lelization, etc. for the new class of hardware devices with all their new constraints.

Big players such as Google and Intel are already working towards providing a plat-

form based architecture to provide a standardization for Internet of Things ecosys-

tem. Google announced the Project Brillo in October 2015, which aims to create

an Android based operating system infrastructure platform for Internet of Things

devices. Intel is already working towards making its processor ecosystem fit this

new platform. Database systems will also have to be a part of such drive to bring a

standardized ecosystem for better inter-operabilitiy between different devices gen-

erated data to draw meaningful analytics out of it.

One of the challenges is also going to be creating diverse build environments for

such a diverse set of hardware, as more and more players start building their own

hardware. The role of community based ecosystem matters the most to help such

diverse hardware take off the ground and succeed in the longer run. For example,

Raspberry Pi is a success story as it was one of the first that came into the market,

and now has a full-fledged community backing it. As more and more new hardware

boards emerge this is going to be a challenge and only the best will survive. Hence,

software design is going to be challenge in such a competitive dynamic ecosystem.
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9.8 Mobile processors

Many high end mobile devices already are powered by 8 big.LITTLE ARM ar-

chitecture based cores, about which we provided a brief overview in the second

Chapter. The trend of increasing number of cores is going to continue with mobile

device processors too.

ARM architecture based processors dominate mobile processor market, some

examples being Samsung Exynos, Qualcomm Snapdragon, Nvidia Tegra and Apple

A7 platforms. Intel is trying to expand into this market with its own Atom series

of mobile processors. The main concern in mobile processors is to conserve the

power. ARM with its decades of experience in mobile processors has simple RISC

based architecture compared to Intel Atom processors CISC architecture, which

look more like stripped down version of the desktop and server processors where

Intel dominates. Hence, mobile based processors are going to see a lot of inno-

vation happening to be able to overcome the limitations of existing mobile based

processors.

Mobile devices already surpass the desktop and laptop computers in the world.

Smart-phones of the future are going to resemble desktop PCs in their computa-

tional power. With cloud based storage mobile app based ecosystem will advance

further in terms of the kind of applications possibly hosted on mobile based de-

vices. Database systems would play a crucial role in such an environment. Hence,

their role needs to be re-thought carefully in this new mobile based environment,

as all the database systems are primarily designed for desktop and server level sys-

tems. There are many potential research opportunities in designing new power

aware database systems for the mobile based systems, where traditional database

systems need not be optimal both from their power usage and performance perspec-

tive, given their dependence on the desktop and server level hardware architecture.

Screen form factor of mobile based devices also would play a crucial role in

how the user interfaces for database systems on mobile devices look like. There

are already attempts to build touch screen based database system query interfaces.

More such visualization based interfaces would arrives soon that would provide

ease of interaction with the data, with the mobile devices acting as an agent provid-

ing that access.

9.9 Summary

As the number of CPU cores increase, making an optimal use of them during ana-

lytical query parallelization is a critical problem. First half of this Chapter provides

a summary of the research questions addressed and the research contributions made

in each of the thesis Chapters, in the context of analytical parallelized query execu-

tion. We provide a brief summary next.

Most database systems use either a heuristic or a cost model based parallel plan

generation approach which does not generate efficient parallel plans. In this thesis

we propose a new parallel plan generation technique called adaptive paralleliza-

tion and explore it in the context of different CPU architectures. We propose new
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visualization tools to identify query performance bottleneck issues. We show ef-

fectiveness of these tools in identifying and resolving the performance bottlenecks.

Next, we investigate the critical problem of the effect of resource contention due

to concurrent workload on a parallelized query execution in the context of three

different state-of-the-art database systems. We continue our exploration to multi-

socket systems and propose a new shared nothing system architecture for legacy

database systems, to mitigate the NUMA related remote memory access problem.

Towards the end we investigate the role of PCIe bandwidth bottleneck during data

transfer in Xeon-Phi many-core architecture, in the context of database workloads.

In the second half of the Chapter, we give an overview of the emerging trends in

the new hardware and what challenges they pose to the database systems from the

design and the architecture perspective. We give a brief overview of how the multi-

core hardware would possibly evolve with respect to different CPU architectures,

and the design choices for their corresponding applications with data management

as a focus. As the data continues to grow rapidly, the role of database systems

assume a lot of importance in the new data driven ecosystem. Making the database

systems use the emerging hardware technologies optimally is a challenging task,

and holds a lot of research potential. The extensive experimentation provided in

this thesis can serve as a reference and guide to explore these new systems.

9.10 Conclusion

Query parallelization is an important research problem as it directly affects the

query execution performance. The focus is to improve the query execution response

time of long running analytical queries on different multi-core CPU architectures.

As column-store database systems are designed to provide optimized performance

for analytical query execution, getting them to perform optimally with the ubiqui-

tous present multi-core CPU architectures is also critically important.

Multi-core CPU architectures vary a lot ranging from single socket systems to

multi-socket systems to low power many-core systems. Making columnar database

systems perform optimally with these different CPU architectures requires a thor-

ough analysis of different software and hardware components, with a software-

hardware co-design oriented approach. The software complexity and the restric-

tions on the access to the source code makes it difficult to do a holistic evaluation

of the query parallelization problem with different multi-core CPU architectures.

Hence, the holistic exploration of the query parallelization problem in the context

of a full fledged open-source columnar database system, MonetDB, with different

multi-core CPU architectures is an important contribution of this thesis.

This holistic exploration involves exploring the problem from different dimen-

sions. It includes identification of the possible problematic areas in parallelized

query execution from the perspective of operator’s implementation and schedul-

ing, plan parallelization techniques, effect of different workloads, dependence on

the underlying hardware architecture, etc. The detailed experimentation and anal-

ysis provided in this thesis should act as a reference for any future explorations of

analytical parallelized query execution in columnar database systems.





Appendix A

Sample TPC-H query graph

visualizations

We list a few selected query execution data flow graphs in this section to give a

perspective of the complexity of the execution plans when parallelized using static

parallelization heuristic in MonetDB. A point to note is as the database system con-

tinuously evolves with better optimizer choices, efficient operator implementations,

the plans tend to become more compact, resulting in less complex graphs. The rect-

angles represent operators while the edges represent the data-flow. The aim here

is to show the complexity of the query plans in terms of their data-flow graph rep-

resentation, without details about individual operators. Many of the operators are

administrative operators, which have negligible cost, however, need to be present

for column store specific data flow dependencies.

function user.s1_4(A0,A1,A2);

    X_14 := algebra.uselect(X_13,A0,X_12,true,false);

    X_12 := mtime.addmonths(A1,A2);

    X_17 := algebra.markT(X_14,0@0:oid);

    X_67 := nil:bat[:oid,:str];

    X_67 := algebra.leftjoin(X_66,X_63);

    X_71 := sql.resultSet(2,1,X_67);

    sql.rsColumn(X_71,"sys.orders","o_orderpriority","varchar",15,0,X_67);

    X_70 := nil:bat[:oid,:wrd];

    X_70 := algebra.leftjoin(X_66,X_69);

    sql.rsColumn(X_71,"sys.orders","order_count","wrd",64,0,X_70);

barrier X_155 := language.dataflow();

exit X_155;

    X_5 := sql.mvc();

    X_13:bat[:oid,:date]  := sql.bind(X_5,"sys","orders","o_orderdate",0);

    X_48:bat[:oid,:int]  := sql.bind(X_5,"sys","orders","o_orderkey",0);

    X_27:bat[:oid,:date]  := sql.bind(X_5,"sys","lineitem","l_commitdate",0);    X_24:bat[:oid,:date]  := sql.bind(X_5,"sys","lineitem","l_receiptdate",0);

    X_20:bat[:oid,:oid]  := sql.bind_idxbat(X_5,"sys","lineitem","lineitem_l_orderkey_fkey",0);

    X_8:bat[:oid,:str]  := sql.bind(X_5,"sys","orders","o_orderpriority",0);

    X_55 := algebra.leftjoin(X_18,X_48);

    X_52 := bat.mirror(X_48);

    X_28 := bat.mirror(X_27);

    X_35 := algebra.join(X_34,X_27);

    X_29 := bat.mirror(X_24);

    X_36 := algebra.join(X_31,X_24);

    X_45 := algebra.leftjoin(X_44,X_20);

    X_59:bat[:oid,:str]  := algebra.leftjoinPath(X_58,X_18,X_8);

    X_18 := bat.reverse(X_17);

    X_53 := algebra.leftjoin(X_18,X_52);

    X_56 := algebra.semijoin(X_55,X_54);

    X_54 := algebra.join(X_53,X_46);

    (ext111,grp109) := group.done(X_59);

    X_63 := algebra.join(X_62,X_59);

    X_57 := algebra.markT(X_56,0@0:oid);

    X_30 := algebra.join(X_28,X_29);

    X_37:bat[:oid,:bit]  := batcalc.<(X_35,X_36);

    X_33 := algebra.markT(X_30,0@0);    X_31 := algebra.markH(X_30,0@0);

    X_34 := bat.reverse(X_33);

    X_41 := algebra.join(X_40,X_31);

    X_38 := algebra.uselect(X_37,true);

    X_42 := bat.reverse(X_41);

    X_40 := bat.reverse(X_38);

    X_43 := algebra.markT(X_42,0@0:oid);

    X_44 := bat.reverse(X_43);

    X_46 := bat.reverse(X_45);

    X_58 := bat.reverse(X_57);

    X_62 := bat.mirror(ext111);

    X_69:bat[:oid,:wrd]  := aggr.count(grp109,grp109,X_62);

    X_64 := algebra.sortTail(X_63);

    X_65 := algebra.markT(X_64,0@0:oid);

    X_66 := bat.reverse(X_65);

    sql.exportResult(X_83,X_71);

    X_83 := io.stdout();

end s1_4;

Figure A.1: Query 4, 55 nodes.
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function user.s1_6(A0,A1,A2,A3,A4,A5,A6,A7);

    X_106 := algebra.uselect(X_100,A0,X_16,true,false);     X_107 := algebra.uselect(X_102,A0,X_16,true,false);     X_108 := algebra.uselect(X_103,A0,X_16,true,false);    X_110 := algebra.uselect(X_105,A0,X_16,true,false);

    X_16 := mtime.addmonths(A1,A2);

    X_22 := calc.-(A3,A4);    X_18 := calc.+(A5,A6);

    X_117 := algebra.thetauselect(X_112,A7,"<");     X_118 := algebra.thetauselect(X_114,A7,"<");     X_119 := algebra.thetauselect(X_115,A7,"<");    X_120 := algebra.thetauselect(X_116,A7,"<");

    X_112 := algebra.semijoin(X_90,X_106);     X_114 := algebra.semijoin(X_92,X_107);     X_115 := algebra.semijoin(X_93,X_108);    X_116 := algebra.semijoin(X_94,X_110);

    X_23 := calc.lng(2,X_22,15,2);    X_19 := calc.lng(2,X_18,15,2);

    X_121 := algebra.markT(X_117,4,0);     X_125 := algebra.markT(X_118,4,1);     X_128 := algebra.markT(X_119,4,2);    X_131 := algebra.markT(X_120,4,3);

    X_31:lng  := nil:lng;

    X_31:lng  := aggr.sum(X_162);

    sql.exportValue(1,"sys.","revenue","decimal",19,4,8,X_31,"");

barrier X_170 := language.dataflow();

exit X_170;    X_10 := sql.mvc();

    X_90:bat[:oid,:int]  := sql.bind(X_10,"sys","lineitem","l_quantity",0,0,4);

    X_85:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,0,4);

    X_79:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,0,4);

    X_66:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,0,4);

    X_92:bat[:oid,:int]  := sql.bind(X_10,"sys","lineitem","l_quantity",0,1,4);

    X_87:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,1,4);    X_82:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,1,4);

    X_70:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,1,4);

    X_93:bat[:oid,:int]  := sql.bind(X_10,"sys","lineitem","l_quantity",0,2,4);

    X_88:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,2,4);

    X_83:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,2,4);

    X_74:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,2,4);

    X_94:bat[:oid,:int]  := sql.bind(X_10,"sys","lineitem","l_quantity",0,3,4);

    X_89:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,3,4);

    X_84:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,3,4);

    X_77:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,3,4);

    X_100 := algebra.semijoin(X_85,X_96);

    X_96 := algebra.uselect(X_79,X_23,X_19,true,true);

    X_144 := algebra.leftjoin(X_134,X_79);    X_140 := algebra.leftjoin(X_134,X_66);

    X_102 := algebra.semijoin(X_87,X_97);

    X_97 := algebra.uselect(X_82,X_23,X_19,true,true);

    X_145 := algebra.leftjoin(X_136,X_82);     X_141 := algebra.leftjoin(X_136,X_70);

    X_103 := algebra.semijoin(X_88,X_98);

    X_98 := algebra.uselect(X_83,X_23,X_19,true,true);

    X_146 := algebra.leftjoin(X_138,X_83);     X_142 := algebra.leftjoin(X_138,X_74);

    X_105 := algebra.semijoin(X_89,X_99);

    X_99 := algebra.uselect(X_84,X_23,X_19,true,true);

    X_147 := algebra.leftjoin(X_139,X_84);     X_143 := algebra.leftjoin(X_139,X_77);

    X_148 := batcalc.*(X_140,X_144,true,true);

    X_134 := bat.reverse(X_121);

    X_153 := algebra.selectNotNil(X_148);

    X_158 := aggr.sum(X_153);

    X_157 := mat.pack(X_158,X_159,X_160,X_161);

    X_162 := algebra.selectNotNil(X_157);

    X_150 := batcalc.*(X_141,X_145,true,true);

    X_136 := bat.reverse(X_125);

    X_154 := algebra.selectNotNil(X_150);

    X_159 := aggr.sum(X_154);

    X_151 := batcalc.*(X_142,X_146,true,true);

    X_138 := bat.reverse(X_128);

    X_155 := algebra.selectNotNil(X_151);

    X_160 := aggr.sum(X_155);

    X_152 := batcalc.*(X_143,X_147,true,true);

    X_139 := bat.reverse(X_131);

    X_156 := algebra.selectNotNil(X_152);

    X_161 := aggr.sum(X_156);

end s1_6;

Figure A.2: Query 6, 80 nodes.

function user.s1_8(A0,A1,A2,A3,A4,A5,A6);

    X_561 := batcalc.==(X_557,A0);    X_560 := batcalc.==(X_556,A0);    X_559 := batcalc.==(X_555,A0);     X_558 := batcalc.==(X_554,A0);

    X_116 := calc.lng(A1,19,4);

    X_111 := calc.lng(A2,15,2);

    X_86 := algebra.uselect(X_85,A3);     X_15 := algebra.uselect(X_12,A4,A5,true,true);    X_36 := algebra.uselect(X_35,A6);

    X_566 := batcalc.isnil(X_561);

    X_571 := batcalc.ifthenelse(X_566,false:bit,X_561);

    X_565 := batcalc.isnil(X_560);

    X_570 := batcalc.ifthenelse(X_565,false:bit,X_560);

    X_564 := batcalc.isnil(X_559);

    X_569 := batcalc.ifthenelse(X_564,false:bit,X_559);

    X_563 := batcalc.isnil(X_558);

    X_568 := batcalc.ifthenelse(X_563,false:bit,X_558);

    X_604 := batcalc.ifthenelse(X_571,X_600,X_116);    X_603 := batcalc.ifthenelse(X_570,X_599,X_116);    X_602 := batcalc.ifthenelse(X_569,X_598,X_116);     X_601 := batcalc.ifthenelse(X_568,X_597,X_116);

    X_590 := batcalc.-(X_111,X_586,false,true);    X_592 := batcalc.-(X_111,X_587,false,true);     X_594 := batcalc.-(X_111,X_588,false,true);     X_596 := batcalc.-(X_111,X_589,false,true);

    X_87 := algebra.markT(X_86,0@0:oid);     X_17 := algebra.markT(X_15,0@0:oid);    X_37 := algebra.markT(X_36,0@0:oid);

    X_101 := nil:bat[:oid,:int];

    X_101 := algebra.leftjoin(X_100,X_97);

    X_125 := sql.resultSet(2,1,X_101);

    sql.rsColumn(X_125,"sys.all_nations","o_year","int",32,0,X_101);

    X_124 := nil:bat[:oid,:lng];

    X_124 := algebra.leftjoin(X_100,X_123);

    sql.rsColumn(X_125,"sys.","mkt_share","decimal",19,4,X_124);

barrier X_649 := language.dataflow();

exit X_649;

    X_9 := sql.mvc();

    X_201:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_orderkey_fkey",0,0,4);

    X_12:bat[:oid,:date]  := sql.bind(X_9,"sys","orders","o_orderdate",0);

    X_21:bat[:oid,:int]  := sql.bind(X_9,"sys","orders","o_orderkey",0);

    X_215:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_partkey_fkey",0,0,4);

    X_35:bat[:oid,:str]  := sql.bind(X_9,"sys","part","p_type",0);

    X_29:bat[:oid,:int]  := sql.bind(X_9,"sys","part","p_partkey",0);

    X_207:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_orderkey_fkey",0,1,4);

    X_210:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_orderkey_fkey",0,2,4);

    X_213:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_orderkey_fkey",0,3,4);

    X_217:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_partkey_fkey",0,1,4);

    X_51:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","orders","orders_o_custkey_fkey",0);

    X_44:bat[:oid,:int]  := sql.bind(X_9,"sys","customer","c_custkey",0);

    X_218:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_partkey_fkey",0,2,4);

    X_219:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_partkey_fkey",0,3,4);

    X_220:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_suppkey_fkey",0,0,4);

    X_225:bat[:oid,:lng]  := sql.bind(X_9,"sys","lineitem","l_extendedprice",0,0,4);

    X_230:bat[:oid,:lng]  := sql.bind(X_9,"sys","lineitem","l_discount",0,0,4);

    X_222:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_suppkey_fkey",0,1,4);

    X_227:bat[:oid,:lng]  := sql.bind(X_9,"sys","lineitem","l_extendedprice",0,1,4);

    X_232:bat[:oid,:lng]  := sql.bind(X_9,"sys","lineitem","l_discount",0,1,4);

    X_223:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_suppkey_fkey",0,2,4);

    X_228:bat[:oid,:lng]  := sql.bind(X_9,"sys","lineitem","l_extendedprice",0,2,4);

    X_234:bat[:oid,:lng]  := sql.bind(X_9,"sys","lineitem","l_discount",0,2,4);

    X_224:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","lineitem","lineitem_l_suppkey_fkey",0,3,4);

    X_229:bat[:oid,:lng]  := sql.bind(X_9,"sys","lineitem","l_extendedprice",0,3,4);

    X_235:bat[:oid,:lng]  := sql.bind(X_9,"sys","lineitem","l_discount",0,3,4);

    X_55:bat[:oid,:int]  := sql.bind(X_9,"sys","supplier","s_suppkey",0);

    X_71:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","supplier","supplier_s_nationkey_fkey",0);

    X_64:bat[:oid,:int]  := sql.bind(X_9,"sys","nation","n_nationkey",0);

    X_76:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","customer","customer_c_nationkey_fkey",0);

    X_92:bat[:oid,:oid]  := sql.bind_idxbat(X_9,"sys","nation","nation_n_regionkey_fkey",0);

    X_85:bat[:oid,:str]  := sql.bind(X_9,"sys","region","r_name",0);     X_79:bat[:oid,:int]  := sql.bind(X_9,"sys","region","r_regionkey",0);

    X_104:bat[:oid,:str]  := sql.bind(X_9,"sys","nation","n_name",0);

    X_241 := algebra.join(X_201,X_25);

    X_19 := algebra.leftjoin(X_18,X_12);

    X_23 := bat.mirror(X_21);

    X_285 := algebra.leftjoin(X_281,X_215);

    X_33 := bat.mirror(X_29);

    X_243 := algebra.join(X_207,X_25);     X_245 := algebra.join(X_210,X_25);     X_247 := algebra.join(X_213,X_25);

    X_287 := algebra.leftjoin(X_282,X_217);

    X_53 := algebra.leftjoin(X_18,X_51);     X_48 := bat.mirror(X_44);

    X_289 := algebra.leftjoin(X_283,X_218);     X_291 := algebra.leftjoin(X_284,X_219);

    X_342:bat[:oid,:oid]  := algebra.leftjoinPath(X_633,X_281,X_220);

    X_577:bat[:oid,:lng]  := algebra.leftjoinPath(X_641,X_401,X_360,X_333,X_305,X_281,X_225);    X_586:bat[:oid,:lng]  := algebra.leftjoinPath(X_641,X_401,X_360,X_333,X_305,X_281,X_230);

    X_343:bat[:oid,:oid]  := algebra.leftjoinPath(X_634,X_282,X_222);

    X_578:bat[:oid,:lng]  := algebra.leftjoinPath(X_642,X_403,X_362,X_335,X_307,X_282,X_227);     X_587:bat[:oid,:lng]  := algebra.leftjoinPath(X_642,X_403,X_362,X_335,X_307,X_282,X_232);

    X_344:bat[:oid,:oid]  := algebra.leftjoinPath(X_635,X_283,X_223);

    X_579:bat[:oid,:lng]  := algebra.leftjoinPath(X_643,X_405,X_363,X_336,X_308,X_283,X_228);    X_588:bat[:oid,:lng]  := algebra.leftjoinPath(X_643,X_405,X_363,X_336,X_308,X_283,X_234);

    X_345:bat[:oid,:oid]  := algebra.leftjoinPath(X_636,X_284,X_224);

    X_580:bat[:oid,:lng]  := algebra.leftjoinPath(X_644,X_407,X_364,X_337,X_309,X_284,X_229);    X_589:bat[:oid,:lng]  := algebra.leftjoinPath(X_644,X_407,X_364,X_337,X_309,X_284,X_235);

    X_59 := bat.mirror(X_55);

    X_383 := algebra.leftjoin(X_379,X_71);    X_384 := algebra.leftjoin(X_380,X_71);     X_385 := algebra.leftjoin(X_381,X_71);     X_386 := algebra.leftjoin(X_382,X_71);

    X_68 := bat.mirror(X_64);

    X_424:bat[:oid,:oid]  := algebra.leftjoinPath(X_637,X_420,X_76);    X_426:bat[:oid,:oid]  := algebra.leftjoinPath(X_638,X_421,X_76);     X_428:bat[:oid,:oid]  := algebra.leftjoinPath(X_639,X_422,X_76);     X_430:bat[:oid,:oid]  := algebra.leftjoinPath(X_640,X_423,X_76);

    X_470 := algebra.leftjoin(X_466,X_92);    X_471 := algebra.leftjoin(X_467,X_92);     X_472 := algebra.leftjoin(X_468,X_92);     X_473 := algebra.leftjoin(X_469,X_92);

    X_83 := bat.mirror(X_79);

    X_554:bat[:oid,:str]  := algebra.leftjoinPath(X_641,X_547,X_104);    X_555:bat[:oid,:str]  := algebra.leftjoinPath(X_642,X_548,X_104);     X_556:bat[:oid,:str]  := algebra.leftjoinPath(X_643,X_549,X_104);     X_557:bat[:oid,:str]  := algebra.leftjoinPath(X_644,X_550,X_104);

    X_272 := algebra.markT(X_241,4,0);     X_249 := bat.reverse(X_241);

    X_495:bat[:oid,:date]  := algebra.leftjoinPath(X_641,X_401,X_360,X_333,X_305,X_265,X_19);    X_496:bat[:oid,:date]  := algebra.leftjoinPath(X_642,X_403,X_362,X_335,X_307,X_266,X_19);     X_497:bat[:oid,:date]  := algebra.leftjoinPath(X_643,X_405,X_363,X_336,X_308,X_267,X_19);     X_498:bat[:oid,:date]  := algebra.leftjoinPath(X_644,X_407,X_364,X_337,X_309,X_268,X_19);

    X_18 := bat.reverse(X_17);

    X_24 := algebra.leftjoin(X_18,X_23);

    X_25 := bat.reverse(X_24);

    X_312:bat[:oid,:oid]  := algebra.leftjoin(X_629,X_53);    X_314:bat[:oid,:oid]  := algebra.leftjoin(X_630,X_53);     X_316:bat[:oid,:oid]  := algebra.leftjoin(X_631,X_53);     X_318:bat[:oid,:oid]  := algebra.leftjoin(X_632,X_53);

    X_250 := bat.reverse(X_243);    X_275 := algebra.markT(X_243,4,1);     X_251 := bat.reverse(X_245);    X_277 := algebra.markT(X_245,4,2);

    X_252 := bat.reverse(X_247);

    X_279 := algebra.markT(X_247,4,3);

    X_281 := bat.reverse(X_272);

    X_253 := algebra.markT(X_249,4,0);

    X_292 := algebra.join(X_285,X_40);

    X_347 := algebra.join(X_342,X_60);

    X_597 := batcalc.*(X_577,X_590,true,true);

    X_297 := algebra.markT(X_292,4,0);

    X_38 := bat.reverse(X_37);

    X_39 := algebra.leftjoin(X_38,X_33);

    X_40 := bat.reverse(X_39);

    X_293 := algebra.join(X_287,X_40);     X_294 := algebra.join(X_289,X_40);     X_295 := algebra.join(X_291,X_40);

    X_299 := algebra.markT(X_293,4,1);     X_301 := algebra.markT(X_294,4,2);     X_303 := algebra.markT(X_295,4,3);

    X_305 := bat.reverse(X_297);

    X_629 := algebra.leftjoin(X_305,X_265);

    X_633 := algebra.leftjoin(X_333,X_305);

    X_500 := batmtime.year(X_495);

    X_265 := bat.reverse(X_253);

    X_319 := algebra.join(X_312,X_49);

    X_501 := batmtime.year(X_496);     X_502 := batmtime.year(X_497);     X_503 := batmtime.year(X_498);

    X_256 := algebra.markT(X_250,4,1);    X_282 := bat.reverse(X_275);

    X_266 := bat.reverse(X_256);

    X_630 := algebra.leftjoin(X_307,X_266);

    X_259 := algebra.markT(X_251,4,2);    X_283 := bat.reverse(X_277);

    X_267 := bat.reverse(X_259);

    X_631 := algebra.leftjoin(X_308,X_267);

    X_262 := algebra.markT(X_252,4,3);

    X_284 := bat.reverse(X_279);

    X_268 := bat.reverse(X_262);

    X_632 := algebra.leftjoin(X_309,X_268);

    X_348 := algebra.join(X_343,X_60);

    X_598 := batcalc.*(X_578,X_592,true,true);

    X_307 := bat.reverse(X_299);

    X_634 := algebra.leftjoin(X_335,X_307);

    X_320 := algebra.join(X_314,X_49);     X_321 := algebra.join(X_316,X_49);     X_322 := algebra.join(X_318,X_49);

    X_324 := algebra.markT(X_319,4,0);    X_410 := bat.reverse(X_319);

    X_49 := bat.reverse(X_48);

    X_327 := algebra.markT(X_320,4,1);

    X_412 := bat.reverse(X_320);

    X_329 := algebra.markT(X_321,4,2);     X_413 := bat.reverse(X_321);     X_331 := algebra.markT(X_322,4,3);     X_414 := bat.reverse(X_322);

    X_333 := bat.reverse(X_324);    X_415 := algebra.markT(X_410,4,0);    X_335 := bat.reverse(X_327);

    X_416 := algebra.markT(X_412,4,1);

    X_349 := algebra.join(X_344,X_60);

    X_599 := batcalc.*(X_579,X_594,true,true);

    X_308 := bat.reverse(X_301);

    X_635 := algebra.leftjoin(X_336,X_308);

    X_336 := bat.reverse(X_329);

    X_417 := algebra.markT(X_413,4,2);

    X_350 := algebra.join(X_345,X_60);

    X_600 := batcalc.*(X_580,X_596,true,true);

    X_309 := bat.reverse(X_303);

    X_636 := algebra.leftjoin(X_337,X_309);

    X_337 := bat.reverse(X_331);     X_418 := algebra.markT(X_414,4,3);

    X_351 := algebra.markT(X_347,4,0);    X_366 := bat.reverse(X_347);

    X_354 := algebra.markT(X_348,4,1);

    X_369 := bat.reverse(X_348);     X_356 := algebra.markT(X_349,4,2);    X_371 := bat.reverse(X_349);

    X_358 := algebra.markT(X_350,4,3);

    X_373 := bat.reverse(X_350);

    X_60 := bat.reverse(X_59);

    X_360 := bat.reverse(X_351);

    X_374 := algebra.markT(X_366,4,0);

    X_637 := algebra.leftjoin(X_401,X_360);

    X_362 := bat.reverse(X_354);

    X_375 := algebra.markT(X_369,4,1);

    X_638 := algebra.leftjoin(X_403,X_362);

    X_363 := bat.reverse(X_356);

    X_376 := algebra.markT(X_371,4,2);

    X_639 := algebra.leftjoin(X_405,X_363);

    X_364 := bat.reverse(X_358);

    X_377 := algebra.markT(X_373,4,3);

    X_640 := algebra.leftjoin(X_407,X_364);

    X_379 := bat.reverse(X_374);

    X_387 := algebra.join(X_383,X_69);    X_388 := algebra.join(X_384,X_69);     X_389 := algebra.join(X_385,X_69);     X_391 := algebra.join(X_386,X_69);

    X_392 := algebra.markT(X_387,4,0);    X_531 := bat.reverse(X_387);

    X_69 := bat.reverse(X_68);

    X_431 := algebra.join(X_424,X_69);    X_432 := algebra.join(X_426,X_69);     X_433 := algebra.join(X_428,X_69);     X_435 := algebra.join(X_430,X_69);

    X_395 := algebra.markT(X_388,4,1);    X_533 := bat.reverse(X_388);     X_397 := algebra.markT(X_389,4,2);    X_534 := bat.reverse(X_389);     X_399 := algebra.markT(X_391,4,3);    X_535 := bat.reverse(X_391);

    X_437 := algebra.markT(X_431,4,0);    X_453 := bat.reverse(X_431);    X_440 := algebra.markT(X_432,4,1);     X_455 := bat.reverse(X_432);     X_442 := algebra.markT(X_433,4,2);    X_457 := bat.reverse(X_433);     X_444 := algebra.markT(X_435,4,3);    X_459 := bat.reverse(X_435);

    X_401 := bat.reverse(X_392);    X_537 := algebra.markT(X_531,4,0);

    X_420 := bat.reverse(X_415);

    X_380 := bat.reverse(X_375);

    X_403 := bat.reverse(X_395);    X_541 := algebra.markT(X_533,4,1);

    X_421 := bat.reverse(X_416);

    X_381 := bat.reverse(X_376);

    X_405 := bat.reverse(X_397);    X_543 := algebra.markT(X_534,4,2);

    X_422 := bat.reverse(X_417);

    X_382 := bat.reverse(X_377);

    X_407 := bat.reverse(X_399);    X_545 := algebra.markT(X_535,4,3);

    X_423 := bat.reverse(X_418);

    X_446 := bat.reverse(X_437);

    X_460 := algebra.markT(X_453,4,0);

    X_641 := algebra.leftjoin(X_488,X_446);

    X_448 := bat.reverse(X_440);

    X_461 := algebra.markT(X_455,4,1);

    X_642 := algebra.leftjoin(X_490,X_448);

    X_449 := bat.reverse(X_442);

    X_462 := algebra.markT(X_457,4,2);

    X_643 := algebra.leftjoin(X_492,X_449);

    X_450 := bat.reverse(X_444);    X_464 := algebra.markT(X_459,4,3);

    X_644 := algebra.leftjoin(X_494,X_450);

    X_466 := bat.reverse(X_460);

    X_474 := algebra.join(X_470,X_90);    X_475 := algebra.join(X_471,X_90);     X_477 := algebra.join(X_472,X_90);     X_478 := algebra.join(X_473,X_90);

    X_479 := algebra.markT(X_474,4,0);

    X_88 := bat.reverse(X_87);

    X_89 := algebra.leftjoin(X_88,X_83);

    X_90 := bat.reverse(X_89);

    X_482 := algebra.markT(X_475,4,1);     X_484 := algebra.markT(X_477,4,2);     X_486 := algebra.markT(X_478,4,3);

    X_488 := bat.reverse(X_479);

    (X_504,X_505) := group.done(X_500);

    X_514 := algebra.leftjoin(X_512,X_500);

    X_526 := algebra.join(X_96,X_500);

    X_547 := bat.reverse(X_537);

    X_615 := algebra.selectNotNil(X_597);

    X_467 := bat.reverse(X_461);

    X_490 := bat.reverse(X_482);

    (X_506,X_507) := group.done(X_501);

    X_516 := algebra.leftjoin(X_515,X_501);

    X_527 := algebra.join(X_96,X_501);

    X_548 := bat.reverse(X_541);

    X_617 := algebra.selectNotNil(X_598);

    X_468 := bat.reverse(X_462);

    X_492 := bat.reverse(X_484);

    (X_508,X_509) := group.done(X_502);

    X_518 := algebra.leftjoin(X_517,X_502);

    X_528 := algebra.join(X_96,X_502);

    X_549 := bat.reverse(X_543);

    X_618 := algebra.selectNotNil(X_599);

    X_469 := bat.reverse(X_464);

    X_494 := bat.reverse(X_486);

    (X_510,X_511) := group.done(X_503);

    X_520 := algebra.leftjoin(X_519,X_503);

    X_529 := algebra.join(X_96,X_503);

    X_550 := bat.reverse(X_545);

    X_619 := algebra.selectNotNil(X_600);    X_512 := bat.mirror(X_504);

    X_611 := aggr.sum(X_605,X_505,X_512);

    X_621 := aggr.sum(X_615,X_505,X_512);

    X_521 := mat.pack(X_514,X_516,X_518,X_520);

    X_525 := mat.pack(X_526,X_527,X_528,X_529);

    X_610 := mat.pack(X_611,X_612,X_613,X_614);

    X_620 := mat.pack(X_621,X_622,X_623,X_624);

    (ext312,grp310) := group.done(X_521);

    X_515 := bat.mirror(X_506);

    X_612 := aggr.sum(X_606,X_507,X_515);

    X_622 := aggr.sum(X_617,X_507,X_515);

    X_517 := bat.mirror(X_508);

    X_613 := aggr.sum(X_607,X_509,X_517);

    X_623 := aggr.sum(X_618,X_509,X_517);

    X_519 := bat.mirror(X_510);

    X_614 := aggr.sum(X_608,X_511,X_519);

    X_624 := aggr.sum(X_619,X_511,X_519);

    X_96 := bat.mirror(ext312);    X_119:bat[:oid,:lng]  := aggr.sum(X_610,grp310,ext312);     X_122:bat[:oid,:lng]  := aggr.sum(X_620,grp310,ext312);

    X_608 := algebra.selectNotNil(X_604);    X_607 := algebra.selectNotNil(X_603);    X_606 := algebra.selectNotNil(X_602);     X_605 := algebra.selectNotNil(X_601);

    X_97 := algebra.join(X_96,X_525);

    X_120:bat[:oid,:lng]  := batcalc.lng(4,X_119,19,8);

    X_123:bat[:oid,:lng]  := batcalc./(X_120,X_122,true,true);

    X_98 := algebra.sortTail(X_97);

    X_99 := algebra.markT(X_98,0@0:oid);

    X_100 := bat.reverse(X_99);

    sql.exportResult(X_140,X_125);

    X_140 := io.stdout();

end s1_8;

Figure A.3: Query 8, 220 nodes.
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function user.s1_9(A0,A1);

    X_80 := calc.lng(A0,15,2);

    X_42 := pcre.like_filter(X_41,A1,"":str);

    X_489 := batcalc.-(X_80,X_485,false,true);     X_492 := batcalc.-(X_80,X_486,false,true);    X_493 := batcalc.-(X_80,X_487,false,true);     X_494 := batcalc.-(X_80,X_488,false,true);

    X_43 := algebra.markT(X_42,0@0:oid);

    X_74 := nil:bat[:oid,:str];

    X_74 := algebra.leftjoin(X_73,X_68);

    X_94 := sql.resultSet(3,1,X_74);

    sql.rsColumn(X_94,"sys.profit","nation","varchar",25,0,X_74);

    X_93 := nil:bat[:oid,:lng];

    X_93 := algebra.leftjoin(X_73,X_92);

    sql.rsColumn(X_94,"sys.profit","sum_profit","decimal",19,4,X_93);

    X_75 := nil:bat[:oid,:int];

    X_75 := algebra.leftjoin(X_73,X_69);

    sql.rsColumn(X_94,"sys.profit","o_year","int",32,0,X_75);

barrier X_576 := language.dataflow();

exit X_576;

    X_4 := sql.mvc();

    X_181:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_orderkey_fkey",0,0,4);     X_26:bat[:oid,:int]  := sql.bind(X_4,"sys","orders","o_orderkey",0);

    X_186:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_partkey_fkey",0,0,4);     X_39:bat[:oid,:str]  := sql.bind(X_4,"sys","part","p_name",0);    X_32:bat[:oid,:int]  := sql.bind(X_4,"sys","part","p_partkey",0);    X_167:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_suppkey_fkey",0,0,4);

    X_17:bat[:oid,:int]  := sql.bind(X_4,"sys","supplier","s_suppkey",0);

    X_191:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_partkey_l_suppkey_fkey",0,0,4);

    X_196:bat[:oid,:lng]  := sql.bind(X_4,"sys","lineitem","l_extendedprice",0,0,4);

    X_204:bat[:oid,:lng]  := sql.bind(X_4,"sys","lineitem","l_discount",0,0,4);

    X_217:bat[:oid,:int]  := sql.bind(X_4,"sys","lineitem","l_quantity",0,0,4);

    X_15:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","supplier","supplier_s_nationkey_fkey",0);

    X_10:bat[:oid,:int]  := sql.bind(X_4,"sys","nation","n_nationkey",0);

    X_62:bat[:oid,:date]  := sql.bind(X_4,"sys","orders","o_orderdate",0);

    X_52:bat[:oid,:int]  := sql.bind(X_4,"sys","partsupp","ps_partkey",0);

    X_7:bat[:oid,:str]  := sql.bind(X_4,"sys","nation","n_name",0);

    X_183:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_orderkey_fkey",0,1,4);

    X_188:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_partkey_fkey",0,1,4);

    X_173:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_suppkey_fkey",0,1,4);

    X_193:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_partkey_l_suppkey_fkey",0,1,4);

    X_198:bat[:oid,:lng]  := sql.bind(X_4,"sys","lineitem","l_extendedprice",0,1,4);

    X_209:bat[:oid,:lng]  := sql.bind(X_4,"sys","lineitem","l_discount",0,1,4);

    X_219:bat[:oid,:int]  := sql.bind(X_4,"sys","lineitem","l_quantity",0,1,4);

    X_184:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_orderkey_fkey",0,2,4);    X_189:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_partkey_fkey",0,2,4);

    X_176:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_suppkey_fkey",0,2,4);

    X_194:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_partkey_l_suppkey_fkey",0,2,4);

    X_200:bat[:oid,:lng]  := sql.bind(X_4,"sys","lineitem","l_extendedprice",0,2,4);

    X_212:bat[:oid,:lng]  := sql.bind(X_4,"sys","lineitem","l_discount",0,2,4);

    X_220:bat[:oid,:int]  := sql.bind(X_4,"sys","lineitem","l_quantity",0,2,4);

    X_185:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_orderkey_fkey",0,3,4);

    X_190:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_partkey_fkey",0,3,4);

    X_179:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_suppkey_fkey",0,3,4);

    X_195:bat[:oid,:oid]  := sql.bind_idxbat(X_4,"sys","lineitem","lineitem_l_partkey_l_suppkey_fkey",0,3,4);

    X_201:bat[:oid,:lng]  := sql.bind(X_4,"sys","lineitem","l_extendedprice",0,3,4);

    X_215:bat[:oid,:lng]  := sql.bind(X_4,"sys","lineitem","l_discount",0,3,4);

    X_221:bat[:oid,:int]  := sql.bind(X_4,"sys","lineitem","l_quantity",0,3,4);

    X_87:bat[:oid,:lng]  := sql.bind(X_4,"sys","partsupp","ps_supplycost",0);

    X_226 := algebra.join(X_181,X_29);

    X_28 := bat.mirror(X_26);

    X_249 := algebra.leftjoin(X_239,X_186);

    X_40 := batcalc.str(X_39);    X_36 := bat.mirror(X_32);

    X_275:bat[:oid,:oid]  := algebra.leftjoin(X_560,X_167);

    X_19 := bat.mirror(X_17);

    X_358:bat[:oid,:oid]  := algebra.leftjoinPath(X_564,X_270,X_239,X_191);

    X_478:bat[:oid,:lng]  := algebra.leftjoinPath(X_568,X_338,X_270,X_239,X_196);     X_485:bat[:oid,:lng]  := algebra.leftjoinPath(X_568,X_338,X_270,X_239,X_204);    X_526:bat[:oid,:int]  := algebra.leftjoinPath(X_568,X_338,X_270,X_239,X_217);

    X_297 := algebra.leftjoin(X_292,X_15);     X_298 := algebra.leftjoin(X_293,X_15);    X_300 := algebra.leftjoin(X_295,X_15);     X_302 := algebra.leftjoin(X_296,X_15);

    X_12 := bat.mirror(X_10);

    X_408:bat[:oid,:date]  := algebra.leftjoinPath(X_568,X_338,X_270,X_403,X_62);     X_409:bat[:oid,:date]  := algebra.leftjoinPath(X_569,X_339,X_272,X_404,X_62);    X_410:bat[:oid,:date]  := algebra.leftjoinPath(X_570,X_340,X_273,X_405,X_62);     X_411:bat[:oid,:date]  := algebra.leftjoinPath(X_571,X_341,X_274,X_406,X_62);

    X_54 := bat.mirror(X_52);

    X_377:bat[:oid,:str]  := algebra.leftjoinPath(X_373,X_323,X_7);     X_378:bat[:oid,:str]  := algebra.leftjoinPath(X_374,X_324,X_7);    X_380:bat[:oid,:str]  := algebra.leftjoinPath(X_375,X_325,X_7);     X_381:bat[:oid,:str]  := algebra.leftjoinPath(X_376,X_326,X_7);

    X_227 := algebra.join(X_183,X_29);

    X_250 := algebra.leftjoin(X_242,X_188);

    X_276:bat[:oid,:oid]  := algebra.leftjoin(X_561,X_173);

    X_360:bat[:oid,:oid]  := algebra.leftjoinPath(X_565,X_272,X_242,X_193);

    X_479:bat[:oid,:lng]  := algebra.leftjoinPath(X_569,X_339,X_272,X_242,X_198);    X_486:bat[:oid,:lng]  := algebra.leftjoinPath(X_569,X_339,X_272,X_242,X_209);     X_527:bat[:oid,:int]  := algebra.leftjoinPath(X_569,X_339,X_272,X_242,X_219);

    X_228 := algebra.join(X_184,X_29);

    X_251 := algebra.leftjoin(X_244,X_189);

    X_277:bat[:oid,:oid]  := algebra.leftjoin(X_562,X_176);

    X_361:bat[:oid,:oid]  := algebra.leftjoinPath(X_566,X_273,X_244,X_194);

    X_480:bat[:oid,:lng]  := algebra.leftjoinPath(X_570,X_340,X_273,X_244,X_200);    X_487:bat[:oid,:lng]  := algebra.leftjoinPath(X_570,X_340,X_273,X_244,X_212);    X_529:bat[:oid,:int]  := algebra.leftjoinPath(X_570,X_340,X_273,X_244,X_220);

    X_229 := algebra.join(X_185,X_29);

    X_252 := algebra.leftjoin(X_245,X_190);

    X_278:bat[:oid,:oid]  := algebra.leftjoin(X_563,X_179);

    X_362:bat[:oid,:oid]  := algebra.leftjoinPath(X_567,X_274,X_245,X_195);

    X_481:bat[:oid,:lng]  := algebra.leftjoinPath(X_571,X_341,X_274,X_245,X_201);    X_488:bat[:oid,:lng]  := algebra.leftjoinPath(X_571,X_341,X_274,X_245,X_215);    X_531:bat[:oid,:int]  := algebra.leftjoinPath(X_571,X_341,X_274,X_245,X_221);    X_523 := algebra.leftjoin(X_519,X_87);    X_522 := algebra.leftjoin(X_518,X_87);     X_521 := algebra.leftjoin(X_517,X_87);    X_520 := algebra.leftjoin(X_516,X_87);

    X_230 := algebra.markT(X_226,4,0);

    X_382 := bat.reverse(X_226);

    X_29 := bat.reverse(X_28);

    X_232 := algebra.markT(X_227,4,1);     X_385 := bat.reverse(X_227);    X_235 := algebra.markT(X_228,4,2);     X_387 := bat.reverse(X_228);     X_237 := algebra.markT(X_229,4,3);     X_389 := bat.reverse(X_229);

    X_239 := bat.reverse(X_230);

    X_391 := algebra.markT(X_382,4,0);

    X_560 := algebra.leftjoin(X_270,X_239);

    X_253 := algebra.join(X_249,X_46);

    X_363 := algebra.join(X_358,X_55);

    X_495 := batcalc.*(X_478,X_489,true,true);

    X_533 := batcalc.*(X_520,X_526,true,false);

    X_257 := algebra.markT(X_253,4,0);

    X_41:bat[:oid,:str]  := batcalc.str(3,0,0,0,X_40,0);

    X_44 := bat.reverse(X_43);

    X_45 := algebra.leftjoin(X_44,X_36);

    X_46 := bat.reverse(X_45);

    X_254 := algebra.join(X_250,X_46);    X_255 := algebra.join(X_251,X_46);     X_256 := algebra.join(X_252,X_46);

    X_259 := algebra.markT(X_254,4,1);    X_262 := algebra.markT(X_255,4,2);     X_267 := algebra.markT(X_256,4,3);

    X_270 := bat.reverse(X_257);

    X_412 := batmtime.year(X_408);

    X_279 := algebra.join(X_275,X_20);

    X_284 := bat.reverse(X_279);    X_333 := algebra.markT(X_279,4,0);

    X_20 := bat.reverse(X_19);

    X_281 := algebra.join(X_276,X_20);    X_282 := algebra.join(X_277,X_20);     X_283 := algebra.join(X_278,X_20);

    X_285 := bat.reverse(X_281);

    X_334 := algebra.markT(X_281,4,1);

    X_286 := bat.reverse(X_282);    X_335 := algebra.markT(X_282,4,2);     X_287 := bat.reverse(X_283);    X_337 := algebra.markT(X_283,4,3);

    X_288 := algebra.markT(X_284,4,0);

    X_338 := bat.reverse(X_333);

    X_292 := bat.reverse(X_288);

    X_304 := algebra.join(X_297,X_13);     X_307 := algebra.join(X_298,X_13);    X_308 := algebra.join(X_300,X_13);     X_309 := algebra.join(X_302,X_13);

    X_342 := algebra.markT(X_304,4,0);     X_310 := bat.reverse(X_304);

    X_13 := bat.reverse(X_12);

    X_344 := algebra.markT(X_307,4,1);     X_311 := bat.reverse(X_307);    X_347 := algebra.markT(X_308,4,2);     X_312 := bat.reverse(X_308);     X_349 := algebra.markT(X_309,4,3);     X_313 := bat.reverse(X_309);

    X_351 := bat.reverse(X_342);     X_314 := algebra.markT(X_310,4,0);

    X_564 := algebra.leftjoin(X_351,X_338);

    X_568 := algebra.leftjoin(X_373,X_351);

    X_368 := algebra.markT(X_363,4,0);    X_499 := bat.reverse(X_363);

    X_403 := bat.reverse(X_391);

    X_414 := batmtime.year(X_409);    X_416 := batmtime.year(X_410);     X_418 := batmtime.year(X_411);

    X_55 := bat.reverse(X_54);

    X_365 := algebra.join(X_360,X_55);    X_366 := algebra.join(X_361,X_55);     X_367 := algebra.join(X_362,X_55);

    X_370 := algebra.markT(X_365,4,1);    X_501 := bat.reverse(X_365);    X_371 := algebra.markT(X_366,4,2);    X_502 := bat.reverse(X_366);     X_372 := algebra.markT(X_367,4,3);    X_503 := bat.reverse(X_367);

    X_373 := bat.reverse(X_368);    X_504 := algebra.markT(X_499,4,0);

    (X_428,X_429) := group.done(X_420,X_421,X_377);

    X_438 := algebra.leftjoin(X_437,X_377);

    X_463 := algebra.join(X_67,X_377);

    (X_420,X_421) := group.new(X_412);

    X_440 := algebra.leftjoin(X_439,X_412);

    X_468 := algebra.join(X_67,X_412);

    X_541 := batcalc.-(X_495,X_537,true,true);

    X_537 := batcalc.*(X_533,100:lng,true,false);

    X_456 := mat.pack(X_440,X_444,X_449,X_455);

    X_467 := mat.pack(X_468,X_469,X_470,X_471);

    X_437 := bat.mirror(X_428);

    X_552 := aggr.sum(X_547,X_429,X_437);

    X_323 := bat.reverse(X_314);

    (X_431,X_432) := group.done(X_422,X_423,X_378);

    X_442 := algebra.leftjoin(X_441,X_378);

    X_464 := algebra.join(X_67,X_378);

    (X_433,X_434) := group.done(X_424,X_425,X_380);

    X_446 := algebra.leftjoin(X_445,X_380);

    X_465 := algebra.join(X_67,X_380);

    (X_435,X_436) := group.done(X_426,X_427,X_381);

    X_453 := algebra.leftjoin(X_450,X_381);

    X_466 := algebra.join(X_67,X_381);

    X_459 := mat.pack(X_438,X_442,X_446,X_453);

    X_462 := mat.pack(X_463,X_464,X_465,X_466);

    X_439 := bat.mirror(X_437);

    X_551 := mat.pack(X_552,X_553,X_554,X_555);

    (ext235,grp233) := group.done(X_457,X_458,X_459);

    X_242 := bat.reverse(X_232);     X_394 := algebra.markT(X_385,4,1);

    X_561 := algebra.leftjoin(X_272,X_242);

    X_496 := batcalc.*(X_479,X_492,true,true);

    X_534 := batcalc.*(X_521,X_527,true,false);

    X_272 := bat.reverse(X_259);

    X_289 := algebra.markT(X_285,4,1);

    X_339 := bat.reverse(X_334);

    X_293 := bat.reverse(X_289);

    X_352 := bat.reverse(X_344);     X_317 := algebra.markT(X_311,4,1);

    X_565 := algebra.leftjoin(X_352,X_339);

    X_569 := algebra.leftjoin(X_374,X_352);

    X_404 := bat.reverse(X_394);

    X_374 := bat.reverse(X_370);    X_507 := algebra.markT(X_501,4,1);

    (X_422,X_423) := group.new(X_414);

    X_444 := algebra.leftjoin(X_443,X_414);

    X_469 := algebra.join(X_67,X_414);

    X_544 := batcalc.-(X_496,X_538,true,true);

    X_538 := batcalc.*(X_534,100:lng,true,false);

    X_441 := bat.mirror(X_431);

    X_553 := aggr.sum(X_548,X_432,X_441);

    X_324 := bat.reverse(X_317);

    X_443 := bat.mirror(X_441);

    X_244 := bat.reverse(X_235);     X_397 := algebra.markT(X_387,4,2);

    X_562 := algebra.leftjoin(X_273,X_244);

    X_497 := batcalc.*(X_480,X_493,true,true);

    X_535 := batcalc.*(X_522,X_529,true,false);

    X_273 := bat.reverse(X_262);

    X_290 := algebra.markT(X_286,4,2);

    X_340 := bat.reverse(X_335);

    X_295 := bat.reverse(X_290);

    X_354 := bat.reverse(X_347);     X_319 := algebra.markT(X_312,4,2);

    X_566 := algebra.leftjoin(X_354,X_340);

    X_570 := algebra.leftjoin(X_375,X_354);

    X_405 := bat.reverse(X_397);

    X_375 := bat.reverse(X_371);    X_510 := algebra.markT(X_502,4,2);

    (X_424,X_425) := group.new(X_416);

    X_449 := algebra.leftjoin(X_447,X_416);

    X_470 := algebra.join(X_67,X_416);

    X_545 := batcalc.-(X_497,X_539,true,true);

    X_539 := batcalc.*(X_535,100:lng,true,false);

    X_445 := bat.mirror(X_433);

    X_554 := aggr.sum(X_549,X_434,X_445);

    X_325 := bat.reverse(X_319);

    X_447 := bat.mirror(X_445);

    X_245 := bat.reverse(X_237);     X_400 := algebra.markT(X_389,4,3);

    X_563 := algebra.leftjoin(X_274,X_245);

    X_498 := batcalc.*(X_481,X_494,true,true);

    X_536 := batcalc.*(X_523,X_531,true,false);

    X_274 := bat.reverse(X_267);

    X_291 := algebra.markT(X_287,4,3);

    X_341 := bat.reverse(X_337);

    X_296 := bat.reverse(X_291);

    X_356 := bat.reverse(X_349);     X_321 := algebra.markT(X_313,4,3);

    X_567 := algebra.leftjoin(X_356,X_341);

    X_571 := algebra.leftjoin(X_376,X_356);

    X_406 := bat.reverse(X_400);

    X_376 := bat.reverse(X_372);    X_513 := algebra.markT(X_503,4,3);

    (X_426,X_427) := group.new(X_418);

    X_455 := algebra.leftjoin(X_454,X_418);

    X_471 := algebra.join(X_67,X_418);

    X_546 := batcalc.-(X_498,X_540,true,true);

    X_540 := batcalc.*(X_536,100:lng,true,false);

    X_450 := bat.mirror(X_435);

    X_555 := aggr.sum(X_550,X_436,X_450);

    X_326 := bat.reverse(X_321);

    X_454 := bat.mirror(X_450);

    X_67 := bat.mirror(ext235);    X_92:bat[:oid,:lng]  := aggr.sum(X_551,grp233,ext235);

    (X_457,X_458) := group.new(X_456);

    X_550 := algebra.selectNotNil(X_546);

    X_519 := bat.reverse(X_513);

    X_549 := algebra.selectNotNil(X_545);

    X_518 := bat.reverse(X_510);

    X_548 := algebra.selectNotNil(X_544);

    X_517 := bat.reverse(X_507);

    X_547 := algebra.selectNotNil(X_541);

    X_516 := bat.reverse(X_504);

    X_68 := algebra.join(X_67,X_462);

    X_69 := algebra.join(X_67,X_467);    X_70 := algebra.sortTail(X_68);

    X_71 := group.refine_reverse(X_70,X_69);

    X_72 := algebra.markT(X_71,0@0:oid);

    X_73 := bat.reverse(X_72);

    sql.exportResult(X_112,X_94);

    X_112 := io.stdout();

end s1_9;

Figure A.4: Query 9, 230 nodes.

function user.s1_14(A0,A1,A2,A3,A4,A5,A6,A7);

    X_43 := calc.*(A0,X_42);

    X_170 := batstr.like(X_166,A1);     X_171 := batstr.like(X_167,A1);    X_172 := batstr.like(X_168,A1);     X_173 := batstr.like(X_169,A1);

    X_30 := calc.lng(A2,15,2);

    X_34 := calc.lng(A3,19,4);

    X_40 := calc.lng(A4,15,2);

    X_110 := algebra.uselect(X_93,A5,X_23,true,false);     X_111 := algebra.uselect(X_95,A5,X_23,true,false);    X_112 := algebra.uselect(X_96,A5,X_23,true,false);     X_113 := algebra.uselect(X_97,A5,X_23,true,false);

    X_23 := mtime.addmonths(A6,A7);

    sql.exportValue(1,".","promo_revenue","decimal",19,2,8,X_43,"");

    X_174 := batcalc.isnil(X_170);

    X_178 := batcalc.ifthenelse(X_174,false:bit,X_170);

    X_175 := batcalc.isnil(X_171);

    X_179 := batcalc.ifthenelse(X_175,false:bit,X_171);

    X_176 := batcalc.isnil(X_172);

    X_180 := batcalc.ifthenelse(X_176,false:bit,X_172);

    X_177 := batcalc.isnil(X_173);

    X_181 := batcalc.ifthenelse(X_177,false:bit,X_173);

    X_208 := batcalc.-(X_30,X_204);     X_211 := batcalc.-(X_30,X_205);    X_213 := batcalc.-(X_30,X_206);     X_215 := batcalc.-(X_30,X_207);

    X_220 := batcalc.ifthenelse(X_178,X_216,X_34);     X_221 := batcalc.ifthenelse(X_179,X_217,X_34);    X_222 := batcalc.ifthenelse(X_180,X_218,X_34);     X_223 := batcalc.ifthenelse(X_181,X_219,X_34);

    X_235 := batcalc.-(X_40,X_204,false,true);     X_236 := batcalc.-(X_40,X_205,false,true);    X_237 := batcalc.-(X_40,X_206,false,true);     X_238 := batcalc.-(X_40,X_207,false,true);

    X_114 := algebra.markT(X_110,4,0);     X_120 := algebra.markT(X_111,4,1);    X_124 := algebra.markT(X_112,4,2);     X_128 := algebra.markT(X_113,4,3);

    X_43 := nil:lng;

barrier X_268 := language.dataflow();

exit X_268;

    X_10 := sql.mvc();

    X_93:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,0,4);

    X_79:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,0,4);

    X_16:bat[:oid,:int]  := sql.bind(X_10,"sys","part","p_partkey",0);

    X_13:bat[:oid,:str]  := sql.bind(X_10,"sys","part","p_type",0);

    X_98:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,0,4);

    X_103:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,0,4);

    X_95:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,1,4);

    X_84:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,1,4);

    X_100:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,1,4);

    X_105:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,1,4);

    X_96:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,2,4);

    X_88:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,2,4);

    X_101:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,2,4);

    X_106:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,2,4);

    X_97:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,3,4);

    X_91:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,3,4);

    X_102:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,3,4);

    X_107:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,3,4);

    X_136 := algebra.leftjoin(X_132,X_79);

    X_18 := bat.mirror(X_16);

    X_166 := algebra.leftjoin(X_161,X_13);     X_167 := algebra.leftjoin(X_162,X_13);    X_168 := algebra.leftjoin(X_163,X_13);     X_169 := algebra.leftjoin(X_164,X_13);

    X_200:bat[:oid,:lng]  := algebra.leftjoin(X_260,X_98);

    X_204:bat[:oid,:lng]  := algebra.leftjoin(X_260,X_103);

    X_137 := algebra.leftjoin(X_133,X_84);

    X_201:bat[:oid,:lng]  := algebra.leftjoin(X_261,X_100);    X_205:bat[:oid,:lng]  := algebra.leftjoin(X_261,X_105);

    X_138 := algebra.leftjoin(X_134,X_88);

    X_202:bat[:oid,:lng]  := algebra.leftjoin(X_262,X_101);    X_206:bat[:oid,:lng]  := algebra.leftjoin(X_262,X_106);

    X_139 := algebra.leftjoin(X_135,X_91);

    X_203:bat[:oid,:lng]  := algebra.leftjoin(X_263,X_102);    X_207:bat[:oid,:lng]  := algebra.leftjoin(X_263,X_107);

    X_132 := bat.reverse(X_114);

    X_260 := algebra.leftjoin(X_196,X_132);

    X_140 := algebra.join(X_136,X_19);

    X_145 := bat.reverse(X_140);     X_186 := algebra.markT(X_140,4,0);

    X_19 := bat.reverse(X_18);

    X_141 := algebra.join(X_137,X_19);    X_143 := algebra.join(X_138,X_19);     X_144 := algebra.join(X_139,X_19);

    X_146 := bat.reverse(X_141);     X_189 := algebra.markT(X_141,4,1);    X_147 := bat.reverse(X_143);     X_191 := algebra.markT(X_143,4,2);     X_148 := bat.reverse(X_144);     X_193 := algebra.markT(X_144,4,3);

    X_149 := algebra.markT(X_145,4,0);     X_196 := bat.reverse(X_186);

    X_161 := bat.reverse(X_149);

    X_225 := algebra.selectNotNil(X_220);

    X_216 := batcalc.*(X_200,X_208,false,true);     X_239 := batcalc.*(X_200,X_235,true,true);

    X_243 := algebra.selectNotNil(X_239);

    X_217 := batcalc.*(X_201,X_211,false,true);    X_218 := batcalc.*(X_202,X_213,false,true);     X_219 := batcalc.*(X_203,X_215,false,true);     X_240 := batcalc.*(X_201,X_236,true,true);    X_241 := batcalc.*(X_202,X_237,true,true);     X_242 := batcalc.*(X_203,X_238,true,true);

    X_252 := aggr.sum(X_243);

    X_226 := algebra.selectNotNil(X_221);    X_227 := algebra.selectNotNil(X_222);     X_228 := algebra.selectNotNil(X_223);

    X_230 := aggr.sum(X_225);

    X_229 := mat.pack(X_230,X_231,X_232,X_233);

    X_234 := algebra.selectNotNil(X_229);

    X_133 := bat.reverse(X_120);

    X_261 := algebra.leftjoin(X_197,X_133);

    X_154 := algebra.markT(X_146,4,1);     X_197 := bat.reverse(X_189);

    X_162 := bat.reverse(X_154);

    X_246 := algebra.selectNotNil(X_240);

    X_253 := aggr.sum(X_246);

    X_231 := aggr.sum(X_226);

    X_134 := bat.reverse(X_124);

    X_262 := algebra.leftjoin(X_198,X_134);

    X_157 := algebra.markT(X_147,4,2);     X_198 := bat.reverse(X_191);

    X_163 := bat.reverse(X_157);

    X_248 := algebra.selectNotNil(X_241);

    X_254 := aggr.sum(X_248);

    X_232 := aggr.sum(X_227);

    X_135 := bat.reverse(X_128);

    X_263 := algebra.leftjoin(X_199,X_135);

    X_159 := algebra.markT(X_148,4,3);     X_199 := bat.reverse(X_193);

    X_164 := bat.reverse(X_159);

    X_250 := algebra.selectNotNil(X_242);

    X_255 := aggr.sum(X_250);

    X_233 := aggr.sum(X_228);

    X_37:lng  := aggr.sum(X_234);

    X_38 := calc.lng(4,X_37,19,8);

    X_42 := calc./(X_38,X_41);

    X_251 := mat.pack(X_252,X_253,X_254,X_255);

    X_256 := algebra.selectNotNil(X_251);

    X_41:lng  := aggr.sum(X_256);

end s1_14;

Figure A.5: Query 14, 130 nodes.



182 APPENDIX A. SAMPLE TPC-H QUERY GRAPH VISUALIZATIONS

function user.s1_19(A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,A30,A31,A32,A33,A34,A35,A36,A37,A38,A39);

    X_208 := calc.lng(A0,15,2);

    X_91 := bat.append(X_88,A1,true);

    X_624 := algebra.uselect(X_620,A1);    X_625 := algebra.uselect(X_621,A1);     X_626 := algebra.uselect(X_622,A1);     X_627 := algebra.uselect(X_623,A1);

    X_104 := bat.append(X_103,A2,true);     X_192 := bat.append(X_189,A2,true);

    X_106 := bat.append(X_104,A3,true);     X_193 := bat.append(X_192,A3,true);

    X_107 := bat.append(X_106,A4,true);     X_194 := bat.append(X_193,A4,true);

    X_108 := bat.append(X_107,A5,true);     X_195 := bat.append(X_194,A5,true);

    X_594 := algebra.uselect(X_382,A6,X_187,true,true);    X_595 := algebra.uselect(X_383,A6,X_187,true,true);     X_596 := algebra.uselect(X_384,A6,X_187,true,true);     X_597 := algebra.uselect(X_385,A6,X_187,true,true);

    X_186 := calc.+(A7,A8);

    X_82 := calc.min(A9,X_81);

    X_608 := algebra.uselect(X_604,A9,A10,true,true);    X_611 := algebra.uselect(X_605,A9,A10,true,true);     X_613 := algebra.uselect(X_606,A9,A10,true,true);     X_615 := algebra.uselect(X_607,A9,A10,true,true);

    X_80 := calc.max(A10,X_79);

    X_59 := bat.append(X_58,A11,true);     X_201 := bat.append(X_200,A11,true);

    X_61 := bat.append(X_59,A12,true);     X_202 := bat.append(X_201,A12,true);

    X_50 := bat.append(X_47,A13,true);

    X_637 := algebra.uselect(X_633,A13);    X_638 := algebra.uselect(X_634,A13);     X_639 := algebra.uselect(X_635,A13);     X_640 := algebra.uselect(X_636,A13);

    X_92 := bat.append(X_91,A14,true);

    X_531 := algebra.uselect(X_527,A14);    X_532 := algebra.uselect(X_528,A14);     X_533 := algebra.uselect(X_529,A14);     X_534 := algebra.uselect(X_530,A14);

    X_109 := bat.append(X_108,A15,true);

    X_170 := bat.append(X_167,A15,true);

    X_110 := bat.append(X_109,A16,true);

    X_171 := bat.append(X_170,A16,true);

    X_111 := bat.append(X_110,A17,true);

    X_172 := bat.append(X_171,A17,true);

    X_112 := bat.append(X_111,A18,true);

    X_173 := bat.append(X_172,A18,true);

    X_502 := algebra.uselect(X_382,A19,X_165,true,true);    X_503 := algebra.uselect(X_383,A19,X_165,true,true);     X_504 := algebra.uselect(X_384,A19,X_165,true,true);     X_505 := algebra.uselect(X_385,A19,X_165,true,true);

    X_164 := calc.+(A20,A21);     X_81 := calc.min(A22,A35);

    X_519 := algebra.uselect(X_511,A22,A23,true,true);    X_520 := algebra.uselect(X_514,A22,A23,true,true);     X_521 := algebra.uselect(X_516,A22,A23,true,true);     X_522 := algebra.uselect(X_518,A22,A23,true,true);

    X_79 := calc.max(A23,A36);

    X_62 := bat.append(X_61,A24,true);

    X_179 := bat.append(X_178,A24,true);

    X_63 := bat.append(X_62,A25,true);

    X_180 := bat.append(X_179,A25,true);    X_51 := bat.append(X_50,A26,true);

    X_544 := algebra.uselect(X_540,A26);    X_547 := algebra.uselect(X_541,A26);     X_549 := algebra.uselect(X_542,A26);     X_551 := algebra.uselect(X_543,A26);

    X_93 := bat.append(X_92,A27,true);

    X_437 := algebra.uselect(X_433,A27);    X_438 := algebra.uselect(X_434,A27);     X_439 := algebra.uselect(X_435,A27);     X_440 := algebra.uselect(X_436,A27);

    X_113 := bat.append(X_112,A28,true);

    X_147 := bat.append(X_144,A28,true);

    X_114 := bat.append(X_113,A29,true);

    X_148 := bat.append(X_147,A29,true);

    X_115 := bat.append(X_114,A30,true);

    X_149 := bat.append(X_148,A30,true);

    X_116 := bat.append(X_115,A31,true);

    X_150 := bat.append(X_149,A31,true);

    X_386 := algebra.uselect(X_382,A32,X_140,true,true);    X_389 := algebra.uselect(X_383,A32,X_140,true,true);     X_390 := algebra.uselect(X_384,A32,X_140,true,true);     X_392 := algebra.uselect(X_385,A32,X_140,true,true);

    X_139 := calc.+(A33,A34);

    X_421 := algebra.uselect(X_417,A35,A36,true,true);    X_424 := algebra.uselect(X_418,A35,A36,true,true);     X_426 := algebra.uselect(X_419,A35,A36,true,true);     X_427 := algebra.uselect(X_420,A35,A36,true,true);

    X_64 := bat.append(X_63,A37,true);

    X_157 := bat.append(X_156,A37,true);

    X_65 := bat.append(X_64,A38,true);

    X_159 := bat.append(X_157,A38,true);

    X_52 := bat.append(X_51,A39,true);

    X_450 := algebra.uselect(X_446,A39);    X_451 := algebra.uselect(X_447,A39);     X_452 := algebra.uselect(X_448,A39);     X_453 := algebra.uselect(X_449,A39);

    X_704 := batcalc.-(X_208,X_699,false,true);    X_705 := batcalc.-(X_208,X_700,false,true);     X_706 := batcalc.-(X_208,X_701,false,true);     X_707 := batcalc.-(X_208,X_703,false,true);

    X_628 := algebra.semijoin(X_372,X_624);    X_629 := algebra.semijoin(X_373,X_625);     X_630 := algebra.semijoin(X_374,X_626);     X_631 := algebra.semijoin(X_375,X_627);

    X_196 := bat.reverse(X_195);

    X_599 := algebra.semijoin(X_408,X_594);    X_601 := algebra.semijoin(X_409,X_595);     X_602 := algebra.semijoin(X_411,X_596);     X_603 := algebra.semijoin(X_412,X_597);

    X_187 := calc.int(X_186);

    X_86 := algebra.uselect(X_83,X_82,X_80,true,true);

    X_616 := algebra.semijoin(X_408,X_608);    X_617 := algebra.semijoin(X_409,X_611);     X_618 := algebra.semijoin(X_411,X_613);     X_619 := algebra.semijoin(X_412,X_615);

    X_204 := bat.reverse(X_202);

    X_662:bat[:oid,:void]  := algebra.semijoinPath(X_657,X_649,X_637);    X_663:bat[:oid,:void]  := algebra.semijoinPath(X_658,X_650,X_638);     X_664:bat[:oid,:void]  := algebra.semijoinPath(X_659,X_651,X_639);     X_665:bat[:oid,:void]  := algebra.semijoinPath(X_660,X_652,X_640);

    X_536 := algebra.semijoin(X_372,X_531);    X_537 := algebra.semijoin(X_373,X_532);     X_538 := algebra.semijoin(X_374,X_533);     X_539 := algebra.semijoin(X_375,X_534);

    X_174 := bat.reverse(X_173);

    X_506 := algebra.semijoin(X_408,X_502);    X_508 := algebra.semijoin(X_409,X_503);     X_509 := algebra.semijoin(X_411,X_504);     X_510 := algebra.semijoin(X_412,X_505);

    X_165 := calc.int(X_164);

    X_523 := algebra.semijoin(X_408,X_519);    X_524 := algebra.semijoin(X_409,X_520);     X_525 := algebra.semijoin(X_411,X_521);     X_526 := algebra.semijoin(X_412,X_522);

    X_182 := bat.reverse(X_180);

    X_569:bat[:oid,:void]  := algebra.semijoinPath(X_565,X_556,X_544);    X_570:bat[:oid,:void]  := algebra.semijoinPath(X_566,X_557,X_547);     X_571:bat[:oid,:void]  := algebra.semijoinPath(X_567,X_558,X_549);     X_572:bat[:oid,:void]  := algebra.semijoinPath(X_568,X_559,X_551);

    X_94 := bat.reverse(X_93);

    X_442 := algebra.semijoin(X_372,X_437);    X_443 := algebra.semijoin(X_373,X_438);     X_444 := algebra.semijoin(X_374,X_439);     X_445 := algebra.semijoin(X_375,X_440);

    X_117 := bat.reverse(X_116);    X_151 := bat.reverse(X_150);

    X_413 := algebra.semijoin(X_408,X_386);    X_414 := algebra.semijoin(X_409,X_389);     X_415 := algebra.semijoin(X_411,X_390);     X_416 := algebra.semijoin(X_412,X_392);

    X_140 := calc.int(X_139);

    X_429 := algebra.semijoin(X_408,X_421);    X_430 := algebra.semijoin(X_409,X_424);     X_431 := algebra.semijoin(X_411,X_426);     X_432 := algebra.semijoin(X_412,X_427);

    X_66 := bat.reverse(X_65);

    X_160 := bat.reverse(X_159);

    X_53 := bat.reverse(X_52);

    X_488:bat[:oid,:void]  := algebra.semijoinPath(X_480,X_467,X_450);    X_489:bat[:oid,:void]  := algebra.semijoinPath(X_483,X_468,X_451);     X_490:bat[:oid,:void]  := algebra.semijoinPath(X_485,X_469,X_452);     X_491:bat[:oid,:void]  := algebra.semijoinPath(X_487,X_470,X_453);

    X_215:lng  := nil:lng;

    X_215:lng  := aggr.sum(X_721);

    sql.exportValue(1,"sys.","revenue","decimal",19,4,8,X_215,"");

barrier X_737 := language.dataflow();

exit X_737;

    X_42 := sql.mvc();

    X_275:bat[:oid,:str]  := sql.bind(X_42,"sys","lineitem","l_shipmode",0,0,4);    X_270:bat[:oid,:str]  := sql.bind(X_42,"sys","lineitem","l_shipinstruct",0,0,4);

    X_280:bat[:oid,:oid]  := sql.bind_idxbat(X_42,"sys","lineitem","lineitem_l_partkey_fkey",0,0,4);

    X_123:bat[:oid,:str]  := sql.bind(X_42,"sys","part","p_container",0);     X_100:bat[:oid,:str]  := sql.bind(X_42,"sys","part","p_brand",0);    X_83:bat[:oid,:int]  := sql.bind(X_42,"sys","part","p_size",0);

    X_75:bat[:oid,:int]  := sql.bind(X_42,"sys","part","p_partkey",0);

    X_256:bat[:oid,:lng]  := sql.bind(X_42,"sys","lineitem","l_extendedprice",0,0,4);

    X_285:bat[:oid,:int]  := sql.bind(X_42,"sys","lineitem","l_quantity",0,0,4);

    X_293:bat[:oid,:lng]  := sql.bind(X_42,"sys","lineitem","l_discount",0,0,4);

    X_277:bat[:oid,:str]  := sql.bind(X_42,"sys","lineitem","l_shipmode",0,1,4);    X_272:bat[:oid,:str]  := sql.bind(X_42,"sys","lineitem","l_shipinstruct",0,1,4);

    X_282:bat[:oid,:oid]  := sql.bind_idxbat(X_42,"sys","lineitem","lineitem_l_partkey_fkey",0,1,4);

    X_278:bat[:oid,:str]  := sql.bind(X_42,"sys","lineitem","l_shipmode",0,2,4);     X_273:bat[:oid,:str]  := sql.bind(X_42,"sys","lineitem","l_shipinstruct",0,2,4);

    X_283:bat[:oid,:oid]  := sql.bind_idxbat(X_42,"sys","lineitem","lineitem_l_partkey_fkey",0,2,4);

    X_279:bat[:oid,:str]  := sql.bind(X_42,"sys","lineitem","l_shipmode",0,3,4);     X_274:bat[:oid,:str]  := sql.bind(X_42,"sys","lineitem","l_shipinstruct",0,3,4);

    X_284:bat[:oid,:oid]  := sql.bind_idxbat(X_42,"sys","lineitem","lineitem_l_partkey_fkey",0,3,4);

    X_262:bat[:oid,:lng]  := sql.bind(X_42,"sys","lineitem","l_extendedprice",0,1,4);

    X_287:bat[:oid,:int]  := sql.bind(X_42,"sys","lineitem","l_quantity",0,1,4);

    X_298:bat[:oid,:lng]  := sql.bind(X_42,"sys","lineitem","l_discount",0,1,4);     X_265:bat[:oid,:lng]  := sql.bind(X_42,"sys","lineitem","l_extendedprice",0,2,4);

    X_289:bat[:oid,:int]  := sql.bind(X_42,"sys","lineitem","l_quantity",0,2,4);

    X_301:bat[:oid,:lng]  := sql.bind(X_42,"sys","lineitem","l_discount",0,2,4);

    X_268:bat[:oid,:lng]  := sql.bind(X_42,"sys","lineitem","l_extendedprice",0,3,4);

    X_290:bat[:oid,:int]  := sql.bind(X_42,"sys","lineitem","l_quantity",0,3,4);

    X_304:bat[:oid,:lng]  := sql.bind(X_42,"sys","lineitem","l_discount",0,3,4);

    X_315 := algebra.leftjoin(X_275,X_69);

    X_472:bat[:oid,:str]  := algebra.leftjoin(X_725,X_275);

    X_307 := algebra.leftjoin(X_270,X_56);

    X_377 := algebra.leftjoin(X_345,X_270);

    X_351 := algebra.leftjoin(X_345,X_280);

    X_126 := algebra.leftjoin(X_123,X_120);

    X_155 := algebra.leftjoin(X_130,X_123);

    X_101 := algebra.leftjoin(X_100,X_97);

    X_135 := algebra.leftjoin(X_130,X_100);

    X_136 := algebra.leftjoin(X_130,X_83);

    X_77 := bat.mirror(X_75);

    X_691:bat[:oid,:lng]  := algebra.leftjoinPath(X_729,X_345,X_256);

    X_382:bat[:oid,:int]  := algebra.leftjoin(X_725,X_285);

    X_699:bat[:oid,:lng]  := algebra.leftjoinPath(X_729,X_345,X_293);

    X_316 := algebra.leftjoin(X_277,X_69);

    X_473:bat[:oid,:str]  := algebra.leftjoin(X_726,X_277);

    X_308 := algebra.leftjoin(X_272,X_56);

    X_378 := algebra.leftjoin(X_346,X_272);

    X_352 := algebra.leftjoin(X_346,X_282);

    X_317 := algebra.leftjoin(X_278,X_69);

    X_474:bat[:oid,:str]  := algebra.leftjoin(X_727,X_278);

    X_309 := algebra.leftjoin(X_273,X_56);

    X_379 := algebra.leftjoin(X_347,X_273);

    X_353 := algebra.leftjoin(X_347,X_283);

    X_318 := algebra.leftjoin(X_279,X_69);

    X_475:bat[:oid,:str]  := algebra.leftjoin(X_728,X_279);

    X_310 := algebra.leftjoin(X_274,X_56);

    X_380 := algebra.leftjoin(X_348,X_274);

    X_354 := algebra.leftjoin(X_348,X_284);

    X_692:bat[:oid,:lng]  := algebra.leftjoinPath(X_730,X_346,X_262);

    X_383:bat[:oid,:int]  := algebra.leftjoin(X_726,X_287);

    X_700:bat[:oid,:lng]  := algebra.leftjoinPath(X_730,X_346,X_298);     X_693:bat[:oid,:lng]  := algebra.leftjoinPath(X_731,X_347,X_265);

    X_384:bat[:oid,:int]  := algebra.leftjoin(X_727,X_289);

    X_701:bat[:oid,:lng]  := algebra.leftjoinPath(X_731,X_347,X_301);     X_694:bat[:oid,:lng]  := algebra.leftjoinPath(X_732,X_348,X_268);

    X_385:bat[:oid,:int]  := algebra.leftjoin(X_728,X_290);

    X_703:bat[:oid,:lng]  := algebra.leftjoinPath(X_732,X_348,X_304);

    X_319 := algebra.project(X_315);

    X_476 := algebra.leftjoin(X_472,X_163);     X_560 := algebra.leftjoin(X_472,X_185);     X_653 := algebra.leftjoin(X_472,X_207);

    X_58:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_67 := algebra.kunique(X_66);

    X_68 := bat.reverse(X_67);

    X_69 := bat.reverse(X_68);

    X_320 := algebra.project(X_316);     X_321 := algebra.project(X_317);     X_322 := algebra.project(X_318);

    X_323 := algebra.semijoin(X_319,X_311);

    X_327 := algebra.markT(X_323,4,0);

    X_311 := algebra.project(X_307);

    X_633 := algebra.join(X_628,X_377);    X_446 := algebra.join(X_442,X_377);     X_540 := algebra.join(X_536,X_377);

    X_47:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_54 := algebra.kunique(X_53);

    X_55 := bat.reverse(X_54);

    X_56 := bat.reverse(X_55);

    X_312 := algebra.project(X_308);     X_313 := algebra.project(X_309);     X_314 := algebra.project(X_310);

    X_345 := bat.reverse(X_327);

    X_725 := algebra.leftjoin(X_372,X_345);

    X_355 := algebra.join(X_351,X_132);

    X_708 := batcalc.*(X_691,X_704,true,true);

    X_360 := algebra.markT(X_355,4,0);     X_393 := bat.reverse(X_355);

    X_127 := algebra.project(X_126);

    X_456 := algebra.leftjoin(X_408,X_155);    X_458 := algebra.leftjoin(X_409,X_155);     X_460 := algebra.leftjoin(X_411,X_155);     X_462 := algebra.leftjoin(X_412,X_155);

    X_103:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_118 := algebra.kunique(X_117);

    X_119 := bat.reverse(X_118);

    X_120 := bat.reverse(X_119);

    X_128:bat[:oid,:void]  := algebra.semijoinPath(X_127,X_102,X_86);

    X_129 := algebra.markT(X_128,0@0:oid);

    X_102 := algebra.project(X_101);

    X_620 := algebra.join(X_616,X_135);    X_433 := algebra.join(X_429,X_135);    X_434 := algebra.join(X_430,X_135);     X_435 := algebra.join(X_431,X_135);     X_436 := algebra.join(X_432,X_135);    X_527 := algebra.join(X_523,X_135);    X_528 := algebra.join(X_524,X_135);     X_529 := algebra.join(X_525,X_135);     X_530 := algebra.join(X_526,X_135);    X_621 := algebra.join(X_617,X_135);     X_622 := algebra.join(X_618,X_135);     X_623 := algebra.join(X_619,X_135);

    X_88:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_95 := algebra.kunique(X_94);

    X_96 := bat.reverse(X_95);

    X_97 := bat.reverse(X_96);

    X_604 := algebra.join(X_599,X_136);    X_417 := algebra.join(X_413,X_136);    X_418 := algebra.join(X_414,X_136);     X_419 := algebra.join(X_415,X_136);     X_420 := algebra.join(X_416,X_136);    X_511 := algebra.join(X_506,X_136);    X_514 := algebra.join(X_508,X_136);     X_516 := algebra.join(X_509,X_136);     X_518 := algebra.join(X_510,X_136);    X_605 := algebra.join(X_601,X_136);     X_606 := algebra.join(X_602,X_136);     X_607 := algebra.join(X_603,X_136);

    X_130 := bat.reverse(X_129);

    X_131 := algebra.leftjoin(X_130,X_77);

    X_132 := bat.reverse(X_131);

    X_356 := algebra.join(X_352,X_132);     X_357 := algebra.join(X_353,X_132);     X_358 := algebra.join(X_354,X_132);

    X_394 := bat.reverse(X_356);    X_364 := algebra.markT(X_356,4,1);

    X_395 := bat.reverse(X_357);

    X_367 := algebra.markT(X_357,4,2);     X_397 := bat.reverse(X_358);    X_370 := algebra.markT(X_358,4,3);

    X_372 := bat.reverse(X_360);     X_398 := algebra.markT(X_393,4,0);

    X_729 := algebra.leftjoin(X_687,X_372);

    X_480 := algebra.project(X_476);     X_565 := algebra.project(X_560);     X_657 := algebra.project(X_653);

    X_156:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_161 := algebra.kunique(X_160);

    X_162 := bat.reverse(X_161);

    X_163 := bat.reverse(X_162);

    X_477 := algebra.leftjoin(X_473,X_163);     X_478 := algebra.leftjoin(X_474,X_163);     X_479 := algebra.leftjoin(X_475,X_163);

    X_483 := algebra.project(X_477);     X_485 := algebra.project(X_478);     X_487 := algebra.project(X_479);

    X_492 := algebra.markT(X_488,4,0);

    X_178:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_183 := algebra.kunique(X_182);

    X_184 := bat.reverse(X_183);

    X_185 := bat.reverse(X_184);

    X_561 := algebra.leftjoin(X_473,X_185);     X_562 := algebra.leftjoin(X_474,X_185);     X_563 := algebra.leftjoin(X_475,X_185);

    X_566 := algebra.project(X_561);     X_567 := algebra.project(X_562);     X_568 := algebra.project(X_563);

    X_573 := algebra.markT(X_569,4,0);

    X_200:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_205 := algebra.kunique(X_204);

    X_206 := bat.reverse(X_205);

    X_207 := bat.reverse(X_206);

    X_654 := algebra.leftjoin(X_473,X_207);     X_655 := algebra.leftjoin(X_474,X_207);     X_656 := algebra.leftjoin(X_475,X_207);

    X_658 := algebra.project(X_654);     X_659 := algebra.project(X_655);     X_660 := algebra.project(X_656);

    X_666 := algebra.markT(X_662,4,0);

    X_408 := bat.reverse(X_398);

    X_463 := algebra.leftjoin(X_456,X_154);     X_552 := algebra.leftjoin(X_456,X_177);     X_641 := algebra.leftjoin(X_456,X_199);    X_464 := algebra.leftjoin(X_458,X_154);     X_553 := algebra.leftjoin(X_458,X_177);     X_644 := algebra.leftjoin(X_458,X_199);     X_465 := algebra.leftjoin(X_460,X_154);     X_554 := algebra.leftjoin(X_460,X_177);     X_646 := algebra.leftjoin(X_460,X_199);     X_466 := algebra.leftjoin(X_462,X_154);     X_555 := algebra.leftjoin(X_462,X_177);     X_648 := algebra.leftjoin(X_462,X_199);

    X_467 := algebra.project(X_463);     X_556 := algebra.project(X_552);     X_649 := algebra.project(X_641);

    X_144:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_152 := algebra.kunique(X_151);

    X_153 := bat.reverse(X_152);

    X_154 := bat.reverse(X_153);

    X_468 := algebra.project(X_464);     X_469 := algebra.project(X_465);     X_470 := algebra.project(X_466);

    X_167:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_175 := algebra.kunique(X_174);

    X_176 := bat.reverse(X_175);

    X_177 := bat.reverse(X_176);

    X_557 := algebra.project(X_553);     X_558 := algebra.project(X_554);     X_559 := algebra.project(X_555);

    X_189:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_197 := algebra.kunique(X_196);

    X_198 := bat.reverse(X_197);

    X_199 := bat.reverse(X_198);

    X_650 := algebra.project(X_644);     X_651 := algebra.project(X_646);     X_652 := algebra.project(X_648);

    X_324 := algebra.semijoin(X_320,X_312);

    X_333 := algebra.markT(X_324,4,1);

    X_634 := algebra.join(X_629,X_378);    X_447 := algebra.join(X_443,X_378);     X_541 := algebra.join(X_537,X_378);

    X_346 := bat.reverse(X_333);

    X_726 := algebra.leftjoin(X_373,X_346);

    X_709 := batcalc.*(X_692,X_705,true,true);

    X_401 := algebra.markT(X_394,4,1);

    X_373 := bat.reverse(X_364);

    X_409 := bat.reverse(X_401);

    X_495 := algebra.markT(X_489,4,1);     X_578 := algebra.markT(X_570,4,1);

    X_671 := algebra.markT(X_663,4,1);

    X_325 := algebra.semijoin(X_321,X_313);

    X_337 := algebra.markT(X_325,4,2);

    X_635 := algebra.join(X_630,X_379);    X_448 := algebra.join(X_444,X_379);     X_542 := algebra.join(X_538,X_379);

    X_347 := bat.reverse(X_337);

    X_727 := algebra.leftjoin(X_374,X_347);

    X_710 := batcalc.*(X_693,X_706,true,true);

    X_403 := algebra.markT(X_395,4,2);

    X_374 := bat.reverse(X_367);

    X_411 := bat.reverse(X_403);

    X_497 := algebra.markT(X_490,4,2);     X_581 := algebra.markT(X_571,4,2);

    X_674 := algebra.markT(X_664,4,2);

    X_326 := algebra.semijoin(X_322,X_314);

    X_341 := algebra.markT(X_326,4,3);

    X_636 := algebra.join(X_631,X_380);    X_449 := algebra.join(X_445,X_380);     X_543 := algebra.join(X_539,X_380);

    X_348 := bat.reverse(X_341);

    X_728 := algebra.leftjoin(X_375,X_348);

    X_711 := batcalc.*(X_694,X_707,true,true);

    X_405 := algebra.markT(X_397,4,3);    X_375 := bat.reverse(X_370);

    X_412 := bat.reverse(X_405);

    X_499 := algebra.markT(X_491,4,3);     X_584 := algebra.markT(X_572,4,3);

    X_677 := algebra.markT(X_665,4,3);

    X_730 := algebra.leftjoin(X_688,X_373);     X_731 := algebra.leftjoin(X_689,X_374);     X_732 := algebra.leftjoin(X_690,X_375);

    X_679 := algebra.kunion(X_666,X_590);

    X_683 := algebra.markT(X_679,4,0);

    X_586 := algebra.kunion(X_573,X_492);

    X_590 := algebra.markT(X_586,4,0);

    X_687 := bat.reverse(X_683);

    X_712 := algebra.selectNotNil(X_708);

    X_717 := aggr.sum(X_712);

    X_716 := mat.pack(X_717,X_718,X_719,X_720);

    X_721 := algebra.selectNotNil(X_716);

    X_680 := algebra.kunion(X_671,X_591);

    X_684 := algebra.markT(X_680,4,1);

    X_587 := algebra.kunion(X_578,X_495);

    X_591 := algebra.markT(X_587,4,1);

    X_688 := bat.reverse(X_684);

    X_713 := algebra.selectNotNil(X_709);

    X_718 := aggr.sum(X_713);

    X_681 := algebra.kunion(X_674,X_592);

    X_685 := algebra.markT(X_681,4,2);

    X_588 := algebra.kunion(X_581,X_497);

    X_592 := algebra.markT(X_588,4,2);

    X_689 := bat.reverse(X_685);

    X_714 := algebra.selectNotNil(X_710);

    X_719 := aggr.sum(X_714);

    X_682 := algebra.kunion(X_677,X_593);

    X_686 := algebra.markT(X_682,4,3);

    X_589 := algebra.kunion(X_584,X_499);

    X_593 := algebra.markT(X_589,4,3);

    X_690 := bat.reverse(X_686);

    X_715 := algebra.selectNotNil(X_711);

    X_720 := aggr.sum(X_715);

end s1_19;

Figure A.6: Query 19, 390 nodes.

function user.s1_22(A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A19,A20);

    X_114:bat[:oid,:str]  := batstr.substring(X_113,A0,A1);

    X_44:bat[:oid,:str]  := batstr.substring(X_26,A2,A3);

    X_32 := bat.append(X_29,A4,true);

    X_34 := bat.append(X_32,A5,true);

    X_35 := bat.append(X_34,A6,true);

    X_36 := bat.append(X_35,A7,true);

    X_37 := bat.append(X_36,A8,true);

    X_38 := bat.append(X_37,A9,true);

    X_39 := bat.append(X_38,A10,true);

    X_56 := calc.lng(2,A11,15,2);

    X_76:bat[:oid,:str]  := batstr.substring(X_26,A12,A13);

    X_64 := bat.append(X_61,A14,true);

    X_66 := bat.append(X_64,A15,true);

    X_67 := bat.append(X_66,A16,true);

    X_68 := bat.append(X_67,A17,true);

    X_69 := bat.append(X_68,A18,true);

    X_70 := bat.append(X_69,A19,true);

    X_71 := bat.append(X_70,A20,true);

    (ext221,grp219) := group.done(X_114);

    X_118 := algebra.join(X_117,X_114);

    X_45 := algebra.leftjoin(X_44,X_43);

    X_40 := bat.reverse(X_39);

    X_59 := algebra.thetauselect(X_55,X_56,">");

    X_77 := algebra.leftjoin(X_76,X_75);

    X_72 := bat.reverse(X_71);

    X_122 := nil:bat[:oid,:str];

    X_122 := algebra.leftjoin(X_121,X_118);

    X_128 := sql.resultSet(3,1,X_122);

    sql.rsColumn(X_128,"sys.custsale","cntrycode","varchar",15,0,X_122);

    X_127 := nil:bat[:oid,:lng];

    X_127 := algebra.leftjoin(X_121,X_126);

    sql.rsColumn(X_128,"sys.custsale","totacctbal","decimal",15,2,X_127);

    X_124 := nil:bat[:oid,:wrd];

    X_124 := algebra.leftjoin(X_121,X_123);

    sql.rsColumn(X_128,"sys.custsale","numcust","wrd",64,0,X_124);

barrier X_191 := language.dataflow();

exit X_191;

    X_23 := sql.mvc();

    X_26:bat[:oid,:str]  := sql.bind(X_23,"sys","customer","c_phone",0);

    X_55:bat[:oid,:lng]  := sql.bind(X_23,"sys","customer","c_acctbal",0);

    X_51:bat[:oid,:int]  := sql.bind(X_23,"sys","customer","c_custkey",0);

    X_106:bat[:oid,:int]  := sql.bind(X_23,"sys","orders","o_custkey",0);

    X_113:bat[:oid,:str]  := algebra.leftjoinPath(X_186,X_48,X_26);

    X_96 := algebra.leftjoin(X_48,X_55);

    X_82 := algebra.leftjoin(X_81,X_55);

    X_101 := algebra.join(X_100,X_51);

    X_108:bat[:oid,:int]  := algebra.leftjoin(X_185,X_51);

    X_107 := bat.reverse(X_106);

    X_46 := algebra.project(X_45);

    X_29:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_41 := algebra.kunique(X_40);

    X_42 := bat.reverse(X_41);

    X_43 := bat.reverse(X_42);

    X_47 := algebra.markT(X_46,0@0:oid);

    X_48 := bat.reverse(X_47);

    X_100 := algebra.semijoin(X_48,X_98);

    X_185 := algebra.leftjoin(X_103,X_48);

    X_97:bat[:oid,:dbl]  := batcalc.dbl(2,X_96);

    X_125:bat[:oid,:lng]  := algebra.leftjoin(X_186,X_96);

    X_79 := algebra.semijoin(X_78,X_59);

    X_83:bat[:oid,:dbl]  := batcalc.dbl(2,X_82);

    X_98 := algebra.thetajoin(X_97,X_93,1);

    X_126:bat[:oid,:lng]  := aggr.sum(X_125,grp219,X_117);

    X_78 := algebra.project(X_77);

    X_61:bat[:oid,:str]  := bat.new(nil:oid,nil:str);

    X_73 := algebra.kunique(X_72);

    X_74 := bat.reverse(X_73);

    X_75 := bat.reverse(X_74);

    X_80 := algebra.markT(X_79,0@0:oid);

    X_81 := bat.reverse(X_80);

    X_85 := algebra.selectNotNil(X_83);

    X_86:dbl  := aggr.sum(X_85);

    X_87 := aggr.count(X_85);

    X_91 := calc./(X_86,X_90);

    X_88 := calc.==(X_87,0:wrd);     X_89 := calc.dbl(X_87);

    X_92 := sql.single(X_91);

    X_90 := calc.ifthenelse(X_88,nil:dbl,X_89);

    X_93 := bat.reverse(X_92);

    X_102 := algebra.markT(X_101,0@0:oid);

    X_109 := algebra.join(X_108,X_107);

    X_110 := algebra.kdifference(X_108,X_109);

    X_103 := bat.reverse(X_102);

    X_186 := algebra.leftjoin(X_112,X_103);

    X_111 := algebra.markT(X_110,0@0:oid);

    X_112 := bat.reverse(X_111);

    X_117 := bat.mirror(ext221);

    X_123:bat[:oid,:wrd]  := aggr.count(grp219,grp219,X_117);

    X_119 := algebra.sortTail(X_118);

    X_120 := algebra.markT(X_119,0@0:oid);

    X_121 := bat.reverse(X_120);

    sql.exportResult(X_145,X_128);

    X_145 := io.stdout();

end s1_22;

Figure A.7: Query 22, 100 nodes.



Appendix B

Sample TPC-DS Queries

This section lists sample TPC-DS queries used in Chapter 5 during adaptive paral-

lelization experiments.

Q1

select count(*)

from store sales, household demographics, time dim, store, web sales

where

ss sold time sk = time dim.t time sk

and ss hdemo sk = household demographics.hd demo sk

and ss store sk = s store sk

and time dim.t hour = 8

and time dim.t minute >= 30

and household demographics.hd dep count = 5

and store.s store name = ’ese’

and ws sold date sk >2451826

limit 10;

Q2

select count(*)

from store returns, catalog returns

where

sr returned date sk = cr returned date sk

and cr returned time sk = sr return time sk

and sr fee = cr fee

and sr return ship cost = cr return ship cost

and sr return ship cost >500

and sr item sk=52457;

Q3

select count(*)

from customer address, item, store, date dim, promotion, customer, web sales,

store sales
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where

ws sold date sk = 2451826

and ss sold date sk = 2451207

and ca gmt offset = -16

and i category = ’Jewelry’

and s gmt offset = -6

and d year = 2000

and p cost = 600

and c current hdemo sk >6000

limit 10;

Q4

select sum(cs ext discount amt) as ”excess discount amount”

from catalog sales, item, date dim

where i manufact id = 291

and i item sk = cs item sk

and d date between date ’2003-03-22’

and date ’2003-11-14’

and d date sk = cs sold date sk;

Q5

select sum(i current price)

from item, inventory, date dim, catalog sales

where i current price between 42 and 72

and inv item sk = i item sk

and d date sk=inv date sk

and d date between date ’2002-01-18’ and date ’2002-03-18’

and i manufact id in (744,691,853,946)

and inv quantity on hand between 100 and 500

and cs item sk = i item sk;
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