
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2011-45

2011

Multi-core Real-Time Scheduling for Generalized Parallel Task Multi-core Real-Time Scheduling for Generalized Parallel Task

Models Models

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill

Multi-core processors over a significant performance increase over single-core processors.

Therefore, they have the potential to enable computation-intensive real-time applications with

stringent timing constraints that cannot be met on traditional single-core processors. However,

most results in traditional multiprocessor real-time scheduling are limited to sequential

programming models and ignore intra-task parallelism. In this paper, we address the problem of

scheduling periodic parallel tasks with implicit deadlines on multi-core processors. We first

consider a synchronous task model where each task consists of segments, each segment

having an arbitrary number of parallel threads that synchronize at the end of the segment. We...

Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Saifullah, Abusayeed; Agrawal, Kunal; Lu, Chenyang; and Gill, Christopher, "Multi-core Real-Time
Scheduling for Generalized Parallel Task Models" Report Number: WUCSE-2011-45 (2011). All Computer
Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/58

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/58?utm_source=openscholarship.wustl.edu%2Fcse_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/58

Multi-core Real-Time Scheduling for Generalized Parallel Task Models Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill

Complete Abstract: Complete Abstract:

Multi-core processors over a significant performance increase over single-core processors. Therefore,
they have the potential to enable computation-intensive real-time applications with stringent timing
constraints that cannot be met on traditional single-core processors. However, most results in traditional
multiprocessor real-time scheduling are limited to sequential programming models and ignore intra-task
parallelism. In this paper, we address the problem of scheduling periodic parallel tasks with implicit
deadlines on multi-core processors. We first consider a synchronous task model where each task
consists of segments, each segment having an arbitrary number of parallel threads that synchronize at
the end of the segment. We propose a new task decomposition method that decomposes each parallel
task into a set of sequential tasks. We prove that our task decomposition achieves a resource
augmentation bound of 4 and 5 when the decomposed tasks are scheduled using global EDF and
partitioned deadline monotonic scheduling, respectively. Finally, we extend our analysis to a directed
acyclic graph (DAG) task model where each node in the DAG has a unit execution requirement. We show
how these tasks can be converted into synchronous tasks such that the same decomposition can be
applied and the same augmentation bounds hold. Simulations based on synthetic workload demonstrate
that the derived resource augmentation bounds are safe and sufficient.

https://openscholarship.wustl.edu/cse_research/58?utm_source=openscholarship.wustl.edu%2Fcse_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/58?utm_source=openscholarship.wustl.edu%2Fcse_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages

Noname manuscript No.
(will be inserted by the editor)

Multi-core Real-Time Scheduling for Generalized
Parallel Task Models

Abusayeed Saifullah · Kunal Agrawal ·
Chenyang Lu · Christopher Gill

Received: date / Accepted: date

Abstract Multi-core processors offer a significant performance increase over
single-core processors. Therefore, they have the potential to enable computation-
intensive real-time applications with stringent timing constraints that cannot
be met on traditional single-core processors. However, most results in tradi-
tional multiprocessor real-time scheduling are limited to sequential program-
ming models and ignore intra-task parallelism. In this paper, we address the
problem of scheduling periodic parallel tasks with implicit deadlines on multi-
core processors. We first consider a synchronous task model where each task
consists of segments, each segment having an arbitrary number of parallel
threads that synchronize at the end of the segment. We propose a new task
decomposition method that decomposes each parallel task into a set of sequen-
tial tasks. We prove that our task decomposition achieves a resource augmen-
tation bound of 4 and 5 when the decomposed tasks are scheduled using global
EDF and partitioned deadline monotonic scheduling, respectively. Finally, we
extend our analysis to a directed acyclic graph (DAG) task model where each
node in the DAG has a unit execution requirement. We show how these tasks
can be converted into synchronous tasks such that the same decomposition
can be applied and the same augmentation bounds hold. Simulations based
on synthetic workload demonstrate that the derived resource augmentation
bounds are safe and sufficient.

Keywords parallel task · multi-core processor · real-time scheduling ·
resource augmentation bound

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, Christopher Gill
Department of Computer Science and Engineering
Washington University in St. Louis
Campus Box. 1045
St Louis, MO 63130, USA
E-mail: {saifullaha, kunal, lu, cdgill}@cse.wustl.edu

2 Abusayeed Saifullah et al.

1 Introduction

In recent years, multi-core processor technology has improved dramatically
as chip manufacturers try to boost performance while minimizing power con-
sumption. This development has shifted the scaling trends from increasing
processor clock frequencies to increasing the number of cores per processor.
For example, Intel has recently put 80 cores in a Teraflops Research Chip (In-
tel, 2007) with a view to making it generally available, and ClearSpeed has
developed a 96-core processor (ClearSpeed, 2008). While hardware technol-
ogy is moving at a rapid pace, software and programming models have failed
to keep pace. For example, Intel (2007) has set a time frame of 5 years to
make their 80-core processor generally available due to the inability of current
operating systems and software to exploit the benefits of multi-core processors.

As multi-core processors continue to scale, they provide an opportunity for
performing more complex and computation-intensive tasks in real-time. How-
ever, to take full advantage of multi-core processing, these systems must exploit
intra-task parallelism, where parallelizable real-time tasks can utilize multiple
cores at the same time. By exploiting intra-task parallelism, multi-core pro-
cessors can achieve significant real-time performance improvement over tradi-
tional single-core processors for many computation-intensive real-time applica-
tions such as video surveillance, radar tracking, and hybrid real-time structural
testing (Huang et al, 2010) where the performance limitations of traditional
single-core processors have been a major hurdle.

The growing importance of parallel task models for real-time applications
poses new challenges to real-time scheduling theory that had previously mostly
focused on sequential task models. The state-of-the-art work (Lakshmanan
et al, 2010) on parallel scheduling for real-time tasks with intra-task paral-
lelism analyzes the resource augmentation bound using partitioned Deadline
Monotonic (DM) scheduling. It considers a synchronous task model, where
each parallel task consists of a series of sequential or parallel segments. We
call this model synchronous, since all the threads of a parallel segment must
finish before the next segment starts, creating a synchronization point. How-
ever, that task model is restrictive in that, for every task, all the segments
have an equal number of parallel threads, and the execution requirements of
all threads in a segment are equal. Most importantly, in that task model, the
number of threads in every segment is no greater than the total number of
processor cores.

While the work presented by Lakshmanan et al (2010) represents a promis-
ing step towards parallel real-time scheduling on multi-core processors, the
restrictions on the task model make the solutions unsuitable for many real-
time applications that often employ different numbers of threads in different
segments of computation. In addition, it analyzes the resource augmentation
bound under partitioned DM scheduling only, and does not consider other
scheduling policies such as global EDF. In this work, we consider real-time
scheduling on multi-core processors for a more general synchronous task model.
Our tasks still contain segments where the threads of each segment synchro-

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 3

nize at its end. However, in contrast to the restrictive task model addressed
in Lakshmanan et al (2010), for any task in our model, each segment can con-
tain an arbitrary number of parallel threads. That is, different segments of the
same parallel task can contain different numbers of threads, and segments can
contain more threads than the number of processor cores. Furthermore, the
execution requirements of the threads in any segment can vary. This model is
more portable, since the same task can be executed on machines with small
as well as large numbers of cores. Specifically, our work makes the following
new contributions to real-time scheduling for periodic parallel tasks.

– For the general synchronous task model, we propose a task decomposition
algorithm that converts each implicit deadline parallel task into a set of
constrained deadline sequential tasks.

– We derive a resource augmentation bound of 4 when these decomposed
tasks are scheduled using global EDF scheduling. To our knowledge, this is
the first resource augmentation bound for global EDF scheduling of parallel
tasks.

– Using the proposed task decomposition, we also derive a resource augmen-
tation bound of 5 for our more general task model under partitioned DM
scheduling.

– Finally, we extend our analyses for a Directed Acyclic Graph (DAG) task
model where each node in a DAG has a unit execution requirement. This
is an even more general model for parallel tasks. Namely, we show that
we can transform unit-node DAG tasks into synchronous tasks, and then
use our proposed decomposition to get the same resource augmentation
bounds for the former.

We evaluate the performance of the proposed decomposition through sim-
ulations based on synthetic workloads. The results indicate that the derived
bounds are safe and sufficient. In particular, the resource augmentations re-
quired to schedule the decomposed tasks in our simulations are at most 2.4
and 3.4 for global EDF and partitioned DM scheduling, respectively, which
are significantly smaller than the corresponding theoretical bounds.

In the rest of the paper, Section 2 describes the parallel synchronous task
model. Section 3 presents the proposed task decomposition. Section 4 presents
the analysis for global EDF scheduling. Section 5 presents the analysis for
partitioned DM scheduling. Section 6 extends our results and analyses for unit-
node DAG task models. Section 7 presents the simulation results. Section 8
reviews related work. Finally, we conclude in Section 9.

2 Parallel Synchronous Task Model

We primarily consider a synchronous parallel task model, where each task con-
sists of a sequence of computation segments, each segment having an arbitrary
number of parallel threads with arbitrary execution requirements that synchro-
nize at the end of the segment. Such tasks are generated by parallel for loops,

4 Abusayeed Saifullah et al.

a construct common to many parallel languages such as OpenMP (OpenMP,
2011) and CilkPlus (Intel, 2010).

We consider n periodic synchronous parallel tasks with implicit deadlines.
Each task τi, 1 ≤ i ≤ n, is a sequence of si segments, where the j-th segment,
1 ≤ j ≤ si, consists of mi,j parallel threads. First we consider the case when,
for any segment of τi, all parallel threads in the segment have equal execution
requirements. For such τi, the j-th segment, 1 ≤ j ≤ si, is represented by
〈ei,j ,mi,j〉, with ei,j being the worst case execution requirement of each of its
threads. When mi,j > 1, the threads in the j-th segment can be executed in
parallel on different cores. The j-th segment starts only after all threads of the
(j−1)-th segment have completed. Thus, a parallel task τi in which a segment
consists of equal-length threads is shown in Figure 1, and is represented as
τi : (〈ei,1,mi,1〉, 〈ei,2,mi,2〉, · · · , 〈ei,si ,mi,si〉) where

– si is the total number of segments in task τi.
– In a segment 〈ei,j ,mi,j〉, 1 ≤ j ≤ si, ei,j is the worst case execution re-

quirement of each thread, and mi,j is the number of threads. Therefore,
any segment 〈ei,j ,mi,j〉 with mi,j > 1 is a parallel segment with a total
of mi,j parallel threads, and any segment 〈ei,j ,mi,j〉 with mi,j = 1 is a
sequential segment since it has only one thread. A task τi with si = 1 and
mi,si = 1 is a sequential task.

…

1
e
i,1

2
e
i,1

3
e
i,1

m
i,1

e
i,1

1
ei,2

ei,2

1

ei,si

2
ei,si

ei,si
m
i,2

m
i,si〈e

i,1
, m

i,1
〉 〈e

i,2
, m

i,2
〉 〈e

i,si
, m

i,si
〉..

.

..

.

start end

Fig. 1 A parallel synchronous task τi

Now, we consider the case when the execution requirements of parallel
threads in a segment of τi may differ from each other. An example of such a
task is shown in Figure 2(a), where each horizontal bar indicates the length
of the execution requirement of a thread. As the figure shows, the parallel
threads in the third segment have unequal execution requirements. By adding
a new synchronization point at the end of each thread in a segment, any
segment consisting of threads of unequal length can be converted to several
segments each consisting of threads of equal length as shown in Figure 2(b).

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 5

Specifically, for the task with unequal-length threads in a segment shown in
Figure 2(a), Figure 2(b) shows the corresponding task in which each segment
consists of equal-length threads. Note that such a conversion does not change
any task parameter such as period, deadline, or execution requirement. Thus,
in any synchronous parallel task, any segment consisting of threads of different
execution requirements can be converted to several segments each consisting
of threads of an equal execution requirement. Hence, we concentrate only to
the task model where each segment in a task consists of equal-length threads
(such as the one shown in Figure 1).

start end

vertical bar after a
segment indicates
where threads of
the segment
synchronize

segment with 4
parallel threads of
equal length

thread

segment with 4 parallel
threads of unequal length

thread

segment with
3 parallel
threads of
equal length

thread

segment with 1 thread

(a) A synchronous task with unequal-length threads in a segment

start end

thread

new
segment

thread

thread

new
segment

new
segment

thread thread

(b) The corresponding synchronous task with equal-length threads in each segment (each
dotted vertical line indicates a newly added synchronization point at the end of a thread)

Fig. 2 Conversion of a segment with unequal-length threads to segments with equal-length
threads in a synchronous parallel task

Therefore, considering a multi-core platform consisting of m processor
cores, we focus on scheduling n parallel tasks denoted by τ = {τ1, τ2, · · · , τn},
where each τi is represented as τi : (〈ei,1,mi,1〉, 〈ei,2,mi,2〉, · · · , 〈ei,si ,mi,si〉)
(as the one shown in Figure 1). The period of task τi is denoted by Ti. The
deadline Di of τi is equal to its period Ti. Each task τi generates an infinite
sequence of jobs, with arrival times of successive jobs separated by Ti time
units. Jobs are fully independent and preemptive: any job can be suspended
(preempted) at any time instant, and is later resumed with no cost or penalty.
The task set is said to be schedulable when all tasks meet their deadlines.

6 Abusayeed Saifullah et al.

3 Task Decomposition

In this section, we present a decomposition of the parallel tasks into a set of
sequential tasks. In particular, we propose a strategy that decomposes each
implicit deadline parallel task (like the one shown in Figure 1) into a set of
constrained deadline sequential tasks by converting each thread of the par-
allel task into its own sequential task and assigning appropriate deadlines to
these tasks. This strategy allows us to use existing schedulability analysis for
multiprocessor scheduling (both global and partitioned) to prove the resource
augmentation bounds for parallel tasks (to be discussed in Sections 4 and 5).
Here, we first present some useful terminology. We then present our decompo-
sition and a density analysis for it.

3.1 Terminology

Definition 1 The minimum execution time (i.e. the critical path length) Pi
of task τi on a multi-core platform where each processor core has unit speed
is defined as

Pi =

si∑
j=1

ei,j

Observation 1 On a unit-speed multi-core platform, any task τi requires at
least Pi units of time even when the number of cores m is infinite.

On a multi-core platform where each processor core has speed ν, the critical
path length of task τi is denoted by Pi,ν and is expressed as follows.

Pi,ν =
1

ν

si∑
j=1

ei,j =
Pi
ν

Definition 2 The maximum execution time (i.e. the work) Ci of task τi on a
multi-core platform where each processor core has unit speed is defined as

Ci =

si∑
j=1

mi,j .ei,j

That is, Ci is the execution time of τi on a unit-speed single core processor
if it is never preempted. On a multi-core platform where each processor core
has speed ν, the maximum execution time of task τi is denoted by Ci,ν and is
expressed as follows.

Ci,ν =
1

ν

si∑
j=1

mi,j .ei,j =
Ci
ν

(1)

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 7

Definition 3 The utilization ui of task τi, and the total utilization usum(τ)
for the set of n tasks τ on a unit-speed multi-core platform are defined as

ui =
Ci
Ti

; usum(τ) =

n∑
i=1

Ci
Ti

Observation 2 If the total utilization usum is greater than m, then no algo-
rithm can schedule τ on m identical unit speed processor cores.

Definition 4 The density δi of task τi, the maximum density δmax(τ) and the
total density δsum(τ) of the set of n tasks τ on a unit-speed multi-core platform
are defined as follows:

δi =
Ci
Di

; δsum(τ) =

n∑
i=1

δi; δmax(τ) = max{δi|1 ≤ i ≤ n}

For an implicit deadline task τi, δi = ui.

3.2 Decomposition

Following is the high-level idea of the decomposition of a parallel task τi.

1. In our decomposition, each thread of the task becomes its own sequential
subtask. These individual subtasks are assigned release times and dead-
lines. Since each thread of a segment is identical (with respect to its exe-
cution time), we consider each segment one at a time, and assign the same
release times and deadlines to all subtasks generated from threads of the
same segment.

2. Since a segment 〈ei,j ,mi,j〉 has to complete before segment 〈ei,j+1,mi,j+1〉
can start, the release time of the subtasks of segment 〈ei,j+1,mi,j+1〉 is
equal to the absolute deadline of the subtasks of segment 〈ei,j ,mi,j〉.

3. We calculate the slack for each task considering a multi-core platform where
each processor core has speed 2. The slack for task τi, denoted by Li, is
defined as the difference between its deadline and its critical path length
on 2-speed processor cores i.e.

Li = Ti − Pi,2 = Ti −
Pi
2

(2)

This slack is distributed among the segments according to a principle of
“equitable density” meaning that we try to keep the density of each segment
approximately rather than exactly equal by maintaining a uniform upper
bound on the densities. To do this, we take both the number of threads
in each segment and the computation requirement of the threads in each
segment into consideration while distributing the slack.

8 Abusayeed Saifullah et al.

In order to take the computation requirement of the threads in each seg-
ment into consideration, we assign proportional slack fractions instead of ab-
solute slack. We now formalize the notion of slack fraction, fi,j , for the j-th
segment (i.e. segment 〈ei,j ,mi,j〉) of task τi. Slack fraction fi,j is the fraction
of Li (i.e. the total slack) to be allotted to segment 〈ei,j ,mi,j〉 proportionally
to its minimum computation requirement. Each thread in segment 〈ei,j ,mi,j〉
has a minimum execution time of

ei,j
2 on 2-speed processor cores, and is as-

signed a slack value of fi,j
ei,j
2 . Each thread gets this “extra time” beyond its

execution requirement on 2-speed processor cores. Thus, for each thread in
segment 〈ei,j ,mi,j〉, the relative deadline is assigned as

di,j =
ei,j
2

+ fi,j .
ei,j
2

=
ei,j
2

(1 + fi,j)

For example, if a segment has ei,j = 4 and it is assigned a slack fraction of 1.5,
then its relative deadline is 2(1+1.5) = 5. Since a segment cannot start before
all previous segments complete, the release offset of a segment 〈ei,j ,mi,j〉 is
assigned as

φi,j =

j−1∑
k=1

di,k

Thus, the density of each thread in segment 〈ei,j ,mi,j〉 on 2-speed cores is

ei,j
2

di,j
=

ei,j
2

ei,j
2 (1 + fi,j)

=
1

1 + fi,j

Since a segment 〈ei,j ,mi,j〉 consists of mi,j threads, the segment’s density on
2-speed processor cores is

mi,j

1 + fi,j
(3)

Note that to meet the deadline of the parallel task on 2-speed processor
cores, the segment slack should be assigned so that

fi,1.
ei,1
2

+ fi,2.
ei,2
2

+ fi,3.
ei,3
2

+ · · ·+ fi,si .
ei,si

2
≤ Li.

In our decomposition, we always assign the maximum possible segment slack
on 2-speed processor cores and, therefore, for our decomposition, the above
inequality is in fact an equality.

Since after assigning slack, we want to keep the density of each segment
about equal, we must take the number of threads of the segment into consider-
ation while assigning slack fractions. Also, we want to keep the density of any
thread at most 1 on 2-speed processor cores. Hence, we calculate a threshold
based on task parameters. The segments whose number of threads is greater
than this threshold are assigned slack. The other segments are not assigned
any slack, since they are deemed to be less computation intensive. Hence, to
calculate segment slack according to equitable density, we classify segments
into two categories:

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 9

– Heavy segments are those which have mi,j >
Ci,2

Ti−Pi,2
. That is, they have

many parallel threads.
– Light segments are those which have mi,j ≤ Ci,2

Ti−Pi,2
.

Using that categorization, we also classify parallel tasks into two categories:
tasks that have some or all heavy segments versus tasks that have only light
segments, and analyze them separately as follows.

3.2.1 Tasks with some (or all) heavy segments

For the tasks which have some heavy segments, we treat heavy and light seg-
ments differently while assigning slack. In particular, we assign no slack to the
light segments; that is, segments with mi,j ≤ Ci,2

Ti−Pi,2
of τi are assigned fi,j = 0.

The total available slack Li is distributed among the heavy segments (segments

with mi,j >
Ci,2

Ti−Pi,2
) in such a way that each of these segments has the same

density.
For simplicity of presentation, we first distinguish notations between the

heavy and light segments. Let the heavy segments of τi be represented as
{〈ehi,1,mh

i,1〉, 〈ehi,2,mh
i,2〉, · · · , 〈ehi,shi ,m

h
i,shi
〉}, where shi ≤ si (superscript h stand-

ing for ‘heavy’). Then, let

Phi,2 =
1

2

shi∑
j=1

ehi,j ; Chi,2 =
1

2

shi∑
j=1

mh
i,j .e

h
i,j (4)

The light segments are denoted as {〈e`i,1,m`
i,1〉, 〈e`i,2,m`

i,2〉, · · · , 〈e`i,s`i ,m
`
i,s`i
〉},

where s`i = si − shi (superscript ` standing for ‘light’). Then, let

P `i,2 =
1

2

s`i∑
j=1

e`i,j ; C`i,2 =
1

2

s`i∑
j=1

m`
i,j .e

`
i,j (5)

Now, the following equalities must hold for task τi.

Pi,2 =
Pi
2

= Phi,2 + P `i,2; Ci,2 =
Ci
2

= Chi,2 + C`i,2 (6)

Now we calculate slack fraction fhi,j for all heavy segments (i.e. segments

〈ehi,j ,mh
i,j〉, where 1 ≤ j ≤ shi and mh

i,j >
Ci,2

Ti−Pi,2
) so that they all have equal

density on 2-speed processor cores. That is,

mh
i,1

1 + fhi,1
=

mh
i,2

1 + fhi,2
=

mh
i,3

1 + fhi,3
= · · · =

mh
i,shi

1 + fh
i,shi

(7)

In addition, since all the slack is distributed among the heavy segments, the
following equality must hold.

fhi,1.e
h
i,1 + fhi,2.e

h
i,2 + fhi,3.e

h
i,3 + · · ·+ fhi,shi

.ehi,shi
= 2.Li (8)

10 Abusayeed Saifullah et al.

It follows that the value of each fhi,j , 1 ≤ j ≤ shi , can be determined by solving

Equations 7 and 8 as shown below. From Equation 7, the value of fhi,j for

each j, 2 ≤ j ≤ shi , can be expressed in terms of fhi,1 as follows.

fhi,j = (1 + fhi,1)
mh
i,j

mh
i,1

− 1 (9)

Putting the value of each fhi,j , 2 ≤ j ≤ shi , from Equation 9 into Equation 8:

2Li = fhi,1e
h
i,1 +

shi∑
j=2

((
(1 + fhi,1)

mh
i,j

mh
i,1

− 1
)
ehi,j

)

= fhi,1e
h
i,1 +

shi∑
j=2

(
mh
i,j

mh
i,1

ehi,j + fhi,1
mh
i,j

mh
i,1

ehi,j − ehi,j

)

= fhi,1e
h
i,1 +

1

mh
i,1

shi∑
j=2

mh
i,je

h
i,j +

fhi,1
mh
i,1

shi∑
j=2

mh
i,je

h
i,j −

shi∑
j=2

ehi,j

From the above equation, we can determine the value of fhi,1 as follows.

fhi,1 =

2Li +
shi∑
j=2

ehi,j − 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

ehi,1 + 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

=

2Li + (
shi∑
j=2

ehi,j + ehi,1)− (ehi,1 + 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j)

ehi,1 + 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

=

2Li +
shi∑
j=1

ehi,j

ehi,1 + 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

− 1

In the above equation, replacing
∑shi
j=1 e

h
i,j with 2Phi,2 from Equation 4, we get

fhi,1 =
2Li + 2Phi,2

ehi,1 + 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

− 1 =
mh
i,1(2Li + 2Phi,2)

mh
i,1e

h
i,1 +

shi∑
j=2

mh
i,je

h
i,j

− 1

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 11

Similarly, in the above equation, replacing (mh
i,1e

h
i,1+

∑shi
j=2m

h
i,je

h
i,j) with 2Chi,2

from Equation 4, the value of fhi,1 can be written as follows.

fhi,1 =
mh
i,1(2Li + 2Phi,2)

2Chi,2
− 1 =

mh
i,1(Li + Phi,2)

Ci,2 − C`i,2
− 1 (From 6)

=
mh
i,1((Ti − Pi,2) + Phi,2)

Ci,2 − C`i,2
− 1 (From 2)

=
mh
i,1(Ti − (Phi,2 + P `i,2) + Phi,2)

Ci,2 − C`i,2
− 1 (From 6)

=
mh
i,1(Ti − P `i,2)

Ci,2 − C`i,2
− 1

Now putting the above value of fhi,1 in Equation 7, for any heavy segment

〈ehi,j ,mh
i,j〉, we get

fhi,j =
mh
i,j(Ti − P `i,2)

Ci,2 − C`i,2
− 1 (10)

Intuitively, the slack never should be negative, since the deadline should be
no less than the computation requirement of the thread. Since mh

i,j >
Ci,2

Ti−Pi,2
,

according to Equation 10, the quantity
mh

i,j(Ti−P `
i,2)

Ci,2−C`
i,2

≥ 1. This implies that

fhi,j ≥ 0. Now, using Equation 3, the density of every segment 〈ehi,j ,mh
i,j〉 is

mh
i,j

1 + fhi,j
=

mh
i,j

1 +
mh

i,j(Ti−P `
i,2)

Ci,2−C`
i,2

− 1
=
Ci,2 − C`i,2
Ti − P `i,2

(11)

Figure 3 shows a simple example of decomposition for a task τi consisting of
3 segments.

3.2.2 Tasks with no heavy segments

When the parallel task does not contain any heavy segments, we just assign
the slack proportionally (according to the length of ei,j) among all segments.
That is,

fi,j =
Li
Pi,2

(12)

By Equation 3, the density of each segment 〈ei,j ,mi,j〉 is

mi,j

1 + fi,j
=

mi,j

1 + Li

Pi,2

= mi,j
Pi,2

Li + Pi,2
= mi,j

Pi,2
Ti

(13)

12 Abusayeed Saifullah et al.

2

2

2

2

1

1

〈2,5〉
3

3
2

〈3,2〉 〈1,2〉Deadline Di = Ti = 15

Pi,2= (2+3+1)/2=3; Ci,2= (5*2+2*3+2*1)/2=9

 9/(15-3)=3/4; Hence P
l

i,2= 0; C
l

i,2=0

start
end

(a) A parallel synchronous task τi

2

2

2

1

13
2

f
i,1

= 5*(5/3)-1

d
i,1
= 25/3

fi,3= 2*(5/3)-1

di,3= 5/3

f
i,2
= 2*(5/3)-1

d
i,2
= 5

offset Φi,2=25/3
offset Φi,3=40/3

3
2

start
end

(b) Decomposed task τdecomi

Fig. 3 An example of decomposition

3.3 Density Analysis

Once the above decomposition is done on task τi: (〈ei,1,mi,1〉, · · · , 〈ei,si ,mi,si〉),
each thread of each segment 〈ei,j ,mi,j〉, 1 ≤ j ≤ si, is considered as a sequen-
tial multiprocessor subtask. We use τdecomi to denote task τi after decompo-
sition. That is, τdecomi denotes the set of subtasks generated from τi through
decomposition. Similarly, we use τdecom to denote the entire task set τ after
decomposition. That is, τdecom is the set of all subtasks that our decomposi-
tion generates. Since fi,j ≥ 0, ∀1 ≤ j ≤ si, ∀1 ≤ i ≤ n, the maximum density
δmax,2 of any subtask (thread) among τdecom on 2-speed processor core is

δmax,2 = max{ 1

1 + fi,j
} ≤ 1 (14)

Lemma 1 shows that the density of every segment is at most Ci/2
Ti−Pi/2

for any

task with or without heavy segments.

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 13

Lemma 1 After the decomposition, the density of every segment 〈ei,j ,mi,j〉,
where 1 ≤ j ≤ si, of every task τi on 2-speed processor cores is upper bounded

by Ci/2
Ti−Pi/2

.

Proof First, we analyze the case when the task contains some heavy segments.
According to Equation 11, for every heavy segment 〈ei,j ,mi,j〉, the density is

Ci,2 − C`i,2
Ti − P `i,2

≤ Ci,2
Ti − P `i,2

(since C`i,2 ≥ 0)

≤ Ci,2
Ti − Pi,2

(since Pi,2 ≥ P `i,2)

=
Ci/2

Ti − Pi/2

For every light segment 〈ei,j ,mi,j〉, fi,j = 0. That is, its deadline is equal
to its computation requirement

ei,j
2 on 2-speed processor cores. Therefore, its

density is
mi,j

1 + fi,j
= mi,j ≤

Ci,2
Ti − Pi,2

=
Ci/2

Ti − Pi/2
For the case when there are no heavy segments in τi, for every segment

〈ei,j ,mi,j〉 of τi, mi,j ≤ Ci,2

Ti−Pi,2
. Since Ti ≥ Pi,2 (Observation 1), the density

of each segment 〈ei,j ,mi,j〉 (Equation 13) of τi:

mi,j
Pi,2
Ti
≤ mi,j ≤

Ci,2
Ti − Pi,2

=
Ci/2

Ti − Pi/2

Hence, follows the lemma. ut

Thus, our decomposition distributes the slack so that each segment has a
density that is bounded above. Theorem 2 establishes an upper bound on the
density of every task after decomposition.

Theorem 2 The density δi,2 of every τdecomi , 1 ≤ i ≤ n, (i.e. the density of
every task τi after decomposition) on 2-speed processor cores is upper bounded

by Ci/2
Ti−Pi/2

.

Proof After the decomposition, the densities of all segments of τi comprise the
density of τdecomi . However, no two segments are simultaneous active, and each
segment occurs exactly once during the activation time of task τi. Therefore,
we can replace each segment with the segment that has the maximum density.
Thus, task τdecomi can be considered as si occurences of the segment that has
the maximum density, and therefore, the density of the entire task set τdecomi

is equal to that of the segment having the maximum density which is at most
Ci/2

Ti−Pi/2
(Lemma 1). Therefore, δi,2 ≤ Ci/2

Ti−Pi/2
. ut

Lemma 3 If τdecom is schedulable, then τ is also schedulable.

14 Abusayeed Saifullah et al.

Proof For each τdecomi , 1 ≤ i ≤ n, its deadline and execution requirement
are the same as those of original task τi. Besides, in each τdecomi , a subtask is
released only after all its preceding segments are complete. Hence, the prece-
dence relations in original task τi are retained in τdecomi . Therefore, if τdecom

is schedulable, then a schedule must exist for τ where each task in τ can meet
its deadline. ut

4 Global EDF Scheduling

After our proposed decomposition, we consider the scheduling of synchronous
parallel tasks. Lakshmanan et al (2010) show that there exist task sets with
total utilization slightly greater than (and arbitrarily close to) 1 that are un-
schedulable with m processor cores. Since our model is a generalization of
theirs, this lower bound still holds for our tasks, and conventional utilization
bound approaches are not useful for schedulability analysis of parallel tasks.
Hence, like Lakshmanan et al (2010), we use the resource augmentation bound
approach, originally introduced by Funk et al (2001). We first consider global
scheduling where tasks are allowed to migrate among processor cores. We then
analyze schedulability in terms of a resource augmentation bound. Since the
synchronous parallel tasks are now split into individual sequential subtasks, we
can use global Earliest Deadline First (EDF) scheduling for them. The global
EDF policy for subtask scheduling is basically the same as the traditional
global EDF where jobs with earlier deadlines are assigned higher priorities.

Under global EDF scheduling, we now present a schedulability analysis in
terms of a resource augmentation bound for our decomposed tasks. For any
task set, the resource augmentation bound ν of a scheduling policy A on a
multi-core processor with m cores represents a processor speedup factor. That
is, if there exists any (optimal) algorithm under which a task set is feasible on
m identical unit-speed processor cores, then A is guaranteed to successfully
schedule this task set on a m-core processor, where each processor core is ν
times as fast as the original. In Theorem 5, we show that our decomposition
needs a resource augmentation bound of 4 under global EDF scheduling.

Our analysis uses a result for constrained deadline sporadic sequential tasks
on m processor cores proposed by Baruah (2007) as re-stated here in Theo-
rem 4. This result is a generalization of the result for implicit deadline sporadic
tasks (Goossens et al, 2003).

Theorem 4 (Baruah, 2007) Any constrained deadline sporadic sequential task
set π with total density δsum(π) and maximum density δmax(π) is schedulable
using global EDF strategy on m unit-speed processor cores if

δsum(π) ≤ m− (m− 1)δmax(π)

Since we decompose our synchronous parallel tasks into sequential tasks
with constrained deadlines, this result applies to our decomposed task set
τdecom. If we can schedule τdecom, then we can schedule τ (Lemma 3).

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 15

Theorem 5 If there exists any way to schedule a synchronous parallel task
set τ on m unit-speed processor cores, then the decomposed task set τdecom is
schedulable using global EDF on m processor cores each of speed 4.

Proof Let there exist some algorithm A under which the original task set τ is
feasible on m identical unit-speed processor cores. If τ is schedulable under A,
the following condition must hold (by Observation 2).

n∑
i=1

Ci
Ti
≤ m (15)

We decompose tasks considering that each processor core has speed 2. To be
able to schedule the decomposed tasks τdecom, suppose we need to increase the
speed of each processor core ν times further. That is, we need each processor
core to be of speed 2ν.

On an m-core platform where each processor core has speed 2ν, let the total
density and the maximum density of task set τdecom be denoted by δsum,2ν and
δmax,2ν , respectively. From 14, we have

δmax,2ν =
δmax,2

ν
≤ 1

ν
(16)

The value δsum,2ν turns out to be the total density of all decomposed tasks.
By Theorem 2 and Equation 1, the density of every task τdecomi on m identical
processors each of speed 2ν is

δi,2ν ≤
Ci

2ν

Ti − Pi

2

≤
Ci

2ν

Ti − Ti

2

(since Pi ≤ Ti)

=
Ci

2ν
Ti

2

=
1

ν
.
Ci
Ti

Thus, from 15,

δsum,2ν =

n∑
i=1

δi,2ν ≤
1

ν

n∑
i=1

Ci
Ti
≤ m

ν
(17)

Note that, in the decomposed task set, every thread of the original task is
a sequential task on a multiprocessor platform. Therefore, δsum,2ν is the total
density of all threads (i.e. subtasks), and δmax,2ν is the maximum density
among all threads. Thus, by Theorem 4, the decomposed task set τdecom is
schedulable under global EDF on m processor cores each of speed 2ν if

δsum,2ν ≤ m− (m− 1)δmax,2ν (18)

Now using the values of δsum,2ν (Equation 17) and δmax,2ν (Equation 16)
into Condition (18), task set τdecom is schedulable if

m

ν
≤ m− (m− 1)

1

ν

⇔ 1

ν
+

1

ν
− 1

mν
≤ 1 ⇔ 2

ν
− 1

mν
≤ 1

16 Abusayeed Saifullah et al.

From the above condition, τdecom must be schedulable if

2

ν
≤ 1 ⇔ ν ≥ 2 ⇔ 2ν ≥ 4

Hence follows the theorem. ut

5 Partitioned Deadline Monotonic Scheduling

Using the same decomposition described in Section 3, we now derive a re-
source augmentation bound required to schedule task sets under partitioned
Deadline Monotonic (DM) scheduling. Unlike global scheduling, in partitioned
scheduling, each task is assigned to a processor core. Tasks are executed only
on their assigned processor cores, and are not allowed to migrate among cores.
We consider the FBB-FFD (Fisher Baruah Baker - First-Fit Decreasing) par-
titioned DM scheduling proposed by Fisher et al (2006) which Lakshmanan
et al (2010) also uses as the scheduling strategy for parallel tasks in a more
restricted model. In fact, the FBB-FFD Algorithm was developed for peri-
odic tasks without release offsets while our decomposed subtasks have offsets.
Therefore, first we present how the FBB-FFD Algorithm should be adapted
to partition our subtasks with offsets, and then we analyze the resource aug-
mentation bound.

5.1 FBB-FFD based Partitioned DM Algorithm for Decomposed Tasks

The original FBB-FFD Algorithm by Fisher et al (2006) is a variant of the
first-fit decreasing bin-packing heuristic, and hinges on the notion of a request-
bound function for constrained deadline periodic sequential tasks. For a se-
quential task πi with execution requirement ei, utilization ui, and deadline di,
its request-bound function RBF(πi, t) for any time interval of length t is the
largest cumulative execution requirement of all jobs that can be generated by
πi to have their arrival times within a contiguous interval of length t. In the
FBB-FFD Algorithm, RBF(πi, t) is approximated as

RBF∗(πi, t) = ei + uit

Let the processor cores be indexed as 1, 2, · · · ,m, and Πq be the set of
tasks already assigned to processor core q, where 1 ≤ q ≤ m. Considering the
tasks in decreasing DM-priority order and starting from the highest priority
task, the FBB-FFD algorithm assigns a task πi to the first processor core q,
1 ≤ q ≤ m, that satisfies the following condition

di −
∑
πj∈Πq

RBF∗(πj , di) ≥ ei (19)

If no processor core satisfies the above condition for some task, then the task
set is decided to be infeasible for partitioning.

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 17

When we adopt the FBB-FFD algorithm to partition our decomposed sub-
tasks, we need to take the following two things into consideration while using
Condition (19):

1. The subtasks of segment j should be both prioritized and partitioned only
after the subtasks of segment j − 1 are prioritized and partitioned (for the
same original parallel task).

2. Ignore the interference from the subtasks in other segments in the same
task.

5.2 Analysis for the FBB-FFD based Partitioned DM Algorithm

We use an analysis similar to the one used by Lakshmanan et al (2010) to
derive the resource augmentation bound as shown in Theorem 6. The analysis
is based on the demand bound function of the tasks after decomposition.

Definition 5 The demand bound function (DBF), originally introduced by Baruah
et al (1990), of a task τi is the largest cumulative execution requirement of
all jobs generated by τi that have both their arrival times and their deadlines
within a contiguous interval of t time units. For a task τi with a maximum
computation requirement of Ci, a period of Ti, and a deadline of Di, its DBF
is given by

DBF(τi, t) = max

(
0,
(⌊ t−Di

Ti

⌋
+ 1
)
Ci

)
Definition 6 Based upon the DBF function, the load of task system τ , de-
noted by λ(τ), is defined as follows.

λ(τ) = max
t>0

n∑
i=1

DBF(τi, t)

t

From Definition 5, for a constrained deadline task τi:

DBF(τi, t) ≤ max

(
0,
(⌊ t−Di

Di

⌋
+ 1
)
Ci

)
≤
⌊
t

Di

⌋
Ci ≤

t

Di
.Ci = δi.t

Based on the above analysis, we now derive an upper bound of DBF for
every task after decomposition. Every segment of task τi consists of a set of
constrained deadline subtasks after decomposition and, by Lemma 1, the total

density of all subtasks in a segment is at most Ci/2
Ti−Pi/2

. The constrained dead-

line subtasks are offset to ensure that those belonging to different segments of
the same task are never simultaneously active. That is, for each task τi, each
segment (and each of its subtasks) happens only once during the activation

18 Abusayeed Saifullah et al.

time of τi. Therefore, for decomposed task τdecomi , considering the segment
having the maximum density in place of every segment gives an upper bound
on the total density of all subtasks of τdecomi . Since, the density δi,j of any j-th

segment of τdecomi is at most Ci/2
Ti−Pi/2

, the DBF of τdecomi over any interval of

length t is

DBF(τdecomi , t) ≤ Ci/2

Ti − Pi/2
.t

The load of the decomposed task system τdecom is

λ(τdecom) = max
t>0

n∑
i=1

DBF(τdecomi , t)

t

 ≤ n∑
i=1

Ci/2

Ti − Pi/2
(20)

Theorem 6 If there exists any (optimal) algorithm under which a synchronous
parallel task set τ is schedulable on m unit-speed processor cores, then its de-
composed task set τdecom is schedulable using the FBB-FDD based partitioned
DM Algorithm on m identical processor cores each of speed 5.

Proof Fisher et al (2006) proves that any constrained deadline sporadic task
set π with total utilization usum(π), maximum density δmax(π), and load λ(π)
is schedulable by the FBB-FFD Algorithm on m unit-speed processor cores if

m ≥ λ(π) + usum(π)− δmax(π)

1− δmax(π)

Using the same method used by Fisher et al (2006) for proving the above suffi-
cient schedulability condition, it can be shown that our decomposed (sub)tasks
τdecom are schedulable by the FBB-FFD based partitioned DM scheduling
(presented in Subsection 5.1) on m unit-speed processor cores if

m ≥ λ(τdecom) + usum(τdecom)− δmax(τdecom)

1− δmax(τdecom)
(21)

where δmax(τdecom), usum(τdecom), and λ(τdecom) denote the maximum density,
total utilization, and load, respectively, of τdecom on unit-speed processor cores.

We decompose tasks considering that each processor core has speed 2. To be
able to schedule the decomposed tasks τdecom, suppose we need to increase the
speed of each processor core ν times further. That is, we need each processor
core to be of speed 2ν. Let the maximum density, total utilization, and load of
task set τdecom be denoted by δmax,2ν , usum,2ν , and λ2ν respectively, when each
processor core has speed 2ν. Using these notations in Condition (21), task set
τdecom is schedulable by the FBB-FFD based partitioned DM Algorithm on
m identical processor cores each of speed 2ν if

m ≥ λ2ν + usum,2ν − δmax,2ν

1− δmax,2ν
(22)

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 19

From Equation 1:

usum,2ν =

n∑
i=1

Ci

2ν

Ti
=

1

2ν

n∑
i=1

Ci
Ti

=
usum
2ν

(23)

From Equations 1 and 20:

λ2ν ≤
n∑
i=1

Ci

2ν

Ti − Pi

2

≤
n∑
i=1

Ci

2ν

Ti − Ti

2

=
1

ν

n∑
i=1

Ci
Ti

=
usum
ν

(24)

Using Equations 24, 23, 16 in Condition (22), task set τdecom is schedulable if

m ≥
usum

ν + usum

2ν −
1
ν

1− 1
ν

If the original parallel task set τ is schedulable by any algorithm on m unit-
speed processor cores, then usum ≤ m. Therefore, τdecom is schedulable if

m ≥
m
ν + m

2ν −
1
ν

1− 1
ν

⇐ 2ν − 2 ≥ 3 ⇔ 2ν ≥ 5

Hence follows the theorem. ut

6 Generalizing to a Unit-node DAG Task Model

In the analysis presented so far, we have focused on synchronous parallel tasks.
That is, there is a synchronization point at the end of each segment, and the
next segment starts only after all the threads of the previous segment have
completed. In this section, we show that even more general parallel tasks that
can be represented as directed acyclic graphs (DAGs) with unit time nodes
can be easily converted into synchronous tasks. Therefore, the above analysis
holds for these tasks as well.

In the unit-node DAG model of tasks, each job is made up of nodes that
represent work, and edges that represent dependences between nodes. There-
fore, a node can execute only after all of its predecessors have been executed.
We consider the case where each node represents unit-time work. Therefore,
a unit-node DAG can be converted into a synchronous task by simply adding
new dependence edges as explained below.

If there is an edge from node u to node v, we say that u is the parent of
v. Then we calculate the depth, denoted by h(v), of each node v. If v has no
parents, then it is assigned depth 1. Otherwise, we calculate the depth of v as

h(v) = max
u parent of v

h(u) + 1

Each node with depth j is assigned to segment j. Then every node of the DAG
is considered as a thread in the corresponding segment. The threads in the same
segment can happen in parallel, and the segment is considered as a parallel

20 Abusayeed Saifullah et al.

a

w

c

b

e

d

x

z

y

(a) Unit-node DAG

a

w

b

c

d x

y

z

e

Segment
3

Segment
1

Segment
4

Segment
2

(b) Parallel synchronous model

Fig. 4 Unit-node DAG to parallel synchronous model

segment of a synchronous task. If there are k > 1 consecutive segments each
consisting of just one thread, then all these k segments are considered as one
sequential segment of execution requirement k (by preserving the sequence).
Figure 4 shows an example, where a DAG in Figure 4(a) is represented as a
synchronous task in Figure 4(b). This transformation is valid since it preserves
all dependences in the DAG, and in fact only adds extra dependences.

Upon representing a unit-node DAG task as a synchronous task, we per-
form the same decomposition proposed in Section 3. The decomposed task set
can be scheduled using either global EDF or partitioned DM scheduling. Note
that the transformation from a DAG task τi to a synchronous task preserves
the work Ci of τi. Hence, the condition

∑
Ci/Ti ≤ m used in our analysis still

holds. Besides, the transformation preserves the critical path length Pi of τi
and, hence, the rest of the analysis also holds. Therefore, a set of unit-node
DAG tasks can be scheduled with a resource augmentation bound of 4 under
global EDF scheduling, and of 5 under partitioned DM scheduling.

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 21

7 Evaluation

In this section, we evaluate the proposed decomposition through simulations.
We generate synchronous parallel tasks, decompose them, and simulate their
schedules under global EDF and partitioned DM policies considering multi-
core processors with different number of cores. We validate the derived resource
augmentation bounds by considering different speeds of the processor cores.

In our simulation studies, parallel synchronous task sets are generated in
the following way. The number of segments of each task is randomly selected
from the range [10, 30]. The number of threads in each segment is randomly
selected from the range [1, 90]. The execution requirements of the threads in
a segment are selected randomly from the range [5, 35]. Each task is assigned
a valid harmonic period (i.e. period is no less than its critical path length) of
the form 2k, where k is chosen from the range [6, 13]. We generate task sets
considering m = 20, 40, and 80 (i.e. for 20-core, 40-core, and 80-core proces-
sors). In generating a task set for any particular value of m, we keep adding
tasks to the set as long as their total utilization does not exceed m. For each
value of m, we generate 1000 task sets. The tasks generated for a particular
value of m are decomposed using our proposed decomposition technique. The
decomposed tasks are then scheduled by varying the speed of the cores on
the considered multi-core platform. We evaluate the performance in terms of
a failure ratio defined as the proportion of the number of unschedulable task
sets to the total number of task sets attempted. In Figures 5, 6, and 7, the
failure ratios under global EDF (G-EDF) and partitioned DM (P-DM) based
on the FBB-FFD Algorithm are labeled as G-EDF and P-DM, respectively.

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Processor speed

F
a

il
u

re
 r

a
ti
o

P−DM
G−EDF

Fig. 5 Schedulability on a 20-core processor

In the first set of simula-
tions, we evaluate the schedu-
lability of 1000 task sets gen-
erated for a 20-core proces-
sor. The decomposed tasks are
scheduled on a 20-core proces-
sor by varying the speed of all
cores (all cores having the same
speed). The failure ratios un-
der different speeds are shown
in Figure 5. In particular, we
start by setting a speed of 1
(i.e. unit-speed) at every pro-
cessor core. Then we keep in-
creasing the speed of each core
by 0.2 in every step, and schedule the same set of tasks using the increased
speed. When each core has speed 1, the failure ratio under G-EDF is 0.809.
That is, out of 1000 test cases, 809 cases are not schedulable under G-EDF. As
we gradually increase the speed of each core, the failure ratios decrease sharply.
For example, when each core has speed of 1.2, 1.4, 1.6, and 1.8, the failure ra-
tios are 0.752, 0.710, 0.651, and 0.581, respectively. When speed is increased

22 Abusayeed Saifullah et al.

to 2 from 1.8, we observe a very sharp decrease in failure ratios. Specifically,
at speeds 2 and 2.2, only one task set is unschedulable. This sharp decrease
happens due to the following reason. According to our decomposition, when
the speed of each core is less than 2, some (sub)task may have density greater
than 1 meaning that it cannot meet its deadline at speed lower than 2. Since
the decomposition guarantees that the maximum density among all (sub)tasks
is at most 1 at speed 2, many task sets that were unschedulable at speed 1.8
become schedulable at speed 2. When each core has speed 2.4 or more, all task
sets are schedulable. Thus, the resource augmentation required for the tasks
we have evaluated under G-EDF is only 2.4 for this simulation setting.

Besides G-EDF, Figure 5 also plots the failure ratios under P-DM (based
on the FBB-FFD Algorithm) on a 20-core processor. When each core has speed
1, the failure ratio under P-DM is 0.885 meaning that 885 test cases out of
1000 cases are unschedulable. With the increase in speed, the failure ratios
decrease sharply, and at speed 2.4, it becomes only 0.143. After that, when
the speed is increased to 2.6, 2.8, and 3, the failure ratios reduce to 0.046, 0.01,
and 0.002, respectively. Although it decreases quite quickly with the increase
in speed, it does not decrease as sharply as under G-EDF. In fact, at every
speed up to 3, it is higher than that under G-EDF which is quite reasonable to
expect since G-EDF is a highly efficient scheduling policy compared to P-DM.
When the speed of each core is increased to 3.2 or more, all 1000 task sets are
schedulable under P-DM, demonstrating a resource augmentation of 3.2 for
this specific simulation setting which is smaller than our theoretical bound of
5 for P-DM.

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Processor speed

F
a

il
u

re
 r

a
ti
o

P−DM
G−EDF

Fig. 6 Schedulability on a 40-core processor

In the second set of simula-
tions, we evaluate the schedu-
lability of 1000 task sets gen-
erated for a 40-core processor.
Note that these task sets are
different from those generated
for the previous set of simu-
lations, and have higher total
utilization (as these are gen-
erated for a higher number of
cores). We schedule the decom-
posed tasks on a 40-core pro-
cessor, and show the failure ra-
tios under different speeds in
Figure 6. Here also, we start by
setting a speed of 1 of every processor core. As the figure shows, when each
core has speed 1, the failure ratio under G-EDF is 0.948. With the increase in
speed, it keeps decreasing, and becomes 0.854 at a speed of 1.8. Similar to the
previous experiment, when speed is increased to 2 from 1.8, the failure ratio
sharply decreases (to 0.004). At a speed of 2.4 or more, all 1000 task sets are
schedulable under G-EDF on a 40-core processor. Similar to our first set of
simulations, these results also show that the required resource augmentation

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 23

under G-EDF is 2.4 for this simulation setting. Under P-DM, the failure ratio
is 0.968 at speed 1, and decreases as the speed increases, and becomes 0.004
at speed 3.2. When the speed is increased to 3.4 or more, all task sets become
schedulable under P-DM, demonstrating a resource augmentation of 3.4 for
this simulation setting.

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Processor speed

F
a

il
u

re
 r

a
ti
o

P−DM
G−EDF

Fig. 7 Schedulability on a 80-core processor

Finally, we evaluate using
1000 task sets generated for
a 80-core processor, and show
the failure rates under different
speeds in Figure 7. No task set
is schedulable under G-EDF at
a speed of 1.6 or less on a 80-
core processor. At a speed of
1.8, the failure ratio under G-
EDF is 0.996, while all tasks
become schedulable at a speed
of 2.2. The results show that
the required resource augmen-
tation under G-EDF is only 2.2
for this simulation setting. For
scheduling under P-DM, no task set is schedulable at a speed of 1.8 or less.
The failure ratios under P-DM keeps decreasing as we increase the speed, and
becomes 0.013 at speed 3.2. When the speed of each core is increased to 3.4 or
more, all task sets become schedulable. Thus, in this experiment, the required
resource augmentation is at most 3.4 for P-DM.

The above results indicate that the decomposed tasks we evaluated re-
quired a resource augmentation of at most 2.4 under global EDF. This bound
is much smaller than the theoretical bound of 4. Similarly, the results show
that the decomposed tasks we evaluated required a resource augmentation of
at most 3.4 for partitioned DM scheduling, which is also much smaller than
the theoretical bound of 5. The results thus demonstrate that the analytical
augmentation bounds are safe and sufficient.

8 Related Work

There has been extensive work on traditional multiprocessor real-time schedul-
ing (Davis and Burns, 2011). Most of this work focuses on scheduling sequential
tasks on multiprocessor or multi-core systems. There has also been extensive
work on scheduling of one or more parallel jobs on multiprocessors (Poly-
chronopoulos and Kuck, 1987; Drozdowski, 1996; Deng et al, 1996; Arora et al,
1998; Bansal et al, 2004; Edmonds et al, 2003; Agrawal et al, 2006; Calandrino
and Anderson, 2008; Calandrino et al, 2007a,b). However, the work in Poly-
chronopoulos and Kuck (1987); Drozdowski (1996); Deng et al (1996); Arora
et al (1998); Bansal et al (2004); Edmonds et al (2003); Agrawal et al (2006)
does not consider task deadlines, and that in Calandrino and Anderson (2008);

24 Abusayeed Saifullah et al.

Calandrino et al (2007a,b) considers soft real-time scheduling. In contrast to
the goal of a hard real-time system (i.e. to meet all task deadlines), in a soft
real-time system the goal is to meet a certain subset of deadlines based on
some application specific criteria.

There has been little work on hard real-time scheduling of parallel tasks. An-
derson and Calandrino (2006) proposes the concept of megatask as a way to
reduce miss rates in shared caches on multi-core platforms, and consider Pfair
scheduling by inflating the weights of a megatask’s component tasks. Preemp-
tive fixed-priority scheduling of parallel tasks is shown to be NP-hard by Han
and Lin (1989). Kwon and Chwa (1999) explores preemptive EDF schedul-
ing of parallel task systems with linear-speedup parallelism. Wang and Cheng
(1992) considers a heuristic for nonpreemptive scheduling. However, this work
focuses on metrics like makespan (Wang and Cheng, 1992) or total work that
meets deadline (Kwon and Chwa, 1999), and considers simple task models
where a task is executed on up to a given number of processors.

Most of the other work on real time scheduling of parallel tasks also ad-
dress simplistic task models. Jansen (2004), Lee and Lee (2006), and Collette
et al (2008) study the scheduling of malleable tasks, where each task is as-
sumed to execute on a given number of cores or processors and this number
may change during execution. Manimaran et al (1998) studies non-preemptive
EDF scheduling for moldable tasks, where the actual number of used proces-
sors is determined before starting the system and remains unchanged. Kato
and Ishikawa (2009) addresses Gang EDF scheduling of moldable parallel task
systems. They require the users to select at submission time the number of
processors upon which a parallel task will run. They further assume that a
parallel task generates the same number of threads as processors selected be-
fore the execution. In contrast, the parallel task model addressed in this paper
allows tasks to have different numbers of threads in different stages, which
makes our solution applicable to a much broader range of applications.

Our work is most related to, and is inspired by, the recent work of Lak-
shmanan et al (2010) on real-time scheduling for a restrictive synchronous
parallel task model. In their model, every task is an alternate sequence of
parallel and sequential segments. All the parallel segments in a task have an
equal number of threads, and that number cannot exceed the total number of
processor cores. They also convert each parallel task into a set of sequential
tasks, and then analyze the resource augmentation bound for partitioned DM
scheduling. However, their strategy of decomposition is different from ours.
They use a stretch transformation that makes a master thread of execution re-
quirement equal to the task period, and assign one processor core exclusively
to it. The remaining threads are scheduled using the FBB-FDD algorithm.
Unlike ours, their results do not hold if, in a task, the number of threads in
different segments vary, or exceed the number of cores. In addition, tasks that
can be expressed as a DAG of unit time nodes cannot be converted to their
task model in a work and critical path length conserving manner. Therefore,
unlike ours, their analysis does not directly apply to these more general task
models.

Multi-core Real-Time Scheduling for Generalized Parallel Task Models 25

9 Conclusion

With the advent of the era of multi-core computing, real-time scheduling of
parallel tasks is crucial for real-time applications to exploit the power of multi-
core processors. While recent research on real-time scheduling of parallel tasks
has shown promise, the efficacy of existing approaches is limited by their re-
strictive parallel task models. To overcome these limitations, in this paper we
have presented new results on real-time scheduling for generalized parallel task
models. First, we have considered a general synchronous parallel task model
where each task consists of segments, each having an arbitrary number of par-
allel threads. Then we have proposed a novel task decomposition algorithm
that decomposes each parallel task into a set of sequential tasks. We have
derived a resource augmentation bound of 4 under global EDF scheduling,
which to our knowledge is the first resource augmentation bound for global
EDF scheduling of parallel tasks. We have also derived a resource augmenta-
tion bound of 5 for partitioned DM scheduling. Finally, we have shown how
to convert a task represented as a Directed Acyclic Graph (DAG) with unit
time nodes into a synchronous task, thereby holding our results for this more
general task model. Evaluation through simulation studies has validated that
the derived resource augmentation bounds are safe and sufficient.

In the future, we plan to consider even more general DAG tasks where
nodes have arbitrary execution requirements, and to provide analysis requiring
no transformation to synchronous model. We also plan to address system issues
such as cache effects, preemption penalties, and resource contention.

Acknowledgements This research was supported by NSF under grants CNS-0448554
(CAREER) and CNS-1017701 (NeTS).

References

Agrawal K, He Y, Hsu WJ, Leiserson CE (2006) Adaptive task scheduling with parallelism
feedback. In: PPoPP ’06: Proceedings of the 11th ACM SIGPLAN symposium on Prin-
ciples and Practice of Parallel Programming, pp 100–109

Anderson JH, Calandrino JM (2006) Parallel real-time task scheduling on multicore plat-
forms. In: RTSS ’06: Proceedings of the 27th IEEE Real-Time Systems Symposium, pp
89–100

Arora NS, Blumofe RD, Plaxton CG (1998) Thread scheduling for multiprogrammed mul-
tiprocessors. In: SPAA ’98: Proceedings of the 10th annual ACM Symposium on Parallel
Algorithms and Architectures, pp 119–129

Bansal N, Dhamdhere K, Konemann J, Sinha A (2004) Non-clairvoyant scheduling for min-
imizing mean slowdown. Algorithmica 40(4):305–318

Baruah S (2007) Techniques for multiprocessor global schedulability analysis. In: RTSS ’07:
Proceedings of the 28th IEEE Real-Time Systems Symposium, pp 119–128

Baruah S, Mok A, Rosier L (1990) Preemptively scheduling hard-real-time sporadic tasks
on one processor. In: RTSS ’90: Proceedings of the 11th IEEE Real-Time Systems Sym-
posium, pp 182–190

Calandrino JM, Anderson JH (2008) Cache-aware real-time scheduling on multicore plat-
forms: Heuristics and a case study. In: ECRTS ’08: Proceedings of the 20th Euromicro
Conference on Real-Time Systems, pp 299–308

26 Abusayeed Saifullah et al.

Calandrino JM, Anderson JH, Baumberger DP (2007a) A hybrid real-time scheduling ap-
proach for large-scale multicore platforms. In: ECRTS ’07: Proceedings of the 19th Eu-
romicro Conference on Real-Time Systems, pp 247–258

Calandrino JM, Baumberger D, Li T, Hahn S, Anderson JH (2007b) Soft real-time schedul-
ing on performance asymmetric multicore platforms. In: RTAS ’07: Proceedings of the
13th IEEE Real Time and Embedded Technology and Applications Symposium, pp 101–
112

ClearSpeed (2008) CoSy compiler for 96-core multi-threaded array processor. http://www.
clearspeed.com/newsevents/news/ClearSpeed_Ace_011708.php

Collette S, Cucu L, Goossens J (2008) Integrating job parallelism in real-time scheduling
theory. Information Processing Letter 106(5):180–187

Davis RI, Burns A (2011) A survey of hard real-time scheduling algorithms and schedulabil-
ity analysis techniques for multiprocessor systems. ACM Computing Survey 43(4):35:1–44

Deng X, Gu N, Brecht T, Lu K (1996) Preemptive scheduling of parallel jobs on multipro-
cessors. In: SODA ’96: Proceedings of the 7th annual ACM-SIAM Symposium on Discrete
Algorithms, pp 159–167

Drozdowski M (1996) Real-time scheduling of linear speedup parallel tasks. Information
Processing Letter 57(1):35–40

Edmonds J, Chinn DD, Brecht T, Deng X (2003) Non-clairvoyant multiprocessor scheduling
of jobs with changing execution characteristics. Journal of Scheduling 6(3):231–250

Fisher N, Baruah S, Baker TP (2006) The partitioned scheduling of sporadic tasks according
to static-priorities. In: ECRTS ’06: Proceedings of the18th Euromicro Conference on Real-
Time Systems, pp 118–127

Funk S, Goossens J, Baruah S (2001) On-line scheduling on uniform multiprocessors. In:
RTSS ’01: Proceedings of the 22nd IEEE Real-Time Systems Symposium, pp 183–192

Goossens J, Funk S, Baruah S (2003) Priority-driven scheduling of periodic task systems on
multiprocessors. Real-Time Systems 25(2-3):187–205

Han CC, Lin KJ (1989) Scheduling parallelizable jobs on multiprocessors. In: RTSS ’89:
Proceedings of the 10th IEEE Real-Time Systems Symposium, pp 59–67

Huang HM, Tidwell T, Gill C, Lu C, Gao X, Dyke S (2010) Cyber-physical systems for
real-time hybrid structural testing: a case study. In: ICCPS ’10: Proceedings of the 1st
ACM/IEEE International Conference on Cyber-Physical Systems, pp 69–78

Intel (2007) Teraflops research chip. http://techresearch.intel.com/ProjectDetails.

aspx?Id=151

Intel (2010) Cilk Plus. http://software.intel.com/en-us/articles/intel-cilk-plus
Jansen K (2004) Scheduling malleable parallel tasks: An asymptotic fully polynomial time

approximation scheme. Algorithmica 39(1):59–81
Kato S, Ishikawa Y (2009) Gang EDF scheduling of parallel task systems. In: RTSS ’09:

Proceedings of the 30th IEEE Real-Time Systems Symposium, pp 459–468
Kwon OH, Chwa KY (1999) Scheduling parallel tasks with individual deadlines. Theoretical

Computer Science 215(1-2):209–223
Lakshmanan K, Kato S, Rajkumar RR (2010) Scheduling parallel real-time tasks on multi-

core processors. In: RTSS ’10: Proceedings of the 30th IEEE Real-Time Systems Sympo-
sium, pp 259–268

Lee WY, Lee H (2006) Optimal scheduling for real-time parallel tasks. IEICE Transactions
on Information and Systems E89-D(6):1962–1966

Manimaran G, Murthy CSR, Ramamritham K (1998) A new approach for scheduling of
parallelizable tasks inreal-time multiprocessor systems. Real-Time Systems 15(1):39–60

OpenMP (2011) OpenMP: Open multi-processing. http://openmp.org
Polychronopoulos CD, Kuck DJ (1987) Guided self-scheduling: A practical scheduling

scheme for parallel supercomputers. IEEE Transactions on Computers C-36(12):1425–
1439

Wang Q, Cheng KH (1992) A heuristic of scheduling parallel tasks and its analysis. SIAM
Journal of Computing 21(2):281–294

	Multi-core Real-Time Scheduling for Generalized Parallel Task Models
	Recommended Citation
	Multi-core Real-Time Scheduling for Generalized Parallel Task Models

	blank.pdf
	RTSS2011_Saifullah.pdf

