

Chonka, Ashley, Zhou, Wanlei and Xiang, Yang 2008, Multi-

core security defense system (MSDS), in ATNAC 2008 :

Proceedings of the 2008 Australasian Telecommunication

Networks and Applications Conference, IEEE, Piscataway,

N.J., pp. 85-90.
!

!

!

!

!

©2008 IEEE. Personal use of this material is permitted.

However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists,

or to reuse any copyrighted component of this work in other

works must be obtained from the IEEE.
!

Multi-core Security Defense System (MSDS)

Ashley Chonka and Wanlei Zhou

School of Engineering & Information Technology
Deakin University

Geelong, 3220, Australia

Yang Xiang
School of Management and Information Systems

 Central Queensland University
Rockhampton, 4702, Australia

{ashley, wanlei}@deakin.edu.au and y.xiang@cqu.edu.au

Abstract

Today’s security program developers are not only
facing an uphill battle of developing and implementing.
But now have to take into consideration, the emergence
of next generation of multi-core system, and its effect
on security application design. In our previous work,
we developed a framework called bodyguard. The
objective of this framework was to help security
software developers, shift from their use of serialized
paradigm, to a multi-core paradigm. Working within
this paradigm, we developed a security bodyguard
system called Farmer. This abstract framework placed
particular applications into categories, like Security or
Multi-media, which were ran on separate core
processors within the multi-core system. With further
analysis of the bodyguard paradigm, we found that this
paradigm was suitable to be used in other computer
science areas, such as Spam filtering and multi-media.
In this paper, we update our research work within the
bodyguard paradigm, and showed a marked
improvement of 110% speedup performance with an
average cost of 1.5ms.

Index Terms — Multicore, Ubiquitous Multicore
framework, Farmer, Bodyguard Framework

1. Introduction

Computer networks, and the internet, have evolved
into high-speed backbones and local-wide area
networks. Through these networks, millions of end-
users are linked to many critical services. Many

businesses, also, rely upon these critical services to
function at full capacity, in order to achieve greater
customer satisfaction and greater profits. DDoS
(Distributed Denial of Service) attacks are one of the
most effective ways to bring these critical systems, and
bring huge financial cost to bear to repair.

Currently, most defense systems, such as traceback
[1][2], logging [3][4] and messaging [5][6], have
difficulty in separating legitimate from illegitimate
traffic. Another problem with these defense systems is
that they do not really defend the system. Instead they
give the means to help identify the attackers [7],
without filter out the attack traffic.

In a previous paper [8], we introduced a defense
system called Farmer, named after the Kevin Costner
Movie ‘Bodyguard’. The fundamental idea, behind the
bodyguard framework was too separate out different
parts of security procedures (IP reconstruction, filter
attack traffic, monitoring defense system for attacks)
and placed them within their own category, separate
from other categories like multi-media or game
development. Today’s security is either placed in front
of the system, like a firewall, or behind the system, like
a virus scanner. Though these systems do provide good
protection, they usually come with high costs. For
example, with Firewalls they block inbound and
outbound traffic, which is directed by the host’s system
administrator. But, firewalls overhead costs, such as
memory usage, hard-disk space etc are particular high.
With the coming of multi-core system, there is now
opportunity for security applications to be placed along
side other application, instead of in front or behind
them. This gives applications, for example viewing

978-1-4244-2603-4/08/$25.00  2008 IEEE ATNAC 200885

youtube videos, but without the hindrance of a front
end firewall scanning every packet at the beginning.
Instead, aside firewall could scan along side your
youtube download, in real-time, and if a packet is
detected to be suspicious, then the front firewall can
become active and filter out the traffic. This is just one
advantage, which the bodyguard system could provide.

In this paper, our contribution is to currently update
our bodyguard framework, which has now evolved into
what we call ubiquitous multicore framework. What
we discovered, while working with our bodyguard
system, is that we could apply our methodology into
other areas of computer science. For example, Spam
filtering [9] and multimedia [10][11]. The rest of this
paper is organized as follows. Section Two briefly
covers the related work done in Multicore. The details
of UM framework and how it is applied to the
bodyguard framework Section Three. Section Four
presents the experiments and evaluation that were
conducted on our system. Lastly, Section Five covers
the conclusion and future work.

2. Related Work

In this section, we discuss very briefly multicore and

multimedia, and the two areas where our multicore
framework has been applied.

2.1. Multicore and Multimedia

Multicore systems have two or more processing
cores integrated into a single chip [12][13][14]. In such
a design, processing cores have their own private cache
(L1) and a shared common cache (L2). The shared
cache and main memory share the bandwidth between
all the processing cores. Multimedia co-processor
interface was developed by [15], in which they used a
multicore system to offload task management jobs
from MPU or DSP. From their evaluations conducted
on a JPEG file, Ou et al. achieved an overall
performance increase of 57%, while they kept their
overhead to 1.56% of the DSP core. The UM
framework is very different from Ou et al., in which
UM is more abstract, by applying applications (not
separate sections of a file) to separate core processors.

2.2. Multi-classifier SPAM filter

With the use of the paper by Chonka et. al [8], Rafiq
et. al [9], was able to apply the UM framework to a
multi-classifier SPAM filter. What we found, was that
if you ran each classifier process in parallel with each
other, it greatly improved the performance of our
multi-classifier architecture. It, also, reduced the false

positives and increase accuracy. The other advantages
we were able to achieve are as follows [9]:

• Reduced computation burden of the overall
mail server.

• Reduced memory storage, email messages are
processed independently from other
classifiers.

• When one of the classifiers becomes idle it
will directly go into training mode, thereby
optimizing resource usage.

3. Background

3.1 Farmer System Design

In our original paper [8], the bodyguard framework
was distributed on each router in the network. This was
done, in order to provide overall protection (Figure 1).
Each bodyguard is a source end (provides security
before traffic leaves the router) and destination end
protector (provides security as the traffic enters the
network). Also in covered in Figure 1, was each
bodyguard was in communication with each other.
There are three main reasons for this; to allow
bodyguards to send updated security information to
each other (new attacks that each has encountered, for
example), send security information down to the next
hop for checking application data as it comes into the
router (This is to provide better performance, by
breaking up the security and application data),
monitors the performance of each other (So if a
successful attack brings down a bodyguard, the next
hop router is prepared to handle the security).
Farmer’s objectives are as follows:
1. To protect the system, while allowing applications

full performance potential.
2. If an attack is discovered, the front bodyguard sub-

system will be initiated, which will affect the
performance ratio of the application, but will not
affect the other applications on the host. The
affected application performance ratio will be kept
to a minimum, while the security issue is resolved.

3. That all security process generated by side and
front bodyguard sub-system are handled by the
Security Cores.

Attacker Authorized User Attacker Authorized User

Farmer Farmer

Farmer Farmer

Farmer

Defender/Victim
Figure 1. System Architecture of Farmer

86

Figure 2. Ubiquitous Multicore Framework

 Ubiquitous Multicore (UM) Framework

The Ubiquitous Multicore Framework is built from a
divide-and-conquer approach [16], by dividing our
applications and placing them on separate core
processors (Figure 2). [Note: UM is not the new SMP]
Each application will run in parallel with each other,
exchanging information when necessary. The
application core assigner (ACA), assigns the
application either on behalf of the user, or the user can
select from the core(s) that are available. Once an
application is assigned to a core, depending on the
application program, a number of jobs or threads can
then be executed on this core processor.

 Applied UM Algorithm to Bodyguard
Framework

Our contribution in this paper, to give a further
analysis of Mathematical Partition model [10]. We
follow this, by conducting a short experiments of the
UM Framework, through the use of MPI. The
Mathematical Partition Model essentially, consists of
only computation, but we do assume a minimum of
communication is required for the 4 applications.

 Mathematical Partition Model

The MPM is adapted and modified from the partition
analysis of [19][20], in which they analysed the
speedup performance, computation and communication
cost and execution times of their partition. We briefly
covered the partition model in [10], in which we now
further extend.

1
(1)

c o m m s g d a t a
n c pt t

c p=
−

(1)

where msgdatat is the transmission time for a data
message sent over broadcasting, and n is the number

of computations used, and cp is the core processor that
have been selected to be used. Computational time is
represented by counting the number of computational
steps, usually if all processors are used then just one
process computation is necessary, it is as follows:

(,)c o m pt f n c p= (2)

Communication Time is depended upon the number of
messages, size of the message, communication
infrastructure (communication and network):

_com init startup msgdatat t wt= +

(3)

_init startupt is the message latency, which is the time it
takes for a message to be sent with no data. The data
messages sent via each partition is found in the
formula:

2 (l o g)c o m m s g d a t at c p t= (4)

For the total communication time is as follows:

1 2
(1) (log)tcom com com msgdata msgdata

n cpt t t t cp t
cp

−= + = +

(5)

The computation formula for the 4 partition
applications at the end of the partition phase (step 6) is
as follows:

c o m p
nt

c p
=

(6)

This gives us the Overall Execution Time for the 4
partition applications in the following formula:

(1) log logp msgdata
n cp nt cp t cp

cp cp
! "−= + + +# $
% &

(7)

The very best speedup we could expect, when the 4
partitioned applications have completed their
computations, is as follows:

1
((/)(1) log) / logmsgdata

n
n cp cp cp t n cp cp

−
− + + +

(8)

The actually speedup will be less than this due to
partition phase; computation/communication (c/c) ratio
is as follows:

/ log
((/)(1) log) msgdata

n cp cp
n cp cp cp t

+
− +

(9)

For load balancing we use the Mandelbrot computation
[16], in which if the maximum performance (mp) is
reached for the processor, it will then search for
another core processor to continue the work.

*sT mp m≤ (10)

To partition the application correctly we use the
following three phases:

87

Phase 1:

1 (1)()comm startup datat p t t= − + (11)

Phase 2:
*
1comp

mp nt
p

≤
−

(12)

Phase 3:

2 ()comm startup datat u t vt= + (13)

In order to maintain the highest speedup and
computation/communication ratio we use the Overall
Execution Time(14), Speedup factor (15), C/C ratio
(16):

* (1)()
1p startup data

mp nt p t t k
p

≤ + − + +
−

(14)

*
* (1)()
1

s

p
startup data

t mp n
mp nt p t t k
p

=
+ − + +

−

(15)

*
(1)((1)())startup data

mp n
p p t t k− − + +

(16)

4. Performance Evaluation

4.1 Performance Analysis

To assess the performance of our multicore system,
we used the same performance outline in [10]. In
which, we compared the two kernel benchmarks. The
hardware we used was, an Intel Core 2 Quad Q6600
2.4GHz Quad Core Processor, 2 GB of RAM and 2
300GB SATA hard-drives. The kernel under
measurement was 2.6.22.14.72 fc6. To gather
computational data, we included timers with our
application, in order to record execution times.
Communication time is depended upon the number of
messages, the size of the message and the
interconnection speed. We have decided to set the
standard to 1ms and computational data is assumed to
be .1ms less then execution time.

4.2. Simulation Setup

4.2.1 Benchmark factors

Our benchmarks are also from our [10], in which the

execution times ts, computational time tcom, and
communication time tcom, can be used to establish the
speedup factor (17) and computation/communication
ratio (18) from a single core to multicore system.

s s

cp comp com

t t
t t t

=
+

(17)

Where ts will stand for execution time on a single core
processor (tcp), this includes computation time and
communication time.

c o m p

c o m

t
t

(18)

Apart from speedup and the Computation and
Communication ratios, we also evaluate the UM
algorithm, through the use of Time Complexity or
“big-oh”, also referred to as “order of magnitude” [12].

() (())f x O g x=

[]0 () ()f x cg x≤ ≤ for all 0x ≥

(19)

Where f(x) and g(x) are functions of x. A positive
constant, c, has to exist for all 0x x≥ otherwise it is
zero. To evaluate Time complexity, we use the total
sum of computation and communication (formula 11)

(/ 1) (2 (/ 1)startup msgdatan cp t n cp t+ + + +

(20)

Where n is the number of threads on each core
processor.

4.3. Experimentation

To give us a baseline of comparison, we wrote a
program using MPI (19), in which the program gives
us a “perfect” example of parallel programming. The
results shown in table 1 are speedup that we were able
to achieve, which was 110%. From table 1 we then do
a comparison of previous results from paper [8], in
which we selected the best of our results and show
them along side table 1 (See Table 2). To make the
comparison fair, we used the same computation and
communication time from the MPI program, for our
multicore program. What the results from Table 2
shows, is that our MPI program use’s multicore
technology with greater efficiency, then our previous
multi-core program. But the reason for this greater
efficiency, was due to the fact that we wrote our
multicore program in C++ only.

In our second experiment we trained up Farmer,
which contains our Back Propagation Neural Network
Filter (placed on core 2), in order to detect and filter
DDoS attack traffic. To train up our Neural Network,
we used the dataset from the week 2, 1998 DARPA
intrusion detection evaluation set at Lincoln
Laboratory, MIT [17]. The data sets from MIT came
in TCP dump format, so we extracted the features we
needed and insert them into a MySQL database. These
features included SrcIP, DestIP, SrcPort, DestPort and

88

 Core 1 Core 2 Core 3 Core 4
Exe Time 1.5ms 1.4ms 1.3ms 1.4ms
Comp
Time

.3ms .3ms .2ms .3ms

Comm
Time

1ms 1ms 1ms 1ms

Speed
Ratio

115% 108% 108% 108%

C/C 0.3 0.3 0.2 0.3
Time
Complex

3.5 3.5 3.5 3.5

Cost 1.5 1.4 1.3 1.4
Cost-
Optimal

3.7 3.7 3.7 3.7

Table 1. Results of speedup and the costs, which show
an average increase of 110% at the average cost of
1.4ms

MPI
(MC)

Core 1 Core 2 Core 3 Core 4

Exe Time 1.10ms 1.15ms 1.11ms 1.11ms
Comp
Time

0ms .04ms .01ms .01ms

Comm
Time

1ms 1ms 1ms 1ms

Speed
Ratio

110% 111% 110% 110%

C/C 0.3 0.3 0.2 0.3
Cost 1.5 1.4 1.3 1.4
Table 2. Results of speedup and the costs, which show
an average increase of 110% at the average cost of
1.4ms for the MPI over our previous Multicore result.

the length of time. We added an extra field to the table
for the decision, 0 for legitimate and 1 for illegitimate.
The result shown in Figure 3, was that, we were able to
achieve a +90% of the known attack traffic, with an
average of 6 false positives per test. This means that
our security detection is quite sensitive in detecting and
Network against the test data provide by [18].
filtering out DDoS attack traffic. To confirm this result
we then further our experiment by testing our Neural

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.4 0.5 0.6 0.7 0.8 0.9

Threshold

Pe
rf

or
m

an
ce

Monday

Tuesday

Wednesday

Thursday

Friday

Figure 3. Test Results of our Neural Network archived
a better than average (94%) result, with an average of 6
false positives per test (5 days of tests were conducted
from the MIT Dataset).

5. Problem and Future Work

In this section, we discuss briefly a problem within

our UM Framework in regards to our defense system,
and a possible solution to this problem. One of the
area’s of defense systems is accuracy [18]. Though, the
result shown in Figure 3, displays a high accuracy rate,
this result was not due to use of UM framework but
instead due to efficiency of Back Propagation Model of
our Neural Network. What we propose is a prediction
that accuracy can be improved using the UM
Framework by monitoring the efficiency of other core
processors. When a core is either below an efficiency
level of an assumed 30%, then redundant Neural
Network would then use these other core processors in
training and detecting DDoS attack traffic. In other
words we have redundant detection filters setup behind
the main programs on the core processors, ready to
startup when the efficiency level has been reached (or
when an emergency arises due to high attack rates for
example).

This would have three major benefits; firstly,
accuracy would be improved upon (This needs to be
confirmed). Secondly, greater efficiency of core
processors, and lastly, having these redundant filters
available during a particular difficult DDoS flood
attack would ease the resources on the main filter
(placed on core 2). The problem with this future work
is, does it violate the UM Framework? We would
answer, No, to the question because we still have the
main programs each assigned to the core processors.
We just have the redundant systems in place, to
“replace” the main programs until such time that the
main program efficiency level is low, thereby freeing
up core processing time.

5. Conclusion

In this paper, we further extended upon our previous
work within multicore defense system, by applying the
UM Framework to our Bodyguard Defense System.
The goal of such a security system is to use the new
multicore machines that are coming out, but also, with
these machines they can be used to solve some of the
many problems of computer security. Based on the
results, we have showed our defense system has an
improved performance average of 110%, through the
use of MPI [19]. We, also, showed our test results of
Farmer’s side bodyguard (Back Propagation Neural
Network), which would than tell the forward
bodyguard to filter the attack traffic detected. The
results show, based on 10 tests that we conducted over
4 hours of training the system. The result we achieved

89

was an average of 94% of attack traffic detected, with
an average of 6 false positives per test.

10. References

[1] Savage, S., Wetherall, D., Karlin, A., and Anderson, T.,
(2001), ‘Practical Network Support for IP Traceback’,
SIGCOMM'00, Stockholm, Sweden, 2000
[2] Belenky, A.,and Ansari, N., ‘Tracing Multiple Attackers
with Deterministic Packet Marking (DPM)’, Proc. of IEEE
Pacific Rim Conference on Communications, Computers and
Signal Processing
[3] Snoeren, A.C., et al., (2002), “Single-Packet IP
Traceback,” IEEE/ACM Trans. Networking, vol. 10, no. 6,
2002, pp. 721–734.
 [4] Baba, T., and Matsuda, S., (2002). “Tracing Network
Attacks to Their Sources,” IEEE Internet Computing, vol. 6,
no. 3, 2002
[5] Bellovin, S., Leech, M., and Taylor, T., (2003), ‘ICMP
Traceback Messages,’ Internet Draft, Internet Eng. Task
Force, 2003; work in progress.
[6] Mankin, A., Massey, D., Wu, C.L., Wu S.F and Zhang,
L., (2001), “On Design and Evaluation of ‘Intention-
Driven’ ICMP Traceback,” Proc. IEEE Int’l Conf. Computer
Comm. and Networks, IEEE CS Press, 2001. pp. 159–165.
[7] Aljifri, M., (2003), ‘IP Traceback: A NewDenial-of-
Service Deterrent?’ Published By The IEEE Computer
Society 1540-7993/03 2003
[8] Chonka, A Zhou, W Knapp, K and Xiang, Y,
(2008), "Protecting Information Systems from DDoS Attack
Using Multicore Methodology", IEEE 8th International
Conference on Computer and Information
Technology, IEEE, 2008.
[9] Islam, R. M.D, Singh, J, Zhou, W., and Chonka, A.,
(2008) , “Multi-Classifier Classification of Spam Email on a
Multicore Architecture”, Proceedings of IFIP International
Conference on Network and Parallel Computing, 2008
[10] Chonka, A, Zhou, W, and Ngo, L, (2008), “Multi-core
Defense System (MSDS) for Protecting Computer
Infrastructure against DDoS attacks”, IEEE Proceedings of
PDCAT2008.
[11] Chonka, A, Zhou, W, and Ngo, L, (2008), “Ubiquitous
Multicore (UM) Methodology for Multimedia, Proceeding of
International Symposium on Computer Science and its
Applications
[12] Multi-Core from Intel – Products and Platforms. http:
//www.intel.com/multi- core/products.htm, 2006.
[13]AMD Multi-Core Products.
http://multicore.amd.com/en/Products/, 2006.
[14] Gorder, P.M, (2007), ‘Multicore processors for science
and engineering’, IEEE CS and the AIP, 1521-
9615/07/,March/April 2007
[15] Ou, S.H., Lin, T.J., Deng, X.S., Zhuo, Z.H., Liu, C.W.,
(2008), “Multithreaded coprocessor interface for multi-core
multimedia SoC’, Proceedings of the 2008 conference on
Asia and South Pacific design automation, Seoul, Korea
SESSION: University LSI design contest, Pages 115-116,
ISBN:978-1-4244-1922-7, 2008
[16] JaJa, J. (1992), ‘An Introduction to Parallel
Algorithms”, Addison Wesley, Reading, MA

[17] MIT 1998 DARPA Intrusion Detection Evaluation Data
Set,
http://www.ll.mit.edu/mission/communications/ist/index.htm
l
[18] Xiang, Y., and Zhou, W., (2004), ‘Trace IP packets by
flexible deterministic packet marking (FDPM)’, IP
Operations and Management, 2004. Proceedings IEEE
Workshop on 11-13 Oct. 2004
[19] Gropp, W., Lusk, E, Skjellum, A, (1996), “Using MPI:
Portable Parallel Programming with the Message-Passing
Interface”, Massachusetts Institute of Technology, 1994.
[20] Foster, I, (1994), “Designing and Building Parallel
Programs: concepts and tools for parallel software
engineering”, Addison-Wesley Publishing Company, (1994)
[21] Wilkson, B & Allen, M, (2005), “Parallel
Programming: Techniques and Applications using network
workstations and parallel computers”, Pearson Education,
Pearson Prentice Hall, (2005)

90

