
Multi-core Structural SVM Training

Kai-Wei Chang, Vivek Srikumar, and Dan Roth

Dept. of Computer Science,
University of Illinois, Urbana-Champaign, IL, USA.

{kchang10,vsrikum2,danr}@illinois.edu

Abstract. Many problems in natural language processing and computer vision
can be framed as structured prediction problems. Structural support vector ma-
chines (SVM) is a popular approach for training structured predictors, where
learning is framed as an optimization problem. Most structural SVM solvers al-
ternate between a model update phase and an inference phase (which predicts
structures for all training examples). As structures become more complex, infer-
ence becomes a bottleneck and thus slows down learning considerably. In this
paper, we propose a new learning algorithm for structural SVMs called DEMI-
DCD that extends the dual coordinate descent approach by decoupling the model
update and inference phases into different threads. We take advantage of multi-
core hardware to parallelize learning with minimal synchronization between the
model update and the inference phases. We prove that our algorithm not only con-
verges but also fully utilizes all available processors to speed up learning, and val-
idate our approach on two real-world NLP problems: part-of-speech tagging and
relation extraction. In both cases, we show that our algorithm utilizes all available
processors to speed up learning and achieves competitive performance. For ex-
ample, it achieves a relative duality gap of 1% on a POS tagging problem in 192
seconds using 16 threads, while a standard implementation of a multi-threaded
dual coordinate descent algorithm with the same number of threads requires more
than 600 seconds to reach a solution of the same quality.

1 Introduction

Many prediction problems in natural language processing, computer vision and other
fields are structured prediction problems, where decision making involves assigning
values to interdependent variables. The output structure can represent sequences, clus-
ters, trees or arbitrary graphs over the decision variables. The structural support vector
machine (structural SVM) [23] is a widely used approach for training the parameters
of structured models. However, training a structural SVM is computationally expensive
and this often places limits on the size of the training sets that can be used or limits the
expressivity of the structures considered among the interdependent variables. Designing
efficient learning algorithms for structural prediction models is therefore an important
research question.

Various approaches have been proposed in the literature to learn with the structural
SVM algorithm – both exact [22, 12, 3, 4, 13] and approximate [19, 8]. However, these
algorithms are inherently single-threaded, and extending them to a multi-core environ-
ment is not trivial. Therefore, these algorithms cannot take advantage of the multiple
cores available in most modern workstations.



2 Kai-Wei Chang, Vivek Srikumar, Dan Roth

Existing parallel algorithms for training structural SVMs (such as [3]) use a se-
quence of two phases: an inference phase, where loss-augmented inference is performed
using the current model, and a model update phase. Each phase is separated from the
other by a barrier that prevents model update until the inference is complete and vice
versa. A similar barrier exists in map-reduce implementations of the binary SVM [5]
and the Perceptron [17] algorithms. Such barrier-based approaches prevent existing par-
allel algorithms from fully utilizing the available processors.

In this paper, we propose the DEMI-DCD algorithm (DEcoupled Model-update
and Inference with Dual Coordinate Descent), a new barrier-free parallel algorithm
based on the dual coordinate descent (DCD) method for the L2-loss structural SVM.
DCD has been shown competitive with other optimization techniques such as the cut-
ting plane method [23] and the Frank-Wolfe method [13]. DEMI-DCD removes the
need for a barrier between the model update and the inference phases allowing us to
distribute these two steps across multiple cores. We show that our approach has the
following advantages:

1. DEMI-DCD requires little synchronization between threads. Therefore, it fully
utilizes the computational power of multiple cores to reduce training time.

2. As in the standard dual coordinate descent approach, DEMI-DCD can make multi-
ple updates on the structures discovered by the loss-augmented inference, thus fully
utilizing the available information. Furthermore, our approach retains the conver-
gence properties of dual coordinate descent.

We evaluate our method on two NLP applications – part-of-speech tagging and
entity-relation extraction from text. In both cases, we demonstrate that not only does
DEMI-DCD converge faster than existing methods to better performing solutions (ac-
cording to both primal objective value and test set performance), it also fully takes
advantage of all available processors unlike the other methods. For the part-of-speech
tagging task, we show that with 16 threads, our approache reaches a relative duality
gap of 1% in 192 seconds, while a standard multi-threaded implementation of the dual
coordinate descent algorithm with 16 threads takes more than 600 seconds to reach an
equivalent solution. Similarly, for the entity-relations task, our approach reaches within
1% of the optimal within 86 seconds, compared to 275 seconds for the baseline.

The rest of this paper is organized as follows. We review the structural SVM model
and the DCD method in Section 2. The proposed algorithm is described in Section 3.
We survey related methods in Section 4. Empirical results are demonstrated in Section
5. Section 6 provides concluding remarks and discussion.

2 Background: Structural SVM

We are given a set of training examples D = {xi,yi}li=1, where instances xi ∈ X
are annotated with structures yi ∈ Yi. Here the set Yi is a set of feasible structures for
the ith instance. Training a structural SVMs (SSVM) [23] is framed as the problem of



Multi-core Structural SVM Training 3

learning a real-valued weight vector w by solving the following optimization problem:

min
w,ξ

1

2
wTw + C

∑
i

`(ξi)

s.t. wTΦ(xi,yi)−wTΦ(xi,y) ≥ ∆(yi,y)− ξi, ∀i,y ∈ Yi.
(1)

where Φ(x,y) is the feature vector extracted from input the x and output y and `(ξ) is
the loss that needs to be minimized. The constraints in (1) indicate that for all training
examples and all possible output structures, the score for the correct output structure yi
is greater than the score for other output structures y by at least ∆(yi,y). The slack
variable ξi ≥ 0 penalizes the violation. The loss ` is an increasing function of the slack
that is minimized as part of the objective: when `(ξ) = ξ, we refer to (1) as an L1-loss
structural SVM, while when `(ξ) = ξ2, we call it an L2-loss structural SVM.1 For
mathematical simplicity, in this paper, we only consider the linear L2-loss structural
SVM model, although our method can potentially be extended to other variants of the
structural SVM.

Instead of directly solving (1), several optimization algorithms for SSVM consider
its dual form [23, 12, 4] by introducing dual variables αi,y for each output structure y
and each example xi. Ifα is the set of all dual variables, the dual problem can be stated
as

min
α>0

D(α), and

D(α) ≡ 1

2

∥∥∥∥∥∥
∑
αi,y

αi,yφ(y,yi,xi)

∥∥∥∥∥∥
2

+
1

4C

∑
i

(∑
y

αi,y

)2

−
∑
i,y

∆(y,yi)αi,y,

(2)

where φ(y,yi,xi) = φ(yi,xi)− φ(y,xi). The constraint α ≥ 0 restricts all the dual
variables to be non-negative (i.e., αi,y ≥ 0∀i,y).

For the optimal values, the relationship between the primal optimal w∗ (that is, the
solution of (1)), and the dual optimal α∗ (that is, the solution of (2)) is

w∗ =
∑
i,y

α∗i,yφ(y,yi,xi).

Although this relationship only holds for the solutions, in a linear model, one can main-
tain a temporary vector

w ≡
∑
i,y

αi,yφ(y,yi,xi) (3)

to assist the computations [10].

1 In L2-loss structural SVM formulation, one may replace∆(yi,y) by
√
∆(yi,y) to obtain an

upper bound on the empirical risk [23]. However, we keep using ∆(yi,y) for computational
and notational convenience. Thus, Eq. (1) minimizes the mean square loss with a regularization
term.



4 Kai-Wei Chang, Vivek Srikumar, Dan Roth

In practice, for most definitions of structures, the set of feasible structures for a given
instance (that is, Yi) is exponentially large, leading to an exponentially large number
of dual variables. Therefore, existing dual methods [4, 23] maintain an active set of
dual variablesA (also called the working set in the literature). During training, only the
dual variables in A are considered for an update and the rest αi,y /∈ A are fixed to 0.
We denote the active set associated with the instance xi as Ai and A =

⋃
iAi. The

following theorem justifies the use of an active set.

Theorem 1. Let α∗ be the optimal solution of (2) and A∗ = {α∗i,y | α∗i,y > 0}. Then
any optimal solution of

min
α≥0

D(α) s.t. αi,y = 0, ∀αi,y /∈ A∗ (4)

is an optimal solution of (2).

This suggests that we can reduce the size of the optimization problem by carefully
identifying nonzero α’s. This property of the dual is widely used for training SVMs,
for example, with the cutting-plane method [23, 12], with a dual coordinate descent
method [3, 4], and has also been used for solving binary SVM [11, 10, 2].

We observe that across all these methods, in a single-thread implementation, train-
ing consists of two phases:

1. Updating the values αi,y ∈ A (learning step), and
2. Selecting and maintaining the active set A (active set selection step).

The learning step usually updates each dual variable αi,y ∈ A several times until
convergence for the current active set. The active set selection step involves solving the
following loss-augmented inference problem for each example xi:

max
y∈Yi

wTφ(xi,y) +∆(yi,y) (5)

Solving loss-augmented inference is usually computationally more expensive than the
time for updating the model. In the traditional sequential implementations, these two
steps block each other. Even if inference for each example is performed in parallel on
a multi-core machine, the model update cannot be done until inference is solved for all
training examples. Similarly, inference cannot start until the model update is complete.
Balancing the time spent on these two parts is a crucial aspect of algorithm design. In
the next section, we will show that, on a multi-core machine, we can indeed fully utilize
the available computational power without the barrier between the two training steps.

3 Parallel Strategies for Structured Learning

In this section, we describe the parallel learning algorithm DEMI-DCD which decou-
ples the model update steps from the inference steps during learning, and hence fully
utilizes the computational power of multi-core machines.

Let p be the number of threads allocated for learning. DEMI-DCD first splits the
training dataD into p−1 disjoint parts: {Bj}p−1

j=1 with eachBj ⊂ D. Then, it generates



Multi-core Structural SVM Training 5

two types of threads, a learning thread and p − 1 active set selection threads. The jth

active set selection thread is responsible for maintaining an active set Ai for each ex-
ample i in the part Bj . It does so by searching for candidate structures for each instance
in Bj using the current model w which is maintained by the learning thread.

The learning thread loops over all the examples and updates the model w using
αi,y ∈ Ai for the ith example. The p − 1 active set selection threads are independent
of each other, and they share Ai and w with the learning thread using shared memory
buffers. We will now discuss our model in detail. The algorithms executing the learning
and the active set selection threads are listed as Algorithm 1 and 2 respectively.

Learning thread The learning thread performs a two-level iterative procedure until the
stopping conditions are satisfied. It first initializes α0 to a zero vector, then it generates
a sequence of solutions {α0,α1, . . .}. We refer to the step fromαt toαt+1 as the outer
iteration. Within this iteration, the learning thread sequentially visits each instance xi
in the data set and updates αi,y ∈ Ai while all the other dual variables are kept fixed.
To update αi,y , it solves the following one variable sub-problem that uses the definition
of the dual objective function from Eq. (2):

d̄i,y = arg min
d

D(α+ ei,yd) s.t. dαi,y + d ≥ 0

= arg min
d

1

2
‖w + φ(y,yi,xi)d‖2 +

1

4C

d+
∑
y∈Ai

αi,y

2

− d∆(yi,y)

s.t. αi,y + d ≥ 0.

(6)

Here,w is defined in Eq. (3) and ei,y is a vector where only the element corresponding
to (i,y) is one and the rest are zero. Eq. (6) is a quadratic optimization problem with
one variable and has an analytic solution. Therefore, the update rule of αi,y can be
written as:

d̄i,y ←
∆(y,yi)−wTφ(y,yi,xi)− 1

(2C)

∑
y′ αi,y′

‖φ(y,yi,xi)‖2 + 1
(2C)

,

αi,y ←max(αi,y + d̄i,y, 0).

(7)

To maintain the relation between α and w specified in Eq. (3), w is updated accord-
ingly:

w ← w + di,yφ(y,yi,xi). (8)

We will now discuss two implementation issues to improve DEMI-DCD. First, dur-
ing the learning, w is shared between the learning and the active set selection threads.
Therefore, we would like to maintain w in a shared buffer. However, the update rules
in Steps (7)-(8) can be done in O(n̄), where n̄ is number of average active features
of φ(x,y). Thus, when the number of active features is small, the updates are quick.
Hence, we require to maintain a lock to prevent the active set selection threads from ac-
cessingw when it is being updated. To reduce the cost of synchronization, we maintain
a local copy of w and copy w to a shared buffer (denoted by w̄) after every ρ updates.
This reduces the overhead of synchronization.



6 Kai-Wei Chang, Vivek Srikumar, Dan Roth

Algorithm 1 Learning Thread
Input: Dataset D and the number of iterations before updating the shared buffer, ρ.
Output: The learned modelw
1: w ← 0,α← 0, #updates← 0.
2: while stopping conditions are not satisfied do
3: for i = 1→ l (loop over each instance) do
4: for all y in Ai do
5: if Eq. (9) is satisfied then
6: Ai ← Ai \ {αi,y}.
7: else
8: update corresponding αi,y by Eq. (7)-Eq.(8),
9: #updates← #updates + 1.

10: end if
11: if #updates mod ρ = 0 then
12: Copyw to w̄ in a shared buffer.
13: end if
14: end for
15: end for
16: end while

Second, as the active set selection thread keeps adding dual variables into A, the
size ofA grows quickly. To avoid the learning thread from wasting time on the bounded
dual variables, we implement a shrinking strategy inspired by [11]2. Specifically, if αi,ȳ
equals to zero and

−∇(α)i,ȳ = ∆(ȳ,yi)−wTφ(ȳ,yi,xi)−
1

2

∑
y∈Ai

αi,y < δ (9)

then DEMI-DCD removes αi,ȳ from Ai. Notice that the shrinking strategy is more
aggressive if δ is large. For binary classification, a negative δ is usually used. This is
because, in the binary classification case, the size of the data is usually large (typically
millions of examples); therefore incorrectly removing an instance from the active set
requires a lengthy process that iterates over all the examples to add it back. However,
in our case, aggressive shrinking strategy is safe because the active set selection threads
can easily add the candidate structures back. Therefore, in our implementation, we set
δ to 0.01.

Active set selection threads As mentioned, the jth active set selection thread iterates
over all instances xi ∈ Bj and selects candidate active variables based on solving an
augmented inference problem (line 4 in Algorithm 2), that is, eq. (5). Just like the learn-
ing thread, each active set selection thread maintains a local copy ofw. This setting aims
to prevent w from being changed while the loss augmented inference is being solved,
thus avoiding a possibly suboptimal solution. The local copy ofw will be updated from
w̄ in the shared buffer after each ρ iterations.

2 This shrinking strategy is also related to the condition used by cutting plane methods for adding
constraints into the working set.



Multi-core Structural SVM Training 7

Algorithm 2 The jth Active Set Selection Thread
Input: Part of dataset for this thread Bj , and the number of iterations before updating the shared

buffer, ρ.
1: w ← 0 (a local copy), #Inference← 0,
2: while Learning thread is not stopped do
3: for all (xi,yi) ∈ Bj do
4: ȳ ← fAugInf(w,xi,yi).
5: if ȳ /∈ Ai then
6: Ai ← {Ai ∪ ȳ}.
7: end if
8: #Inference← #Inference + 1
9: if #Inference mod ρ = 0 then

10: Copy from the model w̄ in shared buffer tow.
11: end if
12: end for
13: end while

Synchronization Our algorithm requires little synchronization between threads. In
fact, only the learning thread can write to w̄ and only the jth active set selection thread
can modify Ai for any i ∈ Bj . It is very unlikely, but possible, that the learning thread
and the inference threads will be reading/writing w̄ or Ai concurrently. To avoid this,
one can use a mutex lock to ensure that the copy operation is atomic. However, in prac-
tice, we found that this synchronization is unnecessary.

3.1 Analysis

In this section, we analyze the proposed multi-core algorithm. We observed that α’s
can be added to the A by the active set selection thread, but might be removed by the
learning thread with the shrinking strategy. Therefore, we define Ā to be a subset of
A that contains αi,y which has been visited by the learning thread at least once and
remains in the A.

Theorem 2. The number of variables which have been added to Ā during the entire
training process is bounded by O(1/δ2).

The proof follows from [4, Theorem 1]. This theorem says that the size of Ā is bounded
as a function of δ.

Theorem 3. If Ā 6= ∅ is not expanded, then the proposed algorithm converges to an
ε-optimal solution of

min
α≥0

D(α) s.t. αi,y = 0,∀y /∈ Ai (10)

in O(log(1/ε)) steps.

If Ā is fixed, our learning thread performs standard dual coordinate descent, as in [10].
Hence, this theorem follows from the analysis of dual coordinate descent. The global



8 Kai-Wei Chang, Vivek Srikumar, Dan Roth

convergence rate of the method can be inferred from [24] which generalizes the proof
in [15].

Theorem 2 shows that the size of Ā will eventually stop growing. Theorem 3 shows
that when Ā is fixed, the weight vectorw converges to the optimum of (10). Hence, the
local copies in the learning thread and the active set selection threads can be arbitrary
close. Following the analysis in [4], the convergence of DEMI-DCD then follows.

4 Related Work

Several related works have a resemblance to the method proposed in this paper. In the
following, we briefly review the literature and discuss the connections.

A Parallel Algorithm for Dual Coordinate Descent The structural SVM package
JLIS [3] implements a parallel algorithm in a Master-Slave architecture to solve Eq.
(2).3, Given p processors, it first splits the training data into p parts. Then the algorithm
maintains a model w, dual variables α, and an active set A and updates these in an
iterative fashion. In each iteration, the master thread sends one part of the data to a
slave thread. For each slave thread, it iterates over each assigned example xi, and picks
the best structures ȳ according to currentw. Then (xi, ȳ) is added into the active setA
if the following condition is satisfied:

∆(ȳ,yi)−wTφ(ȳ,yi,xi)−
1

2

∑
y∈Ai

αi,y > δ. (11)

Only after all the slave threads have finished processing all the examples, the master
thread performs dual coordinate descent updates to solve the following optimization
loosely:

min
α≥0

D(α) s.t. αi,y = 0,∀y /∈ Ai.

The algorithm stops when a stopping condition is reached. This approach is closely
related to the n-slack cutting plane method for solving structural SVM [23]. However,
[23] assumes that the sub-problem is solved exactly4, while this restriction can be re-
laxed under a dual coordinate descent framework.

We will refer to this approach for parallelizing structural SVM training as MS-
DCD (for Master-Slave dual coordinate descent) and compare it experimentally with
DEMI-DCD in Section 5.

Structured Perceptron and its parallel version The Structured Perceptron [6] algo-
rithm has been widely used in the literature. At each iteration, it picks an example xi
that is annotated with yi and finds its best structured output ȳ according to the current
model w using an inference algorithm. Then, the model is updated as

w ← w + η(φ(xi,yi)− φ(xi, ȳ)),

3 The implementation of MS-DCD can be downloaded at http://cogcomp.cs.
illinois.edu/page/software_view/JLIS.

4 The cutting-plane solver for structural SVM usually sets a tolerance parameter, and stops the
sub-problem solver when the inner stopping criteria is satisfied.



Multi-core Structural SVM Training 9

where η is a learning rate. Notice that the Structural Perceptron requires an inference
step before each update. This makes it different from the dual methods for structured
SVMs where the inference step is used to update the active set. One important advantage
of the dual methods is that they can perform multiple updates on the elements in the
active set without doing inference for each update. As we will show in Section 5, this
limits the efficiency of the Perceptron algorithm. Some caching strategies have been
developed for structural Perceptron. For example, [7] introduces a caching technique to
periodically update the model with examples on which the learner had made mistakes
in previous steps. However, this approach is ad-hoc without convergence guarantees.

A parallelization strategy for structured Pereceptron (SP-IPM) has been proposed
[18] using the Map-Reduce framework. It calls for first splitting the training data into
several parts. In the map phase, it distributes data to each mapper and runs a separate
Perceptron learner on each shard in parallel. Then, in the reduce phase, the models
are mixed using a linear combination. The mixed model serves as the initial model
for the next round. In this paper, we implement this map-reduce framework as a multi-
thread program. SP-IPM requires barrier synchronizations between the map and reduce
phases, which limits the computational performance. In addition, in the model mixing
strategy, each local model is updated using exclusive data blocks. Therefore, the map-
pers might make updates that are inconsistent with each other. As a result, it requires
many iterations to converge.

General Parallel Algorithms for Convex Optimization Some general parallel opti-
mization algorithms have been proposed in the literature. For example, delayed stochas-
tic (sub-)gradient descent methods have been studied with assumptions on smoothness
of the problem [1, 14]. However, their applicability to structured SVM has not been
explored.

5 Experiments

In this section, we show the effectiveness of the DEMI-DCD algorithm compared to
other parallel structured learning algorithms.

5.1 Experimental Setup

We evaluate our algorithm on two natural language processing tasks: part-of-speech
tagging (POS-WSJ) and jointly predicting entities and their relations (Entity-Relation).
These tasks, which have very different output structures, are described below.

POS tagging (POS-WSJ) POS tagging is the task of labeling each word in a sentence
with its part of speech. This task is typically modeled as a sequence labeling task, where
each tag is associated with emission features that capture word-tag association and tran-
sition features that capture sequential tag-tag association. For this setting, inference can
be solved efficiently using the Viterbi algorithm.

We use the standard Penn Treebank Wall Street Journal corpus [16] to train and
evaluate our POS tagger using the standard data split for training (sections 2-22, 39832



10 Kai-Wei Chang, Vivek Srikumar, Dan Roth

sentences) and testing (section 23, 2416 sentences). In our experiments, we use indi-
cators for the conjunction between the word and tags as emission features and pairs of
tags as transition features.

Entity and Relation Recognition (Entity-Relation) This is the task of assigning en-
tity types to spans of text and identifying relations among them [20]. For example, for
the sentence John Smith resides in London, we would predict John Smith to be a PER-
SON, LONDON to be a LOCATION and the relation LIVES-IN between them.

As in the original work, we modeled prediction as a 0-1 linear program (ILP) where
binary indicator variables capture all possible entity-label decisions and entity pair label
decisions (that is, relation labels). Linear constraints force exactly one label to be as-
signed with each entity and relation. In addition, the constraints also encode background
knowledge about the types of entities allowed for each relation label. For example, a
LIVES-IN relation can only connect a PERSON to a LOCATION. We refer the reader to
[21] for further details. Unlike the original paper, which studied a decomposed learning
setting, we jointly train the entity-relation model using an ILP for the loss-augmented
inference. We used the state-of-the-art Gurobi ILP solver [9] to solve inference for this
problem both during training and test. We report results using the annotated data from
[21] consisting of 5925 examples with an 80-20 train-test split.

We based our implementation on the publicly available implementation of MS-
DCD, which implements a dual coordinate descent method for solving structural SVM.
DCD [4] has been shown competitive comparing to other L2-loss and L1-loss structural
SVM solvers such as a 1-slack variable cutting-plane method [12] and a Frank-Wolfe
optimization method [13] when using one CPU core.

As described in Section 3, our method is an extension of DCD and further improves
its performance using multiple cores. All the algorithms are implemented in Java. We
conducted our experiments on a 24-core machine with Xeon E5-2440 processors run-
ning 64-bit Scientific Linux. Unless otherwise stated, all results use 16 threads. We set
the value of C to 0.1 for all experiments.

Our experiments compare the following three methods:

1. DEMI-DCD: the proposed algorithm described in Section 3. We use one thread
for learning and the rest for inference (that is, active set selection).

2. MS-DCD: A master-slave style parallel implementation of dual coordinate descent
method from JLIS package [3] described in Section 4.

3. SP-IPM: A parallel structural Perceptron algorithm proposed in [18]. We run 10
epochs of Perceptron updates for each shard at each outer iteration.

Note that the first two methods solve an L2-Structural SVM problem (1) and converge
to the same minimum.

Our experiments answer the following research question: Can DEMI-DCD make
use of the available CPU resources to converge faster to a robust structural prediction
model? To answer this, for both our tasks, we first compare the convergence speed of
DEMI-DCD and MS-DCD. Second, we compare the performance of the three algo-
rithms on the test sets of the two tasks. Third, we show that DEMI-DCD maximally
utilizes all available CPU cores unlike the other two algorithms. Finally, we report the



Multi-core Structural SVM Training 11

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

Training Time (sec)

R
el

at
iv

e 
P

rim
al

 D
iff

er
en

ce

 

 

DEMI−DCD
MS−DCD

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Training Time (sec)

R
el

at
iv

e 
P

rim
al

 D
iff

er
en

ce

 

 

DEMI−DCD
MS−DCD

(a) POS-WSJ (b) Entity-Relation

Fig. 1: Relative primal function value difference to the reference model versus wall
clock time. See the text for more details.

results of an analysis experiment, where we show the performance of our algorithm
with different number of available threads.

5.2 Empirical Convergence Speed

First, we compare DEMI-DCD to MS-DCD in terms of their speed of convergence in
terms of objective function value. We omit SP-IPM in this comparison because it does
not solve the SVM optimization problem. Figure 1 shows the relative primal objective
function (that is, the value of the objective in Eq. (1)) with respect to a reference model
w∗ as a function of wall-clock training time. In other words, if the objective function is
denoted by f , we plot (f(w)− f(w∗)) /f(w∗) asw varies with training time for each
algorithm. The reference model is the one that achieves the lowest primal value among
the compared models. In the figure, both the training time and the relative difference
are shown in log-scale. From the results, we see that the proposed method is faster than
MS-DCD on both tasks. DEMI-DCD is especially faster than MS-DCD in the early
stage of optimization. This is important because usually we can achieve a model with
reasonable generative performance before solving (1) exactly. Note that the inference in
Entity-Relation is much slower than inference for POS-WSJ. For example, at each iter-
ation on POS-WSJ, MS-DCD takes 0.62 seconds to solve inference on all the training
samples using 16 threads and takes 3.87 seconds to update the model using 1 thread,
while it takes 10.64 seconds to solve the inference and 8.45 seconds to update the model
on Entity-Relation. As a result, the difference between DEMI-DCD and MS-DCD is
much higher on POS-WSJ. We will discuss the reason for this in Section 5.3.

Next, we show that the proposed method can obtain a reasonable and stable solution
in a short time. Figure 2 shows the test set performance of the three algorithms as
training proceeds. For POS-WSJ, we evaluate the model using token-based accuracy.
For Entity-Relation, we evaluate the entity and relation labels separately and report
the micro-averaged F1 over the test set. In all cases, DEMI-DCD is the fastest one to
achieve a converged performance. As mentioned, DEMI-DCD is more efficient than



12 Kai-Wei Chang, Vivek Srikumar, Dan Roth

10
1

10
2

10
3

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Training Time (sec)

T
es

tin
g 

P
er

fo
ra

m
nc

e

 

 

DEMI−DCD
MS−DCD
SP−IPM

(a) POS-WSJ: Token-wise accuracy

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training Time (sec)

T
es

tin
g 

P
er

fo
ra

m
nc

e

 

 

DEMI−DCD
MS−DCD
SP−IPM

(b) Entity-Relation: Entity F1

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Training Time (sec)

T
es

tin
g 

P
er

fo
ra

m
nc

e

 

 

DEMI−DCD
MS−DCD
SP−IPM

(c) Entity-Relation: Relation F1

Fig. 2: Performance of POS-WSJ and Entity-Relation plotted as a function of wall clock
training time. For Entity-Relation, we report the F1 scores of both entity and relation
tasks. Note that the X-axis is in log scale. We see that DEMI-DCD converges faster to
better performing models.

MS-DCD in the early iterations. As a result, it takes less time to generate a reasonable
model. Note that SP-IPM achieves better final performance on the POS-WSJ task.
This is so because SP-IPM converges to a different model from DEMI-DCD and
MS-DCD. For both entities and relations, SP-IPM converges slowly and, moreover,
its performance is unstable for the relations. We observe that the convergence of SP-
IPM is slow because the Perceptron algorithm needs to solve an inference problem
before each update. When the inference is slow, the number of updates in SP-IPM
is significantly smaller than DEMI-DCD and MS-DCD. For example, in the Entity-
Relation task, DEMI-DCD makes around 55 million updates within 100 seconds, while



Multi-core Structural SVM Training 13

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

Wall Clock Time (sec)

C
P

U
 U

sa
ge

 (
%

)

 

 

DEMI−DCD
MS−DCD
SP−IPM

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

Wall Clock Time (sec)

C
P

U
 U

sa
ge

 (
%

)

 

 

DEMI−DCD
MS−DCD
SP−IPM

(a) POS-WSJ (1,318%, 257%, 1,177%) (b) Entity-Relation (1,462%, 527%, 1248%)

Fig. 3: CPU usage of each method during training. The numbers listed in the caption are
the average CPU usage percentage per second for DEMI-DCD, MS-DCD, SP-IPM,
respectively. We show moving averages of CPU usage with a window of 2 seconds. Note
that we allow all three algorithms to use 16 threads in a 24 core machine. Thus, while
all the algorithms can report upto 1600% CPU usage, only DEMI-DCD consistently
reports high CPU usage.

SP-IPM only makes 76 thousand updates in total.5 In other words, DEMI-DCD is
faster and better than SP-IPM because it performs many inexpensive updates.

5.3 CPU Utilization

Finally, we investigate the CPU utilization of the three algorithms by plotting the mov-
ing average of CPU usage in Figure 3 during training, as reported by the Unix command
top. Since we provide all algorithms with 16 threads, the maximum CPU utilization
can be 1600%. The results show that DEMI-DCD almost fully utilizes the available
CPU resources.

We see that neither baseline manages to use the available resources consistently.
The average CPU usage for MS-DCD on POS-WSJ is particularly small because the
inference step on this task is relatively easy (i.e. using the Viterbi algorithm). In fact,
MS-DCD spends only around 25% of the time on the inference steps, which is solved
by the slave threads in parallel. Both MS-DCD and SP-IPM require a barrier to ensure
that the subtasks sent to the slave threads are complete. This barrier limits the CPU
utilization and hence slows down the learners. Since inference is more expensive (i.e.
an ILP call) for the Entity-Relation case, more time is spent on inference in the learning
algorithms. Since this step is distributed across the slaves for both MS-DCD and SP-
IPM, we see periods of high CPU activity followed by low activity (when only the
master thread is active).



14 Kai-Wei Chang, Vivek Srikumar, Dan Roth

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

Training Time (sec)

R
el

at
iv

e 
P

rim
al

 D
iff

er
en

ce

 

 

1−DCD
2 threads
4 threads
8 threads
16 threads

(a) POS-WSJ

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Training Time (sec)

R
el

at
iv

e 
P

rim
al

 D
iff

er
en

ce

 

 

1−DCD
2 threads
4 threads
8 threads
16 threads

(b) Entity-Relation

Fig. 4: Relative primal function value difference along training time using different
number of threads. We also show a DCD implementation using one CPU core (1-
DCD). Both x-axis and y-axis are in log scale.

5.4 Performance with Different Number of Threads

In our final set of experiments, we study the performance of DEMI-DCD for different
number of threads. Figure 4 shows the change in the primal objective function value
difference as a function of training time for different number of threads. Note that the
training time and the function values are shown in log-scale. For comparison, we also

5 SP-IPM has 16 threads running on different shards of data in parallel. We simply sum up all
the updates on different shards.



Multi-core Structural SVM Training 15

show the performance of a DCD implementation using only one CPU core (1-DCD).
As can be seen in the figure, the training time is reduced as the number of threads in-
creases. With multiple threads, DEMI-DCD is significantly faster than 1-DCD. How-
ever, when the number of threads is more than 8, the difference is small. That is because
the inference step (i.e, the active set selection step) is no longer the bottleneck.

6 Discussion and Conclusion

In this paper, we have proposed a new learning algorithm for training structural SVMs,
called DEMI-DCD. This algorithm decouples the model update and inference phases
of learning allowing us to execute them in parallel, thus allowing us taking advantage
of multi-core machines for training. We showed that the DEMI-DCD algorithm con-
verges to the optimum solution of the structural SVM objective. We experimentally
evaluated our algorithm on the structured learning tasks of part-of-speech tagging and
entity-relation extraction and showed that it outperforms existing strategies for training
structured predictors in terms of both convergence time and CPU utilization.

The approach proposed in this paper opens up several directions for future research.
Here, we have considered the case of a single learning thread that updates the models
using the available active sets. A promising direction for future exploration is to explore
the possibility of using multiple learning threads to update the models.

For some structured prediction problems, the output structure may be too complex
for inference to be solved in a tractable fashion. For such cases, learning schemes with
approximate inference have been proposed (e.g., [8, 19]). Incorporating approximate
inference into our method is an interesting topic for future study.

Acknowledgments We thank Ming-Wei Chang for helpful discussions. This ma-
terial is based on research sponsored by DARPA under agreement number FA8750-
13-2-0008. The U. S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or im-
plied, of DARPA or the U. S. Government. This work is also supported by an ONR
Award on “Guiding Learning and Decision Making in the Presence of Multiple Forms
of Information.”

References

1. Agarwal, A., Duchi, J.: Distributed delayed stochastic optimization. In Shawe-Taylor, J.,
Zemel, R., Bartlett, P., Pereira, F., Weinberger, K., eds.: NIPS. (2011) 873–881

2. Chang, K., Roth, D.: Selective block minimization for faster convergence of limited memory
large-scale linear models. In: KDD. (2011)

3. Chang, M., Srikumar, V., Goldwasser, D., Roth, D.: Structured output learning with indirect
supervision. In: ICML. (2010)

4. Chang, M.W., Yih, W.T.: Dual coordinate descent algorithms for efficient large margin struc-
tural learning. Transactions of the Association for Computational Linguistics (2013)

5. Chu, C., Kim, S.K., Lin, Y., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce for
machine learning on multicore. NIPS 19 (2007) 281



16 Kai-Wei Chang, Vivek Srikumar, Dan Roth

6. Collins, M.: Discriminative training methods for hidden Markov models: Theory and exper-
iments with perceptron algorithms. In: EMNLP. (2002)

7. Collins, M., Roark, B.: Incremental parsing with the perceptron algorithm. In: ACL. (2004)
8. Finley, T., Joachims, T.: Training structural SVMs when exact inference is intractable. In:

ICML. (2008) 304–311
9. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2012)

10. Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual coordinate de-
scent method for large-scale linear SVM. In: ICML. (2008)

11. Joachims, T.: Making large-scale SVM learning practical. In Schölkopf, B., Burges, C.,
Smola, A., eds.: Advances in Kernel Methods - Support Vector Learning. (1999)

12. Joachims, T., Finley, T., Yu, C.N.: Cutting-plane training of structural svms. Machine Learn-
ing (2009)

13. Lacoste-Julien, S., Jaggi, M., Mark Schmidt, P.P.: Block-coordinate Frank-Wolfe optimiza-
tion for structural SVMs. In: ICML. (2013)

14. Langford, J., Smola, A.J., Zinkevich, M.: Slow learners are fast. In: NIPS. (2009) 2331–2339
15. Luo, Z.Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a

general approach. Annals of Operations Research 46 (1993) 157–178
16. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of

english: The penn treebank. Computational Linguistics
17. McDonald, R., Hall, K., Mann, G.: Distributed training strategies for the structured Per-

ceptron. In: Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, Los Angeles, Califor-
nia, Association for Computational Linguistics (June 2010) 456–464

18. McDonald, R.T., Hall, K., Mann, G.: Distributed training strategies for the structured per-
ceptron. In: HLT-NAACL. (2010) 456–464

19. Meshi, O., Sontag, D., Jaakkola, T., Globerson, A.: Learning efficiently with approximate
inference via dual losses. In: ICML. (2010)

20. Roth, D., Yih, W.: A linear programming formulation for global inference in natural language
tasks. In Ng, H.T., Riloff, E., eds.: CoNLL. (2004)

21. Roth, D., Yih, W.: Global inference for entity and relation identification via a linear pro-
gramming formulation. In Getoor, L., Taskar, B., eds.: Introduction to Statistical Relational
Learning. (2007)

22. Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models:
a large margin approach. In: ICML. (2005)

23. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured
and interdependent output variables. Journal of Machine Learning Research (2005)

24. Wang, P.W., Lin, C.J.: Iteration complexity of feasible descent methods for convex optimiza-
tion. Technical Report, National Taiwan University (2013)


