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Abstract. We provide an efficient algorithm for multi-objective model-
checking problems on Markov decision processes (MDPs) with multiple
cost structures. The key problem at hand is to check whether there exists
a scheduler for a given MDP such that all objectives over cost vectors
are fulfilled. Reachability and expected cost objectives are covered and
can be mixed. Empirical evaluation shows the algorithm’s scalability.
We discuss the need for output beyond Pareto curves and exploit the
available information from the algorithm to support decision makers.

1 Introduction

Markov decision processes [41] (MDPs) with rewards or costs are a popular
model to describe planning problems under uncertainty. Planning algorithms
aim to find strategies which perform well (or even optimally) for a given objec-
tive. These algorithms typically assume that a goal is reached eventually [41,45].
This however is unrealistic in many scenarios, e.g. due to insufficient resources
or the possibility of failing actions. Furthermore, these policies often admit sin-
gle runs which perform far below the user’s expectation, which is unsuitable
in many scenarios with high stakes. Examples range from deliveries reaching an
airport after the plane’s departure to more serious scenarios in e.g. wildfire man-
agement [1]. In particular, many scenarios call for minimising the probability to
run out of resources before reaching the goal: while it is beneficial for a plane to
reach its destination with low expected fuel consumption, it is essential to reach
its destination with the fixed available amount of fuel.

Policies that optimise solely for the probability to reach a goal are mostly very
expensive. Even in the presence of just a single cost structure, decision makers
have to trade the success probability against the costs. This makes many plan-
ning problems inherently multi-objective [12,17]. In particular, safety properties
cannot be averaged out by good performance [21]. Planning scenarios in various
application areas [44] have different resource constraints. Typical examples are
energy consumption and time [11], or optimal expected revenue and time [38] in
robotics, and monetary cost and available capacity in logistics [17].
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Fig. 1. Science on Mars: planning under several resource-constraints

Illustrative Example. Consider a simplified (discretised) version of the Mars rover
task scheduling problem [11]. The task is to plan a variety of experiments for
a day on Mars. The experiments vary in their success probability, time, energy
consumption and their scientific value upon success. The time, energy consump-
tion, and scientific value are uncertain and modelled by probability distributions,
cf. Fig. 1(a). The objective is to achieve a minimum of daily scientific progress
while limiting the risk of running out of time or out of energy. As the rover is
expected to work for a longer period, we prefer a high expected scientific value.

Contributions and approach. This paper focuses on multi-objective cost-bounded
reachability queries on MDPs, a natural setting for the aforementioned plan-
ning problems. The input is an MDP with multiple cost structures (e.g. energy,
utility or time) and multiple objectives of the form “maximise/minimise the
probability to reach a state in Gi such that the cumulative cost for the i-th
cost structure is below/above a threshold bi”. This multi-objective variant of
cost-bounded reachability is PSPACE-hard [43]. The focus of this paper is on
the practical side: we aim at finding a practically efficient algorithm to obtain
(an approximation of) the Pareto-optimal points. To accomplish this, we adapt
and generalise recent approaches for the single-objective case [27,34] towards
the multi-objective setting. The basic idea of [27,34] is to implicitly unfold the
MDP along cost epochs, and exploit the regularities of the epoch-MDPs. Prism

[37] and the Modest Toolset [29] have been updated with such methods
for the single-objective case and significantly outperform the explicit unfolding
approach of [2,40]. This paper presents an algorithm that lifts this principle to
multiple cost objectives and determines approximation errors when using value
iteration. Extensions towards quantiles and expected costs are considered too.
Evaluation using a prototypical implementation in Storm [20] shows promising
results. In addition, we equip our algorithm with means to visualise (inspired by
the recent techniques in [39]) the trade-offs between various objectives that go
beyond Pareto curves; we believe that this is key to obtain better insights into
multi-objective decision making. An example is given in Fig. 1(b): it depicts the
probability to satisfy an objective based on the remaining energy (y-axis) and
time (x-axis).

Related work. The analysis of single-objective (cost-bounded) reachability in
MDPs is an active area of research in both AI and formal method communities,
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and referred to in, e.g., [18,35,48]. Various model checking approaches for sin-
gle objectives exist. In [32], the topology of the unfolded MDP is exploited to
speed up the value iteration. In [27], three different model checking approaches
are explored and compared. A survey for heuristic approaches is given in [45].
A Q-learning based approach is described in [13]. An extension of this problem
in the partially observable setting was considered in [14], and for probabilistic
timed automata in [27]. The method from [4] computes optimal expected val-
ues under e.g. the condition that the goal is reached, and is thus applicable in
settings where a goal is not necessarily reached. A similar problem is consid-
ered in [46]. For multi-objective analysis, the model checking community typi-
cally focuses on probabilities and expected costs as in the seminal works [15,22].
Implementations are typically based on a value iteration approach in [24], and
have been extended to stochastic games [16], Markov automata [42], and inter-
val MDPs [28]. Other considered cases include e.g. multi-objective mean-payoff
objectives [8], objectives over instantaneous costs [10], and parity objectives [7].
Multi-objective problems for MDPs with an unknown cost-function are con-
sidered in [33]. Surveys on multi-objective decision making in AI and machine
learning can be found in [44] and [47], respectively.

2 Preliminaries

We write 2S for the powerset of S. The i-th component of a tuple t = 〈v1, . . . , vn〉
is t[i] def= vi. A (discrete) probability distribution over a set Ω is a function μ ∈
Ω → [0, 1] such that support(μ) def= {ω ∈ Ω | μ(ω) > 0 } is countable and
∑

ω∈support(μ) μ(ω) = 1. Dist(Ω) is the set of all probability distributions over Ω.

D(s) is the Dirac distribution for s, defined by D(s)(s) = 1.

Definition 1. A Markov decision process (MDP) with m cost structures is a
triple M = 〈S, T, sinit 〉 where S is a finite set of states, T ∈ S → 2Dist(Nm×S)

is the transition function, and sinit ∈ S is the initial state. For all s ∈ S, we
require that T (s) is finite and non-empty.

We write s −→T μ for ∃μ ∈ T (s) and call it a transition. We write s c−→T s′

if additionally 〈c, s′〉 ∈ support(μ). 〈c, s′〉 is a branch with cost vector c. If T
is clear from the context, we just write −→. Graphically, transitions are lines
to a node from which branches labelled with their probability and costs lead
to successor states. We may omit the node and probability for transitions into
Dirac distributions.

Example 1. Figure 2 shows an MDP Mex . From the initial state s0, the choice of
going towards s1 or s2 is nondeterministic. Either way, the probability to return
to s0 is 0.5, otherwise we move to s1 (or s2). Mex has two cost structures: Failing
to move to s1 has a cost of 1 for the first, and 2 for the second structure. Moving
to s2 yields cost 2 for the first and no cost for the second structure.

In the remainder of this paper, we fix a given MDP M = 〈S, T, sinit 〉. Its
semantics is captured by the notion of paths. A path in M represents the
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infinite concrete resolution of both nondeterministic and probabilistic choices:
π = s0 μ0 c0 s1 μ1 c1 . . . where si ∈ S, si −→ μi, and 〈ci, si+1〉 ∈ support(μi) for
all i ∈ N. A finite path πfin = s0 μ0 c0 s1 μ1 c1 s2 . . . μn−1 cn−1 sn is a finite prefix
of a path with last(πfin) def= sn ∈ S. Let costi(πfin) def=

∑n−1
j=0 cj [i]. Pathsfin(M)

(Paths(M)) are the set of all (in)finite finite paths starting in sinit . A scheduler
(adversary, policy or strategy) resolves nondeterministic choices:

Definition 2. S ∈ Pathsfin(M) → Dist(Dist(Nm × S)) is a scheduler for M if
∀πfin: μ ∈ support(S(πfin)) ⇒ last(πfin) −→T μ. The set of all schedulers of M
is Sched(M). S is deterministic if |support(S(π))| = 1 for all finite paths π.

Via the standard cylinder set construction [25], a scheduler S induces a
probability measure PS

M on measurable sets of paths starting from sinit . We
define the extremal values Pmax

M (Π) = supS∈Sched(M) PS

M (Π) and Pmin
M (Π) =

infS∈Sched(M) PS

M (Π) for measurable Π ⊆ Paths(M). For clarity, we focus
on probabilities in this paper, but note that expected accumulated costs
can be defined analogously [25] and our methods apply to them with only
minor changes.

Cost-Bounded Reachability. We are interested in the probabilities of sets of
paths that reach certain goal states within multiple cost bounds:

Definition 3. A cost bound is given by 〈Cj〉∼b G where j ∈ {1, . . . , m} iden-
tifies a cost structure, ∼ ∈ {<,≤, >,≥}, b ∈ N is a bound value, and G ⊆ S
is a set of goal states. A cost-bounded reachability formula is a conjunction
∧n∈N

i=1 (〈Cji
〉∼ibi

Gi) of cost bounds. It characterises the measurable set of paths
Π where, for every i, every π ∈ Π has a prefix πi

fin with last(πi
fin) ∈ Gi and

costji
(πi

fin) ∼i bi.

A (single-objective) multi-cost bounded reachability query asks for Popt
M (e) where

opt ∈ {max,min } and e is a cost-bounded reachability formula. Unbounded
and step-bounded reachability are special cases of cost-bounded reachability.
A single-objective query may contain multiple bounds, but asks for a single
scheduler that optimises the probability of satisfying them all.

We also consider multi-objective tradeoffs, i.e. sets of single-objective queries
written as Φ = multi

(

Popt1
M (e1), . . . ,P

optℓ
M (eℓ)

)

. We call the ek objectives. For
tradeoffs, we are interested in the Pareto curve Pareto(M,Φ) which consists of
all achievable probability vectors pS = 〈PS

M (e1), . . . ,P
S

M (eℓ)〉 for S ∈ Sched(M)
that are not dominated by another achievable vector pS′ . More precisely, pS ∈
Pareto(M,Φ) iff for all S

′ ∈ Sched(M) either pS = pS′ or for some i ∈ {1, . . . , ℓ}
we have (opti = max ∧ pS[i] > pS′ [i]) ∨ (opti = min ∧ pS[i] < pS′ [i]).

Example 2. We consider Φ = multi
(

Pmax
Mex

(〈C1〉≤1 {s1}),Pmax
Mex

(〈C2〉≤3 {s2})
)

for
Mex of Fig. 2. Let Sj be the scheduler that tries to move to s1 for at
most j attempts and afterwards moves to s2. The induced probability vectors
pS1

= 〈0.5, 1〉 and pS2
= 〈0.75, 0.75〉 both lie on the Pareto curve since no
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Fig. 2. Example MDP Mex Fig. 3. An illustration of epochs

S ∈ Sched(Mex ) induces (strictly) larger probabilities pS. By also consider-
ing schedulers that randomise between the choices of S1 and S2 we obtain
Pareto(Mex , Φ) = {w · pS1

+ (1−w) · pS2
| w ∈ [0, 1]}.

For clarity of presentation, we restrict to tradeoffs Φ where every cost structure
occurs exactly once, i.e., the number m of cost structures of M matches the
number of cost bounds occurring in Φ. Furthermore, we require that none of the
sets of goal states contains the initial state. Both assumptions are w.l.o.g. by
copying cost structures as needed and adding a new initial state with zero-cost
transition to the old initial state.

3 Multi-dimensional Sequential Value Iteration

We present a practically efficient approach to compute (an approximation of)
the Pareto curve for MDP M with m cost structures and tradeoff Φ. We
merge the ideas of [24] to approximate a Pareto curve for an (unbounded)
multi-objective tradeoff with those of [27,34] to efficiently compute (single-
objective) cost-bounded reachability probabilities. For clarity of presentation
we start with the upper-bounded maximum case and assume a tradeoff of the
form Φ = multi

(

Pmax
M (e1), . . . ,P

max
M (eℓ)

)

with ek =
∧nk−1

i=nk−1
(〈Ci〉≤bi

Gi) and
0 = n0 < n1 < · · · < nℓ = m. Other variants are discussed in Sect. 3.3.

Cost epochs and goal satisfaction. Central to our approach is the concept of
cost epochs. Consider the path π = (s0〈2, 0〉s2〈0, 0〉s0〈1, 2〉)ω through Mex of
Fig. 2. We plot the accumulated cost in both dimensions along this path in
Fig. 3(a). Starting from 〈0, 0〉, the first transition yields cost 2 for the first cost
structure: we jump to coordinate 〈2, 0〉. The next transition, back to s0, has
no cost, so we stay at 〈2, 0〉. Finally, the failed attempt to move to s1 incurs
costs 〈1, 2〉. Consequently, for an infinite path, infinitely many points in this grid
may be reached. However, a tradeoff specifies bound values for the costs, e.g.,
for Φex = multi

(

Pmax
Mex

(〈C1〉≤4 {s1}),Pmax
Mex

(〈C2〉≤3 {s2})
)

we get bound values 4
and 3. Once the bound value for a bound is reached, accumulating further costs
in this dimension does not impact the satisfaction of its formula. It thus suffices
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to keep track, for each bound, of the remaining costs before reaching the bound
value. This leads to a finite grid as depicted in Fig. 3(b). We refer to each of its
coordinates as a cost epoch:

Definition 4. An m-dimensional cost epoch is a tuple in Em
def= (N ∪ {⊥})m.

For e ∈ Em, c ∈ N
m, the successor epoch is succ(e, c)[i] def= e[i] − c[i] if that

value is non-negative and ⊥ otherwise.

If the entry for a bound is ⊥, it cannot be satisfied any more: too much costs have
already been incurred. To check whether an objective ek =

∧nk−1
i=nk−1

(〈Ci〉≤bi
Gi)

is satisfied, we memorise whether each individual bound already holds. This is
also used to ensure that satisfying a bound more than once has no effect.

Definition 5. A goal satisfaction g ∈ Gm
def= {0, 1}m represents the cost struc-

ture indices i for which bound 〈Ci〉≤bi
Gi already holds, i.e. Gi was reached before

the bound value bi. For g ∈ Gm, e ∈ Em and s ∈ S, let succ(g, s,e) ∈ Gm

define the update upon reaching s: succ(g, s,e)[i] = 1 if s ∈ Gi ∧ e[i] �= ⊥ and
succ(g, s,e)[i] = g[i] otherwise.

3.1 The Unfolding Approach

Pareto(M,Φ) can be computed by reducing Φ to a multi-objective unbounded
reachability problem on the unfolded MDP. Its states are the Cartesian product
of the original MDP’s states, the epochs, and the goal satisfactions:

Definition 6. The unfolding for M as in Definition 1 and upper-bounded
maximum tradeoff Φ is the MDP Munf = 〈S′ def= S × Em × Gm, T ′, 〈sinit ,
〈b1, . . . , bm〉,0〉〉 with no cost structures, T ′(〈s,e, g〉) def= { unf (μ) ∈
Dist(N0 × S′) | μ ∈ T (s) } and the unfolding of probability distribution μ defined
by unf (μ)(〈〈s′,e′, g′〉〉) = μ(〈c, s′〉) if e′ = succ(e, c) ∧ g′ = succ(g, s′,e′) and 0
otherwise.

Costs are now encoded in the state space, so it suffices to consider the unbounded
tradeoff Φ′ = multi

(

Pmax
Munf

(e′
1), . . . ,P

max
Munf

(e′
ℓ)

)

with e′
k = 〈·〉≥0 G′

k and G′
k =

{〈s,e, g〉 |
∧nk−1

i=nk−1
g[i] = 1}.

Lemma 1. There is a bijection f : Sched(M) → Sched(Munf ) with PS

M (ek) =

P
f(S)
Munf

(e′
k) for all S ∈ Sched(M) and k ∈ { 1, . . . , ℓ }. Consequently, we have that

Pareto(M,Φ) = Pareto(Munf , Φ
′).

Pareto(Munf , Φ
′) can be computed with existing multi-objective model checking

algorithms for unbounded reachability. We build on the one of [24]. It iteratively
chooses weight vectors w = 〈w1, . . . , wℓ〉 ∈ [0, 1]ℓ \ {0} and computes points

pw = 〈PS

Munf
(e′

1), . . . ,P
S

Munf
(e′

ℓ)〉 with S ∈ arg maxS′

(

∑ℓ

k=1
wk · PS

′

Munf
(e′

k)

)

.

(1)
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The Pareto curve P is convex, pw ∈ P for all w, and q ∈ P implies q·w ≤ pw ·w.
These observations allow us to approximate the Pareto curve with arbitrary
precision; see [24] for details. [24] characterises pw via weighted expected costs:
Munf is equipped with ℓ cost structures used to calculate the probability of each
of the ℓ objectives. This is achieved by setting the value of the k-th cost structure
on each branch to 1 iff the objective e′

k is satisfied in the target state of the branch
but was not satisfied in the transition’s source state. On a path π through the
resulting model M+

unf , we collect exactly one cost w.r.t. cost structure k iff π
satisfies objective ek.

Definition 7. For S ∈ Sched(M+
unf ) and w ∈ [0, 1]ℓ, the weighted expected

cost is ES

M
+

unf

(w) =
∑ℓ

k=1 w[k] ·
∫

π∈Paths(M)
costk(π)dPS

M
+

unf

(π), i.e. the expected

value of the weighted sum of the costs accumulated on paths in M+
unf .

The following characterisation of pw is equivalent to Eq. 1:

pw = 〈ES

M
+

unf

(11), . . . , E
S

M
+

unf

(1ℓ)〉 where S ∈ arg maxS′ES
′

M
+

unf

(w) (2)

and 1k ∈ {0, 1}ℓ is the weight vector defined by 1k[j] = 1 iff j = k. Standard
MDP model checking algorithms [41] can be applied to compute an optimal
(deterministic and memoryless) scheduler S and the induced costs ES

M
+

unf

(1k).

3.2 An Epoch Model Approach Without Unfolding

The unfolding approach does not scale well: If the original MDP has n states,
the unfolding will have on the order of n ·

∏m
i=1(bi + 2) states. This makes it

infeasible for larger bound values bi over multiple bounds. The bottleneck lies
in computing the points pw as in Eqs. 1 and 2. We now show how to do so
efficiently, i.e. given a weight vector w = 〈w1, . . . , wℓ〉 ∈ [0, 1]ℓ \ {0}, compute

pw = 〈PS

M (e1), . . . , P
S

M (eℓ)〉 with S ∈ arg max
S′

(

∑ℓ

k=1
wi · PS

′

M (〈·〉≥0 ek)
)

(3)

without unfolding. The characterisations of pw given in Eqs. 1 and 3 are equiv-
alent due to Lemma 1.

The efficient analysis of single-objective queries with a single bound Φ1 =
Pmax

M (〈C〉≤b G) has recently been addressed in e.g. [27,34]. The key observation
is that the unfolding Munf can be decomposed into b + 2 epoch model MDPs
M b, . . . , M0,M⊥ corresponding to the cost epochs. The epoch models are copies
of M with only slight adaptations. Reachability probabilities in copies corre-
sponding to epoch i only depend on the copies {M j | j ≤ i ∨ j = ⊥ }. It is thus
possible to analyse M⊥, . . . , M b sequentially instead of considering all copies at
once. In particular, it is not necessary to construct the full unfolding.

We lift this idea to multi-objective tradeoffs. The single-objective case is
notably simpler in that reaching a goal state for the first time or exceeding
the cost bound immediately suffices to determine whether the one property is
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Fig. 4. An epoch model of Mex

satisfied. In particular, while M⊥ is just one sink state in the single-objective
case, its structure is more involved here.

We first formalise the notion of epoch models for multiple bounds. The aim
is to build an MDP for each epoch e ∈ Em that can be analysed via standard
model checking techniques using the weighted expected cost encoding of objec-
tive probabilities. The state space of an epoch model consists of up to one copy
of each original state for each goal satisfaction vector g ∈ Gm. Additional sink
states 〈s⊥, g〉 encode the target for a jump to any other cost epoch e′ �= e.
We consider ℓ cost structures to encode the objective probabilities. Let function
satObjΦ : Gm ×Gm → {0, 1}ℓ assign value 1 in entry k iff a reachability property
ek is satisfied according to the second goal vector but was not satisfied in the
first. For the transitions’ branches, we distinguish two cases: (1) If the successor
epoch e′ = succ(e, c) with respect to the original cost c ∈ N

m is the same as
the current epoch e, we jump to the successor state as before, and update the
goal satisfaction. We collect the new costs for the objectives if updating the goal
satisfaction newly satisfies an objective as given by satObjΦ (2). If the successor
epoch e′ = succ(e, c) is different from the current epoch e, the probability is
rerouted to the sink state with the corresponding goal state satisfaction vector.
The collected costs contains the part of the goal satisfaction as in (1), but also
the results obtained by analysing the reached epoch e′, given by a function f .

Definition 8. The epoch model of MDP M as in Definition 1 for e ∈ Em and
a function f : Gm ×Dist(Nm × S) → [0, 1]ℓ is the MDP Me

f = 〈Se , T e
f , 〈sinit ,0〉〉

with ℓ cost structures, Se def= (S ⊎ s⊥) × Gm, T e
f (〈s⊥, g〉) = {D(〈0, 〈s⊥, g〉〉) },

and for every s̃ = 〈s, g〉 ∈ Se and μ ∈ T (s), there is some ν ∈ T e
f (s̃) defined by:

1. ν(〈satObjΦ(g, g′), 〈s′, g′〉〉) = μ(c, s′) if succ(e, c) = e ∧ g′ = succ(g, s′,e),
and

2. ν(〈f(g, μ)+satObjΦ(g, g′), 〈s⊥, g′〉〉) =
∑

c∈C

∑

s′∈S′

c
μ(c, s′) where C = {c |

succ(e, c) �= e} and S′
c = {s′ | succ(g, s′, succ(e, c)) = g′}.

Figure 4 shows an epoch model Me
f of the MDP Mex in Fig. 2 with respect to

tradeoff Φ as in Example 2 and any epoch e ∈ E2 with e[1] �= ⊥ and e[2] �= ⊥.
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Input : MDP M = 〈S, T, sinit〉, tradeoff Φ = multi
(

Pmax
M (e1), . . . , P

max
M (eℓ)

)

with bound values b1, . . . , bm, weight vector w ∈ [0, 1]ℓ and proper
epoch sequence E ending with last(E) = 〈b1, . . . , bm〉

Output : Point pw ∈ R
ℓ satisfying Eq. 3

1 foreach e ∈ E in ascending order do

2 foreach g ∈ Gm, μ ∈ {ν | ∃s : ν ∈ T (s)} do

3 z ← 0

4 foreach 〈c, s′〉 ∈ support(μ) do

5 e′ ← succ(e, c); g′ ← succ(g, s′, e′)
6 if e′ �= e then

7 z ← z + μ(c, s′) · xe ′

[〈s′, g′〉]

8 f(g, μ) ← z

9 build epoch model Me
f = 〈Se , T e

f , se
init〉

10 S ← arg maxS′ ES
′

Me
f
(w)

11 foreach k ∈ {1, . . . , ℓ}, s̃ ∈ Se do

12 xe [s̃][k] ← ES

Me
f
(1k)[s̃]

13 return xlast(E)[s
last(E)
init ]

Algorithm 1. Sequential multi-cost bounded analysis

Remark 1. The structure of Me
f differs only slightly between epochs. In partic-

ular consider epochs e,e′ with e[i] = ⊥ iff e′[i] = ⊥. To construct epoch model
Me′

f from Me
f , only transitions to the bottom states 〈s⊥, g〉 need to be adapted.

To analyse an epoch model Me
f , any successor epoch e′ of e needs to be analysed

before. Since costs are non-negative, we can ensure this by analysing the epochs
in a specific order. In the single dimensional case the order is uniquely given
by ⊥, 0, 1, . . . , b. For multiple cost bounds any linearisation of the partial order
� ⊆ Em × Em with e′ � e iff e′[i] ≤ e[i] ∨ e′[i] = ⊥ for all i can be considered.
We call such a linearisation a proper epoch sequence.

We compute the points pw by analysing the different epoch models (i.e.
the coordinates of Fig. 3(b)) sequentially. The main procedure is outlined in
Algorithm 1. The costs of the model for the current epoch are computed in
lines 2-8. These costs comprise the results from previously analysed epochs e′.
In lines 9-12, the current epoch model Me

f is built and analysed: We compute

weighted expected costs on Me
f where ES

Me
f
(w)[s] denotes the expected costs

for Me
f when changing the initial state to s. In line 10 a (deterministic and

memoryless) scheduler S that induces the maximal weighted expected costs
(i.e. ES

Me
f
(w)[s] = maxS′ ES

′

Me
f
(w)[s] for all states s) is computed. In line 12 we

then compute the expected costs induced by S for the individual objectives.

Theorem 1. The output of Algorithm 1 satisfies Eq. 3.

Proof (sketch). Let e be the currently analysed epoch. Since E is assumed to be
a proper epoch sequence, we already processed any reachable successor epoch e′
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of e, i.e., line 7 is only executed for epochs e′ for which xe′

has already been
computed. One can show that the values xe [〈s, g〉][k] computed by the algorithm
coincide with the probability to satisfy e′

k from state 〈s,e, g〉 in the unfolding
Munf under a scheduler S that maximises the weighted sum.

Error propagation. So far, we assumed that (weighted) expected costs ES

M (w)
are computed exactly. Practical implementations, however, are often based on
numerical methods that only approximate the correct solution. In fact, methods
based on value iteration—the de-facto standard in MDP model checking—do
not give any guarantee on the accuracy of the obtained result [26]. We therefore
consider interval iteration [5,9] which for a predefined precision ε > 0 guarantees
that the obtained result xs is ε-precise, i.e. we have |xs − ES

M (w)[s]| ≤ ε.
For the single-cost bounded variant of Algorithm 1, [27] discusses that in

order to compute Pmax
M (〈C〉≤b G) with precision ε, each epoch model needs to

be analysed with precision ε
b+1 . We generalise this result to multi-dimensional

tradeoffs. Assume the results of previously analysed epochs (given by f) are ε-
precise and that Me

f is analysed with precision δ. As in the single-dimensional
case, the total error for Me

f can accumulate to δ + ε. Since a path through the

MDP M can visit at most
∑m

i=1(bi + 1) cost epochs whose analysis introduces
error δ, the overall error can be upper bounded by δ ·

∑m
i=1(bi + 1).

Theorem 2. If the values xe [s̃][k] at line 12 of Algorithm 1 are computed with
precision ε/

∑m
i=1(bi+1) for some ε > 0, the output p′

w of the algorithm satisfies
|pw − p′

w | · w ≤ ε where pw is as in Eq. 3.

Remark 2. Alternatively, epochs can be analysed with the desired overall preci-
sion ε by lifting the results from topological interval iteration [5]. However, that
requires to store the obtained bounds for the results of already analysed epochs.

3.3 Extensions

Minimising objectives. Objectives Pmin
M (ek) can be handled by extending the

function satObjΦ in Definition 8 such that it assigns cost −1 to branches that lead
to the satisfaction of ek. To obtain the desired probabilities we then maximise
negative costs and multiply the result by −1 afterwards. As interval iteration
supports mixtures of positive and negative costs [5], arbitrary combinations of
minimising and maximising objectives can be considered1.

Beyond upper bounds. Our approach also supports bounds of the form 〈Cj〉∼b G
for ∼ ∈ {<,≤, >,≥}, i.e., we allow combinations of lower and upper cost-bounds.
For strict upper bounds <b and non-strict lower bounds ≥ b we consider ≤ b + 1
and > b−1 instead. For bound 〈Ci〉>bi

Gi we adapt the update of goal satisfactions
such that succ(g, s,e)[i] = 1 if either g[i] = 1 or s ∈ Gi ∧ e[i] = ⊥. Similarly, we
support multi-bounded-single-goal queries of the form 〈C(j1,...,jn)〉(∼1b1,...,∼nbn) G
which characterises the paths π with a single prefix πfin satisfying last(πfin) ∈ G
and all cost bounds, i.e., costji

(πfin) ∼i bi.

1 This supersedes a restriction of the algorithm of [24].
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Fig. 5. Pareto curves

Example 3. The formula e = 〈C(1,1)〉(≤1,≥1) G expresses the paths that reach G
while collecting exactly one cost w.r.t. the first cost structure. This formula is
not equivalent to e′ = 〈C1〉≤1 G ∧ 〈C1〉≥1 G since, e.g., for G = { s0 } the path
π = s0〈2〉s0 satisfies e′ but not e.

Expected cost objectives. We can consider cost-bounded expected cost objec-
tives Eopt

M (Rj1 , 〈Cj2〉≤b) with opt ∈ {max,min } which refer to the expected cost
accumulated for cost structure j1 within a given cost bound 〈Cj2〉≤b . Similar to
cost-bounded reachability queries, we compute cost-bounded expected costs via
computing (weighted) expected costs within epoch models.

Quantiles. A (multi-dimensional) quantile has the form Qu(Popt
M (e) ∼ p) for

opt ∈ {min,max }, ∼ ∈ {<,≤, >,≥}, e =
∧n∈N

i=1 (〈Cji
〉∼ibi

Gi) and a fixed prob-
ability threshold p ∈ [0, 1]. The quantile asks for the set of bound values B that
satisfy the probability threshold, i.e., B = {〈b1 . . . , bn〉 | Popt

M (e) ∼ p}. The com-
putation of quantiles for single-cost bounded reachability has been discussed
in [3,34], where multiple cost bounds are supported via unfolding. Unfolding
requires to fix bound values b2, . . . , bn a priori, and one can only ask for all b1

that satisfy the property. Our approach provides the basis for lifting the ideas
of [3,34] to multi-bounded queries. Roughly, one extends the epoch sequence
E in Algorithm 1 dynamically until the epochs in which the bounded reacha-
bility probability passes the threshold p are explored. Additional steps such as
detecting the case where B = ∅ are left for future work.

4 Visualisations

The results of a multi-objective model checking analysis are typically presented
as a single (approximation of a) Pareto curve. For more than two objectives, the
performance of the Pareto-optimal scheduler can be displayed in a bar chart as
in Fig. 4, where the colours reflect different objectives and the groups different
schedulers. The aim is to visualise the tradeoffs between the different objectives
such that the user can make an informed decision about the system design or
pick a scheduler for implementation. However, Pareto set visualisations alone
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Fig. 6. Two-dimensional plots of Pareto-optimal schedulers for different quantities
(Color figure online)

may not provide sufficient information, about, e.g., which objectives are aligned
or conflicting (see e.g. [39] for a discussion in the non-probabilistic case). Cost
bounds furthermore add an extra dimension for each cost structure. Consider
the Mars rover MDP Mr and tradeoff multi

(

obj 100, obj 140

)

with

obj v = Pmax
Mr

(〈Ctime〉≤175 B ∧ 〈Cenergy〉≤100 B ∧ 〈Cvalue〉≥v B)

where B is the set of states where the rover has safely returned to its base.
We ask for the tradeoff between performing experiments of scientific value at
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least 100 before returning to base within 175 time units and maximum energy
consumption of 100 units (obj 100) vs. achieving the same with scientific value
at least 140 (obj 140). The Pareto curve (Fig. 5(a)) shows the tradeoff between
achieving obj 100 and obj 140. However, for each Pareto-optimal scheduler, our
method has implicitly computed the probabilities of the two objectives for all
reachable epochs as well, i.e. for all bounds on the three quantities below the ones
required in the tradeoff. We visualise this information for deep insights into the
behaviour of each scheduler, its robustness w.r.t. the bounds, and its preferences
for certain objectives depending on the remaining budget for each quantity.

We use plots as shown in Fig. 6. They can be generated in no extra runtime or
memory since all required data is already computed implicitly. We restrict to two-
dimensional plots since they are easier to grasp than complex three-dimensional
visualisations. In each plot, we can thus show the relationship between three dif-
ferent quantities: one on the x-axis (x ), one on the y-axis (y), and one encoded as
the colour of the points (z, where we use blue for high values, red for low values,
black for probability zero, and white for unreachable epochs). Yet our example
tradeoff already contains five quantities: the probability for obj 100, the proba-
bility for obj 140, the available time and energy to be spent, and the remaining
scientific value to be accumulated. We thus need to project out some quantities.
We do this by showing at every 〈x, y〉 coordinate the maximum or minimum value
of the z quantity when ranging over all reachable values of the hidden costs at
this coordinate. That is, we show a best- or worst-case situation, depending on
the semantics of the respective quantities.

Out of the 30 possible combinations of quantities for our example, we show-
case three to illustrate the added value of the obtained information. First, in
Fig. 6(a), we plot the probabilities of the two objectives vs. the minimum sci-
entific value that still needs to be accumulated for two different Pareto-optimal
schedulers (left: S1, right: S2). White areas indicate that no epoch for the
particular combination of probabilities is reachable from the tradeoff’s bounds.
These two and all other Pareto-optimal schedulers are white above the diagonal,
which means that obj 100 implies obj 140, i.e. the objectives are aligned. For the
left scheduler, we further see that all blue-ish areas are associated to lower prob-
abilities for both objectives. Since blue indicates higher values, this scheduler
achieves only low probabilities when it still needs to make the rover accumu-
late a high amount of value. However, it overall achieves higher probabilities for
obj 140 at medium value requirements, whereas the right scheduler is “safer” and
focuses on satisfying obj 100. The erratic spikes on the left occur because some
probabilities are only reached after very unlikely paths.

In Fig. 6(b), we show for S1 the probability to achieve obj 100 depending
on the remaining energy to be spent vs. the remaining scientific value to be
accumulated. We see a white vertical line for every odd x -value; this is because,
over all branches in the model, the gcd of all value costs is 2. The left plot shows
the minimum probabilities over the hidden costs, i.e. we see the probability for
the worst-case remaining time; the right plot shows the best-case scenario. Not
surprisingly, when time is low, only a lot of energy makes it possible to reach
the objective with non-zero probability.
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Table 1. Runtime comparison for multi-cost single-objective queries

Benchmark instance Interval It Policy It.

Case Study |S| |T | r-m |E| |Sunf | UNF-dd UNF-sp SEQ UNF-sp SEQ

Service [38] 8·104 2·105 1-1 162 6·106 47 136 10 1945 48

JobSched2 [34] 349 660 2-2 503 2·104 <1 <1 <1 1 <1

JobSched3 4584 1·105 2-2 922 3·106
4 10 4 26 13

JobSched5 1·106 4·106 2-2 2114 4·108
2944 TO 3220 TO TO

FireWire [36] 776 1 411 2-2 6024 7·105 7 8 2 274 144

FireWire 776 1 411 2-2 1·105 1·107 165 147 45 TO 2803

Resources [6] 94 326 3-3 2·104 6·105 <1 18 5 46 9

Resources 94 326 3-3 1·107 6·108 TO TO 2693 TO TO

Rover 16 30 3-3 9·104 1·106 38 24 4 704 106

Rover 16 30 3-3 1·107 2·108 TO 6040 713 TO TO

UAV [23] 1·105 6·104 1-1 52 4·104
1 1 1 4 27

UAV 1·105 6·104 1-1 102 4·105 7 16 2 72 46

Wlan3 [36] 1·105 2·105 1-1 82 3·106 9 63 8 126 800

Wlan3 1·105 2·105 1-1 202 1·107 820 293 14 848 2155

Wlan6 5·106 1·107 1-1 82 2·107
12 363 989 643 TO

Wlan6 5·106 1·107 1-1 202 6·108 2292 TO 1399 TO TO

Table 2. Runtime comparison for multi-cost multi-objective queries

Benchmark instance Interval It Policy It.

Case Study |S| |T | ℓ-r-m |E| #w |Sunf | UNF-sp SEQ UNF-sp SEQ

Service 8·104 2·105 2-1-2 162 34 6·106 1918 543 TO 4679

JobSched2 349 660 2-4-4 4·104 2 1·105 3 54 15 183

JobSched3 4584 1·105 2-4-4 1·106 35 2·106 96 TO 6239 TO

JobSched5 1·106 4·106 2-4-4 3·105 ? ? TO TO TO TO

FireWire 776 1 411 2-2-2 6 024 3 7·105 32 17 TO 1159

FireWire 776 1 411 2-2-2 1·105 2 1·107 863 225 TO TO

Resources 94 326 2-3-4 2·105 3 6·105 25 16 2047 52

Resources 94 326 2-3-4 1·108 ? ? TO TO TO TO

Rover 16 30 2-3-3 9·105 7 1·106 177 39 5817 3328

Rover 16 30 2-3-3 1·108 7 2·108 TO 5785 TO TO

UAV 1·105 6·104 2-1-2 52 18 4·104 2 24 102 1098

UAV 1·105 6·104 2-1-2 102 22 4·105 70 39 2282 3062

Wlan3 1·105 2·105 3-1-2 82 68 3·106 5239 2231 TO TO

Wlan3 1·105 2·105 3-1-2 202 4 1·107 1769 185 TO TO

Wlan6 5·106 1·107 3-1-2 82 ? 2·107 TO TO TO TO
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Finally, Fig. 6(c) shows the probability for obj 140 depending on available time
and energy for S2. We plot the minimum probability over the hidden scientific
value requirement, i.e. a worst-case view. The plot shows that time is of little
use in case of low remaining energy, but it helps significantly when there is
sufficient energy, too. In Fig. 6(d), we depict for the same scheduler the minimum
remaining scientific value (z ) under which a certain probability for obj 100 can be
achieved (y), given a certain remaining time budget (x ). The upper left corner
shows that a high probability in little time is only achievable if we need to collect
little more value; the value requirement gradually relaxes as we aim for lower
probabilities or have more time.

5 Experiments

Implementation. We implemented the presented approach into Storm [20] v1.2,
and available via [19]. The implementation computes extremal probabilities for
single-objective multi-cost bounded queries, as well as Pareto curves for the
multi-objective case. We consider the sparse engine of Storm, i.e., explicit data
structures such as sparse matrices. For single-cost bounded properties, this has
already been addressed in [34]. For the computation of expected cost (Lines 10
to 12 of Algorithm 1) we employ interval iteration with finite precision floats
as well as policy iteration with infinite precision rationals. The expected costs
(lines 10 to 12 of Algorithm 1) are computed either numerically (via interval
iteration over finite precision floats) or exactly (via policy iteration over infinite
precision rationals). To reduce the memory consumption, the analysis result of
an epoch model Me

f is erased as soon as possible.

Fig. 7. Runtime (y-axis) of SEQ (+) and UNF (×) for increasing cost bounds (x-axis)

Set-up & reproduction. We evaluate the approach on wide range of case studies,
available in the artefact [30]. The models are given in Prism’s [37] guarded com-
mand language. For each case study we consider single- and multi-objective
queries that yield non-trivial results, i.e., probabilities strictly between zero
and one. We compare the naive unfolding approach (UNF) as in Sect. 3.1 with
the sequential approach (SEQ) as in Sect. 3.2. The unfolding of the model is
applied on the Prism language level, by considering a parallel composition with
cost counting structures. On the unfolded model we apply the algorithms for
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unbounded reachability as available in Storm. We considered precision η = 10−4

for the Pareto curve approximation and precision ε = 10−6 for interval iteration.
We increased the precision for single epoch models as in Theorem 2.

We ran our experiments on a single core (2 GHz) of a HP BL685C G7 system
with 192 GB of memory. We stopped each experiment after a time limit of 2
hours. For experiments that completed within the time limit, we observed a
memory consumption of up to 36 GB for UNF and up to 5 GB for SEQ.

A binary equivalent to the binary we used for the experiments is available in
the artefact [30]. The binary has been tested in the artefact evaluation VM [31].
For other configurations, Storm should be recompiled using the sources [19].

Details on reproduction of the tables, as well as details on how to anal-
yse multi-cost bounded properties using Storm in general can be found in the
readme, enclosed in the artefact.

Experimental Results. Tables 1 and 2 show results for single- and multi-objective
queries, respectively. The first columns yield the number of states and transi-
tions of the original MDP, then for the query, the number of bounds m, the
number of different cost structures r, and the number of reachable cost epochs
(reflecting the magnitude of the bound values). |Sunf | denotes the number of
reachable states in the unfolding. For multi-objective queries, we additionally
give the number of objectives and the number of analysed weight vectors w.
The remaining columns depict the runtimes of the different approaches in sec-
onds. For UNF, we considered both the sparse (sp) and symbolic (dd) engine of
Storm. The symbolic engine neither supports multi-objective model checking
nor exact policy iteration.

On the majority of benchmarks, SEQ performs better than UNF. Typically,
SEQ is less sensitive to increases in the magnitude of the cost bounds, as illus-
trated in Fig. 7. For three benchmark and query instances, we plot the runtime
of both approaches against different numbers |E| of reachable epochs. While for
small cost bounds, UNF is sometimes even faster compared to SEQ, SEQ scales
better with increasing |E|. It is not surprising that SEQ scales better, ultimately,
the increased state space and the accompanying memory consumption in UNF
is a bottleneck. The most important reason that UNF performs better for some
(smaller) cost bounds is the induced overhead of checking the full epoch. In par-
ticular, the epoch contains (often many) states that are not reachable from the
initial state (in the unfolding).

6 Conclusion

Many real-world planning problems consider several limited resources and con-
tain tradeoffs. This paper present a practically efficient approach to analyse these
problems. It has been implemented in the Storm model checker and shows sig-
nificant performance benefits. The algorithm implicitly computes a large amount
of information that is hidden in the standard plots of Pareto curves shown to
visualise the results of a multi-objective analysis. We have developed a new set of
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visualisations that exploit all the available data to provide new and clear insights
to decision makers even for problems with many objectives and cost dimensions.

Data Availability Statement. The datasets analysed during the current
study, and the binary used for the analysis, are available in the figshare reposi-
tory [30]. Source code matching the binary is available in [19].
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4. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Maximizing the conditional
expected reward for reaching the goal. In: Legay, A., Margaria, T. (eds.) TACAS
2017. LNCS, vol. 10206, pp. 269–285. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54580-5 16

5. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for Markov decision processes. In:
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