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Abstract

Significant improvements in real-time efficiency have been obtained for plasma fluid

turbulence calculations by microtasking the nonlinear fluid code KITE in which they are

implemented on the CRAY Y-MP C90 at the National Energy Research Supercomputer

Center (NERSC). The number of processors accessed concurrently scales linearly with

problem size. Close to six concurrent processors have so far been obtained with a three-

dimensional nonlinear production calculation at the currently allowed memory size of 80

Mword. With a calculation size corresponding to the maximum allowed memory of 200

Mword in the next system configuration, we expect to be able to access close to nine

processors of the C90 concurrently with a commensurate improvement in real-time

efficiency. These improvements in performance are comparable to those expected from a

massively parallel implementation of the same calculations on the Intel Paragon.
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1 Introduction

To predict the size, expense and performance of magnetic fusion reactors, it is criticalto

know the scaling of particle transport and losses across the magnetic field with machine and

plasma parameters. The mechanism for transport across magnetically confined plasmas is

not yet known. However, at the plasma edge of the TEXT tokamak, a type of toroidal

magnetic confinement device, losses larger than those predicted by classical theory have

been shown to be induced by fluctuations. 1 Numerical calculations of plasma edge

turbulence are expected to lead to the identification of the transport scaling parameters. 2

At the plasma edge, the dynamics of the plasma can be modeled by fluidlike equations.

A possible model for the turbulence at the edge of tokamaks like TEXT is collisional drift

waves destabilized by atomic physics sources such as line radiation cooling caused by light

impurities. 3,4These impurity radiation-driven drift waves are adequately described by five

nonlinear fluid equations for plasma density, vorticity, potential, parallel velocity, and

temperature, with impurity radiation sources introduced in the latter. These equations are

solved as an initial value problem in the nonlinear fluid computer code KITE, s which treats

the linear terms implicitly and the nonlinear terms explicitly. The implicit treatment of the

linear terms requires the inversion of block-tridiagonal matrices. The calculation of the

nonlinear terms is usually done by convolutions.

High resolution is needed to resolve ali scale lengths in a turbulence problem, 2

requiring the use of large amounts of memory. To study the development of steady-state

turbulence, the plasma evolution must be followed for many time steps. Therefore, these

calculations also require large amounts of computing time. With present computers, the

parameter regime that can be studied is still limited.



To improve the real-time efficiency of plasma turbulence calculations using the KITE

family of fluid computer codes, we have explored two main avenues: massively parallel

numerical schemes on the Intel iPSC/860 and Touchstone Delta and multiprocessing on the

CRAY IIs and the CRAY Y-MP C90. Improvements in pertbrmance on the Intels have

been reported elsewhere, 6-8and we concentrate here on the muhi-CPU implementation of

the KITE code on the CRAY Y-MP C90.

Multiprocessing of the KITE family of codes 9 for the CRAY IIs started upon their

arrival at NERSC in the mid 1980s. At that time, use of more than one processor was

achieved via software multitasking calls inserted in the Fortran programs. Given the small

number of processors (four to eight), the CTSS operating system environment, and the

large amount of code modifications required, the experience was less than satisfactory.

The situation has changed substantially with the recent arrival of the CRAY Y-MP C90

at NERSC. Its 16 processors with peak aggregate speed of 16 Gflop, its 268 Mword of

shared memory, the UNICOS 7.0 operating system, its efficient CF77 compiling system

and associated autotasking and microtasking software make the C90 very attractive for

multiprocessing. Autotasking has the advantage of simplicity because it only requires one

option of the CF77 compiler to be activated for it to analyze the code and insert compiler

directives. It does, however, often parallelize loops that do not account for much of the

running time and leaves the important loops as serial code. Fortunately, microtasking is an

alternative to autotasking that can produce better pertbrmance. It involves analyzing the

code by hand or using parallelizing tools and inserting directives where parallelism is

found.



Here, we present the results of the multi-CPU implementation of our plasma edge

turbulence model on the CRAY Y-MP C90. These results are compared with the

corresponding serial implementation on the C90 and with the massively parallel

implementation on the lntel parallel computers. In Section 2, the equations used in the

present studies are described, and the algorithm is briefly summarized. The multiprocessor

implementation of this scheme on the C90 is discussed in Section 3. The timing results for

serial, autotasked, and microtasked modes of operation and different problem sizes are

presented in Section 4. In Section 5, we give our conclusions.



2 Equations and Numerics

In the study of collisional drift wave-type instabilities driven by impurity, radiation at the

plasma edge, we assume cylindrical geometry, and use fluidlike model equations. The

system of equations consists of the continuity equation, coupled to the parallel and

perpendicular momentum balance or vorticity equations, and the electron temperature

equation, including impurity, radiation effects3:

d_ -Vo, I _ c_V,,V,, 2 - _ V_h. (1)--: .... zV,,(¢-h aT)+D
dt r ao

d(_, = -c,V,t(h + 7")+ l.t,,V,2_V, + # _V __, . (2)
dt

dO
- (3)-- = -zV,, (_ - _ - aT)+

dt

dT _vor l O_ 2 c,V,,_, 2
d-'-t= r O0 -3 - -_ czZV.2,(_ - h - aT)

+ Z,,V,_f"+ ZiV_f" + 7.r_ - y.fi. (4)

An auxiliary, time-independent equation is also solved to determine the electrostatic

potential, _ from the vorticity U:

The total time derivative in Eqs. (1-4) is such that

d= 3 _c,p,(_,_x_.). _, (6)
dt c)t



where the second term in Eq. (6) is the convective nonlinearity.

Here, the electrostatic potential, density n, parallel velocity VII, and temperature T,

fluctuations have been normalized to

T
lelO n - V, "/_= , (7)
Lo c+ Lo

where Te0 is the equilibrium electron temperature, nO is the equilibrium density, and
I

cs = "_Te0/Mi is the sound speed. In Eqs. (1) to (6), V, n = CsPs/Ln and V, T =c s Ps/LT

are the diamagnetic drift velocities fo, the density and the temperature with gradient

scalelengths Ln and LT, respectively; Ps = Cs/C°ci is the sound Larmor radius; XIi"

2 K:ll/3no is the normalized parallel thermal conductivity; X = )_11/1.07 is the normalized

resistivity; Z_I_is the normalized perpendicular thermal conductivity; D is the particle

diffusivity; t.t is the classical fluid viscosity; I,tll and g.k are the parallel and perpendicular

ion viscosities; and the parameter c_is such that or= 1.71. The symbol IImeans parallel to

the total magnetic field, which is expressed as

-. --.. r 1 _) (8)
8= ,

where the safety factor q=rB0/(RBp), with B0 the toroidal magnetic field in the _ direction,

Bp the poloidal magnetic field in the 0 direction, the major radius R, and radial variable r.

The symbol 2. indicates the direction perpendicular to the toroidal magnetic field. For

periodic perturbations proportional to cos (m0+n_) or sin (m0+n_), with m the poloidal

mode number and n the toroidal mode number, VII= 0 at the radial position for which q(r)=

m/n. The radial position is called the resonant or singular surface for this perturbation.

Impurity radiation manifests itself in the electron temperature equation, Eq. (4), through

the terms TT= -2/3n z dlz/dTe0 and Tn = nzlz/Te0 multiplying temperature and density
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fluctuations, respectively, with n z the impurity density and Iz the low-z impurity cooling

rate. Both can act as sources of fluctuations at the plasma edge of magnetic confinement

devices such as tokamaks. The impurity radiation strength causes the fluctuations with

low-to-moderate m numbers to grow exponentially in time in the linear phase. A turbulent,

saturated steady state is obtained through coupling to damped modes with higher m

numbers and generation of a mean poloidal sheared flow velocity via the convective

nonlinearity. The impurity radiation strength and profile, as well as the equilibrium

temperature and density profiles, are held fixed throughout the calculation; we are,

therefore, in a driven turbulence situation.

The edge turbulence model represented by Eqs. t 1-5) has been implemented in the

computer code KITE. 5 To maximize resolution, Eqs. (1-5) are solved within a cylindrical

annulus that extends from rmi n to the minor radius a of the cylinder. The fluctuating fields

are written as expansions in sines and cosines:

.c r
f(r,O,_) = _,,.,[f,,,,( )cos(m0+ n_)+ f_(r)sin(mO+ n_)], (9)

in the poloidal (e) and toroidal (_) angles.

The boundary conditions are such that the radial components of the velocity is zero at

conducting walls placed at r=rmi n and r=a and so are density, temperature and parallel

velocity perturbations. That is, for all fields,

f(rmin,O,_)= ffa,O,_). (10)

To complete the numerical representation of the fields, we use finite differences in r. First

and second radial derivatives are calculated with three-point, finite-difference formulas.

Derivatives in 0 and _ are performed analytically. Ali quantities are stored in spectral form

and are never transformed to a finite-difference grid in 0 and _.



These nonlinear equations are solved as an initial value problem. The numerical scheme

presently used in the computer code KITE treats ali linear terms in the perturbation

implicitly. This requires the inversion of a block-tridiagonal matrix for each Fourier

component, with the size of the blocks given by the number of equations (ten here, five

each for the sine and cosine components_ and the number of blocks set by the number of

grid points. The matrix inversion problem is solved with the block-tridiagonal linear system

solver of Hindmarsh. 1° The blocks of the matrix and the corresponding rows of the right-

hand side vector are stored in memory. The solver uses block Gauss elimination, Partial

pivoting is done within block rows only. These routines (SOL and SOLBT) are vectorized

over the number of equations only, which leads to short vector lengths, because pivoting

makes it difficult to vectorize the matrix inversion over the number of modes, which would

lead to longer vector lengths. The nonlinear terms are explicit and accurate to first order in

time. They lead to convolutions over poloidal and toroidal modes that are performed

analytically rather than using fast Fourier transforms because only modes within a narrow

helicity band are of interest. The subroutine (MULT) performing the mode convolutions is

fully vectorized with do-loop unfolding. 11



3 Multi-CPU Implementation

For the KITE family of codes, the matrix operations and mode convolutions are the

most time-consuming parts of the calculations. This is so not only in serial implementation

on the CRAYs but also in massively parallel implementation on the Intel iPSC/860 and

Touchstone Delta. 8 Most of the effort has, therefore, been put into achieving efficient

multi-processing of the matrix operations and convolutions on the C90.

Compared to the algorithm development and extensive code modifications necessary to

obtain efficient massively parallel code for the Intel parallel computers, few changes are

required for the code to multiprocess effectively on the C90. We did restructure the code so

that the matrix and right-hand side were stored in memory for ali the modes. Previous

codes read the matrix from disk one mode at a time each time step and calculated the right-

hand side with each mode overwriting the right-hand side for the last one.This I/O bound

version was preferred on the CRAY IIs to circumvent the scheduling and charging scheme

in effect at NERSC, at the expense of slower turnaround, more than to save memory

storage.

On the C90, the autotasked version of the code is produced automatically by the CF77

compiling system when the -zp option is used on the compiler line with no further changes

made to the serial version. The microtasked version was produced by first profiling the

code to assess which modules account for most of the computational time. The automatic

parallelizer tool FORGE was then applied to these modules to detect parallelism, and

compiler directives were inserted where parallelism was found. To microtask the matrix

inversion, only the following three lines were required:

10



CMIC_ DOALL

CMIC_*SHARED (index.nmatx,mjml,ampls,bmpls,cmpls, y,impls)

CMIC_*PRIVATE (1)

do 21 l=2,index+ 1

call solbt(nmatx,mjml.ampls ( 1,1,1 ,l),bmpls( 1,1,1,1),

& cmpls(1,1,1,1),y(1,1,1),impls( 1,1,1))

21 continue

The parallelization is performed over the number of modes 1.Each variable in the do-loop

over modes must be declared to be shared with ali the processors or private to each

processor. To microtask the convolutions over modes, tile following four lines of compiler

directives were inserted in the subroutine MULT:

CMIC_ DOALL

CMIC_*SHARED (mj,lmax,10,kl maxJ 1max,llh,k lh,11 g,k 1g,h,g,f)

CMIC_*PRIVATE (kp,lp 1,1p,j,fs,1)

CMIC_*SAVELAST

do 1999 1=1,1max

do 1897 j=O,mj

1897 fs(j)=0.

do 1898 lp=llmax(l-1)+l,llmax(l),4

if(llmax(l)-lp.lt.4) go to 100

do 98 j=0,mj

11



fs(j)=((((fs(j)+g(j,llg(Ip)*h(j,llh(lp)))

i +g(j,llg(Ip+I)*h(j,llh(lp+I)))

I +g(j,Ug(Ip+2)*h(j,llh(Ip+2)))

1 +g(j,llg(lp+B)*h(j,llh(lp+3)))

98 continue

go to 1898

100 do 150 lpl=lp,llmax{l)

do 150 j---O,mj

150 fs(j)=fs(j)+g(j,1 lg(lp 1)',,_h(j,1lh(lp 1))

1898 continue

do 1998 kp=klmax(l-1)+ 1,klmax(l)

do 1998 j--O,rnj

fs(j) =fs (j)-g(j ,k 1g(kp )*h(j ,k 1h(kp))

1998 continue

do 1999 j--Oanj

1999 f(j,1)=O.5*fs(j)

The convolution routine is highlyoptimized. Each inner loop is vectorizedover the number

of radial grid points and has do-loop unfolding with four terms written out explicitly. With

unfolding the array fs needs to be accessed and stored only one-fourth as frequently. The

outc, loop is performed in parallel over the number of modes. One other subroutine was

microtasked, with parallelizationover the number of modes. It is a simpletridiagonal solver

over radial grid points (TRDG) that is called for ali modes when the potential is calculated

from the vorticity [Eq. (5)].

12



With these modifications, the KITE profile displayed as a pie chart in Fig. 1 is obtained

for our plasma edge turbulence model run for 100 time steps with 385 grid points and 539

modes. The matrix operations ISOL/SOLBT) account for 47% of total CPU time, the

convolutions ¢MULT) for 41%, and the tridiagonal solver (TRDG) for 3%, for a total of

91%. It is clear from Fig. 1 that ali parts of the calculations that matter are the ones that

have been microtasked save for 9% of the computational burden, which is made up of the

startup serial routines. This startup overhead would be much lower if a calculation over

thousands of steps had been profiled.

13



4 Results

The arbitrary memory, limit currently in effect on the C90 at NERSC is set at 80

Mword. For the KITE implementation of the plasma edge turbulence model given by Eqs.

(1-5), the memory, size, Msize, is dominated by the matrices and by varying the number of

modes, Nmodes, and grid points, MJ, and we have obtained the following scaling:

Msize (Mword)= 0.66 + 3.76 x 10"4 (MJ x Nmodes). (11)

The present studies have, therefore, been limited to grid sizes and numbers of modes that

result in a memory size <_80 Mword, with the largest size calculations attempted having

MJ= 385 and Nmodes= 539 for Msize= 79 Mword. We point out that the calculations

reported here were not carried out in single-user or dedicated mode but in the usual,

competitive, multiuser batch environment that production calculations must be performed in

on the C90 at NERSC. These are, therefore, not so much a reflection of the best the

machine can do but more an assessment of how well calculations can be performed under

the day-to-day constraints imposed by the system (swapping, scheduling) and varying

machine workload (time of day, hundreds of competing tasks). They do, theretbre, give a

true measure of real-time efficiency.

Comparisons of the performance of serial, autotasked, and microtasked

implementations of the KITE code on the C90 have been made based on test calculations

covering 100 time steps, and with the number of grid points and modes held fixed at

MJ=385 and Nmodes=539. The results of these comparisons are shown in Fig. 2, where

connect seconds and wallclock seconds are displayed as bar charts tor ali three modes of

operation. Com:ect seconds are used on the C90 as a measure of the average time spent in

concurrent CPUs. Figure 2 shows that good overlap is obtained with autotasking, and even

14



better overlap is achievea by microtasking, with 4.12 processors accesseci concurrently in

micmtasked mode compared to 2.55 processors in autotasked mode. The wallclock time is

within 7% of the connect time for ali three modes of operation. The improvement of

performance with microtasking and autotasking over serial operation is directly

proportional to the number of CPUs accessed concurrently, with the best real-time

efficiency or lowest wallclock time for fastest turnaround obtained in microtasked mode.

From now on, we, therefore, concentrate on results obtained with the microtasked version

of KITE.

Tests of the KITE code in microtasking mode have been carried out in which the

number of CPUs requested on the C90 was varied from 2 to 16 by setting the environment

variable NCPUS to the appropriate value and the average number of concurrent CPUs

achieved was recorded. As shown in Fig. 3, after 8 CPUs requested up to the maximum of

16, the average number of CPUs accessed is almost constant and hovers around 4.3. These

tests were carried out for 100 time steps, MJ=385, and Nmodes=539. For production

calculations with 5000 time steps or more, we average 5.9 processors when we request 16

processors. In either case, the number of CPUs accessed concurrently varies slightly

depending on the machine workload at the time the calculations are performed.

15



Calculations have been performed in microtasked mode for 100 time steps with varying

numbers of grid points and modes. All 16 processors were requested for these tests.

Results of these studies are shown in Fig. 4 where the average number of concurrent CPUs

obtained, Ncpus, is displayed as a function of the size of the calculation, MJ x Nmodes.

The upper and lower set of data are for Nmodes= 539 and 201, respectively, and different

MJso The middle set of data is for MJ=385 and different Nmodes up to a maximum of 539.

The number of CPUs accessed concurrently depends linearly on both the number of modes

and the number of grid points, with a much stronger dependence on the number of modes.

A global fit to the data yields the following scaling for the number of CPUs accessed

concurrently

Ncpus = 0.835 + 5.3 x 10-3 Nmodes + 1.4 x 10-3 MJ. (12)

The stronger dependence of the number of concurrent CPUs on the number of modes just

reflects the fact that parallelization is done over modes in the C90 version of KITE.

For these same calculations with varying numbers of grid points and modes, we have

also plotted in Fig. 5 the average time spent in CPU or connect seconds, TConnec t, and the

wallclock seconds, Twallcloc k, as a function of the size of the calculation, MJ x Nmodes.

In marked contrast to the three distinct dependencies observed in Fig. 4 for the number of

concurrent CPUs as a function of calculation size, the data points for the connect seconds

and wallclock seconds lie on a straight line; a very good fit to the data is

Tconnec t (seconds) = 0.38 + 7.21 x 10-6 (MJ x Nmodes), (13)

and

Twallcloc k (seconds) = 0.43 + 8.61 x 10-6 (MJ x Nmodes). (14)
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The linear dependence on MJ is expected because the number of operations in KITE scales

as the number of m'id points. However, while the number of operations is proportional to

MJ x Nmodes for the matrix operations, it does scale as MJ x (Nmodes) 2 for the

convolutions. This is indeed what is obtained in serial mode for problem sizes, such as the

ones considered here, with Nmodes > MJ. However, as shown in Fig. 4, the concurrent

CPUs scale as Nmodes so that more processors work simultaneously on the calculation as

the number of modes increases, with the net effect that the connect seconds and wallclock

seconds scale linearly with Nmode as well as MJ.

In performing production calculations,we have observed that better real-time efficiency

can in fact be obtained. More concurrent CPUs can be accessed, and connect seconds per

time step go down by a commensurate amount. Results of tests over 5000 time steps are

displayed in Fig. 6(a) for concurrent CPUs and Fig. 6(b) for connect seconds as a function

of number of modes. For reasons of affordability, we have kept the number of grid points

fixed at 385. The results of Fig. 6(a) show that the average number of CPUs accessed

concurrently is larger for these calculations than for those with 100 steps, with 5.9

concurrent processors obtained for the largest calculations with MJ=385 and Nmodes=539.

A reasonable fit to the data of Fig. 6(a) is Ncpus (5000 steps) = Ncpus (100 steps) + 1.6.

lt is also clear from Fig. 6(b) that the connect seconds per time step are lower for the 5000

time step calculations than for those with 100 steps. A good fit to the data of Fig. 6(b) is

Tconnec t (5000 steps) = Tconnec t (100 steps) - (0.35 + 5 x 10.4 Nmodes). These

improvements are partly due to a better averaging of system performance with more steps,

but also because the serial initialization is reduced over 5000 steps to much less than ,he 9%

of the computational burden it accounted for over 100 steps as shown in Fig. 1. In fact, as

shown in Fig. 6rb), when the data for 100 time steps are corrected for the serial setup, the

connect seconds per step reduce to the values obtained from the calculations with 5000 time

i7



steps.

Microtasked calculations on ali 16 processors of the C90 have been compared to

identical calculations performed with the massively parallel version of KITE on ali 128

processors of the ORNL Intel iPSC/860. 8 The results of these calculations with 385 grid

points and a varying number of modes are shown in Fig. 7, where connect seconds per

time step are displayed as a function of number of modes. Timings from tests over 5000

time steps were used for the C90 data. Real-time efficiency as measured by connect time is

better by a factor of 1() on the C90 as compared to the iPSC/860. These comparisons are

for the best version of the code running on each machine. Because of the memory, limit of

8Mbyte per node on the iPSC/860, its version of the code must recalculate the matrix

blocks every, time step as they are needed. The C90 version stores ali the matrices in its

268-Mword memory and only calculates them once. Furthermore, the number of

processors is kept fixed on the iPSC/860, whereas the number of accessible processors on

the C90 increases with the number of modes. Earlier extrapolations 8 of results obtained

with KITE on the Intel iPSC/860 and Delta to the lntel Paragon, with its faster

communications between processors, its better compiler optimization, and its 2048

processors show that it will be possible to obtain a gain in real-time efficiency equivalent to

the C90 on the Paragon.

Production calculations of impurity radiation-driven drift waves as a model of

turbulence at the edge of the TEXT tokamak have been performed on the C90 with the

microtasked version of the computer code KITE. These calculations had 385 grid points

and 539 modes. The time evolution of Eqs. (1-5) has been followed for 40,000 steps deep

into the nonlinear saturated steady state. Even though these calculations were performed in

the usual multiuser batch operation of the C90, we have been able to complete 20,000

contiguous steps over one weekend and have routinely completed 5000 steps overnight. As
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a measure of comparison, we were abie to complete only 1000 steps every, 2 or 3 days,

depending on machine load, for the same size calculations in serial mode on the CRAY IIs

and C90. This improvement in turnaround in microtasked mode on the C90 is due to the

fact that these production calculations have been able to access an average of 5.9 processors

concurrently. Because of this improvement in real-time efficiency, we are now able to

achieve a nonlinear saturated steady state within a few days instead of a few weeks. Results

of these production calculations are illustrated in the color plate displayed in Fig. 8. Color

contours of the plasma density as a function of radius (vertical axis in each frame) and

poloidal angle (horizontal axis) are shown as the nonlinear calculation advances in time.

We have concentrated for this paper on results from the KITE code because it is one of

our most mature and computationally intensive production codes when applied to plasma

edge turbulence calculations. However, the best microtasking performance that we have

obtained to date on the C90 is with the DTEMFAR code, which solves a paradigmic one-

equation model of dissipative trapped electron mode (DTEM) turbulence in slab

geometry. 12lt uses an algorithm identical to KITE as far as matrix operations and mode

convolutions are concerned, with the matrix solver accounting for 70% of the

computational burden. In multiuser mode, we were able to access 7.42 concurrent CPUs,

as compared to 1.65 processors for the autotasking version, for a calculation over 100 time

steps with 534 grid points and 439 modes, corresponding to a memory size of 11 Mword.

In dedicated, single-user mode, with the environment variable MP_DEDICATED activated,

which does not work in multiuser mode, we have accessed up to 15.52 concurrent CPUs

out of an absolute maximum of 16 processors.
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5 Conclusions

In the next system configuration on the C90 at NERSC, the memory, size available to

users will be set to a maximum of 200 Mword. This will enable us to perform

experimentally relevant calculations of plasma edge turbulence with higher radial resolution

and including more modes to increase mode couplings and radial mixing. Using Eq. (11),

we will be able to fit 500 grid points and 1000 modes in memory,, for a memory size of

Msize- 190 Mword. only slightly below the maximum allowed. Using the scalings of Eqs.

(12) and (13) obtained from test calculations of 100 time steps, we could expect accessing

6.8 CPUs concurrently out a maximum possible of 16 and respectable timings of 4 connect

seco,ads per time step. With the additional improvements observed over 5000 time steps in

average number of concurrent CPUs and connect seconds per step, we can expect to access

8.5 processors concurrently and timings of 3.1 connect seconds per step tor the largest

calculations. These anticipated improvements in real-time efficiency are due to the 16 fast

processors, large memory, of the C90. and the number of processors accessed concurrently

scaling linearly with problem size for our microtasking implementation. Comparable

performance for the same size problem is also anticipated on the Intel Paragon.
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Figure Captions

Figure 1: Profile of the plasma fluid turbulence calculations with the micortasked computer

code KITE on the CR! Y-MP C90. The pie chart indicates the breakdown of the

computational burden for 100 time steps, MJ= 385 grid points and Nmodes= 539 modes

between matrix operations (SOLBT/SOL), the mode convolutions (MULT), the tridiagonal

solver (TRDG) and the serial startup routines.

Figure 2: Timings of KITE for 100 time steps, 385 grid points and 539 modes o::, the CX)0

in serial, autotasked and multitasked modes. Wallclock seconds in light shading and

connect seconds in dark shading (average time spent in CPU) are displayed in a bar chart

for all three modes of operation. Microtasking provides the best real-time efficiency.

Figure 3: Average number of CPUs accessed in microtasking mode as a function of

number of CPU's requested for runs of KITE with 385 grid points and 539 modes on the

C90 for 100 time steps.

Figure 4: Average number of concurrent CPUs in microtasking mode as a function of

calculation size MJ x Nmodes for calculations over 100 time steps with KITE on the C90.

The upper and lower data points are for Nmodes= 539 and 201 and varying MJ. The

middle data points are for MJ=385 and varying Nmodes.

Figure 5: Connect seconds (solid circles) and wallclock seconds (open circles) as a

function of calculation size MJ x Nmodes for calculations over 100 time steps with KITE in

microtasking mode on the C90.
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Figure 6: Comparison between microtasked C90 KITE calculations tbr 100 (solid circles)

and 5000 (open circles) time steps: a) average number of concurrent CPU's as a function

of number of modes and b) connect seconds per time step as a function of number of

modes. The connect seconds for 100 steps with startup substracted are plotted as solid

squares.

Figure 7: Connect seconds per time step for identical calculations with the microtasked

version of KITE on the sixteen processors of the C90 and with the massively parallel

version of KITE on ali 128 processors of the Intel iPSC/860.

Figure 8: Color contours of the plasma density as a function of radius (vertical axis in each

frame) and poloidal angle (horizontal axis) are shown as the nonlinear production

calculation advances in time.
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