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Abstract—Finding tradeoffs in design space is naturally
formulated as a multicriteria optimization problem. In this
paper, we model tradeoffs between communication cost and the
balance of processor workloads for the problem of mapping
applications to processors in a multicore environment. We
formulate several query strategies for finding Pareto optimal
and approximately Pareto optimal solutions to the mapping
problem using a constraint solver as a time-bounded oracle.
Each of the strategies directs the oracle through the search
space in a different manner. We evaluate the efficiency of
these strategies on a series of synthetic benchmarks, and
on two industrial applications, a video noise reduction, and
an image demosaic color filtering. The results indicate a
significant tradeoff between precision and computation time,
and a corresponding benefit to time-bounded queries.

Keywords-Multi-criteria optimization; SMT solvers; Map-
ping ;

I. INTRODUCTION

The ability to effectively map and schedule applications
onto a multi-processor platform is a key factor in the
success of future multi-core computers. We are interested
in platforms where the multi-core computation fabric is
intended to replace dedicated hardware in data-intensive
applications such as video processing. For such applica-
tions, computation load distribution over processors and the
workload it induces on the communication infra-structure are
two main criteria in evaluating a mapping solution. These
criteria are conflicting because as we move from a more
centralized to a more parallel implementation we reduce the
former and increase the latter. Computation workload and
communication volume are just two out of numerous criteria
considered in such design processes: memory size, energy
consumption, price of components, are additional criteria
that may be involved in evaluating and comparing design
solutions.

Multi-criteria optimization problems [Ehr05], by defini-
tion, differ from single-criteria problems in the fact that
there is no optimal solution(s) but rather a set of mutually-
incomparable efficient solutions also known as Pareto solu-
tions, which are solutions whose associated cost vectors are
not dominated by any other feasible cost vector. Different
Pareto solutions represent different design trade-offs and
being able to compute a representative sample of these
solutions is a valuable design aid [KTZ06]. Consequently

there is a growing interest in adapting various algorithms
and heuristics for solving hard optimization problems to the
multi-criteria setting [Deb01], [MA04].

Several authors have addressed the mapping problem
while optimizing multiple, potentially conflicting criteria.
For instance DOL [TBHH07] and Sesame [EEP03] are
frameworks for modeling and simulation of multiproces-
sors embedded systems based on evolutionary algorithms
[Deb01]. They include a refinement loop based on successive
optimization and simulation steps. The mapping step is im-
plemented using SPEA [ZLT02] algorithm, one of the most
popular genetic algorithms. The mapping problem has also
been tackled using ILP [YHZ+09], [Ben96] or combination
of ILP and constraint programming [RGB+06], sometimes
using Benders Decomposition [BBGM05], a method that
solves consecutive sub-problems to speedup the optimization
process.

On the other hand, a great leap in performance has been
achieved during the last decade for search-based methods
for the satisfiability of Boolean formulae given in CNF
form (SAT). Modern SAT solvers [ZM02] based on im-
provements of the DPLL procedures [DLL62] can now solve
problems comprising of hundreds of thousands of variables
and clauses and are used extensively to solve design and
verification problems in hardware and software. SAT based
approaches to solve design space exploration problem have
been studied in [LYH+08]. Also in [SLHT06] the authors
propose to introduce satisfiability techniques into a genetic
algorithm.

Building upon the progress in SAT solvers, new tools
emerged that extend them to handle mixed constraints in-
volving both logic and numerical predicates . Some of these
SMT (SAT modulo theories) solvers have achieved very
good performance, for example for solving Boolean com-
binations of linear constraints [DdM06], [dMB08], which
suggests that they can serve as the computational back-
end for hard optimization problems such as mapping and
scheduling. In [LGCM10] we developed a methodology
for approximating the Pareto front by performing a multi-
dimensional extension of binary search over the cost space,
submitting queries to an external solver which serves as an
oracle for the set of feasible costs. One advantage of using
a solver in this context is the ability to obtain bounds on the



approximation error, expressed as the distance between the
solution found and the actual Pareto front. Future integration
of such techniques in the design flow (or even in the
compilation flow) of embedded systems depends crucially
on their performance.

In this work we perform a comparative study of the
efficiency of different algorithms for finding Pareto opti-
mal, and approximately Pareto optimal solutions for multi-
processors mapping problems evaluated according to the
two above mentioned criteria: computation load balancing,
and minimization of communications. The algorithms make
use of an oracle for the set of feasible costs. Since testing
membership in feasible cost space can be computationally
hard, we introduce simple variants which make use of a
time-bounded oracle.

The main difference between these algorithms is in the
way they guide the solver toward unexplored parts of the
cost space:

1) Under-approximation with refinement. These methods
start with an under-approximation of the set of Pareto
points and iteratively refine it by directing the solver
to look for solutions in parts of the cost space which
are incomparable with the solutions found. A new
solution point from an incomparable part of the cost
space is then further improved until a Pareto point is
found, subject to time constraints. We describe two
such methods which differ in how much control the
solver has in directing the search toward incomparable
points in the cost space.

2) Distance reduction. Variants of the algorithm of
[LGCM10] which can produce an ε-approximation of
the Pareto front. The algorithm maintains the distance
between over and under-approximations of the Pareto
front and guides the search as to minimize this dis-
tance. We consider variants of this algorithm which
bias the search towards finding satisfiable points, since
queries which minimize the distance tend to be hard
and having satisfiable points is preferable to identi-
fying unsatisfiable portions of the cost space in the
intended application.

We have implemented these strategies, using the SMT
solver Z3 [dMB08] as a time bounded oracle, and tested
them against two classes of examples, synthetic task-data
graphs generated by the TGFF tool [DRW98] and two
realistic task graph derived from an implementation of the
TMNR procedure for video temporal mosquito noise filter-
ing [FLR00] and image demosaic color filtering application.
As an execution platform we have chosen a data flow dis-
tributed memory architecture xSTream [BCA+09], provided
by STMicroelectronics. Processors in this architecture are
connected through an on-chip communication network, with
a Spidergon topology [CLM+04] with a diameter d = N/4,
N being the number of processors.

From a computational perspective our results show that

there is a significant tradeoff between precision and com-
putation time: individual queries near the optimal curve are
hard and so it pays off to use time-bounded strategies which
distribute more evenly the amount of work over the Pareto
front.

The rest of the paper is organized as follows. In Section
II we define task-data graphs, execution platforms and the
mapping problem and then recall some terminology related
to multicriteria optimization. Section III introduces multi-
criteria optimization using oracles and describes the three
search space strategies that we implemented. Section IV
is devoted to the description of the experimental setting,
the implementation of the algorithms and the results, while
Section V concludes.

II. PRELIMINARIES

A. Task-Data Graphs and their Mapping

The mapping problem we model is a simplified form of
the problem of parallelizing code, suitable for coarse-grained
execution models. Our starting point is an application written
in a dataflow style, consisting of components such as blocks
and filters with well-defined precedence constraints where,
in principle, any two tasks that do not precede each other
can be executed in parallel. Hence it is natural to express an
application as a task-data graph, in a manner similar to other
formalisms such as synchronous data flow graphs [LM87]
or streaming languages [TKA02], [BFH+04].

Definition II.1 (Task-Data Graphs). A task-data graph is a
tuple G = (P, d, v) where P is a finite set of tasks, d : P →
N indicates the amount of work associated with each task
and v : P × P → N ∪ {⊥} indicates the amount of data
communicated between each pair of tasks.

The amount of work d(p) in a task p can be expressed in
number of instructions or derived from application profiling.
The work divided by processor speed gives the duration of
the task. For convenience, we assume here a fixed speed
of 1 for each processor so that d(p) can be equated with
task duration.1 During each invocation, task p sends v(p, p′)
data to any other task p′ that it precedes. For the moment we
do not make a distinction between sending all the data upon
termination and sending data progressively during execution.
We make here a distinction between v(p, p′) = 0, where
p is a direct predecessor of p′ but the amount of data
is negligible, and v(p, p′) = ⊥ where p is not a direct
predecessor of p′.

We assume that the graph is acyclic, i.e. that there is
no precedence or data communication path from any task
to itself. The streaming aspect of the application is best
modeled not as loops in the task-graph but rather as an
input generator which provides instances of the task graph

1In [LM10] we handle scheduling problems on a configurable architec-
ture with processors of varying speeds.



following some timing constraint. In [LM10] we have shown
that such a periodic problem can be reduced to an acyclic
task graph by unfolding a finite number of instances.

Definition II.2 (Execution Platform). An execution platform
is a tuple E = (M,N, b, ρ) where M is a finite number of
processors, N ⊆M ×M is a set of (physical) communica-
tion channels all with the same bandwidth b (bits/second),
and ρ is a routing function ρ : M × M → N∗ which
assigns to every pair (m,m′) of processors an acyclic path
(m,m1), (m1,m2), . . . (mk,m

′) in the network. Clearly
ρ(m,m) = ε.

By abuse of notation we also refer to the path as a set
of channels and say that (m1,m2) ∈ ρ(m,m′) if (m1,m2)
appears in the path.

Definition II.3 (Mapping). Given a graph G and an ar-
chitecture E, a mapping is a function µ : P → M with
µ(p) = m meaning the task p executes on processor m.

A mapping induces a workload on each processor, that
is, the sum of execution times of the tasks that run on
it. Likewise it induces a workload on the communication
channels, the amount of data sent at each invocation of G
over channel (m,m′) is the sum of v(p, p′) over all pairs
of tasks such that (m,m′) is part of the path between µ(p)
and µ(p′). Let us define these workloads. For processors we
have:

W (m) =
∑

p:µ(p)=m

d(p).

If the workload is perfectly balanced between processors, all
processors have the same workload:

W ? =
∑
p∈P

d(p)/|M |.

For channels we first define the pairs of tasks that use a
channel:

U(m,m′) = {(p, p′) : (m,m′) ∈ ρ(µ(p), µ(p′))}

and then let

W (m,m′) =
∑

(p,p′)∈U(m,m′)

v(p, p′).

Given a mapping µ, we define the two cost functions to
optimize: workload distribution balance and communication
cost.

Definition II.4 (Workload Distribution Balance). This func-
tion measures the difference in the application workload
distribution over the processors, compared to a perfectly
balanced distribution:

∆ =
∑
m∈M

|W (m)−W ?|

Definition II.5 (Communication Cost). The communication
cost induced by the task distribution over processors is

evaluated as the sum of volume of communicating tasks
mapped on different processors, multiplied by the length of
the path between these two processors:

C =
∑

(p,p′):µ(p)6=µ(p)

v(p, p′)× |ρ(µ(p), µ(p′))|

Remark The model we present is not intended for precise
scheduling; rather we expect workload distribution to give
a reasonable estimation of execution time for the targeted
systems. In particular, the systems are data-driven and
we assume different instantiations of a task graph can be
pipelined, resulting in an overall schedule with little idle
time for any processor. In such an environment, optimal
workload distribution should closely approximate optimal
throughput. Also, the model we present here does not take
into account the identity of data items. As a result, there is
some potential imprecision in the communication cost for
multi-hop architectures: suppose p sends the same data to
p′ and p′′, and suppose that they are mapped to processors
m, m′ and m′′, respectively. If the path from m to m′′ goes
through m′ then we may count the load of (m,m′) twice.

B. Multi-Criteria Optimization

Constrained optimization problems are often specified in
the form

min c(x) s.t. φ(x)

where x is a vector of decision variables, φ is a set of
constraints on the variables that define which solution is
considered feasible and c is a cost function defined over the
decision variables. We prefer to reformulate the problem by
moving costs to the constraint side, that is, letting φ(x, c)
denote the fact that x is a feasible solution whose cost is c.
Hence the optimum is

min{c : ∃x φ(x, c)}

In the case of multi-criteria optimization (MCO), c is a d-
dimensional vector (c1, . . . cd) which ranges over a bounded
cost space C. The set C is a lattice with a partial-order
relation � defined as follows:

s � s′ ≡ ∀i si ≤ s′i (1)

Pairs of points such that s 6� s′ and s′ 6� s are said to be
incomparable, denoted by s||s′. The strict version of � is

s ≺ s′ ≡ s ≤ s′ ∧ ∃j sj < s′j (2)

meaning that s strictly improves upon s′ in at least one
dimension without being worse on the others. In this case
we say that s dominates s′.

A point s in a subset S ⊆ C is minimal with respect to
S if it is not dominated by any other point in S, and is
maximal if it does not dominate any point in S. We denote
the sets of minimal and maximal elements of S by S and S,
respectively. We say that a set S of points is domination-free
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Figure 1. A point s in a two-dimensional cost space and its backward
and forward cones.

if all pairs of elements s, s′ ∈ S are incomparable, which
is true by definition for S and S. The domination relation
associates with a point s two rectangular cones B+(s) and
B−(s) consisting of points dominated by (resp. dominating)
s:

B−(s) = {s′ ∈ C, s′ ≺ s} and B+(s) = {s′ ∈ C, s ≺ s′}.

These notions are illustrated in Figure 1.

III. CONSTRAINED MCO WITH ORACLES

MCO problems are often solved in generic metaheuristic
frameworks such as genetic algorithms [Deb01], [ZT99]. By
contrast, we take the approach of issuing existential queries
to a time-bounded oracle. This approach is convenient for
problems which are naturally formulated in terms of con-
straints, as is the case with the execution model described
in Section II-A.

In the single criterium case, it is straightforward to define
a sequence of existential queries of the form ∃x.φ(x) ∧
c(x) ≤ a to arrive at an optimal solution: a binary search
over the range of c will converge to the minimum cost,
with unsatisfiable queries bounding c from below while
satisfiable queries bound c from above. But in the multi-
criteria case, the problem is more complicated. First, every
satisfiable query bounds a forward cone in the cost space
while every unsatisfiable query bounds a backward cone.
Second, the query sequence must give balanced coverage
to the underlying curve of tradeoffs, even if some objective
functions are harder to minimize than others. As a result,
there are more choices for guiding the solver, both in terms
of search directions and in terms of query time allocation.

Below, we describe the space search strategies. Each
of these strategies may be parameterized by a per-query
time limit on the underlying oracle. Since our goal is to
find good sets of satisfiable points as quickly as possible,
rather than to arrive at a measurable approximation as in
[LGCM10], each search strategy treats a query which times
out in exactly the same way as the case where the oracle
indicated that the query was unsatisfiable. Thus the oracle
is guaranteed to underapproximate the feasible cost space.

Generally, the underapproximation becomes more precise as
the time bound increases.

In the following we describe search strategies which
explore regions of feasible cost space, or which explore
regions of approximate feasible cost in the case where the
oracle is time-bounded. The cost space is bounded from
above by (w∗, c∗h∗) where w∗ (resp. c∗) is the total work
(resp. communication) associated with a task graph and
h∗ = maxm,m′ |ρ(m,m′)| is the longest path between any
two processors. We also assume the oracle gives a satisfying
assignment if it answers yes to a query.

A. Under-Approximation with Refinement

The first class of search strategies we consider is based
on iteratively refining an underapproximation of the forward
cone of the Pareto optimal points. Let P denote a mutually
non-dominating set of feasible points. The strategies look for
a refinement of B+(P ) in the form of a set P ′ of mutually
non-dominating points with B+(P ′) ⊃ B+(P ). Such a
refinement is accomplished with a sequence of queries to
the oracle of the form

∃x.φ(x) ∧ c(x) ≺ r

For the moment, let us assume the sequence begins with a
feasible point r. The query ∃x.φ(x)∧c(x) ≺ r either gives a
satisfying point r′ ≺ r or indicates the query is unsatisfiable.
If the query is unsatisfiable, r is Pareto optimal and the
sequence stops. Otherwise, the sequence continues with the
query ∃x.φ(x) ∧ c(x) ≺ r′. A maximal such sequence
(r1, r2, . . . , rk) gives a Pareto optimal point rk.

The variants we consider differ only in how an initial point
r1 is chosen for each query sequence. For all the variants,
the initial point of the initial sequence is determined by
the oracle and simply falls at some unknown point in the
cost space. Subsequent initial points of query sequences are
chosen from the set of points incomparable to all points in
P . As illustrated in Figure 2, this set of points is a union of
rectangles, and we denote it I(P ).

1) A union strategy in which the queries ask the oracle
for a feasible point in I(P ) as a disjunction over all the
constraints defining rectangles in I(P ). This is a very
indirect guidance, it just adds constraints that reduce
the set of feasible solutions of the problem, but the
effect is very solver-dependent.

2) A maximum rectangle strategy in which the queries
ask the oracle for a feasible point in a largest rectangle
in I(P ). If a largest rectangle is infeasible, subsequent
queries will ask for a next-largest until either a feasible
point is found or the set P is the Pareto front of the
feasible cost space. Here, it is possible to guide the
oracle so that it queries parts of the search space about
which little is known.
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Figure 2. A series of runs from an under-approximation refinement
strategy. (a) The first query sequence (p1, p2, p3) gives the first pareto
points p3; (b) Subsequent query sequences (q1, q2) and (r1, r2) give other
Pareto points q2 and r2. The set of points incomparable to any Pareto point
in P = {p3, q2, r2}, denoted I(P ), is the non-shaded region and takes
the form of a union of rectangles. In both figures, the whole box represents
the cost space C.

B. Distance Reduction

The basic idea of these search strategies, based
on [LGCM10], is to maintain both over- and under-
approximations of the dominated set of feasible points and to
guide the search by reducing the difference between the two
sets. As above, an under-approximation P is maintained in
the form of a set of mutually non-dominating feasible points
in the cost space. An over-approximation P̄ = C \ B−(U)
subtracts an infeasible region from the cost space. Like
B+(P ), B−(U) is represented in the form of a set of
mutually non-dominating points. However, every u ∈ U has
the property that ∀u′ � u, φ(x)∧ c(x) = u′ is unsatisfiable.

These strategies pose queries of the form ∃x.φ(x)∧c(x) �
s where

s ∈ C \ (B+(P ) ∪B−(U))

After each query, either U or P is updated: A satisfiable
result giving a witness w replaces P with the mutually non-
dominating subset of P ∪ {w} and likewise an unsatisfiable
result replaces U with the mutually non-dominating subset
of U ∪{s}. All the strategies are based on identifying u∗ ∈
B−(U), the point of U which is the furthest away from P .
The distance between u∗ to P is defined as the distance of
u∗ from its closest point p∗ ∈ P , and the distance between
p ∈ P and u ∈ U is defined as

max
i

(ui
.− pi).

The strategies we consider here differ in how they use u∗

whose distance from P is d to choose s. Let d denote the
vector (d, . . . , d). We consider three strategies:

1) Binary search : query with s = u∗ + 1
2d

2) Bias towards feasible : query with s = u∗ + 3
4d

3) Randomly : ask u∗ + rd where r is randomly chosen
in (0, 1)

These notions are illustrated in Figure 3.

B+(P )

B−(U)

p2

p3

p4

u1

u2

u∗

p1

u∗ + (d, d)

s

u3

d

Figure 3. A figure representing over-under approximation based strategies.
The whole rectangle represents the feasible cost space C. The shaded
region labelled B+(P ) is the forward closure of P = {p1, p2, p3, p4}
while the shaded region labelled B−(U) is the backward closure of
U = {u1, u2, u3}. The underapproximation of the forward closure of the
feasible cost space is B+(P ) while the overapproximation is C \B−(U).
Query points are chosen on the line segment between u∗ and u∗ + (d, d),
in order to reduce the distance of u∗ (from which a Pareto point can
be arbitrarily close) to P . Here, distance is measured as the maximal
deterioration between u∗ and p∗: if u∗ = (wu, cu) and p∗ = (wp, cp),
then the distance is d = max(wp − wu, cp − cu).

IV. IMPLEMENTATION AND EXPERIMENTS

Our experimental problems consisted of a range of ran-
domly generated task graphs and two industrial problems.
The task graphs were generated with TGFF [DRW98]. The
industrial problems are image and video processing appli-
cations: one noise reduction filter named TMNR [FLR00]
and one demosaic color filter. Note that the major goal of
this study is to explore the computational capabilities of the
various search strategies, not to solve a specific concrete
problem – this would require a more refined modeling of
the application and the architecture.

TMNR is part of the image quality improvement process
performed after video decoding, it reduces video temporal
mosquito noise which appears as fluctuations of luminance
and/or chrominance around sharp edges of moving objects.
Given the current and previous frames, the algorithm assigns
a motion value to each pixel based on neighboring pixels,
and then combines the current frame, and the previous
filtered frame to reduce the temporal mosquito noise. We
build a task-data graph of 14 tasks, see figure4 based on the
functional decomposition of a hardware implementation of
the algorithm. The computation and communication weights
are computed according to the basic computation unit of the
algorithm, which is a sliding window of 10 × 10 pixels.
We assume that by mapping this task-data graph for the
basic block unit, the rest of the image will be processed in
a pipelined manner.

Demosaicing is an image processing application for color
filtering in the RGB color model, in which each pixel
has 3 color samples red, green and blue. Since standard
camera sensors can only detect one color value per pixel, an
interpolation of the other values is needed to reconstruct the
full color image. The task-data graph of the application, also
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Figure 4. TMNR task graph, computation workloads are in cycles, and
communication volumes in bytes.

used as benchmark in [BNB+09], has 12 tasks. The duration
of tasks are extracted from profiling results by applying the
application to 128×128 pixels image.

We experimented with the mapping of these applica-
tions on simplified models of the Spidergon architecture
[CLM+04] with four or eight processors, using the five
strategies described in Section III. We ran each of the five
strategies with global timeouts of 10, 30, 60, and 180 sec-
onds. For each combination of global timeouts and strategy,
we varied the per-query time bound as indicated in the
following table.

global timeout (sec.) per-query timeout (sec.)
10 1, 10
30 5, 10, 30
60 5, 10, 60
180 5, 10, 180

To evaluate the quality of the different methods we make
use of a relative volume/area measurement [ZKT08]. For a
particular problem instance, consisting of a task graph and
an architecture, we take the union of the feasible costs found
by any of the methods as a point of reference. Let us call this
set R∗. The feasible cost space is trimmed to the smallest
rectangle containing every point in R∗ and the origin. We
measure the area of forward closure of R∗ in the trimmed
cost space. Let us call this value a∗. For a given search
strategy and timeout, consider the area of the forward closure
of the feasible points found by this method and restricted
to the trimmed cost space. Let us call this value a. The
score of the method giving rise to a is a

a∗ , which naturally

tasks time t/query maxrect union bin sat rand
10 30 5 0.81 0.75 0.85 0.84 0.85
10 180 5 0.95 0.90 0.99 1.00 0.99
15 60 10 0.74 0.67 0.79 0.82 0.78
15 60 60 0.53 0.54 0.40 0.53 0.37
30 30 5 0.40 0.72 0.77 0.75 0.70
30 180 5 0.68 0.78 0.93 0.88 0.92
30 180 10 0.40 0.80 0.91 0.92 0.88
35 30 5 0.60 0.66 0.72 0.77 0.64
35 60 5 0.57 0.76 0.86 0.76 0.76
35 60 10 0.59 0.62 0.69 0.76 0.66
35 180 5 0.79 0.69 0.90 0.86 0.93
35 180 10 0.64 0.75 0.91 0.85 0.81
45 30 5 0.52 0.69 0.66 0.71 0.70
45 30 10 0.45 0.62 0.60 0.73 0.66
45 60 10 0.46 0.72 0.71 0.71 0.72
45 180 10 0.50 0.83 0.82 0.88 0.82

Table I
THE AREA PERCENTAGE FOR VARIOUS SYNTHETIC GRAPHS AND

TIMEOUT CONFIGURATIONS ON SPIDERGON 8.

tells us what portion the method contributed to the point of
reference.

On small instances of graphs computational resources may
be sufficient to obtain the real Pareto front in less than
180s. In that case the indicator used reflects the ability of
each strategy to approach the optimum in a limited amount
of time. As the size of the graph and architecture grow,
unsatisfiability results become harder to prove, exceeding
per-query time bounds. In these cases, the reference R∗ may
or may not coincide with the complete Pareto front and the
indicator serves the comparison between strategies more than
the global quality assessment.

For an oracle, we used Z3 [dMB08]. Our encoding of
the communication cost and processor imbalance is exactly
as described in Section II-A. The decision variables are
mappings, and we use a Boolean variable for each task-
processor combination to indicate when the task is mapped
to the processor. The applications make use of the C API
of Z3 and stores the logical context when possible between
queries.

Tables I and II show the results per query. The under-
approximation refinement strategies are labelled maxrect
and union respectively. The distance reduction strategies are
labelled bin, sat, and rand, representing respectively: binary
search, search with satisfiable bias, and random search along
the line segment as described in Figure 3. Amongst the five
strategies, it appears the distance reduction strategy with
a satisfiable bias (sat) performed the best. However, the
presence or absence of a per-query time bound has a much
stronger effect than the choice of strategy. The comparison
between the 5 and 10 second time bounds is somewhat
mixed, indicating a good choice for query timeout may be
difficult to estimate in advance.

Although we do not present the data here, the methods



application time time/query maxrect union bin sat rand
TMNR 30 5 0.80 0.75 0.83 0.86 0.84
TMNR 30 10 0.81 0.46 0.71 0.77 0.60
TMNR 60 5 0.87 0.78 0.83 0.91 0.88
TMNR 60 10 0.87 0.64 0.85 0.88 0.88
TMNR 180 10 0.95 0.92 0.95 0.96 0.94
Demosaic 30 5 0.76 0.66 0.29 0.79 0.52
Demosaic 30 10 0.62 0.45 0.29 0.51 0.52
Demosaic 60 5 0.79 0.79 0.74 0.77 0.77
Demosaic 60 10 0.82 0.69 0.72 0.76 0.64
Demosaic 180 10 0.86 0.83 0.73 0.76 0.84

Table II
THE AREA PERCENTAGE FOR TMNR AND DEMOSAIC APPLICATIONS AND DIFFERENT TIMEOUT CONFIGURATIONS ON SPIDERGON 8.
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Figure 5. area percentage against time for TMNR on spidergon 8 with
global timeout 900 and per query timeout 30

performed much better on the Spidergon-4 than Spidergon-
8. For example, in the 4 processor case, both industrial
applications converged to the optimum within 180 seconds
across all the strategies.

Figures 5,6 and 7,8 illustrate the evolution of the area per-
centage over execution time for both TMNR and Demosaic
applications. The rate of improvement is quite high at the
beginning and the different strategies converge rapidly to a
reasonable approximation of the point of reference. However
the rate then becomes much lower suggesting that this point
is a good trade-off between precision and computation time
on these problems. The maxrect strategy performs well in
this setting. This is probably explained by the good locality
between consecutive calls: the strategy only jumps from one
part of the space to another when it can no more improve
the current solution. This increases the benefit of saving the
Z3 logical context between different queries. We conjecture
that this contributes to the performance of the method.
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Figure 6. area percentage against time for TMNR on spidergon 8 with
global timeout 900 and per query timeout 90.
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Figure 7. area percentage against time for Demosaic on spidergon 8 with
global timeout 900 and per query timeout 30
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Figure 8. area percentage against time for Demosaic on spidergon 8 with
global timeout 900 and per query timeout 900.

V. CONCLUSION AND FUTURE WORK

We have conducted systematic experiments on the appli-
cability of a modern constraint solver in finding approximate
solutions for MCO problems arising from the deployment
of data-intensive programs on multi-processor architectures.
We have developed several methods for guiding the solver
in choosing queries in the cost space. Due to the hardness
of the constraint satisfaction problems and the fact that a
solver may spend an enormous amount of time in trying to
answer a query with a cost close to the optimum, we had
to parameterize our search algorithms with a time budget
per query so as to avoid getting stuck in dead ends. As
it turns out, the significance of this parameter was larger
than the choice of a particular search strategy. Unfortunately,
it can be difficult to determine in advance a good value
for the parameter and so perhaps applying the parameter
dynamically in a slowly increasing fashion could be useful.

For the future we consider the following extensions of
this work.

1) We intend to move to higher dimensions by consid-
ering additional cost criteria such as load balancing
over the communication channels. Since the xSTream
architecture is configurable and processors can operate
in differing speeds or be shut down, we can also add
the cost of the configuration (in terms of static power
consumption) as an additional dimension in the spirit
of the model introduced in [LM10];

2) Since the cost criteria chosen were approximative,
ignoring possible congestions due to the precedence
structure of the tasks, it will be interesting to compare
the behavior of different mapping strategies using
simulation on a model of the architecture. We are
also working on applying the same methodology to

the more difficult problem of scheduling, where a
solution specifies not only where a computation or
a communication takes place but also when. Some
modeling problems related to the granularity of the
communication should be resolved to this end;

3) Encouraged by some promising preliminary results,
we are currently exploring new algorithms based on
stochastic local search [HS04];

4) We intend to apply this methodology to perform au-
tomatic data parallelization. Video and radio applica-
tions admit uniform operations over large data blocks
and the current practice of parallelizing their execution
is by manual insertion of split/join operations. Since
each choice of split/join boundaries induces a derived
task-data graph, the existence of splitting strategies
that admits a mapping of a given cost can be easily
formulated as a query to the solver and benefit from
the search strategies developed in this paper. Progress
in this direction is a pre-condition for the develop-
ment of high-level software engineering practices for
parallel computing.
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