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Abstract

Various powerful people detection methods exist. Sur-

prisingly, most approaches rely on static image features

only despite the obvious potential of motion information for

people detection. This paper systematically evaluates dif-

ferent features and classifiers in a sliding-window frame-

work. First, our experiments indicate that incorporating

motion information improves detection performance signif-

icantly. Second, the combination of multiple and comple-

mentary feature types can also help improve performance.

And third, the choice of the classifier-feature combination

and several implementation details are crucial to reach best

performance. In contrast to many recent papers experi-

mental results are reported for four different datasets rather

than using a single one. Three of them are taken from the lit-

erature allowing for direct comparison. The fourth dataset

is newly recorded using an onboard camera driving through

urban environment. Consequently this dataset is more re-

alistic and more challenging than any currently available

dataset.

1. Introduction

Detecting pedestrians using an onboard camera is a

challenging problem but an important component e.g. for

robotics and automotive safety applications. While psy-

chologists and neuroscientists argue that motion is an im-

portant cue for human perception [17] only few computer

vision object detectors (e.g. [30, 6]) exploit this fact. In-

terestingly, [30] showed improved detection performance

but for static cameras only. It is unclear how to transfer

their results to onboard sequences. In contrast, [6] proposed

motion features that are – at least in principle – applica-

ble to onboard sequences. While [6] showed improved per-

formance using the FPPW evaluation criterion (False Posi-

tives per Window) they were unable to outperform their own

static HOG feature [5] in a complete detector setting [4].

The second avenue we follow in this paper is to incor-

porate multiple and complementary features for detection.

Figure 1: Detections obtained with our detector in an urban environment

While [29] convincingly showed that multiple features im-

prove performance for image classification, for detection

only few approaches exploit this fact [34, 16, 32].

The third avenue of this paper is related to the classifier

choice. Popular classifiers are SVMs [26, 5, 13, 20, 19]

or boosting [31, 7, 33, 23]. However, the large intra-class

variability of pedestrians seems to require a more careful

design of the classifier framework. Several authors have

argued that e.g. viewpoint variation requires a different

classifier design. Wu&Nevatia [33] remedy this issue by

learning a tree structured classifier, Lin&Davis [19] use a

handcrafted hierarchy, while Seemann et al. [25] propose

multi-articulation learning. Gavrila [15] proposes a tree-

structured Bayesian approach that builds on offline clus-

tering of pedestrian shapes. What is common to these ap-

proaches is that they treat the problem of data partitioning

and classifier learning separately. In this paper however we

address this problem in a more principled way by using the

MPLBoost classifier [2] that simultaneously learns the data

partitions and a strong classifier for each partition.

The main focus of this work is to advance the state-of-

the-art in pedestrian detection for realistic and challenging

onboard datasets. For this we experimentally evaluate com-

binations of features and classifiers and address the problem

of learning a multi-viewpoint pedestrian detector.

Our contribution is threefold. Firstly, we show that mo-
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tion cues provide a valuable feature, also for detection from

a moving platform. Secondly, we show that MPLBoost

and histogram intersection kernel SVMs can successfully

learn a multi-viewpoint pedestrian detector and often out-

perform linear SVMs. Thirdly, a new realistic and pub-

licly available onboard dataset (TUD-Brussels) containing

multi-viewpoint data is introduced. It is accompanied by

one of the first training datasets (TUD-MotionPairs) con-

taining image pairs which allow to extract and train from

motion features. These two datasets will enable compari-

son of different approaches based on motion. Besides these

contributions we discuss several important algorithmic de-

tails that prove important and that are often neglected and

overlooked.

The paper is structured as follows. Sec. 2 reviews re-

lated work. Sec. 3 introduces features and classifiers and

Sec. 4 discusses several important technical details. Sec. 5

introduces datasets while Sec. 6 discusses the experimental

results and Sec. 7 concludes.

2. Related Work

Within the last years a number of systems and detec-

tors have been presented to tackle the problem of detecting

pedestrians from a moving platform such as a driving car

or a robot. This reflects the growing interest in applications

such as automotive safety and robotics scenarios.

Early work in pedestrian detection started with Papa-

georgiou&Poggio [22] who employ Haar features in com-

bination with a polynomial SVM in order to detect pedes-

trians. Sashua et al. [26] use parts and employ histograms

of gradients as features. Similarly, Dalal&Triggs [5] train

SVMs on histograms of oriented gradients features (HOG)

and achieve good performance. An extension by Felzen-

szwalb et al. [13] adds a flexible part model where the po-

sition of the parts is considered as latent variable for the

SVM learning algorithm. Similarly, Dollár et al. [7] present

an approach that automatically learns flexible parts from

training data and uses a boosting framework with wavelet

features. Also Tuzel et al. [28] employ LogitBoost on Rie-

mannian manifolds to classify windows based on covari-

ance features. Sabzmeydani&Mori [23] learn low level fea-

tures on gradient responses and use AdaBoost to combine

them. Maji et al. [20] approximate the evaluation of his-

togram intersection kernels and use a kernel SVM in con-

junction with a hierarchy of gradient histograms as features.

Tran&Forsyth [27] learn a model of human body configu-

rations and use local histograms of gradients and local PCA

of gradients as features. In [33] Wu&Nevatia propose a sys-

tem to automatically construct tree hierarchies for the prob-

lem of multi-view pedestrian detection. They use a boosting

framework in combination with edgelet features.

Most detectors in this domain as well as ours employ

the sliding-window scheme, but notable exceptions ex-

ist [21, 24, 1]. These methods are based on keypoint de-

tectors and a probabilistic voting scheme to accumulate ev-

idence. Andriluka et al. [1] additionally model the human

walking cycle and infer a consistent movement within the

temporal neighborhood.

With the availability of acceptably performing detectors

some approaches use them as component in systems and

add further reasoning such as tracking and 3D scene ge-

ometry in order to improve the initial detections. While

Ess et al. [11] extract the ground plane from a depth

map and fuse it with detections in a graphical model,

Ess et al. [12] add further 3D scene information by integra-

tion with Structure-from-Motion. Gavrilla&Munder [16]

propose a pipeline of Chamfer matching and several image

based verification steps for a stereo camera setup. While

they optimize overall system performance we focus on the

detector part and improve it by the combination of multiple

features.

Even though the combination of multiple features should

allow for increased detection performance only few ap-

proaches leverage from the complementarity of different

object representations. Wu&Nevatia [34] automatically

learn the efficiency-discriminance tradeoff in a boosting

cascade for HOG, edgelet and covariance features but with

a focus on runtime. In particular human motion information

can be a rich source as shown by Viola et al. [30]. Their mo-

tion features proved to be the most discriminative features.

However, their work is restricted to a static camera setting,

while we would like to detect people from a moving plat-

form. Dalal et al. [6] enrich their static feature descriptor [5]

with internal motion histograms to improve detection. Their

database consists of movies and is not publicly available.

Movies contain rather little ego-motion, in particular little

translation along the optical axis of the camera. Thus, it is

unclear whether their results also apply to sequences taken

from a car e.g. traveling at the typical inner-city speed of 50

km/h (30 mph). Moreover, their detectors’ performance is

only shown to improve in terms of FPPW but not in a full

image detector setting [4]. We will show that the choice of

the non-maximum suppression strategy is crucial to obtain

best performance. A further difference to their approach is

the choice of optical flow; while they use an unregularized

flow method, we found globally regularized flows [35] to

work better. Additionally, we show that the combination

with additional features (such as Haar wavelets [22]) can

allow for further improvements. Enzweiler et al. [10] use

motion information in a ROI generation step for an onboard

system, while we investigate the use of motion features for

the detector.

Several authors have evaluated features and their com-

binations with different classifiers. However, all of them

are limited to static images only and do not include motion

based features. For people detection Wojek&Schiele [32]
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Figure 2: Impact of flow algorithm and detection window size

evaluated different static image features in combination

with AdaBoost and SVMs as classifiers. Dollár et al. [8]

report results for various recent approaches on a new chal-

lenging onboard dataset with improved evaluation metrics.

Enzweiler&Gavrila [9] evaluate different detectors in com-

bination with an onboard system with focus on performance

and runtime.

3. Features and Classifiers

In the following subsections we will discuss the features

(Sec. 3.1) and classifiers (Sec. 3.2) which we deploy in a

sliding window framework.

3.1. Features

A wide range of features has been proposed for pedes-

trian detection. Here, we focus on three successful fea-

tures containing complementary information (see [32] for

a wider range of features). While HOG features encode

high frequency gradient information, Haar wavelets encode

lower frequency changes in the color channels. Oriented

Histograms of Flow features exploit optical flow and thus a

complementary cue.

HOG Histograms of oriented gradients have originally

been proposed by Dalal&Triggs [5]. The bounding box is

divided into 8 × 8 pixel cells containing histograms of ori-

ented gradients. 2 × 2 cells constitute a block which is the

neighborhood to perform normalization. For people detec-

tion L2-norm with an additional hysteresis performs best.

Haar Haar wavelets have been introduced by Papageor-

giou&Poggio [22] for people detection. Those provide an

overcomplete representation using features at the scale of

32 and 16 pixels. Similarly to HOG blocks, wavelets over-

lap by 75%. As proposed we use the absolute responses of

horizontal, vertical and diagonal wavelet types.

Oriented Histograms of Flow The motion feature we

use throughout this paper is the Internal Motion His-

togram wavelet difference (IMHwd) descriptor described

by Dalal et al. in [4, 6]. The descriptor combines 9 bins

per histogram on 8×8 pixel cells, with interpolation only

for histogram bins. It is computed by applying wavelet-

like operators on a 3×3 cell grid, letting pixel-wise dif-

ferences of flow vectors vote into histogram bins. We use

IMHwd due to its consistently better performance in pre-

vious experiments compared to other proposed descriptors.

The flow field is computed using the TV-L1 algorithm by

Zach et al. [35], which provides regularization while allow-

ing for discontinuities in the flow field. Contrary to [4], we

compute the optical flow for the training samples on full

images instead of crops, which is particularly important for

the regularized TV-L1 flow. We also conducted experiments

with the unregularized flow algorithm described in [4], but

it resulted in a slight loss of performance compared to the

algorithm by Zach et al. [35] (cf. Fig. 2(a)). For further dis-

cussion see Sec. 6.

Feature combination In the experiments reported be-

low we analyze various combinations of the above features.

To combine features we L2-normalize each cue-component

and concatenate all subvectors.

3.2. Classifiers

The second major component for sliding window based

detection systems is the employed classifier. Most popular

choices are linear SVMs and AdaBoost. As discussed be-

fore these are not perfectly suited because of the high intra-

class variability of humans e.g. caused by multiple view-

points and appearance differences. In this paper we there-

fore explore the applicability of MPLBoost that learns data

clusters and strong classifiers for these clusters simultane-

ously.

SVM Linear SVMs learn the hyperplane that opti-

mally separates pedestrians from background in a high-

dimensional feature space. Extensions to kernel SVMs are

possible, allowing to transfer the data to a higher and poten-

tially infinity dimensional representation as for RBF ker-

nels. For detection however, kernel SVMs are rarely used

due to higher computational load. One remarkable excep-

tion is Maji et al. [20] who approximate the histogram inter-

section kernel for faster execution. Their proposed approx-

imation is used in our experiments as well.

AdaBoost Contrary to SVMs, boosting algorithms [14]

optimize the classification error on the training samples it-

eratively. Each round a weak classifier is chosen in order

to optimally reduce the training error. The weighted sum

of all weak classifiers forms the final strong classifier. A

typical choice for weak learners, which are required to do

better than chance, are decision tree stumps operating on a

single dimension of the feature vector. In this work, we use

AdaBoost as formulated by Viola and Jones [31].

MPLBoost MPLBoost [2] (or MCBoost [18]) is a recently

proposed extension to AdaBoost. While AdaBoost fails to

learn a classifier where positive samples appear in multi-
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ple clusters arranged in a XOR-like layout, MPLBoost suc-

cessfully manages this learning problem. This is achieved

by simultaneously learning K strong classifiers, while the

response to an input pattern is given as the maximum re-

sponse of all K strong classifiers. Thus, a window is classi-

fied as positive if a single strong classifier yields a positive

score and negative only if all strong classifiers consider the

window as negative. Also the runtime is only linear in the

number of weak classifiers. During the learning phase po-

sitive samples which are misclassified by all strong classi-

fiers obtain a high weight, while positive samples which are

classified correctly by a single strong classifier are assigned

a low weight. This enables the learning algorithm to focus

on a subpart of misclassified data (up to the current round)

with a single strong classifier. Other strong classifiers are

not affected and therefore do not loose their discriminative

power on their specific clusters learned.

4. Learning and Testing

While features and classifiers are the key components

of the detectors several issues need to be taken care of for

both learning and testing. Those details are often crucial

to obtain best performance, even though they are seldom

discussed in literature. The following sections give some

detailed insights on our learning (Sec. 4.1) and testing pro-

cedure (Sec. 4.2).

4.1. Improved Learning Procedure

Our classifiers are trained in a two-step bootstrapping

process. In order to improve the statistics of hard exam-

ples for the domain where pedestrians actually appear, the

negative test set also contains frames from an onboard cam-

era recorded in an urban area. Those are scanned for hard

examples, but detections that are close to a pedestrian in

x-y-scale-space are considered true positive. The minimal

distance is chosen such that detections on body parts are

allowed as hard examples.

Figure 3: False positive detections with

high scores before the bootstrapping

stage. Detections close to pedestrians

are true positives and not shown here.

Often these types of

false positives are not

well represented in other

detectors’ training data.

Fig. 3 shows highest scor-

ing false positive detec-

tions in the bootstrapping

phase after removing the

full detections, showing

that body parts are indeed

hard examples for the ini-

tial detector.

Additionally, we found that merging the false positive

detections on the negative images by mean shift is beneficial

in several ways. First, the variability of false positive detec-

tions for the second round of training can be increased and

the space of negative samples is covered well, while keep-

ing the memory requirements reasonable. Second, false po-

sitive regions with a larger number of false detections are

not overcounted since they will only be contained once in

the training set and thus have the same weight as regions

on which the detectors only fires a few times. This is con-

sistent with the fact that for real-world systems the optimal

image-based performance is sought and all false detections

should be treated equally.

4.2. Testing

As it is desirable for real-world applications to detect

pedestrians as soon as possible we are aiming to detect

pedestrians as small as possible. Empirically we found

that given appropriate image quality upscaling the input

image allows for a better performance gain with respect

to small detections than shrinking the detection window

(cf. Fig. 2(b)). Therefore, we upscale the input image by a

factor of two which allows to detect pedestrians as small as

48 pixels with a 64× 128 pixel detection window (the win-

dow contains context in addition to the pedestrian). Sliding-

window based detection systems usually fire multiple times

on true pedestrians on nearby positions in scale and space.

These detections need to be merged in order to allow for

a per-image based evaluation such as false positive per im-

age (FPPI) or precision and recall (PR). Here, we adopt an

adapted bandwidth mean-shift based mode seeking strat-

egy [3] to determine the position in x-y-scale-space, but

determine the final detection’s score to be the maximum of

all scores within the mode. While others (e.g. [4]) have

used the kernel density to form the final score, we found the

maximum to provide more robust results. While most of the

time the performance is comparable, in some cases choos-

ing the kernel density leads to a significantly decreased

performance in particular for the motion-enhanced detec-

tor (cf. Fig. 5(l)). Another important issue is the estimation

of the kernel density – in a scale pyramid setting with a con-

stant pixel stride for every scale, detections on larger scales

are sparser. Thus, contrary to [4] when computing the ker-

nel density we omit the kernel volume’s scale adaption for

the normalization factor.

5. New Dataset

To the best of our knowledge the sequences of [11, 12]

are currently the only publicly available video sequences

for pedestrian detection recorded from a moving platform.

While those are realistic for robotics scenarios, they are less

realistic for automotive safety applications. This is mainly

due to the relatively small ego-motion and the camera’s field

of view which is focusing on the near range. In order to

show results for a more realistic and challenging automotive

safety scenario in urban environment, we captured a new

onboard dataset (TUD-Brussels) from a driving car. Note
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Figure 4: Positive sample crops and flow fields of TUD-MotionPairs.

that [8] simultaneously introduces a new onboard dataset

but evaluates static features only.

At the same time there is no dedicated training set con-

taining temporal image pairs which has sufficient variabil-

ity to train a discriminative detector based on motion fea-

tures. Thus, we additionally recorded a new training dataset

(TUD-MotionPairs) containing pairs of images to compute

optical flow. Both new datasets are made publicly avail-

able1.

Training sets Our new positive training set (TUD-

MotionPairs) consists of 1092 image pairs with 1776 anno-

tated pedestrians (resulting in 3552 positive samples with

mirroring), recorded from a hand-held camera at a resolu-

tion of 720 × 576 pixels. The images are recorded in busy

pedestrian zones. Some samples are shown in Fig. 4. Note

that contrary to [5] our data base is not restricted to upright

standing pedestrians but also contains pedestrians from side

views which are particularly relevant in applications due to

the possibility of crossing the camera’s own trajectory.

Our negative training set consists of 192 image pairs. 85

image pairs were recorded in an inner city district, using

the same camera as was used for the positive dataset at a

resolution of 720 × 576 pixels, while another 107 image

pairs were recorded from a moving car. For finding body

parts as hard samples as described in Sec. 4.1 we use an

additional set of 26 image pairs, recorded from a moving

vehicle containing 183 pedestrian annotations. We use this

training set for all experiments throughout this paper.

Test sets The new TUD-Brussels dataset is recorded from

a driving car in the inner city of Brussels. The set contains

508 image pairs (one pair per second and its successor of

the original video) at a resolution of 640× 480 with overall

1326 annotated pedestrians. The dataset is challenging due

to the fact that pedestrians appear from multiple viewpoints

and at very small scales. Additionally, many pedestrians

are partially occluded (mostly by cars) and the background

is cluttered (e.g. poles, parking cars and buildings and peo-

ple crowds) as typical for busy city districts. The use of

motion information is complicated not only by the fact that

the camera is moving, but also by the facts, that the speed

is varying and the car is turning. Some sample views are

1http://www.mis.informatik.tu-darmstadt.de

given in Fig. 1.

Additionally we evaluate our detectors on the publicly

available ETH-Person [11] dataset. In [11], Ess et al. pre-

sented three datasets of 640 × 480 pixel stereo images

recorded in a pedestrian zone from a moving stroller. The

camera is moving forward at a moderate speed with only

minor rotation. The sets contain 999, 450 and 354 consec-

utive frames of the left camera and 5193, 2359 and 1828

annotations respectively. As our detector detected many

pedestrians below the minimum annotation height in these

sets, we complemented the sets with annotations for the

smaller pedestrians. Thus, all pedestrians with a height of

at least 48 pixels are considered for our evaluation.

6. Results

Since we are interested in performance on a system level

we refrain from evaluation in terms of FPPW but present

plots in terms of recall and precision. This allows a better

assessment of the detector as the entire detector pipeline is

evaluated rather than the feature and classifier in isolation

(cf. [8]). As a common reference point we will report the

obtained recall at a precision of 90%. We also show plots

of false positives per image to compare with previous work

(i.e. [11]). We start the discussion of results with the static

image descriptors and then discuss the benefit of adding mo-

tion features.

Results for the static features are given in the first col-

umn of Fig. 5. In combination with the HOG feature

MPLBoost significantly outperforms AdaBoost on all tested

sequences. In detail the improvement in recall at 90%

precision is: 27.7% on ETH-01 (Fig. 5(a)), 24.4% on

ETH-02 (Fig. 5(d)), 41.1% on ETH-03 (Fig. 5(g)) and

20.3% on TUD-Brussels (Fig. 5(j)). Also it can be ob-

served that HOG features in combination with MPLBoost

do better than HOG features in combination with a lin-

ear SVM on all four datasets. The gain in detail in recall

at 90% precision is: 8.5% on ETH-01 (Fig. 5(a)), 4.9%

on ETH-02 (Fig. 5(d)), 22.6% on ETH-03 (Fig. 5(g)) and

2.0% on TUD-Brussels (Fig. 5(j)). Compared to a SVM

with histogram intersection kernel (HIKSVM) the results

are divergent. While HIKSVM outperforms MPLBoost by

1.4% on TUD-Brussels (Fig. 5(j)) and by 0.4% on ETH-01

(Fig. 5(a)), on ETH-02 and ETH-03 MPLBoost performs

better by 1.9%(Fig. 5(d)) and 12.9%(Fig. 5(g)) respectively.

Next we turn to the results with HOG and Haar fea-

tures in combination with different classifiers. On the

TUD-Brussels dataset (Fig. 5(j)) we observe an improve-

ment of 0.3% at 90% precision for MPLBoost, while on

equal error rate (EER) the improvement is 4.3%. For the

ETH databases we yield equal or slightly worse results com-

pared to the detectors with HOG features only (Fig. 5(a),

(d), (g)). Closer inspection revealed minor image quality

(cf. Fig. 7) with respect to colors and lighting on the ETH
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(c) Comparison to [11] (ETH-01)
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(d) Static image features (ETH-02)
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(e) Including motion features (ETH-02)
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(f) Comparison to [11] (ETH-02)
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(g) Static image features (ETH-03)
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(h) Including motion features (ETH-03)
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(i) Comparison to [11] (ETH-03)
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(j) Static image features (TUD-Brussels)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1-precision

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
c
a
ll

HOG, IMHwd and SVM
HOG, IMHwd, Haar and SVM
HOG, IMHwd and MPLBoost (K=3)
HOG, IMHwd, Haar and MPLBoost (K=4)
HOG, IMHwd and AdaBoost
HOG, IMHwd, Haar and AdaBoost
HOG, Haar and MPLBoost (K=4)
HOG, IMHwd and HIKSVM

(k) Including motion features (TUD-Brussels)
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(l) Comparison of NMS scoring modes

Figure 5: Results obtained with different combinations of features and classifiers. Rows (1)-(3) show results on ETH-Person [11], Row (4) details the

results on the new TUD-Brussels onboard dataset. Note that first and second column show details on static and motion features in combination with different

classifiers considering all detections larger than 48 pixels with recall and precision as metric. Column three compares our detector to the system of [11] (only

pedestrians larger than 70 pixel are regarded, evaluation in FPPI) and shows a comparison of different non-maximum suppression approaches (Fig. 5(l)).

databases to be problematic, impeding a performance im-

provement (cf. Fig. 5(a), (d), (g)). Haar wavelets computed

on color channels are not robust enough to these imaging

conditions. Note however, that MPLBoost outperforms lin-

ear SVM, HIKSVM and AdaBoost for this feature com-

bination showing its applicability for pedestrian detection.

HIKSVM consistently obtained worse results with Haar

features for static as well as for motion-enhanced detectors.

Hence, these plots are omitted for better readability.

We continue to analyze the performance when IMHwd

motion features in combination with HOG features are used

for detection. The resulting plots are depicted in the second

column of Fig. 5. For HIKSVM we observe a consistent im-

provement over the best static image detector. In detail the

improvement at a precision of 90% precision is: 3.7% on

ETH-01 (Fig. 5(b)), 16.9% on ETH-02 (Fig. 5(e)), 2.2% on

ETH-03 (Fig. 5(h)) and 14.0% on TUD-Brussels (Fig. 5(k)).

In contrast to [4] we can clearly show a significant perfor-
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Figure 6: Sample detections on the TUD-Brussels onboard dataset at equal

error rate for HOG, Haar, IMHwd and MPLBoost(K=4) (left column) and

HOG, Haar, IMHwd and SVM (right column). True positives are yellow,

false positives red.

mance gain using motion features. The difference in per-

formance however depends on the dataset and the distribu-

tion of viewpoints in the test sets. More specifically motion

is beneficial mostly for side views but also for 45-degrees

views whereas front-back views profit less from the added

motion features. This explains the lower performance gain

for ETH-01 (Fig. 5(b)) and ETH-03 (Fig. 5(h)) which are

dominated by front-back views. We also observe that linear

SVMs perform about as good as MPLBoost for this feature

combination, while HIKSVM does better than both except

for ETH-03. Sample detections for MPLBoost and linear

SVMs are shown in Fig. 6. Note that false detections dif-

fer between both classifiers. While MPLBoost tends to fire

on high frequency background structure, SVMs tend to fire

more often on pedestrian-like structures such as poles. We

explain the similar overall performance by the fact that mo-

tion features allow a good linear separability in particular

for side-views. This is consistent with our observation that

MPLBoost mainly uses appearance features for the clusters

firing on front-back views and more IMHwd features for

clusters which fire on side views. Additionally, MPLBoost

and SVMs again clearly outperform AdaBoost.

Combining IMHwd and HOG features additionally with

Haar features yields similar results as for the static case

with only little changes for MPLBoost. Interestingly linear

SVMs obtain a better precision on TUD-Brussels for this

combination, but loose performance on the ETH sequences

as discussed for the static detectors. More sophisticated fea-

ture combination schemes (e.g. [29]) may allow to improve

performance more consistently based on multiple features.

We have also analyzed the viewpoints different MPL-

Boost classifiers fire on. Fig. 8 depicts the two highest scor-

ing detections on TUD-Brussels of the detector using HOG,

IMHwd and Haar features for each of the four clusters.

Clearly, two clusters predominantly fire on side and 45-

degree side views while two clusters mostly detect pedes-

Figure 7: Sample detections at 0.5 FPPI (First column: System of [11],

Second column: Our motion-enhanced detector). Rows 1 and 2 corre-

spond to figures 5(f) and 5(i) respectively, however all detections (even

those smaller than 70 pixels) are shown. Note the false positive in the

lower right image is actually a reflection of a true pedestrian.

Figure 8: Sample detections for the different models learned by MPL-

Boost (K=4) using HOG, Haar, IMHwd. The models to the left respond

more strongly to side/45-degree views, the models to the right to front/back

views.

trians from front-back views.

Finally, we compare our detector to the system of

Ess et al. [11] (last column of Fig. 5). The original au-

thors kindly provided us with their system’s output in or-

der to allow for a fair comparison based on the modified

set of annotations. For each sequence we plot the best per-

formance of a static image feature detector and of the best

detector including motion features. We consistently outper-

form Ess et al. [11] on all three sequences without any re-

finement of detections by the estimation of a ground plane.

This refinement could obviously be added and would al-

low for further improvement. At 0.5 false positives per im-

age we improve recall compared to their system by: 18.6%

on ETH-01 (Fig. 5(c)), 32.2% on ETH-02 (Fig. 5(f)) and

37.3% on ETH-03 (Fig. 5(i)). To keep this comparison

fair, we only considered pedestrians larger than 70 pixels

similar to the original evaluation setting. Also note that

HIKSVM with motion features clearly outperforms MPL-

Boost, while both classifiers are almost on par when all

pedestrians as small as 48 pixels are considered. We also

outperform Zhang et al. [36] who report 64.3% recall at 1.5

FFPI even though their detector is trained on ETH-02 and

ETH-03 whereas our detector is trained on an independent

and more general multi-view training set. Sample detec-

tions of our detector as well as system results of [11] are

shown in Fig. 7. Note that our detector can detect very small

pedestrians and achieves better recall throughout all scales
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by exploiting motion information.

7. Conclusion

In this work we tackled the challenging task of detecting

pedestrians seen from multiple views from a moving car by

using multiple appearance features as well as motion fea-

tures. We show that HIKSVM and MPLBoost achieve su-

perior performance to linear SVM-based detectors for static

multi-viewpoint pedestrian detection. Moreover, both sig-

nificantly outperform AdaBoost on this task. When addi-

tional motion features are used, HIKSVMs perform best

while MPLBoost performs as good as linear SVMs but in

any case better than AdaBoost. In general however, MPL-

Boost seemed to be the most robust classifier with respect

to challenging lighting conditions while being computation-

ally less expensive than SVMs.

Additionally, our careful design of the learning and test-

ing procedures improves detection performance on a per-

image measure substantially when the IMHwd motion fea-

tures of Dalal et al. [6] are used which has been identified

as an open problem in [4]. This improvement is observed

for pedestrians at all scales but particularly for side views

which are of high importance for automotive safety appli-

cations, since those pedestrians tend to cross the car’s tra-

jectory. Additionally, we show (contrary to [6]) that regu-

larized flows [35], allow to improve detection performance.

Adding additional Haar wavelets as features allowed to im-

prove detection performance in some cases, but in general

we observe that the feature is quite sensitive to varying cam-

eras and lighting conditions.

For future work, we will further investigate ways of en-

coding motion information in an ego-motion invariant way.

Also we are planning to work on the issue of partial oc-

clusion, which is a prominent drawback of global object

descriptors. Moreover, temporal integration by means of

tracking over multiple frames will help to bridge missing

detections while a more complete scene analysis featuring

3D scene understanding will help to prune false positive de-

tections.
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