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Abstract

This paper presents a novel mixture-of-experts frame-

work for pedestrian classification with partial occlusion

handling. The framework involves a set of component-based

expert classifiers trained on features derived from intensity,

depth and motion. To handle partial occlusion, we compute

expert weights that are related to the degree of visibility of

the associated component. This degree of visibility is deter-

mined by examining occlusion boundaries, i.e. discontinu-

ities in depth and motion. Occlusion-dependent component

weights allow to focus the combined decision of the mixture-

of-experts classifier on the unoccluded body parts.

In experiments on extensive real-world data sets, with

both partially occluded and non-occluded pedestrians, we

obtain significant performance boosts over state-of-the-art

approaches by up to a factor of four in reduction of false

positives at constant detection rates. The dataset is made

public for benchmarking purposes.

1. Introduction

The ability to visually recognize pedestrians is key for a

number of application domains such as surveillance or in-

telligent vehicles. Still, it is a particularly difficult problem,

as pedestrians vary significantly in pose and appearance and

may appear at low resolution. In case of a moving camera

in a dynamic environment, ever-changing backgrounds and

partial occlusions pose additional problems.

Most of the previous efforts in pedestrian classification

assume full visibility of pedestrians in the scene. In a real

environment however, significant amounts of partial occlu-

sion occur as pedestrians move in the proximity of other

(static or moving) objects. Pedestrian classifiers designed

for non-occluded pedestrians do typically not respond well
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Figure 1. Framework overview. Multi-cue component-based ex-

pert classifiers are trained off-line on features derived from inten-

sity, depth and motion. On-line, multi-cue segmentation is applied

to determine occlusion-dependent component weights for expert

fusion. Data samples are shown in terms of intensity images, dense

depth maps and dense optical flow (left to right).

to partially occluded pedestrians. If some body parts of a

pedestrian are occluded, the classification results often do

not degrade gracefully.

Component-based approaches which represent a pedes-

trian as an ensemble of parts, cf. [6], can only alleviate

this problem to some extent without prior knowledge. The

key to successful detection of partially occluded pedestri-

ans is additional information about which body parts are

occluded. Classification can then rely on the unoccluded

pedestrian components to obtain a robust decision.

In this paper, we present a multi-cue component-based

mixture-of-experts framework for pedestrian classification

with partial occlusion handling. At the core of our frame-

work is a set of component-based expert classifiers trained

on intensity, depth and motion features. Occlusions of in-

dividual body parts manifest in local depth- and motion-

discontinuities. In the application phase, a segmentation al-

gorithm is applied to extract areas of coherent depth and

motion. Based on the segmentation result, we determine



occlusion-dependent weights for our component-based ex-

pert classifiers to focus the combined decision on the visible

parts of the pedestrian. See Figure 1.

We are not concerned with establishing the best absolute

pedestrian classification performance given state-of-the-art

features and classifiers, cf. [6]. Instead, we explicitly turn

to the problem of detecting partially occluded pedestrians

and demonstrate the relative benefits obtained from the pro-

posed mixture-of-experts framework.

2. Previous Work

Pedestrian classification has become an increasingly

popular research topic recently. Most state-of-the art sys-

tems, cf. [4, 6, 12], derive a set of features from the avail-

able image data and apply pattern classification techniques.

Popular features include Haar wavelets [18, 20, 25], adap-

tive local receptive fields [10, 28] or gradient histograms

(HOG) [2, 3, 26, 29, 31]. These features are combined with

a variety of classifiers, such as neural networks [10, 28],

support vector machines (SVMs) [2, 3, 18, 20, 26, 31]

or AdaBoost cascades [16, 24, 25, 30, 31]. Besides op-

erating in the image intensity domain only, some authors

have proposed multi-cue approaches combining informa-

tion from different modalities, e.g. intensity, depth and mo-

tion [7, 10, 29]. We do not consider work in the domain of

3D human pose estimation [17], but focus on discrimina-

tive 2D approaches for pedestrian classification. See [6] for

a current survey.

Recently there have been efforts to break down the com-

plexity of pedestrian appearance into components usually

related to body parts [5, 9, 14, 15, 16, 18, 22, 23, 26, 30].

After detecting the individual body parts, detection results

are fused using statistical models [15, 16, 30], learning or

voting schemes [5, 14, 18, 22] or heuristics [26].

In view of detecting partially occluded pedestrians,

component-based classification seems an obvious choice.

Yet, only a few approaches have used techniques to in-

fer a measure of (partial) occlusion from the image data

[23, 26, 30]. Sigal and Black proposed a technique for ar-

ticulated 3D body pose estimation which is able to handle

self-occlusion of body parts [23]. In our application how-

ever, we are not interested in (self-)occlusion handling of

articulated 3D pose but focus on partial occlusions observed

in 2D images of pedestrians. Particularly relevant to current

work are the approaches of Wu and Nevatia [30] and Wang

et al. [26]. They explicitly incorporate a model of partial

occlusion into their 2D classification framework. However,

both approaches make some restrictive assumptions.

The method of Wu and Nevatia, [30], requires a partic-

ular camera set-up, where the camera looks down on the

ground-plane. Consequently, they assume that the head of

a pedestrian in the scene is always visible. They further

apply a binary threshold to ignore occluded components in

their component-fusion algorithm.

Wang et al., [26], use a monolithic (full-body)

HOG/SVM classifier to determine occlusion maps from the

responses of the underlying block-wise feature set. Based

on the spatial configuration of the recovered occlusion

maps, they either apply a full-body classifier or activate

part-based classifiers in non-occluded regions or heuris-

tically combine both full-body and part-based classifiers.

Since their method depends on the block-wise responses

of HOG features combined with linear SVMs, it is unclear

how to extend their approach to other popular features or

classifiers, cf. [6].

The main contribution of our paper is a mixture-of-

experts framework for pedestrian classification with partial

occlusion handling. In contrast to [30], we do neither re-

quire a particular camera set-up nor assume constant visi-

bility of a certain body part. Our method is independent of

the employed feature/classifier combination and the pedes-

trian component layout, unlike [26]. A secondary contribu-

tion involves the integration of intensity, depth and motion

cues throughout our approach. Off-line, we train multi-cue

component-based expert classifiers involving feature spaces

derived from gray-level images, depth maps (dense stereo

vision) and motion (dense optical flow), cf. [3, 7, 21, 29].

On-line, we apply multi-cue (depth and motion) mean-

shift segmentation to each test sample to recover occlusion-

dependent component weights which are used to fuse the

component-based expert classifiers to a joint decision, see

Figure 1.

3. Pedestrian Classification

Input to our framework is a training set D of pedestrian

(ω0) and non-pedestrian (ω1) samples xi ∈ D. Each sample

xi = [xi
i;x

d
i ;x

f
i ] consists of three different modalities, i.e.

gray-level image intensity (xi
i), dense depth information via

stereo vision (xd
i ) [11] and dense optical flow (x

f
i ) [27]. We

treat xd
i and x

f
i similarly to gray-level intensity images xi

i,

in that both depth and motion cues are represented as im-

ages, where pixel values encode distance from the camera

and magnitude of optical flow vectors between two tempo-

rally aligned images, respectively. In case of optical flow,

we only consider the horizontal component of flow vectors,

to alleviate effects introduced from a moving camera with

a significant amount of changes in pitch, e.g. a vehicle-

mounted camera. Longitudinal camera motion also induces

optical flow. We do not compensate for the ego-motion of

the camera, since we are only interested in local differences

in flow between a pedestrian and the environment. As a pos-

itive side-effect, static pedestrians do not pose a problem in

combination with a moving camera. See Figure 5.



3.1. Component-Based Classification

For pedestrian classification, our goal is to determine a

class label ωi for an unseen example xi. We consider a

two-class problem with classes ω0 (pedestrian) and ω1 (non-

pedestrian). Since P (ω1|xi) = 1−P (ω0|xi), it is sufficient

to compute the posterior probability P (ω0|xi) that an un-

seen sample xi is a pedestrian. The final decision, i.e. ωi,

then results from selecting the object class with the highest

posterior probability:

ωi = argmax
ωj

P (ωj |xi) (1)

The posterior probability P (ω0|xi) is approximated us-

ing a component-based mixture-of-experts model. A sam-

ple xi is composed out of K components which are usu-

ally related to body parts. In the mixture-of-experts frame-

work, [13], the final decision results from a weighted linear

combination of so-called local expert classifiers which are

specialized in a particular area of the feature space. With

Fk(xi) representing a local expert classifier for the k-th

component of xi and wk(xi) denoting its weight, we ap-

proximate P (ω0|xi) using:

P (ω0|xi) ≈
K

∑

k=1

wk(xi)Fk(xi) (2)

Note that the weight wk(xi) for each component expert

classifier is not a fixed component prior, but depends on the

sample xi itself. These component weights allow to incor-

porate a model of partial occlusion into our framework, as

shown in Sec. 3.3.

3.2. Multi-Cue Component Expert Classifiers

Given our component-based mixture-of-experts model,

cf. Eq. (2), we model the component expert classifiers

Fk(xi) in terms of our multi-cue (intensity, depth, flow)

dataset. We extend the mixture-of-experts formulation by

introducing individual component-based classifiers for each

cue:

Fk(xi) =
∑

m∈(i,d,f)

vm
k fm

k (xm
i ) (3)

In this formulation, fm
k (xm

i ) denotes a local expert clas-

sifier for the k-th component of xi, which is represented

in terms of the m-th cue. As expert classifiers, we use

feature-based pattern classifiers which are learned on the

training set using data from the corresponding component

and cue only. Each component/cue classifier is trained

to discriminate between the pedestrian and non-pedestrian

class in its local area of the feature space. We consider our

framework to be independent from the actual type of fea-

ture/classifier combination used, given that the models are

Figure 2. Segmentation results for a non-occluded (first row) and

partially occluded pedestrian (second row). From left to right, the

columns show: intensity image, stereo image, flow image, seg-

mentation on stereo, segmentation on flow, combined segmenta-

tion on stereo and flow. The cluster chosen as pedestrian cluster
�φped, cf. Eq. (8), is outlined in black. The computed occlusion-

dependent component weights wk(xi), cf. Eq. (9), are also shown.

complex enough to handle our large and complex pedestrian

and non-pedestrian datasets, cf. [6].

Weights vm
k to each component/cue classifier are used

to model the contribution of the individual classifiers ac-

cording to their discriminative power. Some component

classifiers have a better absolute performance than others,

cf. lower body vs. upper body classifier in [18], similarly

for different cues. Hence, we derive vm
k using a valida-

tion dataset, by comparing the absolute classification per-

formances (ROC performance at the same detection rates)

of all component/cue classifiers. Weights vm
k are then set

to be proportional to the individual performance levels and

normalized to sum to one.

3.3. Occlusion-Dependent Component Weights

Weights wk(xi) for component classifiers were intro-

duced in Sec. 3.1. We derive wk(xi) from each example xi

to incorporate a measure of occlusion of certain pedestrian

components into our model. Expert classifier outputs, re-

lated to occluded components, should have a low weight in

the combined decision of the expert classifiers, cf. Eq. (2).

We propose to extract visibility information from each sam-

ple xi using the depth (stereo vision) and motion (optical

flow) cues. Partially occluded pedestrians, e.g. a walking

pedestrian behind a static object, exhibit significant depth

and motion discontinuities at the occlusion boundary, as

shown in Figures 2 and 5. Visible parts of a pedestrian

are assumed to be in approximately the same distance from

the camera (pedestrian standing upright on the ground) and

move uniformly.

We employ a three-step procedure to derive component

weights wk(xi) from an unseen sample xi: First, we ap-

ply a segmentation algorithm, cf. [8], to the dense stereo



(a) (b)

Figure 3. (a) Probability masks for front/back, left and right view.

The values of the probability masks are in the range of zero (dark

blue) to one (dark red). The values specify the probability of a

certain pixel to be part of a pedestrian with the corresponding

view. (b) Visualization of the correlation-based similarity measure

Ψin(�φc, �γk, �µv) for the head component, see text.

and optical flow images of xi. Second, we select the seg-

mented cluster which likely corresponds to the visible area

of a pedestrian. For this, a measure of similarity of a clus-

ter to a generic model of pedestrian geometry in terms of

pedestrian shape, size and location is utilized. Third, we es-

timate the degree of visibility of each component given the

selected cluster.

For segmentation, we chose the mean-shift algorithm,

[1], out of many possible choices. As shown in [8], mean-

shift provides a good balance between segmentation accu-

racy and processing efficiency. The result of the mean-shift

segmentation is a set of C clusters φc with c = 1, . . . , C, as

shown in Figure 2. The actual number of clusters C is op-

timized during mean-shift itself [1]. Note that we evaluate

both single-cue segmentation using depth or motion and si-

multaneous multi-cue segmentation using both cues in our

experiments, as shown in Sec. 4.

Let �φc and �γk denote binary vectors defining the mem-

bership of pixel-locations of the sample xi to the c-th cluster

φc and k-th component γk, respectively. Note that �φc re-

sults from the segmentation algorithm, whereas �γk is given

by the geometric component layout. Further, we utilize

a two-dimensional probability mass function µv(p) which

represents the probability that a given pixel p ∈ xi corre-

sponds to a pedestrian, solely based on its location within

xi. µv(p) is obtained from the normalized superposition

of a set of S aligned binary pedestrian foreground masks

ms(p), obtained from manually labeled pedestrian shapes:

µv(p) ∝
S

∑

s=1

ms(p), 0 ≤ µv(p) ≤ 1 (4)

To increase specificity, we use view-dependent probability

masks µv(p) in terms of separate masks for front/back, left

and right views. Those probability masks represent a view-

dependent model of pedestrian geometry in terms of shape,

size and location. See Figure 3(a). Again, a vectorized rep-

resentation of µv is denoted as �µv .

To select the segmented cluster, which corresponds to the

visible area of a pedestrian, we utilize a correlation-based

similarity measure Ψ, as defined in Eq. (5). Our similarity

measure employs the cluster information and the probability

masks to assess the likelihood that a cluster φc corresponds

to the visible parts of a pedestrian. We model Ψ as the sum

of two terms, Ψin and Ψout:

Ψ(�φc, �γk, �µv) = Ψin(�φc, �γk, �µv) + Ψout(�φc, �γk, �µv) (5)

The first measure Ψin(�φc, �γk, �µv) is designed to eval-

uate how well a cluster φc matches typical pedestrian ge-

ometry, represented by a view-dependent pedestrian prob-

ability mask µv , in a certain component γk. To compute

Ψin(�φc, �γk, �µv), we correlate the cluster �φc and the proba-

bility mask �µv within the component given by �γk and nor-

malize:

Ψin(�φc, �γk, �µv) =
(�µv · �γk) ◦ (�φc · �γk)

�µv ◦ �γk

(6)

Here, · denotes point-wise multiplication of vectors, while

◦ denotes a dot product. Note that the main purpose of �γk

in this formulation is to restrict computation to a local body

component γk. See Figure 3(b).

The second measure Ψout(�φc, �γk, �µv) relates to the

specificity of the cluster φc. The idea is to penalize clus-

ters which extend too far beyond a typical pedestrian shape.

For that we perform similar correlation using an “inverse”

probability mask �νv = 1 − �µv:

Ψout(�φc, �γk, �µv) = 1 −
(�νv · �γk) ◦ (�φc · �γk)

�νv ◦ �γk

(7)

The cluster similarity measure Ψ(�φc, �γk, �µv), see Eq.

(5), is computed per cluster, component and view-

dependent probability mask. To choose the cluster �φped

which most likely corresponds to visible parts of the pedes-

trian, we apply a maximum operation over components and

views:

�φped = argmax
�φc

(

max
�γk�µv

(

Ψ(�φc, �γk, �µv)
)

)

(8)

From our experiments we observed that the visible parts

of a pedestrian do not significantly disintegrate in the mean-

shift segmentation results, see Figure 2. Hence, we only

consider single clusters φc and pairs of clusters merged to-

gether as possible candidates.

Once the cluster �φped, corresponding to visible parts of

the pedestrian, is selected, the degree of visibility of each



Pedestrians Pedestrians Non-

(labeled) (jittered) Pedestrians

Train Set 6514 52112 32465

Partially Occluded Test Set 620 11160 16235

Non-Occluded Test Set 3201 25608 16235

Table 1. Training and test set statistics.

component is approximated. For each component �γk, we

chose to relate the spatial extent of �φped against clusters

corresponding to occluding objects. The set of all clusters
�φj , which are possible occluders of �φped, is denoted by Υ.

Possible occluders of �φped are clusters which are closer to

the camera than �φped. If depth information is not available

for segmentation, all clusters are regarded as possible oc-

cluders. With n(�v) denoting the number of non-zero ele-

ments in an arbitrary vector �v, occlusion-dependent compo-

nent weights wk(xi), with
∑

k wk(xi) = 1, are then given

by:

wk(xi) ∝
n(�φped · �γk)

∑

�φj∈Υ

(

n(�φj · �γk)
)

+ n(�φped · �γk)
(9)

See Figure 2 for a visualization of the cluster �φped, cor-

responding to visible parts of the pedestrian, and the recov-

ered occlusion-dependent component weights wk(xi).

4. Experiments

4.1. Experimental Setup

The proposed multi-cue component-based mixture-of-

experts framework was tested in experiments on pedestrian

classification. Since we require partially occluded multi-

cue (intensity, dense stereo, dense optical flow) training and

test samples, we cannot use established datasets for bench-

marking, e.g. [2, 4, 6, 19]. To our knowledge, our dataset is

the first to comprise “real” partially occluded pedestrians in

the field of pedestrian classification. Wang et al. only sim-

ulated partial occlusion by synthetically adding other ob-

jects as occluders to pedestrian samples [26]. Our multi-

cue/occlusion dataset is made publicly available to non-

commercial entities for research purposes.1

We chose to evaluate our approach in a pedestrian clas-

sification setting, where we assume that initial pedestrian

location hypotheses already exist, e.g. using methods de-

scribed in [6, 7, 10, 22] or non-vision sensors. In our ex-

periments, we focus on the central part of a pedestrian de-

tection system, the classifier, to eliminate auxiliary effects

arising from various detector parameters such as grid gran-

ularity, non-maximum suppression, scene and processing

constraints or tracking, cf. [6].

1See http://www.science.uva.nl/research/isla/downloads/pedestrians/

index.html or contact the last author.

Figure 4. Component layout as used in our experiments. We em-

ploy three overlapping components, corresponding to head, torso

and leg regions, see text.

Our training and test samples consist of manually labeled

pedestrian and non-pedestrian bounding boxes in images

captured from a vehicle-mounted calibrated stereo camera

rig in an urban environment. For each manually labeled

pedestrian, we created additional samples by geometric jit-

tering. Non-pedestrian samples were the result of a shape

detection pre-processing step with relaxed threshold setting,

i.e. containing a bias towards more “difficult” patterns.

Dense stereo is computed using the semi-global matching

algorithm [11]. To compute dense optical flow, we use the

method of [27].

Training and test samples have a resolution of 36 × 84
pixels with a 6-pixel border around the pedestrians. In our

experiments, we use K = 3 components γk, corresponding

to head/shoulder (36×24 pixels), torso (36×36 pixels) and

leg (36 × 48 pixels) regions, see Figure 4. Note that our

components vertically overlap by 12 pixels, i.e. each com-

ponent has a 6-pixel border around the associated body part.

In preliminary experiments, we determined this overlap to

improve performance.

Regarding features for the component/cue expert clas-

sifiers fm
k , see Eq. (3), we chose histograms of oriented

gradients (HOG) out of many possible feature sets, cf.

[2, 4, 6, 19]. The motivation for this choice is two-fold:

First, HOG features are still among the best performing

feature sets available; second, we compare our framework

to the approach of Wang et al. [26] which explicitly re-

quires and operates on the block-wise structure of HOG fea-

tures. We compute histograms of oriented gradients with

12 orientation bins and 6 × 6 pixel cells, accumulated to

overlapping 12 × 12 pixel blocks with a spatial shift of 6

pixels. For classification, we employ linear support vector

machines (SVMs). Note that the same HOG feature set is

extracted from intensity, dense stereo and dense flow im-

ages, cf. [3, 21]. In our implementation of [26], we use the

occlusion handling of Wang et al. together with the same

component layout (head, torso, legs), features (HOG) and

classifiers (linear SVMs) as in our approach, but only for

the intensity cue.

To train the component classifiers, only non-occluded

pedestrians (and non-pedestrian samples) are used. For test-

ing, we evaluate performance using two different test sets:



Figure 5. Non-occluded pedestrians, partially occluded pedestri-

ans and non-pedestrians samples in our data. In depth (stereo)

images, darker colors denote closer distances. Note that the back-

ground (large depth values) has been faded out for visibility. Opti-

cal flow images depict the magnitude of the horizontal component

of flow vectors, with lighter colors indicating stronger motion.

one involving non-occluded pedestrians and one consisting

of partially occluded pedestrians. The non-pedestrian sam-

ples are the same for both test sets. See Table 1 and Figure

5 for an overview of the dataset.

4.2. Performance on Partially Occluded Test Data

Partial Occlusion Handling In our first experiment, we

evaluate the effect of different models of partial occlusion

handling. We do not consider multi-cue classifiers yet. All

expert component classifiers are trained on intensity im-

ages only. As baseline classifiers, we evaluate the full-body

HOG approach of [2] (we use the code provided by the orig-

inal authors) and the approach of [26], which uses an occlu-

sion model based on the block-wise response of a full-body

HOG classifier to activate part-based classifiers in areas cor-

responding to non-occluded pedestrian parts. Our frame-

work is evaluated using four different strategies to compute

occlusion-dependent component weights wk(xi) for xi, as

defined in Sec. 3.3: We consider weights resulting from

mean-shift segmentation using depth only, flow only and a

combination of both depth and flow. Additionally, we con-

sider uniform weights wk(xi), i.e. no segmentation. Note

that weights vm
k , as given in Eq. (3), are still in place. Re-

sults in terms of ROC performance are given in Figure 6(a).

All component-based approaches outperform the full-

body HOG classifier (magenta *). The approach of Wang et

al. [26] (cyan +) significantly improves performance over

the full-body HOG classifier by a factor of two (reduction

in false positives at constant detection rates). All variants

of our framework in turn outperform the method of Wang

et al. [26], with segmentation on combined depth and flow
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Figure 6. Classification performance on partially occluded testset.

(a) Evaluation of partial occlusion handling strategies. (b) Multi-

cue classification in comparison to intensity-only classification.

(c) Combined multi-cue partial occlusion handling and classifica-

tion.

(green �) performing best. Compared to the use of uni-

form weights wk(xi) (black ×), the addition of multi-cue

segmentation to compute component weights (green �) im-

proves performance by approximately a factor of two.

Multi-Cue Classification In our second experiment, we

evaluate the performance of multi-cue component classi-

fiers, as presented in Sec. 3.2, compared to intensity-



only component classifiers. Uniform component weights

wk(xi), i.e. no segmentation, were used throughout all ap-

proaches. Results are given in Figure 6(b) (solid lines). As

baseline classifiers, we use a full-body intensity-only HOG

classifier and a multi-cue full-body HOG classifier trained

on intensity, stereo and flow data (dashed lines). Multi-cue

classification significantly improves performance both for

the full-body and for the component-based approach. The

best performance (particularly at low false positive rates) is

reached by the component-based approach involving inten-

sity, stereo and flow (green �). The performance improve-

ment over a corresponding component-based classifier us-

ing intensity-only (black ×) is up to a factor of two reduc-

tion in false positives.

Multi-Cue Classification with Partial Occlusion Han-

dling In the next experiment, we evaluate the proposed

multi-cue framework involving occlusion-dependent com-

ponent weights derived from mean-shift segmentation com-

bined with multi-cue classification. Instead of presenting

results for all possible combinations of cues for segmenta-

tion and classification, we chose to use the same cues for

both segmentation and classification. We did evaluate all

cue-combinations and found no better performing combi-

nation. Similar to the previous experiment, the baseline is

given by full-body classifiers (cyan + and magenta *), as

well as a component-based intensity-only classifier using

uniform weights (black ×). See Figure 6(c).

The best performing system variant is the proposed

component-based mixture-of-experts architecture using

stereo and optical flow concurrently to determine occlusion-

dependent weights wk(xi) and for multi-cue classification

(green �). Compared to a corresponding multi-cue full-

body classifier (magenta *), the performance boost is ap-

proximately a factor of four. A similar performance dif-

ferences exists between our best approach (green �) and

a component-based intensity-only classifier using uniform

component weights (black ×).

4.3. Performance on Non-Occluded Test Data

After demonstrating significant performance boosts on

partially occluded test data, we evaluate the performance of

the proposed approach using non-occluded pedestrians (and

non-pedestrians) as test set. Similar to our previous exper-

iments, we evaluate the effect of partial occlusion handling

independently from the use of multiple cues for segmenta-

tion and classification.

Figure 7(a) shows the effect of different models of

partial occlusion handling combined with intensity-only

component-based classifiers. The full-body HOG clas-

sifier (magenta *), as well as the approach of Wang et

al. [26] (cyan +), serve as baselines. The best perfor-

mance is reached by the full-body HOG classifier. All
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Figure 7. Classification performance on non-occluded testset. (a)

Evaluation of partial occlusion handling strategies. (b) Multi-cue

classification in comparison to intensity-only classification. (c)

Combined multi-cue partial occlusion handling and classification.

component-based approaches perform slightly worse. Of all

component-based approaches, uniform component weights

wk(xi), i.e. no occlusion handling, yields the best per-

formance by a small margin. This is not surprising, since

all components are visible to the same extent. On non-

occluded test samples, our best approach with occlusion

handling (green �) gives the same performance as Wang

et al. [26] (cyan +).

Multi-cue classification, as shown in Figure 7(b), yields



similar performance boosts compared to intensity-only clas-

sification as observed for the test on partially occluded data,

cf. Sec. 4.2. Figure 7(c) depicts results of our integrated

multi-cue mixture-of-experts framework with partial occlu-

sion handling. Compared to a full-body classifier involving

intensity, stereo and flow (magenta *), our best performing

mixture-of-experts approach gives only slightly worse per-

formance, particularly at low false positive rates. In relation

to intensity-only full-body classification (cyan +), i.e. the

approach of [2], our multi-cue framework improves perfor-

mance by up to a factor of two.

5. Conclusion

This paper presented a multi-cue mixture-of-experts

framework for component-based pedestrian classification

with partial occlusion handling. For the partially occluded

dataset, we obtained in the case of depth- and motion-based

occlusion handling an improvement of more than a factor

of two versus the baseline (component-based, no occlusion

handling) and state-of-the-art [26]. We obtained in the case

of multi-cue (intensity, depth, motion) classification an ad-

ditional improvement of a factor of two versus the baseline

(intensity only). The full-body classifiers performed worse

than the beforementioned baselines. For the non-occluded

dataset, occlusion handling does not appreciably deterio-

rate results, while multi-cue classification improves perfor-

mance by a factor of two. We take the results as evidence

for the strength of our approach.
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