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Abstract

The use of multiple features for tracking has been proved

as an effective approach because limitation of each feature

could be compensated. Since different types of variation-

s such as illumination, occlusion and pose may happen in

a video sequence, especially long sequence videos, how to

dynamically select the appropriate features is one of the key

problems in this approach. To address this issue in multi-

cue visual tracking, this paper proposes a new joint sparse

representation model for robust feature-level fusion. The

proposed method dynamically removes unreliable features

to be fused for tracking by using the advantages of sparse

representation. As a result, robust tracking performance is

obtained. Experimental results on publicly available videos

show that the proposed method outperforms both existing

sparse representation based and fusion-based trackers.

1. Introduction

Effective modeling of the object’s appearance is one

of the key issues for the success of a visual tracker [14]

and many visual features have been proposed for han-

dling illumination, pose, occlusion and scaling variation-

s [10, 11, 24, 27]. However, because the appearance of

target and the environment are dynamically changed, es-

pecially in long term videos, a single feature is difficult to

deal with all such variations. As such, the use of multi-

ple cues/features to model object appearance has been pro-

posed and proved as a more robust approach for better per-

formance [21, 8, 3, 20, 15]. Many algorithms based on

multi-cue appearance model have been proposed for track-

ing in the past years. Generally, existing multi-cue track-

ing algorithms can be roughly divided into two categories:

score level and feature level. Score-level approach com-

bines classification score corresponding to different visu-

al cues to perform the foreground and background classi-

fication. Methods such as online boosting [8, 9], multi-

ple kernel boosting [21] and online multiple instance learn-

ing [3]have been proposed. However, the Data Processing

Inequality (DPI) [5] indicates that the feature level contains

more information than that in the classifier level. Therefore,

feature level fusion should be performed to take advantage

of the more informative cues for tracking. A typical ap-

proach is to concatenate different feature vectors to form a

single vector [20]. But such method may result in a high

dimensional feature vector which may degrade the tracking

efficiency. Moreover, combining all features may not be

necessary to improve the tracking performance because not

all cues/features are reliable. As such, dynamically selec-

tion/combination of visual cues/features is required.

Recently, multi-task joint sparse representation (MTJS-

R) [19, 22] has been proposed for feature-level fusion in

visual classification and promising results have been report-

ed. In MTJSR, the class-level joint sparsity patterns among

multiple features are discovered by using a joint sparsity-

inducing norm. Therefore, the relationship between differ-

ent visual cues can be discovered by the joint sparsity con-

straint. Moreover, high-dimensional features are represent-

ed by low-dimensional reconstruction weights for efficient

fusion. However, directly applying the MTJSR for objec-

t tracking may not achieve convincing performance, since

MTJSR was derived based on the assumption that all repre-

sentation tasks are closely related and share the same spar-

sity pattern, which may not be valid in tracking application

due to unreliable features.

In order to overcome the above-mentioned problem, this

paper proposes to remove the negative effect from the unre-

liable visual cues (outlier) that do not share the same sparsi-

ty pattern. Based on joint sparse representation, we propose

and develop a new robust feature-level fusion method for

visual tracking. It is important to point out that the existing

joint sparse representation based tracking algorithms can-

not make use of multiple features. For example, Zhang et
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al. [26] applied joint sparsity to model relationship between

particles to enhance the robustness to significant variations.

To the best of our knowledge, this is the first joint sparse

representation based multiple feature-level fusion method

for visual tracking.

The contributions of this paper are as follows:

• This paper develops a new visual tracking algorithm

based on feature-level fusion using joint sparse repre-

sentation. The proposed method possess all the advan-

tages of joint sparse representation and is able to fuse

multiple features for object tracking.

• We propose to detect the unreliable visual cues for

the robustness in the feature-level fusion process. By

removing the unreliable (outlier) features which in-

troduce negative effect in fusion, the tracking perfor-

mance can be improved.

2. Related Work

In this section, we give an overview on existing sparse

representation based trackers and multi-task joint sparse

representation methods related to our proposed method.

Sparse Representation based Tracker Based on the in-

tuition that the appearance of a tracked object can be sparse-

ly represented by its appearance in previous frames, sparse

representation based tracker was introduced in [16], which

is robust to occlusion and noise corruption. Beyond [16],

lots of algorithms have been proposed to improve the track-

ing accuracy and reduce the computational complexity [25].

Li et al. [13] exploit compressive sensing theory to reduce

the template dimension to improve the computational effi-

ciency. Zhang et al. [26] proposed a multi-task joint sparse

learning method to exploit the relationship between parti-

cles such that the accuracy of L1 tracker can be improved.

Xu et al. [12] developed a local sparse appearance model to

enhance the robustness to occlusion. All these sparse rep-

resentation based trackers utilized a single cue for appear-

ance modeling. To fuse multiple features, Wu et al. [20]

concatenated multiple features into a high-dimensional fea-

ture vector to construct a template set for sparse representa-

tion. However, the high dimensionality of the combined

feature vector increases the computational complexity of

this method. And, fusion via concatenation may not im-

prove the performance when some source data are corrupt-

ed.

Multi-task Joint Sparse Representation In transfer

learning, multi-task learning aims to improve the overal-

l performance of related tasks by exploiting the cross-task

relationships. Yuan et al. [22] formulated linear represen-

tation models from multiple visual features as a multi-task

joint sparse representation problem in which multiple fea-

tures are fused via class-level joint sparsity regularization.

Zhang et al. [23] proposed a novel joint dynamic sparsity

prior and applied for multi-observation visual recognition.

Shekhar et al. [19] proposed a novel multimodal multivari-

ate sparse representation method for multimodal biometrics

recognition.

3. Robust Feature-Level Fusion for Multi-Cue

Tracking

This section presents the details of the proposed tracking

algorithm using robust feature-level fusion based on join-

t sparse representation. The proposed method consists of

two major components: feature-level fusion based on join-

t sparse representation and detecting unreliable visual cues

for robust fusion.

3.1. MultiCue Tracking Using Joint Sparse Repre
sentation

In the particle filter based multi-cue tracking framework,

we are given K types of visual cues, e.g. color, shape and

texture, to represent the tracking result in the current frame

and template images of the target object. Denote the k-th vi-

sual cues of the current tracking result and the n-th template

image as yk and xk
n, respectively. Inspired by the sparse

representation based tracking algorithm [16], the tracking

result in the current frame can be sparsely represented by a

linear combination of the target templates added by an error

vector εk for each visual cue, i.e.

yk = Xkwk + εk, k = 1, · · · ,K (1)

where wk is a weight vector with dimension N to recon-

struct the current tracking result with visual cue yk based

on the template set Xk = [xk
1 , ..., x

k
N ]T and N is the num-

ber of templates.

In Eq.(1), the weight vectors w1, · · · , wK can be consid-

ered as an underlying representation of the tracking result

in the current frame with visual cues y1, · · · , yK . In other

words, the feature-level fusion is given by discovering the

relationship between visual cues y1, · · · , yK to determine

weight vectors w1, · · · , wK dynamically. To learn the op-

timal fused representation, we define the objective function

by minimizing the reconstruction error and a regularization

term, i.e.

min
W

1

2

K∑

k=1

‖yk −Xkwk‖22 + λΩ(W ) (2)

where ‖ · ‖2 represents L2 norm, λ is a non-negative pa-

rameter, W = (w1, ..., wK) ∈ R
C×K is the matrix of the

weight vectors and Ω is the regularization function on W .

To derive the regularization function Ω, we assume that

the current tracking result can be sparsely represented by the

same set of chosen target templates with index n1, · · · , nc

for each visual cue, i.e.

yk = wk
n1
xk
n1

+ · · ·+ wk
nc
xk
nc

+ εk, k = 1, · · · ,K (3)
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Under the joint sparsity assumption, the number of chosen

target templates c = ‖(‖w1‖2, · · · , ‖wN‖2)‖0 is a small

number. Therefore, we can minimize the sparsity measure-

ment as the regularization term in optimization problem (2).

Since the L0 norm can be relaxed by L1 norm to make the

optimization problem tractable, we define Ω as the follow-

ing equation similar to that in [22] measuring the class-level

sparsity for classification applications,

Ω(W ) = ‖(‖w1‖2, · · · , ‖wN‖2)‖1 =

N∑

n=1

‖wn‖2 (4)

where wn denotes the n-th row in matrix W correspond-

ing to the weights of visual cues for the n-th target tem-

plate. With this formulation, the joint sparsity across dif-

ferent visual cues can be discovered, i.e. wn becomes ze-

ro for a large number of target templates when minimizing

optimization problem (2). This ensures that all the select-

ed templates (with non-zero weights) play more important

roles in reconstructing the current tracking result for all the

visual cues.

3.2. Detecting Unreliable Visual Cues for Robust
FeatureLevel Fusion

Since some visual cues may be sensitive to illumination

or viewpoint change, the assumption about shared sparsity

may not be valid for tracking. Such unreliable visual cues of

the target cannot be sparsely represented by the same set of

the selected target templates. That means, for the unreliable

visual cue yk
′

, all the target templates are likely to have

non-zero weighting for small reconstruction error, i.e.

yk
′

= wk′

1 xk′

1 + · · ·+ wk′

Nxk′

N + εk
′

(5)

where wk′

1 , ..., wk′

N are non-zero weights. In this case, we

cannot obtain robust fusion result by minimizing optimiza-

tion problem (2) with the regularization function (4).

Although unreliable features cannot satisfy Eq.(3), re-

liable features can still be sparsely represented by Eq.(3)

and used to choose the most informative target templates

for reconstruction. With the selected templates of index

n1, · · · , nc, we rewrite Eq.(5) as follows,

yk
′ −

c∑

i=1

wk′

ni
xk′

ni
=

N−c∑

j=1

wk′

mj
xk′

mj
+ εk

′

(6)

where mj denotes the index for the template which is not

chosen to reconstruct the current tracking result. Suppose

we have K ′ unreliable visual cues. Without loss of gen-

erality, let visual cues 1, · · · ,K − K ′ be reliable, while

K − K ′ + 1, · · · ,K be unreliable. To detect the K ′ un-

reliable visual cues, we employ the sparsity assumption for

the unreliable features, i.e. the number of unreliable visu-

al cues K ′ = ‖(
∑N−c

j=1 |w1
mj

|2, · · · ,
∑N−c

j=1 |wK
mj

|2)‖0 is a

small number, which can be used to define the regulariza-

tion function. Similar to Eq.(4), L1 norm is used instead

of L0 norm. Combining with the regularization function

for discovering the joint sparsity among reliable features, Ω
becomes

Ω(W ) = θ1

N∑

n=1

K−K′∑

k=1

|wk
n|2 + θ2

K∑

k=1

N−c∑

j=1

|wk
mj

|2 (7)

where θ1 and θ2 are non-negative parameters to balance the

joint sparsity across the selected target templates and unre-

liable visual cues.

However, we have no information about the selected

templates and unreliable features before learning, so we

cannot define the regularization function like Eq.(7) practi-

cally. Inspired by robust multi-task feature learning [7], the

weight matrix W can be decomposed into two terms R and

S with W = R+S. Suppose the non-zero weights of the re-

liable features be encoded in R, while the non-zero weights

of the unreliable features encoded in S. The current track-

ing result of the reliable visual cue k can be reconstructed

by the information in R only, i.e. Eq.(3) is revised as

yk = rkn1
xk
n1

+ · · ·+rknc
xk
nc

+εk, k = 1, · · · ,K−K ′ (8)

On the other hand, Eq.(6) for the unreliable feature k′ is

changed to

yk
′ −

c∑

i=1

sk
′

ni
xk′

ni
=

N−c∑

j=1

sk
′

mj
xk′

mj
+ εk

′

,

k′ = K −K ′ + 1, · · · ,K
(9)

According to the above analysis, the final regularization

function can be defined analogous to Eq.(7), i.e.

Ω(W ) = θ1

N∑

n=1

‖rn‖2 + θ2

K∑

k=1

‖sk‖2 (10)

Denote λ1 = λθ1 and λ2 = λθ2. Substituting Ω(W )
by Eq.(10) into optimization problem (2), the proposed ro-

bust joint sparse representation based feature-level fusion

(RJSR-FFT) model for visual tracking is developed as,

min
W,R,S

1

2

K∑

k=1

‖yk −X
k
w

k‖22 + λ1

N∑

n=1

‖rn‖2 + λ2

K∑

k=1

‖sk‖2

s.t. W = R+ S

(11)

The procedures to solve optimization problem (11) will

be given in the following section. The optimal fused repre-

sentation is given by R and S, which encode the informa-

tion about important target templates and unreliable visual
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cues, respectively. With S, we determine the index set O of

the unreliable features as

O = {k′
, s.t.,

‖sk
′

‖2

max{
K∑

k=1

‖sk‖2, ǫ}

≥ T} (12)

where ǫ is a positive number to avoid zero division for re-

liable features. This scheme detects the unreliable visual

cues when the norm of some column of matrix S is larger

than a pre-defined threshold T .

On the other hand, the likelihood function is defined by

R and S as follows. The representation coefficients of dif-

ferent visual cues are estimated and the unreliable features

are detected by solving optimization problem (11). Then,

the observation likelihood function is defined by

p(zt|lt) ∝ EXP (−
1

K −K′

∑

j /∈O

‖yj −X
j · rj‖22) (13)

where lt is the latent state and zt is the observation in par-

ticle filer framework, and the right side of this equation

denotes the average reconstruction error of reliable visual

cues. Since the proposed model can detect the unreliable

cues, the likelihood function can combine the reconstruc-

tion error of reliable cues to define the final similarity be-

tween the target candidate and the target templates.

3.3. Optimization Procedures

The objective function in optimization problem (11)

is given by a smooth function plus a non-smooth one.

This kind of optimization problem can be solved efficient-

ly by employing Accelerated Proximal Gradient Method

(APG) [4]. Let

F (R,S) =
1

2

K∑

k=1

f(rk, sk) =
1

2

K∑

k=1

‖yk −
N∑

n=1

x
k
n(r

k
n + s

k
n)‖

2
2

G(R,S) = λ1

N∑

n=1

‖rn‖2 + λ2

K∑

k=1

‖sk‖2

(14)

where F (R,S) and G(R,S) are differential and non-

differential terms in the objective function, respectively. In

the (t + 1)-th iteration, given the aggregation matrices U t

and V t, the proximal matrices Rt+1 and St+1 are given by

solving the following minimization problem:

min
R,S

1

2

K∑

k=1

{f(uk,t, vk,t) +∇fT
uk,t(r

k − uk,t)

+∇fT
vk,t(s

k − vk,t) +
µt+1

2
‖rk − uk,t‖22

+
µt+1

2
‖sk − vk,t‖22}+ λ1

N∑

n=1

‖rn‖2 + λ2

K∑

k=1

‖sk‖2

(15)

where µt+1 is the Lipschitz constant [4]. Expanding the ob-

jective function in optimization problem (15) and neglect-

ing the constant terms, optimization problem (15) can be

separated into two independent sub-problems about R and

S, respectively, i.e.

min
R

1

2

K∑

k=1

‖rk − (uk,t − 1

µt+1
∇k,t

u )‖22 +
λ1

µt+1

N∑

n=1

‖rn‖2

min
S

1

2

K∑

k=1

‖sk − (vk,t − 1

µt+1
∇k,t

v )‖22 +
λ2

µt+1

K∑

k=1

‖sk‖2

(16)

where the gradient operators of f are given by ∇k,t
u =

−(Xk)T yk + (Xk)T (Xk)uk,t + (Xk)T (Xk)vk,t, ∇k,t
v =

−(Xk)T yk + (Xk)T (Xk)vk,t + (Xk)T (Xk)uk,t. The

above subproblems in each iteration can be solved in two

steps:

Gradient Mapping Step: According to the proved

proposition in [18], we updated the proximal matrices Rt+1

and St+1 by Eq.(17) and Eq.(18), respectively.

r
k,t+ 1

2 = u
k,t −

1

µt+1
∇k,t

u , k = 1, · · · ,K,

r
t+1
n = max(0, 1−

λ1

µt+1‖r
t+ 1

2
n ‖2

) · r
t+ 1

2
n , n = 1, · · · , N

(17)

s
k,t+ 1

2 = v
k,t −

1

µt+1
∇k,t

v , k = 1, · · · ,K,

s
k,t+1 = max(0, 1−

λ2

µt+1‖sk,t+
1

2 ‖2
) · sk,t+

1

2 , k = 1, · · · ,K

(18)

It should be noticed that the update schemes (17) for R and

(18) for S are different from each other, since R and S have

different sparsity properties grouping according to columns

and rows, respectively.

Aggregation Step: We adopt the aggregation matrix up-

date scheme in [4] as follows.

U
t+1 = R

t+1 +
at − 1

at+1

(Rt+1 −R
t),

V
k+1 = S

t+1 +
at − 1

at+1

(St+1 − S
t)

(19)

where at+1 =
1+

√
1+a2

t

2 , and a0 = 1.

3.4. Template Update Scheme

The proposed tracker is sparse-based. Thus, we adopt the

template update scheme in [16] with a small modification

because the proposed tracker is also fusion-based tracker

with outlier detection scheme. Similar to [16], we associate

each template in different visual cues with a weight, and

the weight is updated in each frame. Once the similarity
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between the template with the largest weight from the reli-

able visual cue and the target sample of the corresponding

visual cue is larger than a predefine threshold, the proposed

tracker will replace the template which has the least weight

with the target sample. The difference between [16] and the

proposed method is that the update scheme in this paper is

performed simultaneously for template sets in different vi-

sual cues. Once one template of the template set in a visual

cue is replaced, the template in other visual cues will be

replaced because the proposed model performs multi-cue

fusion on feature level. As such, all the cues of the same

template should be updated simultaneously.

4. Experiment

In this section, we evaluate the proposed robust joint s-

parse representation based feature-level fusion (RJSR-FFT)

tracking algorithm using both synthetic data and real videos

for experiments.

4.1. Unreliable Feature Detection on Synthetic Data

To demonstrate that the proposed method can detec-

t unreliable features, we compare the RJSR-FFT with the

weight matrices obtained by solving optimization problem

(2) with the regularization term (4) as in the multi-task joint

sparse representation (MTJSR) method [22]. In this experi-

ment, we simulated the multi-cue tracking problem by ran-

domly generating five kinds of ten dimensional normalized

features with 30 templates, i.e. Xk ∈ R
10×30, k = 1, · · · , 5

are the template sets. Two kinds of features are set as un-

reliable with sparsity patterns. For the other three kinds

of reliable features, we divide the template sets into three

groups and randomly generate the template weight vector

wk ∈ R
30, such that the elements in wk corresponding to

only one group of templates are non-zero. The testing sam-

ple of the k-th feature yk to represent the current tracking

result is computed by Xkwk plus a Gaussian noise vector

with zero mean and variance 0.2 to represent the reconstruc-

tion error εk. For fair comparison with the MTJSR [22],

we extend our model to impose the group lasso penalty by

simply using a group sparsity term in optimization problem

(11). We empirically set parameters λ, λ1, λ2 as 0.001 and

the step size µ as 0.002 and repeated this experiment 100

times.

We use the average normalized mean square error be-

tween the original weight matrix and recovered one for e-

valuation. Our method achieves a much lower average re-

cover error of 4.69% compared with that of the MTJSR with

12.29%. This indicates that our method can better recov-

er the underlying weight matrix by detecting the unreliable

features successfully. To further demonstrate the ability for

unreliable feature detection, we give a graphical illustration

of one out of the 100 experiments in Fig.1. The original

weight matrix is shown in Fig.1(a) with each row repre-

(a) Original Weight Matrix (b) Weight Matrix by MTJSR [22]

(c) Matrix R by RJSR-FFT (d) Matrix S by RJSR-FFT

Figure 1. Graphical illustration of unreliable feature detection

senting a weight vector wk. The horizontal axis records

the sample indexes, while the vertical gives the values of

weights. From Fig.1(a), we can see that the first three share

the same sparsity patterns over the samples with indexes in

the middle range, while all the weights of the last two fea-

tures are non-zeros, thus non-sparse. In this case, the MTJS-

R cannot discover the sparsity patterns as shown in Fig.1(b),

while the proposed RJSR-FFT can find out the shared spar-

sity of the reliable features and detect unreliable features as

shown in Fig.1(c) and (d). This also explains the reason

why our method can better recover the underlying matrix as

shown in Fig.1(a).

4.2. Visual Tracking Experiments

While the simulated experiment showed that the pro-

posed method can detect unreliable features, the tracking

results with real videos are reported in this section.

4.2.1 Experimental Settings

We evaluate our tracking algorithm on fifteen challeng-

ing video sequences with large illumination variations, par-

tial occlusion, pose variations and/or cluttered background.

Most videos and its corresponding ground truth data can

be found in the website1. We compare our tracker with

state-of-art tracking algorithms including multi-cue track-

ers: OAB [8], COV [11], sparse representation based track-

ers: MTT [26], L1T [16] and other state-of-the-art methods:

IVT [17], CT [24], Frag [1]. We use the source code provid-

ed by the authors of these papers and adjust the parameters

in these methods for better performance.

1http://visual-tracking.net/
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For our tracking method, we extract seven kinds of lo-

cal and global features for fusion. For local visual cues,

we divide the tracking bounding box into 4 blocks and ex-

tract covariance descriptor [11] in each block. For global

visual cues, we use HOG [6], LBP [2] and GLF [27] to

represent the whole bounding box. The parameters are se-

lected as follows. The number of templates is set as 12. The

Lipschitz constant µ is automatically determined according

to [7]. We empirically found that the regularization param-

eters λ1 and λ2 are related to µ for robust performance, so

we set λ1 = 0.0027µ and λ2 = 0.022µ. The template size

is set to 32× 32, while the number of particles is 200.

4.2.2 Quantitative Comparison

Two evaluation criteria are used for quantitative compari-

son: center location error and success rate. The overlap

ratio is define as
area(BT∩BG)
area(BT∪BG) , where BT and BG are the

bounding boxes of the tracker and ground-truth. A frame

is successfully tracked means that the overlap ratio is larger

than 0.5. The center location error is the Euclidean distance

between the centers of bounding boxes BT and BG. Table

1 and 2 report the center location error and overlapping rate

on the 15 videos. With limited space available, we list out

frame-by-frame center error comparison results for 8 out of

the 15 videos in Fig.2 and more frame-by-frame comparison

result can be found in supplementary materials. The best re-

sults are shown in red, and the second ones are marked in

green. These results show that the proposed method outper-

forms both multi-cue and sparse representation based track-

ers as well as state-of-the-art methods in most videos. And,

the average center location error of our method is about 7.5

pixels much lower than those of existing trackers, while the

successful tracking rate of the proposed tracking algorithm

is 90.9% much higher than those of existing methods.

4.2.3 Qualitative Comparison

The video sequences of the tracked results of all trackers in

our experiment are provided in supplementary materials and

some frames are shown in Fig.3. We qualitatively evaluate

the tracking results in four different aspects as follows:

Cluttered Background We test the 8 trackers on several

videos(Deer,Football,MountainBike) with cluttered back-

ground as shown in Fig.3(a). When the tracked target

comes into the dense group of players(Football♯0149), sim-

ilar pattern of the background distract some trackers from

the target, e.g., COV, OAB. Football also pose partial

occlusion(Football♯0295), all trackers except our proposed

tracker lost the target. This mainly attribute to the fusion of

local information in our proposed method so its less sensi-

tive to partial occlusion.

Partial Occlusion FaceOcc1, Girl, David3 pose partial

occlusion as shown in Fig.3(b). All tracker can successful-

ly handle the partial occlusion except OAB has small drift

from the target(FaceOcc1♯0057). David3 also pose clut-

tered background and deformation challenge. David3♯0051

show cluttered background distract the tracker, e.g., L1T,

COV, Frag, OAB from target. In plan rotation also appears

in Girl sequence. CT, Frag, IVT lost the target(Girl♯0246),

and CT has small drift.

Non-rigid Target Skating1, Basketball, Crossing show

the performance of these trackers when the target is non-

rigid as shown in Fig.3(c). Skating1 is the most challenging

one with other variation, e.g., in plane rotation(♯0064), par-

tial occlusion(♯0176), Illumination(♯0310)). only our pro-

posed method can track through the sequence.

Illumination Variation Trellis, Car, Shaking, David1,

CarDark, Car4 test these trackers under illumination and

pose variaton as shown in Fig.3(d). Only our tracker can

successfully tracked the target in Trellis and Shaking in all

frames.

5. Conclusion

In this paper, we have successfully formulated a feature-

level fusion visual tracker based on joint sparse representa-

tion. This paper has demonstrated that using proposed ro-

bust feature-level fusion of multiple features can improve

the tracking accuracy. Experimental results on publicly

available videos show that the performance of the pro-

posed tracker using robust joint sparse representation based

feature-level fusion model outperforms seven state-of-the-

art tracking methods.
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