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Multi-depth suspended sediment estimation using high-
resolution remote-sensing UAV in Maumee River, Ohio

Matthew D. Larson , Anita Simic Milas, Robert K. Vincent and James E. Evans

Department of Geology, Bowling Green State University, Bowling Green, OH, USA

ABSTRACT

Satellite remote-sensing has been widely used to map suspended
sediment concentration (SSC) in waterbodies. Current development
of the unmanned aerial vehicle (UAV) technology allows mapping of
SSC at finer spatial resolution providing high flexibility in terms of cost
and acquisition time. However, the technology is immature and trans-
fer of empirical algorithms from existing remote-sensing technologies
to UAV still has to be explored. This study uses the MicaSense Sequoia
sensor with four bands (green, red, red edge, and near-infrared [NIR])
mounted on-board a fixed-wing UAV to map SSC within the Maumee
River in Ohio, USA, at multiple depth intervals (15, 61, 91, and 182 cm).
The simple linear and stepwise regressionmodels show the advantage
of multiple bands and band ratios over single bands in mapping SSC.
The findings show a limited performance of the Sequoia sensor when
compared to field spectroradiometer measurements. In all cases but
one, the adjusted coefficient of determination (R2adj) values is lower for
the UAV data. The regression equations become similar at and below a
depth of 0–61 cm, and R2adj become constant at and below a depth of

0–91 cm. While the spectroradiometer-related equations are sensitive
to a wider spectral range (from green at the surface to NIR wavelength
at 182 cm depth), the UAV-related equations are insensitive to green
spectrum and they include a narrower spectral range (from red to NIR)
over all depth increments. Field spectroradiometer measurements
exhibit a strong relationship with cumulative SSC at 182 cm depth
(0–182 cm) (R2adj ¼ 0:71) whereas UAV reflectance data show the best

relationship with SSC at 91 cm (0–91 cm) (R2adj ¼ 0:56) suggesting that

~91 cmmay be an optimal depth for UAV under given conditions. The
results show that UAVs can be a practical but somewhat limited tool to
monitor SSC in small- to medium-sized rivers.
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1. Introduction

Suspended sediment has been an environmental concern for many decades in freshwater

systems as it is one of the most common pollutants both in weight and volume (Ritchie,

Zimba, and Everitt 2003; Qu 2014). Sediment can transport and store a variety of pollutants

such as adsorbed phosphorus, nitrogen, pesticides, and industrial chemicals like polychlori-

nated biphenyls (Lodhi et al. 1998; Cousino, Becker, and Zmijewski 2015; Stow et al. 2015).
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Increased suspended sediment concentrations (SSCs) inhibit proper function of aquatic

ecosystems as sediment can cause benthic smothering as well as change water chemistry

(e.g. temperature, dissolved oxygen) (Lodhi et al. 1998; Branigan 2013; Qu 2014;

Alighalehbabakhani et al. 2017). Additionally, high amounts of SSC can cause siltation behind

dams and reservoirs limiting their efficiency as well as infill navigational channels which is

economically costly (Branigan 2013; Montanher et al. 2014; Alighalehbabakhani et al. 2017).

Most of suspended sediment transport within a river happens at depth rather than at

the water surface (Julien 2002). Shear stress is primarily the major mover of river

sediment, which increases deeper in the water column. An increase in shear stress

allows larger and more sediment particles to move downstream. The vertical SSC

distribution (suspended sediment vertical profile) within a river channel is based upon

the Rouse number (ratio of settling velocity to shear velocity times von Kármán’s

constant). Grains are settling under the influence of gravity in accord with the settling

velocity (which depends on grain size, grain shape, and effective density) (Julien 2002).

Grains are diffusing upward off the sediment–water interface in relationship to the

applied boundary shear stress (shear velocity) through the action of turbulent eddies.

If the suspended sediment vertical profile is stable, then advection of sediment down-

ward is matched by diffusion of grains upward. Such a stable vertical profile can range

from essentially zero suspended sediment transport (pure bedload transport case) if the

Rouse number is a large value (RN � 2:5) to a homogeneous vertical profile (pure

suspended load transport case) if the Rouse number is a small value (RN � 0:8). In

general, intermediate cases would show SSCs highest at the sediment–water interface

and declining logarithmically to the lowest value at the surface (Julien 2002).

In agricultural dominated watersheds, nutrient and sediment runoff are a widespread

concern (Bosch et al. 2014). In Lake Erie’s western basin, increased sediment load from

surrounding areas and its tributaries have affected water quality in the region (Cousino,

Becker, and Zmijewski 2015; Stow et al. 2015). A study done by Bosch et al. (2014) looked at

how varying levels of climate changewill affect sediment and nutrient runoffwithinwestern

Lake Erie watersheds, as it is predicted to receive more annual precipitation and more

intense springtime rain events with climate change. They found that surface sediment

runoff increases on average by 13% under a moderate climate change scenario with a

maximum of 39% under a more pronounced climate change scenario. The corresponding

increase in surface runoff would result in increased stream SSC by 9% or 23%, respectively

(Bosch et al. 2014).

Observations of spatial and temporal patterns of SSC in rivers are critical in monitoring

urban, industrial, and agricultural runoff aswell as predicting environmental changes thatmay

occur due to increased SSC. Satellite remote sensing has been widely used to map SSC in

larger waterbodies (e.g. oceans, lakes, estuaries, reservoirs) as field measurements are costly,

time consuming, and point based (Pavelsky and Smith 2009; Montanher et al. 2014; Qu 2014;

Gilvear and Bryant 2016). Studies have shown that there can be strong positive correlations

between SSC and spectral reflectance within the visible and near-infrared (NIR) portion of the

electromagnetic spectrum (Curran and Novo 1988; Chen, Curran, and Hansom 1992; Mertes,

Smith, and Adams 1993). However, these strong correlations tend to be derived based on

measurements in those large waterbodies where there is a more homogeneous mixture of

suspended sediment. On the other hand, in small- to medium-sized rivers where changes of

suspended sediments are temporally more dynamic and often spatially more heterogeneous,
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satellite remote sensing may not be always the most appropriate method. For instance,

remote sensing of SSC in small rivers and streams can be limited due to coarse spatial

resolution of satellite sensors (e.g. 30 m spatial resolution for Landsat 7/8; 250 m spatial

resolution for MODIS). While the Very High Resolution (VHR) satellite sensors (e.g. GeoEye-1,

WorldView-3, IKONOS) have the fine spatial resolution, they can be expensive to access,

require planning for a new area acquisition, or only having access to data that are weeks to

months old.

In recent years, the use of unmanned aerial vehicles (UAV/drone) as remote-sensing

platforms has become more popular. UAVs can provide high spatial and temporal resolu-

tions as they can be flown frequently at low altitudes (up to ~122m), and at a desired time.

They can be an essential tool to monitoring water quality in small rivers as spatial

resolution can be as fine as a few centimetres (Hird et al. 2017; Zeng et al. 2017).

Remote-sensing UAVs have been successfully used in various fields such as precision

agriculture (Adao et al. 2017), modelling surface imperviousness for urban runoff

(Tokarczyk et al. 2015), mapping river channels using lidar (Flener et al. 2013), analysing

landslide dynamics (Turner, Lucieer, and de Jong 2015), as well as monitoring submerged

aquatic vegetation and algae (Flynn and Chapra 2014). To our knowledge, no existing

remote-sensing research addresses monitoring SSC in river channels with UAVs.

The current study is conducted in an urban and environmentally sensitive area where

suspended sediment plays a critical role in the Lake Erie region. The overall goal is to assess

the feasibility of using a high-resolution (13 cm) multispectral MicaSense Sequoia sensor

(four bands at 530–570, 640–680, 730–740, and 770–810 nm) on-board a fixed-wing UAV to

map SSC within the Maumee River. The specific objectives are to (1) explore the capabilities

of a UAV to accurately estimate suspended sediments at multiple depths in small rivers and

(2) evaluate which spectral bands are needed to establish an empirical relationship for

mapping SSC at multi-depth intervals in the water column. Water samples are collected at

15 cm (0.5 ft), 61 cm (2 ft), 91 cm (3 ft), and 182 cm (6 ft), and cumulative SSC values (0–15,

0–61, 0–91, 0–182 cm) are correlated with the remote-sensing information. The approach

depicts the cumulative SSC with depth as being observed by the sensors from above a

surface water. This means that the field SSC measurements collected at a given depth must

consider the SSC measurements in the water above the measured depth. The depths were

chosen based on expected differences of SSC and on the depth profile of the river that

ranges from 7 m in the upstream area to 6 m in the downstream area.

2. Methods

2.1. Study site

This study is conducted in the Western Basin of the Lake Erie region, Ohio, USA (Figure 1).

The study area is a portion of the Maumee River in downtown Toledo (Figure 2(a)) that is

approximately 1.9 km in length. The Maumee River drains the largest watershed (about

17,060 sq. km) in the Lake Erie region and enters the lake at Maumee Bay in Toledo. The

Maumee River watershed’s land use consists of approximately 78% agriculture, 11% urban,

7% forest, 2%wetlands, and 1%grasslands (EPA 2008). TheMaumee River contributes 3% of

the water flowing into Lake Erie’s western basin (Moorhead, Bridgeman, and Morris 2008)

but supplies about half of the sediment discharged into the lake (Cousino, Becker, and

INTERNATIONAL JOURNAL OF REMOTE SENSING 3



Zmijewski 2015). Industrialization and agriculture in the surrounding areas have impacted

the Maumee River and impaired water quality due to contaminants (Kahl et al. 2014). Much

of the contaminated sediment is a result of agriculture runoff upstream (Stow et al. 2015).

Suspended sediments and solids within the river are typically clay sized (or smaller) particles

(Myers and Metzker 2000). The lower Maumee River has been identified by the EPA

Figure 1. Location of the Western Basin of Lake Erie and Maumee River. The Maumee River
Watershed is the area denoted by the dashed line.

Figure 2. (a) The area of study on the Maumee River in downtown Toledo, Ohio, USA; (b) individual
water sampling locations. Location 1 is on the upstream end of the reach; location 21 is on the
downstream end, closest to Maumee Bay.

4 M. D. LARSON ET AL.



(Environmental Protection Agency) as an Area of Concern which means it is a waterbody

where beneficial uses of water resources have been significantly impacted by anthropo-

genic developments (USGS 2000; Cousino, Becker, and Zmijewski 2015). Deposition of

sediment from the Maumee River affects the Port of Toledo and aquatic resources in the

western basin of Lake Erie (Ohio Lake Erie Commission 1998). For the Maumee River, more

than 870,000 m3 of sediment is dredged every year, which costs upwards of $2 million

annually (Cousino, Becker, and Zmijewski 2015). Accurately mapping SSC on a frequent

basis can help improve environmental policies as well as dredging practices.

2.2. Field measurements

Field measurements included water samples and surface reflectance taken on 15 October

2016 concurrently with UAV flights. Weather conditions were optimal with a temperature of

12.8°C, light winds of about 6.4 km h−1 out of the southwest, and high visibility.

At each sampling point (Figure 2(b), Table 1), a 1 l LaMotte Van Dorn water sampler was

lowered to a depth of 15 cm. The sampler was left at that depth for approximately 10 s to

ensure water was flowing through the sampler. The sampler was closed, brought back to the

surface, and transferred into a sterile 1 l high-density polyethylene bottle. Sampler was

washed with clean water between samples and process was repeated for depths of 61, 91,

and 182 cm. Location, bottle number, and depth of sample were recorded. Secchi disk

measurements were taken as an indicator of visual water clarity. The Secchi disk was slowly

lowered down into the water column until the black and white disk disappeared from visual

view and this depth was recorded.

Surface reflectance at each location was measured using a Spectral Evolution RS-3500

portable spectroradiometer approximately 100 cm above the water surface at a spatial

resolution of approximately 50 cm. The spectroradiometer collects 1024 discrete measure-

ments of reflected energy that ranges from 346.2 to 2505.4 nm (~2 nm average spectral

Table 1. Latitudes and longitudes of water sample locations.

Location Latitude (°) Longitude (°)

1 41.63505 −83.53234
2 41.63601 −83.53229
3 41.63768 −83.53288
4 41.63904 −83.53299
5 41.64017 −83.53337
6 41.64195 −83.53311
7 41.64391 −83.53264
8 41.64567 −83.53240
9 41.64627 −83.53200
10 41.64668 −83.53158
11 41.64765 −83.53159
12 41.64826 −83.53096
13 41.64886 −83.53046
14 41.64942 −83.53021
15 41.65066 −83.52908
16 41.65256 −83.52665
17 41.65334 −83.52526
18 41.65379 −83.52448
19 41.65407 −83.52424
20 41.65616 −83.52192
21 41.65419 −83.52323
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resolution). Calibration accuracy is ±5% at 400 nm, ±4% at 700 nm, and ±7% at 2200 nm

(Spectral Evolution 2017). Preprocessing of the in situ hyperspectral reflectance data was

automatically done using the DARWin SP data acquisition software installed in the hand-

held data logger. The spectroradiometer also recorded locations of the field measurements

(±2 m accuracy) using its own global positioning system (GPS). For this study, 404 spectral

bands from the spectroradiometer between the wavelengths of 350 and 900 nmwere used

for analyses to compare with the UAV measurements.

2.3. Laboratory processing

Water samples were brought back to the laboratory for the SSC analyses (Figure 3(a)). SSCs

were measured using USEPA Method 160.2 (Qu 2014) using GE Healthcare Whatman Grade

934-AH RTU 42.5 mm Microfiber filters. SSC was quantified by filtering a well-mixed water

sample from each location (0.25 l) through a pre-dried and pre-weighed glass microfiber

filter (Figure 3(b)). The sediment residue retained on the filters was dried in a drying oven at

103°C for 8 h, then weighed, re-dried, and weighed again for consistency (Figure 3(c)).

Figure 3. USEPA Method 160.2, Residue (Gravimetric) suspended solid concentration (SSC) quanti-
fication. (a) organization of river water samples being prepared for SSC filtering. (b) water sample
that has just been filtered through a 42.5 mm microfiber filter. (c) filters in oven at 103°C. Each label
on the filter tins represents the starting weight of that particular filter.

6 M. D. LARSON ET AL.



2.4. UAV sensor

The MicaSense Parrot Sequoia multispectral sensor was specifically built for the use of a

drone platform. The Sequoia has four spectral bands (green, red, red edge [RE], and NIR) that

have a resolution of 13 cm per pixel at 122 m above ground level and a radiometric

resolution of 10 bits with a global shutter (Table 2). A sunshine sensor allows the camera

to be self-calibrated. The Sequoia sensor is an independent sensor that can be mounted on

fixed wing (e.g. Sensefly eBee) or multi-rotor drones (e.g. DJI Phantom series).

In this study, the MicaSense Parrot Sequoia multispectral sensor was used onboard a

Sensefly eBee fixed wing drone over the study area (Figure 2(b)). For the first drone flight

(locations 6–15), there were 728 separate images captured and for the second flight

(locations 16–21), there were 212 images (Figure 2(b)). The limitation due to the urban

setting and to the proximity of urban features to the river, several points were lost in the

process of georeferencing over the water, and this caused some limitation in the number

of sampling points. For instance, the drone flight over locations 1–5 did not capture

enough land cover that is necessary for georeferencing of the images acquired over the

river, and thus, no final images were produced over these points. Pix4D mapper software

was used to stich and process the images using the drone’s GPS information and to

generate reflectance measurements. The process requires some fixed targets (e.g. 20–30%

land cover learned from our experience) to be able to stich and georeference the images.

The flight over locations 6–15 had the most complete set of images and data points and

therefore is used as a representative data set in this study.

2.5. Statistical analyses

Field hyperspectral (spectroradiometer)measurements were aggregated spectrally in order to

simulate the bands available on the Sequoia sensor. Both aggregated field and drone

reflectance data were used in the linear regression models that considered (1) single bands,

(2) band ratios, and (3) combination of single bands and band ratios. Single band and band

ratios were plotted against cumulative SSC with depth (0–15, 0–61, 0–91, 0–182 cm) using

Origin Pro graphing software. Single bands used were green, red, RE, and NIR (Table 2).

Stepwise regression models with forward selection were used in Minitab 17 to develop the

relationships based on multiple bands that allowed the combination of single bands and

band ratios (Vincent 2000; Pavelsky and Smith 2009; Qu 2014). The following simple band

ratios were used in the analyses: green/red, green/RE, green/NIR, red/RE, red/NIR, and RE/NIR.

For the regression analyses, default settings for alpha-to-enter (αE) and alpha-to-remove (αR)

significance values were set to 0.15 (p < 0.15), for deciding when to enter and remove a

predictor from the model.

Table 2. UAV Sequoia sensor characteristics.

Band Spectral region Wavelength range (nm) Resolution (cm)

1 Green 530–570 13
2 Red 640–680
3 RE 730–740
4 NIR 770–810

RE: Red edge; NIR: near-infrared.

INTERNATIONAL JOURNAL OF REMOTE SENSING 7



Linear regression models were analysed at 95% (0.05) confidence interval using the

adjusted coefficients of determination (R2adj) to compare results. The output of the analyses

provided numerous equations with ranked R2adj values, and the highest R2adj values were

used as the criteria for different water depths. R2adj was chosen over R2 (coefficient of

determination) as it considers the number of predictors in the model as well as only

increases if the independent variables affect the dependent variable.

Other studies have shown that SSC and spectral response can be linear, log-linear,

exponential, or logarithmic (Teodoro, Veloso-Gomes, and Goncalves 2007; Pavelsky and

Smith 2009; Chen et al. 2014; Montanher et al. 2014). For the purpose of this study, linear

regressionmodels (stepwise regressionmodel with forward selection) were chosen for model

development due to its computational efficiency in selecting a model from a number of

predictor variables and to reduce autocorrelation and multicollinearity (Pereira et al. 2017).

Durbin–Watson statistic (d) was calculated for each regression model to test for autocorrela-

tion and independence of variables within the model. The calculated d value is compared to

upper (dU) and lower (dL) critical value limits based on howmany variables are in themodel. If

d is greater than dU, the variables are not correlated with one another. If d is less than dL,

autocorrelation exists between the variables. However, if d falls between dL and dU, test for

autocorrelation is indeterminate.

Given the small sample sizes, the Leave-Out-One Cross-Validation (LOOCV) analysis was

conducted to examine the predictive accuracy of the model (Minitab 2018). LOOCV is a

specific form of cross-validation where, using an iterative approach, one data point is treated

as a test set while the remaining points are considered as a training set. The analysis was done

using ANOVA model between the mean square errors (MSE) of the predictive model (MSEP)

and each iteration of training data (MSET). The robustness of the model was examined using

the test data.

3. Results

The spatial trend of SSC along the river, as observed in Figures 4(a)-(d), shows the overall

increase in SSC downstream towards the mouth of the river at each depth (15, 61, 91, and

182 cm). The mean values of SSC between the sampling points vary significantly in the

one-way ANOVA test (p = 0.000), ranging from 33.6 mg l−1 at a depth of 91 cm to a maximum

of 68.5 mg l−1 at a depth of 182 cm (Table 3). The trends (rate of change and slope) generated

for each depth are similar with a slightly higher variability at a depth of 91 cm. The vertical

distribution of SSC, on the other hand, is relatively homogenous. The difference between the

mean values is not significant in the one-way ANOVA test (p < 0.13) suggesting that the

182 cm water column is relatively homogenous but somewhat denser at a depth of 182 cm.

The mean values of SSC at 15 and 61 cm are approximately the same at 52.2 and 52.0 mg l−1,

respectively. However, SSC increases with depth to 55.0 mg l−1 (91 cm) and to a maximum

mean value of 56.3 mg l−1 (182 cm). All the water samples were taken within the dredge

channel which had amaximum depth of 6–7m. Visual clarity, measured by Secchi disk depth,

remains relatively constant between 24 and 31 cm at all locations.

Field hyperspectral measurements exhibit a clear trend for water samples with different

SSC (Figure 5). With minor exceptions, reflectance increases as SSC increases for all wave-

lengths. Only at wavelengths of about 375 and 875 nm, spectral profiles for SSC of 53.5 and

8 M. D. LARSON ET AL.
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60.5 mg l−1 are of the same reflectance or cross minimally. The highest reflectances are

observed within the green–red spectral region with the peak at 589 nm while minimal

Table 3. Individual and cumulative SSC collected on 15 October 2016.

Individual depth SSC (mg l−1) Cumulative SSC (mg l−1)

Location Secchi disk depth (cm) 15 cm 61 cm 91 cm 182 cm 0–61 cm 0–91 cm 0–182 cm

1 31 42.8 40.8 33.6 43.2 83.6 117.2 160.4
2 27 44.8 47.2 50.0 52.4 92.0 142.0 194.4
3 24 42.5 46.0 46.5 44.0 88.5 135.0 179.0
4 31 44.5 43.5 53.5 55.5 88.0 141.5 197.0
5 27 42.5 46.0 56.5 54.5 88.5 145.0 199.5
6 31 55.5 61.5 64.4 62.5 117.0 181.4 243.9
7 31 64.5 48.0 59.0 58.5 112.5 171.5 230.0
8 27 56.5 53.5 58.5 55.5 110.0 168.5 224.0
9 24 57.5 54.0 57.5 58.5 111.5 169.0 227.5
10 27 55.0 56.0 61.0 68.5 111.0 172.0 240.5
11 31 61.0 53.5 53.5 56.0 114.5 168.0 224.0
12 31 45.0 44.0 43.0 45.0 89.0 132.0 177.0
13 31 43.0 46.5 54.0 55.5 89.5 143.5 199.0
14 24 57.5 54.0 50.0 53.5 111.5 161.5 215.0
15 31 58.0 61.0 57.5 60.5 119.0 176.5 237.0
16 31 59.0 54.5 59.0 61.5 113.5 172.5 234.0
17 27 58.5 55.5 64.5 58.0 114.0 178.5 236.5
18 31 51.5 53.0 55.0 55.0 104.5 159.5 214.5
19 24 47.0 48.0 58.5 59.5 95.0 153.5 213.0
20 27 58.5 66.5 64.5 66.0 125.0 189.5 255.5
21 31 51.0 60.0 54.0 58.5 111.0 165.5 223.5
Mean 28.5 52.2 52.0 55.0 56.3 104.2 159.2 215.5
Median 31.0 55.0 53.5 56.5 56.0 111.0 165.0 223.5
Std. dev. 2.9 7.2 6.8 7.4 6.5 12.8 18.8 24.5

Figure 5. Reflectance profiles of water samples with various SSC collected with the field
spectroradiometer.
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reflectances are observed in the NIR spectral region. A steep decrease between the green–red

and RE–NIR spectral regions is noticed.

Single bands in the linear regression perform poorly for both spectroradiometer and UAV

measurements (equations are not included). For aggregated field hyperspectral data at

different depths, the regression models yield very low R2adj values (R
2
adj<0:22). Out of all single

spectral bands, the highest linear R2adj is observed with the NIR spectral band (R2adj ¼ 0:22) at

0–182 cm depth suggesting, to a certain extent, the importance of NIR in the linear regression

models at this depth. For actual Sequoia spectral bands, a cumulative SSC provides low R2adj for

all single bands within the two top water depths (R2adj<0:16). Similarly to the aggregated field

hyperspectral data, the best, but still relatively low, values of R2adj are reached at deeper water

increments with NIR, at both depths, 0–91 and 0–182 cm (R2adj ¼ 0:34) when single bands are

considered.

Overall, R2adj are considerably higher for all depths when multibands are used in the

stepwise regression models, with the exception of R2adj ¼ 0:21 at a depth of 0–91 cm for

the aggregated hyperspectral data. No better R2adj was reached in the analyses for this data set

and no obvious reason for this anomaly is found (Table 4). The trend of the equations

involving NIR with depth is obvious in the stepwise regression analyses for both hyperspectral

sensor and UAV. While NIR band is included in the equations at a depth of 0–182 cm for

aggregated hyperspectral data, for the UAV data, it is already included at a depth of 0–61 cm

as well as at depths of 0–91 and 0–182 cm (Tables 4 and 5). Furthermore, for field hyperspec-

tral data, 0–15 and 0–182 cm have the best linear regressionmodels with R2adj of 0.69 and 0.71,

respectively (Table 4). No obvious trend of R2adj with water depth is observed.

For UAV Sequoia sensor data, R2adj increases from 0.32 at a depth of 0–15 cm to 0.42 at a

depth of 0–61 cm and then increases to 0.56 at a depth of 0–91 cmwhile staying unchanged

at a depth of 0–182 cm (Table 5). There is no difference between depths of 91 and 182 cm,

suggesting that ~91 cm can be an optimal depth for UAV Sequoia sensors. Interestingly, the

best linear models for the UAV sensor (Table 5) only consider the simple ratio that includes

red–RE–NIR wavelengths. No green band and no single band factors are included in the

Table 4. Linear regression equations between SSC measurements and aggregated field spectro-
radiometer data.

Depth (cm) Equation R2adj d

0–15 SSC (mg l−1) = −151.2 + 384 × RE + 173.9 × (green/red) 0.69 2.59
dL = 0.35
dU = 1.49

0–61 SSC (mg l−1) = −143.2 + 629 × RE + 202.6 × (green/red) 0.61 2.72
dL = 0.35
dU = 1.49

0–91 SSC (mg l−1) = 235.0 − 37.8 × (red/RE) 0.21 1.98
dL = 0.50
dU = 1.00

0–182 SSC (mg l−1) = −245 + 1369 × NIR + 372 × (green/red) 0.71 3.11
dL = 0.35
dU = 1.49

Spectral bands are as follows: green 530–570 nm, red 640–680 nm, red edge (RE) 730–740 nm, near-infrared (NIR)
770–810 nm.
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equations (Table 5). In all cases, the Durbin–Watson tests indicate that there was no

autocorrelation between the variables and that they are independent of one another.

Equations presented in Table 5 were used to create SSC maps at each of the four

cumulative water depth increments (Figures 6(a)-(d)). At a depth of 0–15 cm, most of the

river has cumulative SSC around 30–70 mg l−1. The UAV sensor captures some of the

variability and increased SSC (around 90 mg l−1) values along the river bank. This increased

cumulative SSC is also observed and more pronounced along the bank at depths of 0–91

and 0–182 cm (Figures 6(c) and (d), respectively).

The LOOCV analysis, conducted to examine the predictive accuracy of the empirical

models developed for different depths, shows no significant differences between the

predictive MSEP and MSET calculated for each iteration of training data (p-values = 0.488–

0.830; significance level of 0.05) (Table 6). This confirms the predictive validity of the

proposed models when generalized over a number of points. The smallest MSE values are

observed at a depth of 0–15 cm and the errors gradually increase towards a depth of

0–182 cm, where the MSE and standard deviation (SD) of the errors become considerably

higher. However, the model performs poorly over the single data points. The MSE values for

the test points are highly variable and random.

4. Discussion

Using the concept of multibands and spectral ratios in empirical models based on the

regression analyses is known for some time (Vincent et al. 2004; Olmanson et al. 2016;

Pereira et al. 2017; Wang et al. 2017). With UAVs set to become more widely used across

various fields, many existing concepts, statistical approaches, and algorithms should be

validated and adjusted to UAV characteristics and capabilities to acquire spectral properties.

The results in this study show an obvious advantage of using multiple bands or simple band

ratios over a single band approach for UAV data. The advantage of using band ratios is to help

supress the effects of atmospheric conditions and the bidirectional reflectance distribution

function effects including the Sun glint on the water’s surface recorded in the spectral

response (Doxaran, Froidefond, and Castaing 2003; Sokoletsky et al. 2016). The impact of

noise in data is reduced emphasising the spectral information of water properties.

Table 5. Linear regression equations between SSC measurements and UAV data.

Depth (cm) Equation R2adj d

0–15 SSC (mg l−1) = 142.7 − 53.8 × (red/RE) 0.32 2.16
dL = 0.50
dU = 1.00

0–61 SSC (mg l−1) = 226.6 − 231.9 × (red/NIR) 0.42 2.20
dL = 0.450
dU = 1.00

0–91 SSC (mg l−1) = 350.1 − 365 × (red/NIR) 0.56 2.05
dL = 0.50
dU = 1.003

0–182 SSC (mg l−1) = 474.2 − 495 × (red/NIR) 0.56 2.03
dL = 0.50
dU = 1.00

These equations were used to make SSC maps of the Maumee River. Spectral bands are as follows: green 530–570 nm,
red 640–680 nm, red edge (RE) 730–740 nm, near-infrared (NIR) 770–810 nm.
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A general shift of wavelengths from the green–red to RE–NIR spectral range with depth in

the regression equations is not just obvious within each sensor but also between the sensors.

While the spectroradiometer-related equations incorporate a wider range of bands (from

green to NIR) and incorporate NIR at a depth of 0–182 cm, the UAV-related algorithms include

Figure 6. UAV-based cumulative SSC maps of the Maumee River in downtown Toledo. (a)
Cumulative SSC from 0 to 15 cm depth. Zoomed in section is of the boat used for water sampling.
Increased SSC is detected behind the boat as the propeller is mixing up the water; (b) cumulative
SSC from 0 to 61 cm depth; (c) cumulative SSC from 0 to 91 cm depth; (d) cumulative SSC from 0 to
182 cm depth. Equations used for each depth are shown in Table 5.
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a narrower band range (from red to NIR), resembling equations at a depth of 0–61 cm and

below, and having constant R2adj below a depth of 0–91 cm.While the spectroradiometer has a

better potential of capturing SSC at deeper depths, the resembling equations and constant

R2adj beyond the depth of 0–61 cm suggest that the UAV sensor has limited capabilities of

capturing SSC with depth. Although no algae was observed in the water during the field

campaign, the green band included in the spectroradiometer-related equations may suggest

some presence of algae in the near-surface water layer that was not captured by the UAV

sensor.

There is a progressive increase in spectral reflectance with an increase of SSC (Lodhi et al.

1998; Shen et al. 2010). For clear water, it is expected that the red–RE–NIR wavelengths

become more absorbed and thus less reflective with depth than green wavelength. On the

other hand, for turbulent water, higher SSC exhibits higher reflectance in all optical

wavelengths, especially in the red and NIR wavelengths of the spectrum (Doxaran et al.

2002; Sokoletsky et al. 2016). With the cumulative increase of SSC from the surface to a

depth of 182 cm, the progressive increase of SSC is observed, from 104.2 to 215.5 mg l−1

(Table 3), and it is the increase of SSC that most likely causes the wavelength shift towards

RE and NIR with depth. Also, somewhat higher than usual (in October), SSC contributes to a

general trend of increasing reflectance in all wavelengths. Even though the weather on this

particular day was clear with light winds, it was likely that the relatively high SSC, when

compared with our previous field measurements in the summer (mean: 46–49 mg l−1 [18

May 2016], 11.5–16.8mg l−1 [3 June 2016], 20.8–22.7mg l−1 [19 June 2016]), was due to time

of year (Bosch et al. 2014; Eder et al. 2014). Land use of areas upstream of sampling locations

is predominantly used for agriculture. Crops are commonly harvested in early October, and

exposed soil is more susceptible to sediment runoff during this period (Bosch et al. 2014).

The indications of limiting capabilities of the UAV sensor to capture SSC at a deeper

depth could be due to several reasons such as the impact of the atmosphere and glint

effect, coarser spectral resolution, as well as too small spatial resolution (13 cm) when

compared with the spectroradiometer (50 cm). It is surmised that 13 cm is not an optimal

spatial resolution to capture SSC at deeper depths given that the georeferencing process of

UAV data is still a research challenge. The roughness of the water can produce glitter, which

can backscatter more light into the sensor increasing the noise in an image.

The field SSC measurements suggest insignificant difference between measured mean

SSC within the water column (Table 3), and almost identical spatial trends of SSC at each

depth along the river (Figure 4). The water column is essentially homogenous (known as

pure suspended load transport conditions) although the values are increasing slightly from

a water surface towards a depth of 182 cm. In reality, remote-sensing data should match

Table 6. The Leave-Out-One Cross-Validation (LOOCV) analysis: Mean Square Error of the predictive
model (MSEP) and training data (MSET).

Training data Predictive model ANOVA MSEP − MSET

Depth (cm) MSET (mg l−1) SD (mg l−1) MSEP (mg l−1) p-Value

0–15 27.52 7.54 28.16 0.830
0–61 46.15 14.46 48.41 0.666
0–91 69.45 19.83 73.05 0.616
0–182 127.74 32.94 135.27 0.488

SD represents standard deviation of MSET. p-Value is based on the ANOVA analysis between MSEP and MSET.

14 M. D. LARSON ET AL.



cumulative SSC values with increasing depth, because the response at a depth of 182 cm is

the combined effect of the response at depths of 15, 61, 91, and 182 cm.

The local SSC variations could commonly occur due to the transient effects of turbulent

eddies which are bringing high suspended sediment water upwards and low SSCs down-

wards (Julien 2002). Eddies are commonly generated near flow boundaries (e.g. near the

channel bed) and surfacing near the shore can be expected due to friction with shore

features (e.g. rocks or submerged logs) (Yalin 1992; Julien 2002). This may be the reason for

the low R2adj (R
2
adj ¼ 0:21) observed for the spectroradiometer-related equations derived for

a depth of 0–91 cm.

General trend of SSC increases towards the mouth of the river downstream has been

expected as more sediment is accumulating at the mouth before being deposited in

Maumee Bay. In the UAV suspended sediment maps, extremely high SSC was detected

along the eastern edge of the river at depths of 15, 91, and 182 cm. A plausible cause of the

increased SSC at the bottom of Figure 6 is due to the sediments influent that comes from

the nearby construction site where the new International Park Storage Basin project started

prior to the data collection (ToledoWaterways Initiative 2017). A way to visually examine the

accuracy of the SSC map is by observing the water sampling boat, present at each map (as

enlarged in Figure 6(a)) as well as the increase in SSC likely due to interaction between the

propeller andwater. When the propeller is engaged, it effectivelymixes the upper portion of

the water column and can cause increased local SSC for a finite period of time.

Some uncertainties should be recognized in this study. Loss of some points due to low land

coverage in the images has limited this study to a certain extent. Some further improvements

such as more precise georeferencing, which represents an ongoing challenge concerning

UAVs data acquisition, are needed. Although the aggregation of hyperspectral bands may

affect the selection of bands used in the algorithms, it does not have a major impact on the

results. While water samples and field hyperspectral measurements were taken at the same

time of UAV flights, the actual image acquisition and the collection of field hyperspectral

measurementswere severalminutes apart. Thismay cause some uncertainties in the results as

water surface roughness may change on a matter of seconds at a given location. The blue

band was not available in this study; however, it is not expected that this band would provide

better results, as it is commonly not critical to the SSC detection. The results in this study are

derived based on a 1 day field campaign and further data collection should be done in future

studies to help verify the results.

Overall, the study presents a pioneering effort to contribute to understanding how new

low cost high spatial and temporal resolution sensors canmonitor SSC in small/medium-sized

rivers. The Sequoia sensor is widely available and assessable to researchers; thus, helping to

understand its performance over water is critical to future studies.

5. Conclusion

This study explored the capabilities of the MicaSense Parrot Sequoia multispectral sensor

onboard a Sensefly eBee UAV of capturing SSC in the Maumee River at multiple depth

intervals (15, 61, 91, and 182 cm). The field hyperspectral spectroradiometer was used to

collect field reflectance measurements and water samples were collected to measure SSCs

using USEPA Method 160.2. The simple linear and stepwise regression models showed the

advantage of multiple bands and band ratios over single bands used in the models for both
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spectroradiometer and UAV sensor. The results suggested somewhat limited performance of

the Sequoia sensor when compared to the spectroradiometer. Generally, the R2adj values were

lower for the UAV data; the regression equations become similar at and below a depth of

0–61 cm, and R2adj become constant below a depth of 0–91 cm suggesting that ~91 cm may

be an optimal depth for UAV under given conditions. A general shift of wavelengths with

depth was observed in themodelling equations within each sensor and between the sensors.

While the spectroradiometer-related equations were sensitive to a wider spectral range (from

green at the surface to NIR at a depth of 0–182 cm), the UAV-related equations were

insensitive to the green band and they included a narrower spectral range (from red to NIR)

over all depth increments. The indications of limiting capabilities of the UAV sensor could be

due to several reasons such as the impact of the atmosphere and glint effect, coarser spectral

resolution, as well as too small spatial resolution, which may be related to imprecision in

georeferencing of the UAV images.
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