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Abstract. Designated verifier signatures were introduced in the middle of the 90’s by Jakobsson,
Sako and Impagliazzo, and independenty patended by Chaum as private signatures. In this setting,
a signature can only be verified by a unique and specific user. At Crypto’03, Desmedt suggested
the problem of generalizing the designated verifier signatures. In this case, a signature should be
intended to a specific set of different verifiers. In this article, we provide a formal definition of
multi-designated verifiers signatures and give a rigorous treatment of the security model for such
a scheme. We propose a construction based on ring signatures, which meets our definition, but
does not achieve the privacy of signer’s identity property. Finally, we propose a very efficient bi-
designated verifiers signature scheme based on bilinear maps, which protects the anonymity of
signers.

Keywords: multi-designated verifiers signatures, ring signatures, bilinear maps, privacy of signer’s
identity, exact security.

1 Introduction.

At Crypto’03 rump session [8], Desmedt raised the problem of generalizing the designated verifier
signatures (DVS) concept, introduced independently by Chaum in 1996 in the patent [7] and by
Jakobsson, Sako and Impagliazzo in [11]. In this model, the signature of a message is intended
to a specific verifier, chosen by the signer, who will be the only one able to verify its validity.
As pointed out in [15], this can be viewed as a “light signature scheme”. No one else than
the designated person can be convinced by this signature because he can also perform the
signature by himself. In particular, it does not provide the main property of usual signature
scheme: the non-repudiation. Such signature schemes have numerous applications in call for
tenders, electronic voting or electronic auction. The question opened by Desmedt was to allow
several designated verifiers. This new primitive that we call multi-designated verifiers signatures
(MDVS) may have many interests in a multi-users setting, for instance it seems promising for
the design of fair distributed contract signing.

As early as their paper [11], Jakobsson, Sako and Impagliazzo suggested an extension of
their protocol to multiple designated verifiers. As their single designated verifier scheme, it did
not catch the notion of privacy of signer’s identity, introduced in [13], without an additional
encryption layer.

Our contributions We propose a construction of multi-designated verifiers signatures where
the signer chooses to sign a message for a fixed numbers of specific designated verifiers. Basically,
the main security properties that we want to achieve are, in addition to the unforgeability, the
source hiding and the privacy of signer’s identity. These notions are formally defined in the
section 2.2. Our construction is based on the notion of ring signatures, defined in [15] by Rivest,
Shamir and Tauman. The idea of such a protocol is to produce a signature which has the property
that any verifier is convinced that this signature has been done by one member of a set of users,



but is not able to determine which one. Our scheme can be instanciated with the ring signature
introduced in [5] by Boneh, Gentry, Shacham and Lynn, or in [18] by Zhang, Safavi-Naini and
Susilo, based on bilinear maps as well as those proposed in [10] by Herranz and Sáez, or in [1]
by Abe, Ohkubo and Suzuki based on Schnorr signatures. Contrary to Desmedt’s suggestion in
his talk [8], the size of our signatures does not grow with the number of verifiers. Unfortunately,
in all cases, there is an encryption layer to achieve the notion of privacy of signer’s identity.
Therefore, there is a need for an n-party key agreement protocol for this encryption scheme.
In this case, the protocol looses its spontaneity and becomes less efficient. Finally, we propose
an efficient bi-designated verifiers protocol based on bilinear maps, which takes advantage of
Joux’s tripartite secret exchange [12], thanks to these pairings. In this particular case, there is no
need for the supplementary encryption layer to protect the anonymity of signers. The tripartite
setting is of recurrent interest in cryptography, and this scheme may find many applications.
We propose a formal definition for the security of such protocols. We prove that our schemes are
secure against existential forgery and do not reveal the signer’s identity under a chosen message
attack in the random oracle model.

2 Multi-Designated Verifiers Signatures.

In this section, we define the concept of multi-designated verifiers signatures and propose a
formal model of security for such a scheme.

2.1 Definition

Definition 1 (Weak Multi-Designated Verifier Signature Scheme). Let k and n be two
integers, a weak n-designated verifiers signature scheme MDVS with security parameter k is
defined by the following:

– a setup algorithm MDVS.Setup: it is a probabilistic algorithm which takes as input a secu-
rity parameter k and outputs the public parameters,

– a key generation algorithm for signers MDVS.SKeyGen: it is a probabilistic algorithm
which takes as input the public parameters and an entity1 A, and outputs a pair of keys
(pkA, skA),

– a key generation algorithm for the designated verifiers MDVS.VKeyGen: it is a prob-
abilistic algorithm which takes as input the public parameters, an entity B, and outputs a
pair of keys (pkB, skB),

– an n-designated verifiers signing algorithm MDVS.Sign: it is an algorithm which takes
as input a message m, a signing secret key skA, the n verifying public keys of the n entities
Bi, i ∈ [[1, n]] and the public parameters, and outputs a (B1, . . . , Bn)-designated verifier
signature σ of m. This algorithm can be either probabilistic or deterministic,

– an n-designated verifying algorithm MDVS.Verify: it is a deterministic algorithm which
takes as input a bit string σ, a message m, a signing public key pkA, a verifying secret
key skBi, for some i ∈ [[1, n]], and the public parameters and tests whether σ is a valid
(B1, . . . , Bn)-designated verifiers signature of m with respect to the keys pkA, pkB1 , . . . , pkBn.

It must satisfy the following properties:

1. correctness: a properly formed (B1, . . . , Bn)-designated verifiers signature must be accepted
by the verifying algorithm. Moreover, a putative signature is accepted by the verifying algo-
rithm using one verifying secret key if and only if it is accepted using each verifying secret
key;

1 Formally speaking, entities are modelled by probabilistic interactive Turing machines



2. unforgeability: given an entity A, it is computationally infeasible, without the knowledge
of the secret key of either A or those of all the Bi, i ∈ [[1, n]], to produce a (B1, . . . , Bn)-
designated verifiers signature that is accepted by the verifying algorithm;

3. source hiding: given a message m and a (B1, . . . , Bn)-designated verifiers signature σ of this
message, it is (unconditionally) infeasible to determine who from the original signer or the
designated verifiers all together performed this signature, even if all secrets are known.

In [11], Jakobsson et al. suggested a stronger notion of anonymity:

Definition 2 (Strong Multi-Designated Verifier Signature Scheme). Given two integers
n and k, a strong n-designated verifier signature scheme MDVS with security parameter k, is an
n-designated verifier signature scheme with security parameter k, which satisfies the following
additional property:

4. privacy of signer’s identity: given a message m and a (B1, . . . , Bn)-designated verifier sig-
nature σ of m, it is computationally infeasible, without the knowledge of the secret key of
one Bi for some i ∈ [[1, n]] or those of the signer, to determine which pair of signing keys
was used to generate σ.

2.2 Security Model

In this article, the proofs of security are carried in the random oracle model, proposed by Bellare
and Rogaway in [2]. Let B = {Bi, i = 1, . . . , n} be a group of n entities (the designated verifiers),
k be an integer and MDVS be a n-designated verifiers signature scheme with security parameter
k.

Security against existential forgery under chosen message attack. For digital signa-
tures, the strongest security notion was defined by Goldwasser, Micali and Rivest in [9] as
existential forgery against adaptive chosen message attack (EF-CMA). In the MDVS setting, an
EF-CMA-adversary A is given the n public keys of the Bi’s, as well as an access to the random
oracle(s) H and to a signing oracle Σ. As A cannot verify a signature by himself, one may give
him an access to a verifying oracle to check the validity of signatures, as for single designated
verifier signatures [17]. On the other hand, during the attack we allow the attacker to corrupt
up to n − 1 designated verifiers (and to do so adaptively), i.e. he has access to a corrupting
oracle Ξ to obtain the secret information of the corresponding corrupted verifier. Therefore he
is able to verify by himself a signature, and we can omit the verifying oracle. A is allowed to
query the signing oracle on the challenge message m but is supposed to output a signature of
the message m not given by Σ.

Definition 3 (Security against existential forgery). Let B be n entities, k and t be integers
and ε be a real in [0, 1], let MDVS be an n-designated verifiers signature scheme with security
parameter k. Let A be an EF-CMA-adversary against MDVS. We consider the following random
experiment:

Experiment Expef−cma
MDVS,A (k)

params R←− MDVS.Setup(k)

For i = 1, . . . , n do (pkBi , skBi)
R←− MDVS.VKeyGen(params, Bi)

(pkA, skA) R←− MDVS.SKeyGen(params, A)
(m, σ)← AH,Σ,Ξ(params, pkB1 , . . . , pkBn , pkA)

Return
n∨

i=1

MDVS.Verify(params,m, σ, pkA, skBi)



We define the success of the adversary A, via Succef-cma
MDVS,A(k) = Pr

[
Expef-cma

MDVS,A(k) = 1
]
.

MDVS is said to be (k, t, ε)-EF-CMA secure, if no adversary A running in time t has a success
Succef-cma

MDVS,A(k) ≥ ε.

Source hiding. As argued by the authors in [13], it is desirable, for DVS, to unconditionally
protect the identity of the signer, as in a ring signature setting. We refer the reader to [15] for
considerations about this property.

Privacy of signer’s identity under chosen message attack. We modify the notion of
privacy of signer’s identity introduced in [13] for DVS to fit in the multi-designated verifiers
signatures setting. As in the forgery model, the security is also against a chosen message attack
(PSI-CMA). If an adversary is given two keys including the one which generates the pair (m,σ),
then the possession of this pair (m,σ) should not give him an advantage in determining under
which of the two keys the signature was created. We consider a PSI-CMA-adversary A that runs
in two stages. In the find stage, it takes two public keys pk0 and pk1 and outputs a message
m? together with some state information I?. In the guess stage it gets a challenge signature σ?

formed by signing at random the message m? under one of the two keys, and must say which
key was chosen. In the case of CMA, the adversary has access to the signing oracles Σ0, Σ1, to
the verifying oracle Υ , and to the random oracle H. The only restriction of the attacker is that
he cannot query the pair (m?, σ?) on the verifying oracle.

Definition 4 (Privacy of signer’s identity). Let B be a set of n entities, k and t be integers
and ε be a real in [0, 1]. Let MDVS be an n-designated verifiers signature scheme with security
parameter k, and let A be a PSI-CMA-adversary against MDVS. We consider the following random
experiment, for r ∈ {0, 1}:

Experiment Exppsi-cma−r
MDVS,A (k)

params R←− MDVS.Setup(k)

For i = 1, . . . , n do (pkBi , skBi)
R←− MDVS.VKeyGen(params, Bi)

(pkA0 , skA0)
R←− MDVS.SKeyGen(params, A0)

(pkA1 , skA1)
R←− MDVS.SKeyGen(params, A1)

(m?, I?)← AH,Σ0,Σ1,Υ (find,params, pkB1 , . . . , pkBn , pkA0 , pkA1)
σ? ← MDVS.Sign(params,m?, skAr , pkB)
d← AH,Σ0,Σ1,Υ (guess,params,m?, I?, σ?, pkB1 , . . . , pkBn , pkA0 , pkA1)
Return d

where A has access to the oracles H, Σ0, Σ1 and Υ . We define the advantage of the adversary
A, via

Advpsi−cma
MDVS,A (k) =

∣∣∣Pr
[
Exppsi−cma−1

MDVS,A (k) = 1
]
− Pr

[
Exppsi−cma−0

MDVS,A (k) = 1
]∣∣∣ .

MDVS is said to be (k, t, ε)-PSI-CMA secure, if no adversary A running in time t has an
advantage Advpsi−cma

MDVS,A (k) ≥ ε.

3 Underlying problems

In this section, we briefly recall the security assumptions upon which are based our bi-designated
verifiers signature scheme.



Definition 5 (Admissible bilinear map [4]). Let (G,+) and (H, ·) be two groups of the
same prime order q and let us denote by P a generator of G. An admissible bilinear map is a
map e : G×G −→ H satisfying the following properties:

– bilinear: e(aQ, bR) = e(Q,R)ab for all (Q,R) ∈ G2 and all (a, b) ∈ Z2;
– non-degenerate: e(P, P ) 6= 1;
– computable: there exists an efficient algorithm to compute e.

Algebraic geometry offers such maps : the Weil and Tate pairings on curves can be used as
admissible bilinear maps [4].

Definition 6 (prime-order-BDH-parameter-generator [4]). A prime-order-BDH-
parameter-generator is a probabilistic algorithm that takes on input a security parameter k,
and outputs a 5-tuple (q, P, G, H, e) satisfying the following conditions: q is a prime with
2k−1 < q < 2k, G and H are groups of order q, P generates G, and e : G × G −→ H is an
admissible bilinear map.

Now we define the quantitative notion of the complexity of the problems underlying our
bi-DVS scheme, namely the Computational Diffie-Hellman Problem (CDH), and the Gap-
Bilinear Diffie-Hellman Problem (GBDH).

Definition 7 (CDH). Let Gen be a prime-order-BDH-parameter-generator. Let D be an ad-
versary that takes on input a 5-tuple (q, P, G, H, e) generated by Gen, and (X, Y ) ∈ G2 and
returns an element of Z ∈ G. We consider the following random experiments, where k is a
security parameter:

Experiment Expcdh
Gen,D(k)

(q, P, G, H, e) R←− Gen(k)
setup← (q, P, G, H, e)

(x, y) R←− [[1, q − 1]]2, (X, Y )← (xP, yP )
Z ← D(setup, X, Y )
Return 1 if Z = xyP , 0 otherwise

We define the corresponding success of D in solving the CDH problem via

Succcdh
Gen,D(k) = Pr

[
Expcdh

Gen,D(k) = 1
]

Let t ∈ N and ε ∈ [0, 1]. CDH is said to be (k, t, ε)-secure if no adversary D running in time
t has success Succcdh

Gen,D(k) ≥ ε.

The introduction of bilinear maps in cryptography gives examples of groups where the
decisional Diffie-Hellman problem is easy, whereas the computational Diffie-Hellman is still
hard. At PKC’01, Okamoto and Pointcheval proposed a new class of computational problems,
called gap problems [14]. These facts motivated the definition of the following problems:
Computational Bilinear Diffie-Hellman (CBDH): let a, b and c be three integers. Given
aP , bP , cP , compute e(P, P )abc.
Decisional Bilinear Diffie-Hellman (DBDH): let a, b, c and d be four integers. Given aP ,
bP , cP and e(P, P )d, decide whether d = abc mod q.
Gap-Bilinear Diffie-Hellman (GBDH): let a, b and c be three integers. Given aP , bP , cP ,
compute e(P, P )abc with the help of a DBDH Oracle.



Definition 8 (GBDH). Let Gen be a prime-order-BDH-parameter-generator. Let D be an
adversary that takes on input a 5-tuple (q, P, G, H, e) generated by Gen, and (X, Y, Z) ∈ G3

and returns an element of h ∈ H. We consider the following random experiments, where k is a
security parameter:

Experiment Expgbdh
Gen,D(k)

(q, P, G, H, e) R←− Gen(k)
setup← (q, P, G, H, e)

(x, y, z) R←− [[1, q − 1]]3, (X, Y, Z)← (xP, yP, zP )
h← DODBDH (setup, X, Y, Z)
Return 1 if h = e(P, P )xyz, 0 otherwise

where DODBDH denotes the fact that the algorithm D has access to a Decisional Bilinear Diffie-
Hellman oracle. We define the corresponding success of D in solving the GBDH problem via
Succgbdh

Gen,D(k) = Pr
[
Expgbdh

Gen,D(k) = 1
]
.

Let t ∈ N and ε ∈ [0, 1]. GBDH is said to be (k, t, ε)-secure if no adversary D running in
time t has success Succgbdh

Gen,D(k) ≥ ε.

4 Efficient weak-MDVS based on ring signatures.

Efficient construction based on ring signatures Let
Ring = (Setup, KeyGen, Sign, Verify) be a ring signature scheme as defined in [15]. The
only requirement concerning this ring signature scheme is that it is “discrete logarithm” based.
We mean that the public keys are elements of a unique group G, and the associated private
keys their discrete logarithm with respect to a unique generator P . Let B = {Bi, i = 1, . . . , n}
be a group of n entities (the designated verifiers), k be an integer and MDVS be our new
multi-designated verifiers signature scheme with security parameter k.

Setup: MDVS.Setup = Ring.Setup
SKeyGen: MDVS.SKeyGen = Ring.KeyGen. (PA, a) is the signer’s pair of keys.
VKeyGen: MDVS.VKeyGen = Ring.KeyGen. (PBi , bi) is a designated verifier’s pair of keys, for
each i ∈ [[1, n]].
Sign: A (B1, . . . , Bn)-designated verifiers signature σ of the message m ∈ {0, 1}∗ is produced

as follows: σ = Ring.Sign
(
m,PA,

n∑
i=1

PBi , a
)

Verify: MDVS.Verify(m,σ, PA, PB1 , . . . , PBn) = Ring.Verify
(
m,σ, PA,

n∑
i=1

PBi

)
By using a multi-party computation, all the Bi’s can cooperate to produce a multi-designated

verifier signature corresponding to the public key PB =
∑n

i=1 PBi = (
∑n

i=1 bi)P . This fact, in
addition to the natural property of source hiding of the ring signature, ensures this property
for the MDVS scheme.

Security arguments The unforgeability of MDVS is guaranted by the unforgeability of the
underlying ring signature scheme. The source hiding property comes naturally from the source
hiding of the ring signature. The so-built multi-designated verifier signature scheme does not
achieve the property of privacy of signer’s identity. This can be done by using an encryption
layer with an IND-CCA2 cryptosystem (see [13]). Therefore, there is a need for a n-party key
agreement protocol for this encryption scheme. In this case of strong-MDVS, the protocol looses
its spontaneity and becomes less efficient.



5 An efficient and secure strong bi-DVS Scheme

5.1 Description of the scheme B2DVS

We propose an efficient bi-DVS scheme, based on bilinear maps. The efficiency of this scheme
comes from the tripartite key exchange based on such maps and described by Joux in [12]. Let
us call B and C the designated verifiers. Let k ∈ N be the security parameter and Gen be a
BDH-prime order generator. Our new scheme B2DVS is designed as follows. It is derived from
our previous construction, instanciated with Boneh et al.’s ring signatures [5].

Setup: (q, P, G, H, e) is the output of Gen(k). Let [{0, 1}∗×H −→ G] be a hash function family,
and H be a random member of this family
SKeyGen: Alice picks randomly an integer a ∈ [[1, q − 1]] and computes the point PA = aP .
Alice’s public key is PA and the secret one is a.
VKeyGen: Bob (resp. Cindy) picks randomly an integer b ∈ [[1, q − 1]] (resp. c ∈ [[1, q − 1]])
and computes the point PB = bP (resp. PC = cP ). Bob (resp. Cindy)’s public key is PB (resp.
PC) and the secret one is b (resp. c)
Sign: Given a message m ∈ {0, 1}∗, Alice picks at random two integers (r, `) ∈ [[1, q − 1]]2,
computes PBC = PB + PC , u = e(PB, PC)a, and M = H(m,u`), sets QA = a−1(M − rPBC) and
QBC = rP . The signature σ of m is (QA, QBC , `)
Verify: Given m and σ, Bob (resp. Cindy) computes the value u = e(PA, PC)b (resp. u =
e(PA, PB)c), and M = H(m,u`). Finally, they test whether e(QA, PA)e(QBC , PBC) = e(M,P ).

Correctness and source hiding of B2DVS are straightforward.

Efficiency considerations Our bi-DVS scheme is very efficient in terms of signature gen-
eration, as there are essentially 3 scalar multiplications on a curve and 1 exponentiation in a
finite field to perform. The size of the signature is quite short, as it consists in just two points
on a curve and some additional random salt. Practically, the signature size is around 480 bits.
The computational cost of the verification is essentially the cost of 3 evaluations of the pairing.
However this remains very practical, as the computation of algebraic pairings become faster and
faster.

5.2 Security Proofs.

The method of our proofs is inspired by Shoup [16]: we define a sequence of games Game0,
Game1, . . . of modified attacks starting from the actual adversary. In each case, all the games
operate on the same underlying probability space: the public and private keys of the signature
schemes, the coin tosses of the adversary A, the random oracles H.

Theorem 1 (Unforgeability of B2DVS). Let k be an integer and A be an EF-CMA-
adversary, in the random oracle model, against the bilinear bi-designated verifiers signature
scheme B2DVS, with security parameter k, that produces an existential forgery with probability
ε = Succef−cma

B2DVS,A(k), within time t, making qH queries to the hash function H and qΣ queries to
the signing oracle.

Then, there exist ε′ ∈ [0, 1] and t′ ∈ N verifying

ε′ ≥
(

1
2
ε− qHqΣ + 1

2k

)2

and t′ ≤ 2
(
t + (qH + 2qΣ + O(1))TM + qΣTH

)
such that CDH

can be solved with probability ε′, within time t′. TM denotes the time complexity to perform a
scalar multiplication in G and TH the time complexity to perform an exponentiation in H.



Proof. We consider an EF− CMA-adversary A outputting an existential forgery (m?, σ?) with
probability Succef−cma

B2DVS,A(k), within time t. We denote by qH and qΣ the number of queries from
the random oracle H and from the signing oracle Σ. As the attacker can corrupt Bob or Cindy
(i.e. only one of the two designated verifiers) to obtain their secrets, he knows especially the
common key u = e(P, P )abc and therefore can check the validity of the signature by himself.

Let Rx = xP , Rxy = xyP be two elements in G for (x, y) in [[1, q − 1]]2. We construct a
machine which computes the point yP from these points. The CDH problem can be solved by
solving two instances of this previous problem (see [5]).

We start by playing the game coming from the actual adversary, and modify it
step by step, until we reach a final game whose success probability has an upper
bound related to solving this problem. In any Gamej , we denote by Forgej the event
B2DV S.Verify(params,m, PA, PB, PC , s, σ) = 1 for s = c or s = b.

Game0 The key generation algorithm for the verifiers is run twice and produces 2 pairs of keys
(b, PB) and (c, PC) and the key generation algorithm for the signer is run once and produces
(a, PA). The adversary A is fed with PA, PB and PC , and querying the random oracles H,
the signing oracle Σ and, corrupting Bob or Cindy, outputs a pair (m?, σ?). By definition,
we have Pr[Forge0] = Succef−cma

B2DVS,A(k).
Game1 We choose randomly an index i0 ∈ {B,C} and an integer α ∈ [[1, q−1]]. Let i1 ∈ {B,C}\{i0}.

We modify the simulation by replacing PA by Rx, and Pi0 by αRx − Pi1 The distribution
of (PA, PB, PC) is unchanged since Rx and α are randomly chosen. Therefore Pr[Forge1] =
Pr[Forge0].

Game2 In this game, we abort if, at any time, the forger corrupts the user i0. So we have :
Pr[Forge2] = 1

2Pr[Forge1].
Game3 In this game, we simulate the random oracle H. For any fresh query (m, v) ∈ {0, 1}∗ ×G to

the oracleH, we pick h ∈ [[1, q−1]] at random and compute M = hRxy. We store (m, v, h,M)
in the H-List and return M as the answer to the oracle call. In the random oracle model,
this game is clearly identical to the previous one. Hence, Pr[Forge3] = Pr[Forge2].

Game4 In this game, we only keep executions which output a valid message/signature
(m, (QA, QBC , `)) such that (m,u`) has been queried from H. This makes a difference only
if (QA, QBC , `) is a valid signature on m, while (m,u`) has not been queried from H. Since
H(m,u`) is uniformly distributed, the equality e(QA, PA)e(QBC , PBC) = e(H(m,u`), P )
happens with probability 2k. Therefore, |Pr[Forge4]− Pr[Forge3]| ≤ 2−k.

Game5 Finally, we simulate the signing oracle: for any m, whose signature is queried, we take at
random a2 ∈ [[1, q − 1]] and (l, r) ∈ [[1, q − 1]]2 and set a1 = r − a2α. If the H-List includes a
quadruple (m,ul, ?, ?) we abort the simulation, otherwise, we store in the H-List the quadru-
ple (m,ul, r, rRx) and once we have set QA = a1P and QBC = a2P , (QA, QBC , `) provides a
valid signature of m. If it does not abort, this new oracle perfectly simulates the signature.
As we abort with probability at most qH2−k, we have |Pr[Forge5]− Pr[Forge4]| ≤ qHqΣ2−k.

At the end of the game 5, the attacker produce a forgery (m?, Q?
A, Q?

BC), and by defini-
tion of the existential forgery, there is in the H-List a quadruple (m?, v?, h?,M?) such that
Ry = h?−1(Q?

A + αQ?
BC) is equal to yP . Thanks to the remark at the beginning of the proof,

the success to solve CDH is: Succcdh
Game5

(k) ≥
(

1
2Advef−cma

B2DVSB ,A −
qHqΣ+1

2k

)2
. ut

Theorem 2 (Privacy of signer’s identity in B2DVS). Let k be an integer and A be a PSI-
CMA-adversary, in the random oracle model, against the bi-designated verifiers signature scheme
B2DV S, with security parameter k, which has an advantage ε = Advpsi−cma

B2DVS,A(k), within time t,
making qH queries to the hash function H, qΣ queries to the signing oracle and qΥ queries to the

verifying oracle. Then, there exist ε′ ∈ [0, 1] and t′ ∈ N verifying ε′ ≥ ε

2
− qΥ

2k
− (qH + qΣ)qΣ

2k



and t′ ≤ t+((qH+qΣ)2+qH)(TDBDH +TH+O(1))+qΥ (3TP +TH+O(1))+qΣ(4TG+O(1)), such
that GBDH can be solved with probability ε′, within time t′. TDBDH denotes the time complexity
of the DBDH oracle, TH, TG, TP the time complexity to evaluate an exponentiation in H, a
scalar multiplication in G and a pairing.

Proof. Let X = xP , Y = yP , Z = zP be a random instance of GBDH. We build a machine
computing u = e(P, P )xyz thanks to a DBDH oracle.

Game0 This is the real attack game, in the random oracle model. We consider a PSI-CMA-adversary
A with advantage Advpsi−cma

B2DVS,A(k), within time t. Two pairs of keys (PB, b) and (PC , c) are
produced by the key generation algorithm for the verifiers, and two pairs of keys (PA0 , a0)
and (PA1 , a1) are produced by the key generation algorithm for the signers. A is fed with the
public keys PB, PC , PA0 , PA1 and outputs a message m? at the end of the find stage. Then
a signature is performed by flipping a coin b ∈ {0, 1} and applying the signing algorithm :
σ? = B2DV S.Sign(m?, ab, PB, PC). This signature is given to A which outputs a bit b? at
the end of the guess stage. The adversary has a permanent access to the random oracle H,
the signing oracles Σ0 and Σ1, and the verifying oracle Υ . We denote qH, qΣ0 , qΣ1 and qΥ

the number of queries to the corresponding oracles. We denote by Guess0 the event b? = b,
and use a similar notation Guessi in any Gamei. By definition, we have: 2 Pr[Guess0] =
1 + Advpsi−cma

B2DVS,A(k).
Game1 We pick at random an integer α ∈ [[1, q− 1]] and modify the simulation by replacing PA0 by

X, PA1 by αX, PB by Y and PC by Z. The distribution of (PA0 , PA1 , PB, PC) is unchanged
since (X, Y, Z) is a random instance of the GBDH problem and α is random. Therefore
Pr[Guess1] = Pr[Guess0].

Game2 In this game, we simulate the random oracle H and maintain an appropriate list, which we
denote by H-List. For any query (m, v) ∈ {0, 1}∗ ×H
• we check whether the H-List contains a quadruple (m, v,⊥,M). If it does, we output M

as the answer to the oracle call,
• else we browse the H-List and check for all quadruple (m,⊥, `, M) whether (X, Y, Z, v1/`)

is a valid Bilinear Diffie-Hellman quadruple. If it does, we output M as the answer to
the oracle call,
• otherwise we pick at random M ∈ G, record (m, v,⊥,M) in the H-List, and output M

as the answer to the oracle call.
In the random oracle model, this game is identical to the previous one. Therefore we get
Pr[Guess2] = Pr[Guess1].

Game3 In this game, we simulate the signing oracles Σ0 and Σ1: for any m, whose signature is
queried to Σi (i ∈ {0, 1}), by either the adversary or the challenger, we pick at random
(qA, qB) ∈ [[1, q − 1]]2, ` ∈ [[1, q − 1]] and computes M = qAPAi + qBPB, QA = qAαiP and
QB = qBP .
• If the H-List includes a quadruple (m,⊥, `αi, ?), we abort the simulation,
• else we browse the H-List and check for each quadruple (m, v,⊥, ?), whether (X, Y, Z, v1/`)

is a valid bilinear Diffie-Hellman quadruple. If it does, we abort the simulation,
• otherwise we add the quadruple (m,⊥, `αi,M) to the H-List and output (QA, QB, `) as

the signature of m.
Since, there are at most qH+qΣ messages queried to the random oracleH, the new simulation
abort with probability at most (qH+ qΣ)2−k. Otherwise, this new oracle perfectly simulates
the signature. Summing up for all signing queries, we obtain |Pr[Guess3]− Pr[Guess2]| ≤
(qH + qΣ)qΣ2−k.

Game4 We simulate the verifying oracle. For any triple message/signature/entity
(m, (QA, QB, `), Ai) (i ∈ {0, 1}), whose verification is queried



• we check whether the H-List includes a quadruple (m, ?, ?,M). If it does not, we reject
the signature,
• if the H-List includes a quadruple (m,⊥, `, M), we accept the signature if and only if

e(M,P ) = e(QA, PAi)e(QB, PB),
• if the H-List includes a quadruple (m, v,⊥,M), we accept the signature if

and only if (X, Y, Z, v1/l) is a valid bilinear Diffie-Hellman quadruple and
e(M,P ) = e(QA, PAi)e(QB, PB).

This simulation makes a difference only in the first step if (QA, QB, `) is a valid signature
on m, while (m,u`) has not been queried from H.
Since H(m,u`) is uniformly distributed, the equality M = H(m,u`) happens with probabil-
ity 2−k. Summing up for all verification queries, we get |Pr[Guess4]− Pr[Guess3]| ≤ qΥ 2−k.

Game5 In this game, in the challenge generation, we pick a bit b ∈ {0, 1} at random, and
(Q?

A, Q?
B, `?) ∈ G2 × [[1, q − 1]], output (Q?

A, Q?
B, `?) as the challenge signature of m, but do

not update the H-List. This final game is indistinguishable from the previous one unless
(m, v) where v = u`?

is queried from H by the signing oracle, the verifying oracle or the
adversary. The first case has already been cancelled in the game Game3, and by definition
of PSI-CMA security, the second case cannot occur, otherwise, the verifying query would be
the challenge signature.
The probability that v is queried from H by the adversary, is upper-bounded by the success
ε′ to solve the GBDH problem in time t′ less than

t + ((qH + qΣ)2 + qH)(TDBDH + TH + O(1)) + qΥ (3TP + TH + O(1)) + qΣ(4TG + O(1))

if we note TDBDH the time complexity of the DBDH oracle, TH, TG, TP the time complexity
to evaluate an exponentiation in H, a scalar multiplication in G and a pairing, since u = v1/`∗

or u = v1/α`∗ . Thus we get |Pr[Guess5]− Pr[Guess4]| ≤ ε′, and since in the game Game5, the
challenge signature gives A no information about b, we have Pr [Guess5] = 1/2.

Summing up the above inequalities, we obtain the claimed bounds. ut

Remarks:

– In the simulation, it is possible to abort as soon as the DBDH oracle returns valid when
requested on a quadruple (X, Y, Z, v1/`). Indeed, in this case v1/` gives the solution to our
instance of the GBDH problem.

– Note that in the simulation, we just need a decisional oracle which answers the (X, Y, Z, ζ) ∈
G3 ×H instances of the DBDH problem where (X, Y, Z) is fixed. Therefore, the PSI-CMA-
security of the scheme can be reduced to a weaker version of the GBDH problem.

6 Final Remarks and Conclusion.

We formally defined the new multi-designated verifiers signature primitive (suggested by
Desmedt in [8]) and its security model. We proposed an efficient generic construction for weak-
DVS schemes, which is based on “discrete-log”-ring signatures. The size of the signatures does
not grow with the number of verifiers. Unfortunately, to protect the signer’s anonymity, our
scheme needs an additional encryption layer. In the case of two designated verifiers, we pro-
posed a very efficient protocol based on bilinear maps, which achieves the property of privacy
of signer’s identity without encryption. In general, the encryption layer seems essential to catch
the property of privacy of signer’s identity , and it is an open problem to build a strong multi-
designated verifiers signature scheme without this layer. In a context of RSA signatures [6,15],
this construction can also be used, but besides the encryption layer, the participants Bi’s have
to generate a shared RSA key in the way of [3] for instance.
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