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Michael Böhlen1, Johann Gamper1, and Christian S. Jensen2

1 Free University of Bozen-Bolzano, Italy
{boehlen,gamper}@inf.unibz.it

2 Aalborg University, Denmark
csj@cs.aau.dk

Abstract. Business Intelligence solutions, encompassing technologies such as
multi-dimensional data modeling and aggregate query processing, are being ap-
plied increasingly to non-traditional data. This paper extends multi-dimensional
aggregation to apply to data with associated interval values that capture when the
data hold. In temporal databases, intervals typically capture the states of reality
that the data apply to, or capture when the data are, or were, part of the current
database state.
This paper proposes a new aggregation operator that addresses several challenges
posed by interval data. First, the intervals to be associated with the result tuples
may not be known in advance, but depend on the actual data. Such unknown
intervals are accommodated by allowing result groups that are specified only par-
tially. Second, the operator contends with the case where an interval associated
with data expresses that the data holds for each point in the interval, as well as
the case where the data holds only for the entire interval, but must be adjusted to
apply to sub-intervals. The paper reports on an implementation of the new oper-
ator and on an empirical study that indicates that the operator scales to large data
sets and is competitive with respect to other temporal aggregation algorithms.

1 Introduction
Real-world database applications, e.g., in the financial, medical, and scientific domains,
manage temporal data, which is data with associated time intervals that capture some
temporal aspect of the data, typically when the data were or is true in the modeled reality
or when the data was or is part of the current database state. In contrast to this, current
database management systems offer precious little built-in query language support for
temporal data management.

In step with the increasing diffusion of business intelligence, aggregate computation
becomes increasingly important. An aggregate operator transforms an argument relation
into a summary result relation. Traditionally this is done by first partitioning the argu-
ment relation into groups of tuples with identical values for one or more attributes, then
applying an aggregate function, e.g., sum or average, to each group in turn. For interval-
valued databases such as temporal databases, aggregation is more complex because the
interval values can also be used for defining the grouping of argument tuples.

In this paper we propose a new temporal aggregation operator, the Temporal Multi-
Dimensional Aggregation (TMDA) operator. It generalizes a variety of previously pro-
posed aggregation operators and offers orthogonal support for two aspects of aggrega-
tion: a) the definition of result groups for which to report one or more aggregate values
and b) the definition of aggregation groups, i.e., collections of argument tuples that are
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associated with the result groups and over which the aggregate functions are computed.
Our work builds on recent advances in multi-dimensional query processing [1–3] and
is the first work to leverage these techniques to interval-valued data, in this paper exem-
plified by temporal data. We provide an efficient implementation of the TMDA operator
with an average complexity of n log m, where n is the number of argument tuples and
m is the number of result groups. In experimental evaluations on large data sets, the
operator exhibits almost linear behavior.

Aggregation of temporal data poses new challenges. Most importantly, the time in-
tervals of result tuples can depend on the actual data and are not known in advance.
Therefore, the grouping of the result tuples can only be specified partially. Next, aggre-
gation should support what is termed constant, malleable, and atomic semantics of the
association between data and time intervals. For example, the association of a time in-
terval with an account balance is constant, meaning that the balance holds for each sub-
interval of the interval. In contrast, consider the association of a particular week with
the number of hours worked by an employee during that week, e.g., 40 hours. Here,
the association is malleable, as the 40 hours are considered an aggregate of the hours
worked by the employee during each day during that week. An association is atomic if
the data cannot be associated with modified timestamps. For example, chemotherapies
used in cancer treatment often prescribe a specific amount of a drug to be taken over a
specific time period. Neither the amount of the drug nor the time period can be modi-
fied without yielding a wrong prescription. All approaches so far support only constant
semantics. Finally, a temporal aggregation result might be larger than the argument rela-
tion. Specifically, for instantaneous temporal aggregates that are grouped into so-called
constant intervals, the result relation size can be twice that of the argument. To quantify
the result size, the paper defines the notion of an aggregation factor; and to control the
aggregation, the ability to specify fixed time intervals for the result tuples is included.

The rest of the paper is organized as follows. Section 2 studies related work and
Sect. 3 covers preliminaries. In Sect. 4, after an analysis of some aggregation queries,
we introduce the new TMDA operator. Section 5 presents the implementation of the
operator. In Sect. 6, we discuss various properties of this operator including computa-
tional complexity and expressiveness. Section 7 reports on an experimental study, and
Sect. 8 concludes and offers research directions.

2 Related Work
The notions of instantaneous and cumulative temporal aggregates have been reported
previously. The value of an instantaneous temporal aggregate at chronon t is computed
from the set of tuples that hold at t. The value of a cumulative temporal aggregate
(also called moving-window aggregate) at chronon t is computed from the set of tuples
that hold in the interval [t−w, t], w ≥ 0. Identical aggregate results with consecutive
chronons are coalesced into so-called constant intervals. Most research has been done
for instantaneous aggregates, e.g. [4, 5], and cumulative aggregates [6] and temporal
aggregates with additional range predicates [7] have received only little attention.

An early proposal by Tuma [8] for computing temporal aggregates requires two
scans of the input relation—one for the computation of the time intervals of the result
tuples and one for the computation of the aggregates.



A proposal by Kline and Snodgrass [4] scans the input relation only once, building
an aggregation tree in main memory. Since the tree is not balanced, the worst case
time complexity is O(n2) for n tuples. An improvement, although with the same worst
case complexity, is the k-ordered aggregation tree [4]. This approach exploits partial
ordering of tuples for garbage collection of old nodes.

Moon et al. [5] use a balanced tree for aggregation in main memory that is based on
timestamp sorting. This solution works for the functions sum, avg, and cnt; for min and
max, a merge-sort like algorithm is proposed. Both algorithms have a worst case com-
plexity of O(n log n). For secondary memory, an efficient bucket algorithm is proposed
that assigns the input tuples to buckets according to a partitioning of the time line and
also affords long-lived tuples special handling. Aggregation is then performed on each
bucket in isolation. The algorithm requires access to the entire database three times.

The SB-tree of Yang and Widom [6] supports the disk-based computation and main-
tenance of instantaneous and cumulative temporal aggregates. An SB-tree contains a
hierarchy of intervals associated with partially computed aggregates. With the SB-tree,
aggregate queries are applied to an entire base relation—it is not possible to include
selection predicates. The multi-version SB-tree [7] aims to support aggregate queries
coupled with range predicates. A potential problem is that the tree might be larger than
the input relation. Tao et al. [9] propose an approximate solution that uses less space
than the multi-version SB-tree. Both approaches are restricted to range predicates over
a single attribute, and the time interval of an input tuple is deleted once it is selected;
hence the result is not a temporal relation.

The existing approaches share three properties. First, the temporal grouping process
couples the partitioning of the time line with the grouping of the input tuples. The time
line is partitioned into intervals, and an input tuple belongs to a specific partition if its
timestamp overlaps that partition. Second, the result tuples are defined for time points
and not over time intervals. Third, they allow the use of at most one non-temporal
attribute for temporal grouping.

Our TMDA operator, which extends the multi-dimensional join operator [3] to sup-
port temporal aggregation, overcomes these limitations and generalizes the aggregation
operators discussed above. It decouples the partitioning of the timeline from the group-
ing of the input tuples, thus allowing to specify result tuples over possibly overlapping
intervals and to control the size of the result relation. Furthermore, it supports multiple
attribute characteristics. For an efficient implementation we exploit the sorting of the
input relation similar to what is done in the k-ordered tree approach [4].

3 Preliminaries
3.1 Notation
We assume a discrete time domain, DT , where the elements are termed chronons (or
time points), equipped with a total order <T . Calendar months with the order < satisfy
these requirements, and we use these as our time domain. A timestamp (or time inter-
val) is a convex set over the time domain and is represented by two chronons, [Ts,Te],
denoting its inclusive starting and ending points, respectively. We will use T as a short-
hand for [Ts,Te]. For timestamps, we introduce several relations: t ∈ T means that



chronon t is included in timestamp T . For two timestamps T and T ′, T ′ ⊆ T iff all
chronons in T ′ are also in T , and T ∩T ′ returns the set of chronons in both timestamps.
If T ∩ T ′ 6= ∅, we say that the two intervals overlap (or intersect).

A relation schema is a three-tuple S = (Ω, ∆, dom), where Ω is a non-empty, fi-
nite set of attributes, ∆ is a finite set of domains, and dom : Ω → ∆ is a function
that associates a domain with each attribute. A temporal relation schema is a rela-
tion schema with at least one timestamp valued attribute (the domain of timestamps
belongs to ∆). For the purpose of this paper, we define temporal relation schemas
R = (A1, . . . , An,T ) and G = (B1, . . . , Bm,T ). Note that the assumption that re-
lations have a timestamp attribute T is just for convenience. There is no implicit time
attribute, and all definitions are parametrized with a timestamp attribute. As usual, the
rename operator ρ can be used to adjust schemas as appropriate.

A tuple over schema S = (Ω, ∆, dom) is a function r : Ω → ∪δ∈∆δ, such that
for every attribute A of Ω, r(A) ∈ dom(A). A tuple is temporal iff its schema is
temporal. To simplify notation we assume an ordering of attributes and represent a
tuple as r = (v1, . . . , vn, t). An relation over schema R is a finite set of tuples over R,
denoted as r. We will also use a couple of shorthands: For a tuple r and an attribute A we
write r.A to denote the value of the attribute A in r. For a set of attributes A1, . . . , Am,
m < n, we define r[A1, . . . , Am] = (r.A1, . . . , r.Am).

3.2 Attribute Characteristics
We distinguish among three semantics of the association of a non-timestamp attribute
with a timestamp attribute. For a relation with schema (A1, . . . , An,T ) the attribute
characteristics wrt. T are given as CT = (c1, . . . , cn), where ci ∈ {c, m, a}. The
values c, m, and a denote constant, malleable, and atomic characteristics, respectively.
For example, CT = (c, m) for the schema (N ,H ,T ) means that N has a constant
characteristic and H has a malleable characteristic. If several temporal attributes are
used, e.g., valid time and transaction time, a non-timestamp attribute can have different
characteristics for the two timestamps. For the rest of the paper, we use only one time
attribute T , and C refers to the characteristics wrt. T .

Definition 1. (Adjustment of Attribute Values) Let r = (v1, . . . , vn, t) be a tuple over
schema (A1, . . . , An,T ), I be a timestamp, and let C = (c1, . . . , cn) be the attribute
characteristics. The adjustment of attribute values is defined as follows:

adj (r, I, C) = (adj (r.A1, r.T , I, c1), . . . , adj (r.An, r.T , I, cn), I)

adj (v,T , I, c) =















v iff c = ’c’
v ∗ |I ∩ T |/|T | iff c = ’m’
v iff c = ’a’ ∧ T = I
UNDEF iff c = ’a’ ∧ T 6= I

Considering the characteristics C, the adj function adjusts each non-timestamp at-
tribute value of r to the time interval I and returns the adjusted tuple. For example,
for the tuple (Jan , 2000, [2003/01, 2003/12]), the characteristics (c, m), and the time
interval [2003/01, 2003/06] the adj function returns (Jan, 1000, [2003/01, 2003/06]).



4 The Temporal Multi-Dimensional Aggregate Operator

4.1 Temporal Aggregate Examples
As a running example, consider the project database in Fig. 1. The relation EMPL cap-
tures project assignments by recording the name of an employee (N ), a contract identi-
fier (CID), the department responsi- EMPL

N CID D P H S T

r1 Jan 140 DB P1 2400 1200 [2003/01,2004/03]
r2 Jan 163 DB P1 600 1500 [2004/07,2004/09]
r3 Ann 141 DB P2 500 700 [2003/01,2003/05]
r4 Ann 150 DB P1 1000 800 [2003/06,2004/03]
r5 Ann 157 DB P1 600 500 [2004/01,2004/12]
r6 Sue 142 DB P2 400 800 [2003/01,2003/10]
r7 Tom 143 AI P2 1200 2000 [2003/04,2003/10]
r8 Tom 153 AI P1 900 1800 [2004/01,2004/06]

Fig. 1. Relation EMPL of the Project Database.

ble for an assignment (D), the name
of a project (P ), the hours an em-
ployee is assigned to a project (H ),
a monthly salary (S ), and the valid
time (T ) over which a tuple holds
true. The attribute H is malleable,
while all other attributes are con-
stant. Figure 2 illustrates relation
EMPL together with the intended
results for the aggregation queries
considered next.

Query 1: For each department, compute the total amount of hours spent in projects
and the maximal monthly salary. This instantaneous aggregation groups the result
tuples by the non-temporal attribute D . The timestamps of the result tuples are not
specified in the query, but are derived from the relation. Hence, the size of the result
is data dependent and might exceed that of the input relation, as is the case here.

Query 2: For each department and year, compute the total hours spent in projects
and the maximal monthly salary. This query differs from the previous one in that
the result tuples are grouped according to fixed, user-specified time intervals. This
query controls the size of the result relation, which is at the heart of aggregate
functions. To the best of our knowledge, this type of query has not been studied
previously.

Query 3: Compute the moving average of hours spent for all six-month periods. This
moving-window query slides in steps of fixed duration over the time line, comput-
ing an aggregate for each six-month interval. Unlike for the traditional moving-
window operator, the result tuples are valid over time intervals rather than at single
time instants.

Query 4: For the entire lifespan of each department, compute the total hours spent in
projects and the maximal monthly salary. This query specifies a single value for the
entire lifespan of a relation.

4.2 Definition of Result Groups and Aggregation Groups
A general temporal aggregation operator should support the specification of two or-
thogonal aspects of aggregation: definition (1) of the result groups for which to report
aggregate results and (2) of the sets of tuples, termed aggregation groups, to associate
with each result group and over which to compute the aggregates result(s) to be reported
for each group.
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(DB,150,500)(DB,750,1500)
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(478.3)query 3

(AI,1200,1200)(AI,1500,1500)

(DB,1620,1200) (DB,1500,1500)

(DB,750,1200)(DB,1500,1200) (DB,150,500)(DB,520,1200)

(AI,P2,1200,2000) (AI,P1,900,1800)

(DB,1500,1200)

...
(DB,6440,1500)

(AI,2700,2000)
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query 4

2003/01 2003/07 2003/10 2004/01 2004/04 2004/07 2004/102003/04

relation
Input

r8 = (Tom,153,AI,P1,900,1800)

r3 = (Ann,141,DB,P2,500,700)

r7=(Tom,143,AI,P2,1200,2000)

r4 = (Ann,150,DB,P2,1000,800) r5 = (Ann,157,DB,P1,600,500)

r6 = (Sue,142,DB,P2,400,800)

r1 = (Jan,140,DB,P1,2400,1200) r2 = (Jan,163,DB,P1,600,1500)

Fig. 2. Temporal Aggregation.

Each result group can be represented as a tuple in a temporal (“group”) relation
g with schema (B1, . . . , Bm,T ). Each Bi is an attribute from the relation that is the
argument of the aggregation operator, and the tuples assume values from Bi that occur
in the argument relation. For the timestamp, there are two cases: constant intervals and
fixed intervals. With constant intervals, the timestamp attribute assumes as values the
maximal, non-overlapping intervals over which the set of argument tuples is constant.

Definition 2. (Constant Intervals) Let r be a temporal relation with timestamp attribute
T . We define the constant intervals of r as

CI (r) = {T | ∀r ∈ r(r.T ⊇ T ∨ r.T ∩ T = ∅) ∧
∀T ′ ⊃ T (∃r ∈ r(r.T 6⊇ T ′ ∧ r.T ∩ T ′ 6= ∅))}

The first line ensures that result intervals do not cross boundaries of argument in-
tervals. The second ensures that the result intervals are maximal. The constant intervals
for the EMPL relation grouped by department are shown in Fig. 2 (Result of Query 1).

Theorem 1. (Cardinality of Constant Intervals) For a temporal relation r with n tuples,
n > 0, the cardinality of constant intervals is limited by the following formula:

| CI (r) | ≤ 2n− 1

Proof. The end points of the tuple’s timestamps can be linearly ordered giving at most
2n timepoints. n timepoints produce at most n − 1 consecutive time interals.

The option fixed intervals is used when specifying fixed, possibly overlapping, time
intervals. Queries 2 and 3 in our running example use different flavors of fixed intervals
(see also Fig. 2).



Definition 3. (Fixed Intervals) Let r be a temporal relation with timestamp attribute T .
We define the fixed intervals as a user-specified set of timestamps, FI (r), that satisfies
the following condition: ∀T ∈ FI (r)(∃r ∈ r(r.T ∩ T 6= ∅)).

This condition states that fixed intervals must intersect with intervals in the argu-
ment relation. The explicit specification of result groups with fixed intervals allows
control of the cardinality of the result relation. We use the following definition for quan-
tifying the result size relative to the argument size.

Definition 4. (Aggregation factor) The aggregation factor of a temporal aggregation
operator is defined as the ratio between the cardinality of the result relation z and the
cardinality of the argument relation r, i.e., af = |z|/|r|.

This factor is between 0 and 1 if the result relation is smaller than the argument
relation, 1 if the result relation has the same size as the argument relation, and > 1
if the result relation is larger than the argument relation. For instance, the aggregation
factor is 9/8 for Query 1 and 4/8 for Query 2.

Having defined result groups, we associate a set of tuples from the argument re-
lation, called aggregation group, with each result group. The aggregate(s) for each
group is computed over this set. The aggregation groups can be defined by a condi-
tion θ(g, r) that for each input tuple r decides whether it contributes to result group
g or not. The condition can involve non-temporal and timestamp attributes. Important
classes of conditions are conjunctions of equality conditions for non-temporal attributes
and the overlaps relationship for timestamps.

4.3 Definition of the TMDA Operator
The TMDA operator separates the specification of the result groups from the assignment
of the input tuples to these result groups, thus providing an expressive framework for
temporal aggregation.

Definition 5. (TMDA operator) Let r and g be relations with timestamp attribute T ,
F = {fAi1

, . . . , fAip
} be a set of aggregate functions over attributes in r, θ be a

condition over attributes in g and r, and let C be attribute characteristics for r. We
define the temporal multi-dimensional aggregation operator as

GT [F][θ][T ][C](g, r) = {x | g ∈ g ∧
rg = {{r′ | r ∈ r ∧ θ(g, r) ∧ r′ = adj (r, g.T , C)}} ∧
x = g ◦ (fAi1

(π[Ai1 ](rg)), . . . , fAip
(π[Aip

](rg)))}

where π is a duplicate-preserving projection.

Relation g is the group relation that defines the result groups, or (sub-) tuples that
will be expanded into result tuples. Relation r is the (conventional) argument relation.
Predicate θ associates an aggregation group, rg ⊆ r, with each g ∈ g. Thereby, the
argument tuples are adjusted to the timestamp of the result group, which is also the
timestamp of the result tuple. The aggregation functions fAi1

, . . . , fAip
are then com-

puted over each aggregation group. The schema of the result relation is the schema of
g augmented with a column for each aggregate value, which for the scope of this paper
are labeled fAi1

, . . . , fAip
.



Example 1. Query 2 can be expressed as follows: z = GT [F][θ][T ][C](g, EMPL/r),
where

g : The two leftmost columns in Fig. 3
F = {sumH ,maxS}
θ = (g.D = r.D) ∧ overlaps(g.T , r.T )
C = (c, c, c, c, m, c)

The group relation g contains a tuple for each combination of department and year.
Aggregate functions sum and max on hours and salary are used. The condition θ asso-
ciates with a result group those argument tuples that have the same department value as
the result group and overlap with the group’s timestamp. For example, the aggregation
group for the DB department in 2003 consists of the tuples r1, r3, r4, and r6.

The attribute H is malleable and is adjusted z

D T sumH max S

DB [2003/01,2003/12] 1620 1000
DB [2004/01,2004/12] 1500 900
AI [2003/01,2003/12] 1200 2000
AI [2004/01,2004/12] 900 1800

Fig. 3. Temporal Aggregation with
Fixed Interval Semantics.

to the timestamp of the group specification be-
fore it is passed on to the aggregate functions.
Therefore, r1, r3, r4, and r6 contribute to the
sum of hours of the DB department in 2003 with
the values 1920, 500, 700, and 400, respectively.
Attribute S is constant, so the adjustment has no
effect.

The result relation is shown in Fig. 3. Each
result tuple is composed of a result group tuple extended by a value for each aggregate
function. To improve readability these two parts are separated by a vertical line.

4.4 Partial Specification of Result Groups
The definition of the TMDA operator requires a completely specified group relation g.
For the constant interval semantics, however, the timestamps of the result tuples are
calculated from the argument tuples and are not available in advance. To handle this
case, we pass on a relational algebra expression that computes the constant intervals,
thus reducing constant intervals to fixed intervals.

GT [F][θ ∧ overlaps(g.T , r.T )][T ][C](CI (g′, r, θ)/g, r)

Now the group relation g is given as an expression CI (g′, r, θ) that computes the con-
stant intervals over the argument relation r based on a group relation g′ that contains
the non-temporal groups. This expression basically completes the non-temporal group
relation g′ with the constant intervals, i.e., g = {g[B1, . . . , Bm] ◦ T | g ∈ g′ ∧ T ∈
CI(g′, r, θ)}.

While this reduction of constant interval semantics to fixed interval semantics is
sound from a semantic point of view, the computation of constant intervals in advance
requires operations such as join and union that are computationally costly, as we will
illustrate in the experimental section. To improve on the computational efficiency, we
introduce partially specified result groups.

Definition 6. (Partially Specified Result Groups) A result group with schema G =
(B1, . . . , Bm,T ) is partially specified iff the value of the timestamp attribute is not
specified. We represent a partially specified result tuple as g = (v1, . . . , vm, [∗, ∗]).



With partially specified result groups in place, we push the completion of the re-
sult groups with constant intervals into the algorithm for the evaluation of the temporal
multidimensional aggregation operator. The constant intervals are computed on the fly
while scanning the data relation for the calculation of the aggregates. The partially
specified result tuples are replicated to all constant intervals for the corresponding ag-
gregation groups. The overlaps relation from condition θ that assigns the relevant data
tuples to the constant intervals is applied implicitly by the evaluation algorithm.

Example 2. To express Query 1 we apply the constant interval semantics with a group
relation g that contains the partially specified result groups {(DB , [*,*]), (AI , [*,*])}.
The query is then expressed as z = GT [F][θ][T ][C](g, EMPL/r), where

z

D T sumH maxS

DB [2003/01,2003/05] 1500 1200
DB [2003/06,2003/10] 1500 1200
DB [2003/11,2003/12] 520 1200
DB [2004/01,2004/03] 750 1200
DB [2004/04,2004/06] 150 500
DB [2004/07,2004/09] 750 1500
DB [2004/10,2004/12] 150 500
AI [2003/04,2003/09] 1200 2000
AI [2004/01,2004/06] 900 1800

Fig. 4. Constant Interval Semantics
with Partially Specified Result Groups.

F = {sumH ,maxS}
θ = (g.D = r.D)
C = (c, c, c, c, m, c)

The condition θ contains only non-temporal con-
straints. The aggregation group for department
DB contains six input tuples that induce seven
constant intervals. For department AI , we have
two input tuples and two constant intervals. The
result relation is shown in Fig. 4. Unlike in previ-
ous approaches [10, 6], we do not coalesce con-
secutive tuples with the same aggregate values,
as illustrated by the two first DB tuples; we keep
them separate since their lineage is different.

Converting the result set produced by the TMDA operator to the traditional format
of result sets produced by temporal aggregation operators, where consecutive tuples
with the same aggregate value are coalesced, can be achieved easily. Thus, the result
sets produced by the TMDA operator retains lineage information, and this additional
information is easy to eliminate.

5 Implementation of the TMDA Operator
5.1 Idea and Overview
The implementation of the TMDA operator for constant intervals is based on the follow-
ing observation: if we scan the argument relation, which is ordered by the interval start
values of the tuples, we can at any time point t compute the result tuples that end before
t (assuming that no tuples that start after t contribute to these result tuples). Hence, as
the argument relation is being scanned, result tuples are produced, and old tuples are
removed from main memory. Only the tuples that are valid at time point t, termed open
tuples, are kept in main memory.

Figure 5 illustrates this evaluation strategy for Query 1, showing the situation after
reading tuples r1, r3, r6, r7, and r4, in that order. Thick lines are used for open tu-
ples, dashed lines are used for closed tuples, and solid lines are used for tuples not yet



scanned. Grey rectangles indicate the advancement of time. For example, after reading
r4, the first result tuple for the DB department is computed, r3 is closed, and the cur-
rent time instant for the DB group is 2003/06; three tuples remain open, and two tuples
have not yet been processed. For the AI departement, one tuple is open and one tuple
is to be processed.

r1 = (Jan,140,DB,P1,2400,1200)

r8 = (Tom,153,AI,P1,900,1800)

r3 = (Ann,141,DB,P2,500,700)

r2 = (Jan,163,DB,P1,600,1500)

r5 = (Ann,157,DB,P1,600,500)

r6 = (Sue,142,DB,P2,400,800)

r4 = (Ann,150,DB,P2,1000,800)

2003/01 2003/07 2003/10 2004/01 2004/04 2004/07 2004/102003/04

(DB,1500,1200)

r7 = (Tom,143,AI,P2,1200,2000)

Fig. 5. Processing Input Tuples in TMDA-CI.

For the use with fixed intervals, the timestamps of the result tuples are specified in
the group relation. So, we do not need to maintain the data tuples in main memory, but
can process them and update the aggregate values as we scan the data relation.

In the rest of this section we describe in detail two algorithms for the evaluation of
TMDA with constant intervals and fixed intervals, respectively.

5.2 The TMDA-CI Algortihm for Constant Intervals
Figure 6 shows the algorithm, termed TMDA-CI, that evaluates GT with constant in-
tervals. The algorithm has five input parameters: the group relation g, the argument
relation r, a list of aggregate functions F = {fAi1

, . . . , fAip
}, a selection predicate θ,

and attribute characteristics C. The output is a temporal relation that is composed of g

extended by the values of the aggregate functions in F.
The algorithm uses two types of data structures. A group table gt stores each

tuple g ∈ g, together with a pointer to an end-point tree T . An end-point tree
T maintains the (potential) end points of the constant intervals together with the
relevant attribute values of the currently open tuples. The tree is organized by the
end points of the constant intervals, i.e., the end points Te of the data tuples plus
the time points immediately preceding each data tuple. A node with time instant
t stores the attribute values r.A1, . . . , r.Ap, r.Ts of all data tuples r that end at t.
For example, for Query 1 the aggregation tree for the DB department contains a
node with time instant 2004/03 that stores the attribute values of r1 and r4, i.e.,
(2004/03, {(2400, 1200, 2003/01), (1800, 800, 2003/06)}). A node that stores a po-
tential end point t of a constant interval, but with no tuples ending at t, has an empty
data part. For example, tuple r5 terminates a constant interval and starts a new one;
hence node (2003/12, {}) will be in the tree. In our implementation we use AVL-trees
for end-point trees.

The first step of the algorithm is to initialize the group table gt . If g is a projection
over r, the group table is initially empty and will be populated while scanning the



Algorithm:TMDA-CI(g, r,F, θ, C)

if g = π[A1, . . . , Am](r) then
gt ← empty group table with columns B1, . . . , Bm,T , T ;

else
Initialize gt with (g, empty T ), g ∈ g, and replace timestamp T by [−∞, ∗];

Create index for gt on attributes B1, . . . , Bm; z← ∅;
foreach tuple r ∈ r in chronological order do

if g = π[A1, . . . , Am](r) and r.A1, . . . , r.Am not yet in gt then
Insert (r.A1, . . . , r.Am, [−∞, ∗], empty T ) into gt ;

foreach i ∈ LOOKUP(gt , r, θ) do
if r.Ts > gt [i].Ts then

Insert a new node with time r.Ts−1 into gt [i].T (if not already there);
foreach v ∈ gt [i].T in chronological order, where v.t < r.Ts do

gt [i].Te ← v.t;
z← z ∪ RESULTTUPLE(gt [i], F, C);
gt [i].T ← [v.t + 1, ∗];
Remove node v from gt [i].T ;

v ← node in gt [i].T with time v.t = r.Te (insert a new node if required);
v.open← v.open ∪ r[A1, . . . , Ap,Ts];

foreach gt [i] ∈ gt do
foreach v ∈ gt [i].T in chronological order do

Create result tuple, add it to z, and close past nodes in gt [i].T ;

return z;
Fig. 6: The Algorithm TMDA-CI for Constant Interval Semantics.

argument tuples. Otherwise, gt is initialized with g, with the start time of the entries set
to −∞, and an empty end-point tree is generated for each entry. Finally, an index over
the non-temporal attributes is created.

The next step is to process the argument relation r chronologically with respect to
the start times of the tuples. If the group relation is a relational algebra expression, we
might have to extend the group table with a new entry before the function LOOKUP
determines all result groups to which data tuple r contributes. For each matching result
group, two steps are performed: First, if r advances the current time (r.Ts > gt [i].Ts),
one or more constant intervals can be closed. Chronon r.Ts−1 is a potential end point
of a constant interval and is inserted into gt [i].T . Then we process all nodes v in gt [i].T
with v.t < r.Ts in chronological order. Thereby, the timestamp in the group table as-
sumes the constant intervals. We compose the corresponding result tuples and remove
the node from the tree. Second, we update the end-point tree with the new data tuple r.

The function LOOKUP gets as input parameters the group table gt , a tuple r, and
the selection condition θ. It evaluates the condition θ for all pairs (g, r), g ∈ gt , and
returns the indexes of the matching result groups. For the constant interval semantics,
an AVL-tree on the non-timestamp attributes is used. For the fixed interval semantics
(see algorithm TMDA-FI in Sect. 5.3), we use two AVL-trees, one on the start time and
one on the end time of the timestamps. Fixed interval semantics allow us to combine
indexes on the timestamps and the non-timestamp attributes.



The algorithm RESULTTUPLE gets as input an entry of the group table gt [i], the
set of aggregate functions F, and the attribute characteristics C. It returns the result
tuple for the constant interval gt [i].T , or the empty set if there are no open tuples in the
interval gt [i].T . A result tuple is composed of the result group stored in gt [i] extended
by the values of the aggregate functions that are computed over all nodes in gt [i].T .
The algorithm scans all nodes in the tree, adjusts the attribute values, and computes the
aggregate values.

Example 3. We consider the evaluation of Query 1 with algorithm TMDA-CI. Having
initialized the group table gt , relation EMPL is processed in chronological order: r1, r3,
r6, r7, r4, r5, r8, r2. For r1, function LOOKUP returns the set {1}. A new node with
time 2004/03 and the attribute values of H , S , and Ts is inserted into T1, and the start
time of the next constant interval is set to 2003/01 (see Fig. 7a).

Group table gt End-point tree T1 Result relation z

(a)
D T T

1 DB [2003/01, ∗] T1

2 AI [−∞, ∗] T2

2004/03−{(2400,1200,2003/01)} D T sumH maxS

(b)
D T T

1 DB [2003/01, ∗] T1

2 AI [2003/04, ∗] T2

2003/05−{(500,700,2003/01)} 2004/03−{(2400,1200,2003/01)}

2003/10−{(400,800,2003/01)} D T sumH maxS

(c)
D T T

1 DB [2003/06, ∗] T1

2 AI [2003/01, ∗] T2

2003/10−{(400,800,2003/01)}

2004/03−{(2400,1200,2003/01),
(1000,800,2003/06)}

D T sumH maxS

DB [2003/01,2003/05] 1500 1200

(d)
D T T

1 DB [2004/01,∗] T1

2 AI [2004/01,∗] T2

2004/03−{(2400,1200,2003/01),

2004/12−{(600,500,2004/01)}

(1000,800,2003/06)}
D T sumH maxS

DB [2003/01,2003/05] 1500 1200
DB [2003/06,2003/10] 1500 1200
DB [2003/11,2003/12] 520 1200
AI [2003/04,2003/09] 1200 2000

Fig. 7. Evaluation of TMDA-CI after processing r1, r3, r6, r7, r4, r5, and r8.

Figure 7b shows the situation after processing r1, r3, r6, and r7. T1 contains three
nodes, T2 contains one node, and the start time of the next constant interval for the AI

result group is set to the start time of r7.
The next input tuple is r4 for the DB department. Since its start time advances in

time, we close the currently open interval and get [2003/01, 2003/05] as the first con-
stant interval for which a result tuple is computed. The adjustment of the attribute values
to the constant interval yields 800 + 500 + 200 = 1500 for the sum function (attribute
H is malleable) and max (1200, 700, 800) = 1200 for the max function (attribute S is
constant). The node with time 2003/05 is removed from T1, and the start time of the
next constant interval is set to 2003/06. Finally, the relevant data of r4 are added to the
already existing node with time 2004/03. This situation is shown in Fig. 7c.

The next input tuples are r5 and r8, of which r5 contributes to the DB group and
gives rise to two result tuples. Tuple r8 contributes to the AI group and gives rise to
the first result tuple for that group. See Fig. 7d.



Algorithm:TMDA-FI(g, r, F, θ, C)

if g = π[A1, . . . , Am, cast(T , G)](r) then
gt ← empty group table with columns A1, . . . , Am,T , fAi1

, . . . , fAip
;

else
Initialize gt to g and extend it with columns fAi1

, . . . , fAip
initialized to NULL;

Create index for gt on attribute T ;
foreach tuple r ∈ r do

if g = π[A1, . . . , Am,T ](r) then
foreach t ∈ cast(r.T , G) do

Insert r.A1, . . . , r.Am, t into gt if not already there;

foreach i ∈ LOOKUP(gt , r, θ) do
r′ ← ADJUST(r, gt [i].T, C);
foreach fj ∈ F do gt [i].fAij

← gt [i].fAij
⊕ r′.Aij

;

return gt ;
Fig. 8: The Algorithm TMDA-FI for Fixed Interval Semantics.

5.3 The TMDA-FI Algorithm for Fixed Intervals
Figure 8 shows the TMDA-FI algorithm for the evaluation of operator GT with fixed
interval semantics. The main data structure is the group table gt that stores the group
relation g and has an additional column labeled fAij

for each aggregate function fAij
∈

F. The result groups, including their timestamps, are completely specified, so the data
tuples need not be stored in an end-point tree, but can be processed as they are read,
yielding an incremental computation of the aggregate values.

6 Properties
6.1 Complexity
For the complexity analysis of TMDA-CI, only the processing of the data relation r is
relevant, which is divided into four steps: (possibly) update of the index, lookup in the
index, production of result tuples, and insertion of the tuple in the end-point tree.

The update of the index and the lookup in the group table have complexity log ng,
where ng is the cardinality of the group table. The production of a single result tuple is
linear in the number no of open tuples. The average number of result tuples induced by
a data tuple depends on the aggregation factor af = nz/nr, where nz is the cardinality
of the result relation and nr is the cardinality of the data relation, and on the number
of result groups to which r contributes, denoted as ng,r. Finally, the insertion of a tuple
in an end-point tree has complexity log no. This yields an overall time complexity for
TMDA-CI of O(nr max(log ng , ng,r af no, log no)). In general, the size of the data
relation nr might be very large, while all other parameters shall be small. The factor
ng,r depends on the selectivity of the condition θ, and is 1 for equality conditions. The
aggregation factor, which is between 0 and 2, and the number of open tuples no depend
mainly on the temporal overlapping of the data tuples. The worst-case complexity is
O(n2

r) if the start and end points of all data tuples are different and there is a time
instant where all tuples hold, hence no = nr.



The support for different attribute characteristics comes at a price. For each result
tuple, it requires a scan of the entire end-point tree and an adjustment of the attribute
values, which becomes a major bottleneck in cases with a large number of open tuples
and a high aggregation factor. If only constant attributes were used, the aggregate values
could be calculated incrementally similar to [5], as we show later in our experiments.

In the TMDA-FI algorithm, there is no need to maintain the open data tuples, and
the aggregate values can be calculated incrementally as the data relation is scanned. The
time complexity of TMDA-FI is O(nr max (log ng , ng,r)).

6.2 A Spectrum of Temporal Aggregation Operators
The TMDA operator is rather general. The group relation g is completely independent
of the data relation r and has the only objective to group the results. This arrangement
offers enormous flexibility in arranging the results according to various criteria, and it
enables the formulation of a range of different forms of temporal aggregates, including
the ones proposed previously.
Lemma 1. (Aggregation Using Temporal Group Composition [10]) Let g, r,F, θ, and
C be as in Definition 5, SP be a selection predicate over r as in [10], and let chG be
a relation with a single attribute CH that contains all chronons at granularity level G.
The operator GT [F][θ][T ][c, . . . , c](g, r) with fixed interval semantics simulates aggre-
gation using temporal group composition if g and θ are defined as follows:

g = π[CH ,CH ](r 1 [overlaps(T , [CH ,CH ])]chG)
θ = SP(r) ∧ overlaps(g.T , r.T )

If the partitioning of the timeline is at the smallest granularity level, temporal group
composition simulates instantaneous aggregates [4]; and by transitivity, so does GT .
Lemma 2. (Cumulative Temporal Aggregates [6]) Let g, r, F, θ, and C be as in Defi-
nition 5, let w be a window offset, and let ch be a relation with a single attribute CH

that contains the set of chronons at the lowest granularity level supported by the rela-
tion. The operator GT [F][θ][T ][c, . . . , c](g, r) with fixed interval semantics simulates
cumulative temporal aggregates if g and θ are defined as follows:

g = π[CH ,CH ](r 1 [overlaps([Ts,Te+w],CH )]ch)
θ = overlaps([g.Te−w,g.Te], r.T )

All temporal aggregates developed so far assume a partitioning of the timeline and
compute aggregates at time instants. The TMDA operator is more expressive and allows
the computation of additional flavors of temporal aggregates. For example, Query 3 is
a kind of moving-window aggregate that computes aggregate values over overlapping
time intervals. This form of temporal aggregate can easily be expressed by an appropri-
ate group relation.

Another example is the calculation of quarter values that considers data tuples from
the corresponding quarter in the past 5 years. In this query, data tuples that contribute
to a result tuple are selected from non-contiguous intervals and from outside of the
result tuple’s timestamp. This functionality has not been addressed in previous temporal
aggregation operators. The TMDA operator can afford for such queries by an approriate
θ condition.



7 Experimental Evaluation
We carried out a number of experiments with the TMDA-CI and TMDA-FI algo-
rithms, investigating their performance for various settings. All experiments were run
on an Intel Pentium workstation with a 3.6 GHz processor and 2 GB memory.

For the experiments, we use data relations that contain from 200, 000 to 1, 000, 000
tuples. The lifespan of the data relations is [0, 225], and we experiment with the follow-
ing instances [11]:

– rseq : Sequential tuples with one open tuple at each time instant; af = 1.
– requal : All tuples have the same timestamp; af ∈ [0.000001, 0.000005].
– rrandom : Start time and duration of the tuples are uniformly distributed in

[0, 225] and [1, 4000], respectively, with 33 open tuples on average; af ∈
[1.940553, 1.987989].

– rworst : All start and end points are different, and there is a constant interval (in the
middle) where all tuples are open; af ∈ [1.999995, 1.999999].

The group relation contains one entry. This is a worst case since all timestamps end up
in the same end-point tree. A group table with more tuples would yield smaller end-
point trees and thus better performance.

7.1 Scalability of TMDA-CI and TMDA-FI

The first experiment investigates the scalability of TMDA-CI. Figure 9(a) shows how
the time complexity depends on the number of open tuples and the aggregation factor.
Relation rworst with the largest possible number of open tuples and the maximal ag-
gregation factor for constant intervals has a running time that is quadratic in the size
of the data relation. For all other data sets, the running time exhibits a linear behavior.
Relation requal has an aggregation factor close to 0 although the number of open tuples
is maximal (however, they are scanned only once). Most of the time (60% for rrandom

and 97% for rworst ) is spent in pruning the end-point tree and computing the result tu-
ples. For each constant interval, the end-point tree must be scanned to adjust malleable
attribute values and compute the aggregated value.
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Fig. 9. Evaluation of TMDA-CI and TMDA-FI.

The performance of TMDA-FI is not affected by overlapping tuples since the ag-
gregate result is computed incrementally. The key parameter in terms of performance



is the number of result groups and the efficiency of the available lookup technique (for
each tuple in r, we must find all groups that satisfy the θ condition and therefore have
to be updated). Since we use AVL-trees for indexing result groups, the performance in-
creases along with the number of groups, as illustrated in Fig. 9(b). If we used hashing,
the lookup time would be constant. However, a hashing only supports equality condi-
tions.

Figure 10 investigates the performance impact of varying the main parameters on
the algorithms applied to data relation rrand . Figure 10(a) shows the running time when
varying the number of open tuples. The performance decreases since with malleable
attributes, all open tuples have to be stored in the end-point tree. As soon as a con-
stant interval has been found, the end-point tree is traversed, the attribute values are
adjusted, and the final aggregate is computed. We have also included the performance
of a variation of TMDA-CI, denoted TMDA-CIc, that supports constant attributes
only. TMDA-CIc incrementally computes the aggregates, and its performance is inde-
pendent of the number of open tuples.
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Figure 10(b) evaluates the performance for real-world salary data from the Univer-
sity of Arizona. The figure shows that the performance on the real-world data is much
better than the performance on most syntetic data sets.

7.2 Constant Versus Fixed Intervals

Figure 11(a) shows the result of computing aggregates with constant interval semantics
in two different ways: (1) TMDA-CI with partially specified result groups, and (2) CI-
SQL + TMDA-FI, i.e., a priori computation of constant intervals using SQL followed
by a call to TMDA-FI. The results confirm that TMDA-CI with partially specified
result groups is indeed an efficient way of computing aggregates with constant interval
semantics.

Figure 11(b) evaluates TMDA-CI and TMDA-FI for varying result groups. As
expected, the performance of TMDA-FI decreases as the number of groups in-
creases. However, up to an aggregation factor of almost 50% FI outperforms CI. Thus,
TMDA-FI is efficient for reasonable aggregation factors, and it permits to precisely
control the aggregation factor.
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7.3 Comparison with the Balanced Tree Algorithm

The last experiment compares TMDA-CI with the balanced-tree algorithm proposed
in [5]. This is the most efficient algorithm developed so far, but note that it only handles
sum, cnt , and avg—it does not support malleable attributes. Figure 12(a) compares the
running time of the balanced-tree algorithm, TMDA-CI, and a modified version, called
TMDA-CIc, that supports only constant attributes and allows incremental computation
of aggregate values. While TMDA-CIc has the same performance as the balanced-
tree algorithm, the experiments show that the support for multiple attribute character-
istics in TMDA-CI is costly and that the DBMS should identify cases when no mal-
leable attributes are present and TMDA-CIc can be used. The memory consumption of
TMDA-CI depends only on the number of open tuples and is much smaller than for
the balanced-tree algorithm (see Fig. 12(b)).
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8 Conclusion

This paper presents a new aggregation operator, the Temporal Multi-Dimensional Ag-
gregation (TMDA) operator, that leverages recent advances in multi-dimensional query
processing [1–3] to apply to interval-valued data. The TMDA operator generalizes a
variety of previously proposed aggregation operators. Most importantly, it clearly sep-
arates the definition of result groups from the definition of aggregation groups, i.e., the
collections of argument tuples that are associated with the result groups and over which
the aggregate functions are computed. This leads to a very expressive framework that



allows also to control the size of the result relation. Next, the TMDA operator supports
multiple attribute characteristics, including malleable attributes where an attribute value
has to be adjusted if the tuple’s timestamp changes. Finally, we provid two different al-
gorithms for the evaluation of the TMDA operator with constant intervals and fixed
intervals, respectively. Detailed experimental evaluations show that the algorithms are
scalable with respect to data set size and compare well with other temporal aggregation
algorithms. The evaluation also reveals that the support for multiple attribute character-
istics comes at a cost.

Future work includes various optimization steps of the TMDA-CI and TMDA-FI
algorithms, including the following ones: optimization rules for relational algebra ex-
pressions that interact with the TMDA operator, the initialization of the group table on
the fly, indexes on the group table, and a variation of the end-point tree that does not
require a totally sorted data relation.
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