
Multi-dimensional Graph Convolutional Networks

Yao Ma ∗ Suhang Wang † Charu C. Aggarwal‡ Dawei Yin§ Jiliang Tang∗

Abstract

Convolutional neural networks (CNNs) leverage the great

power in representation learning on regular grid data such

as image and video. Recently, increasing attention has been

paid on generalizing CNNs to graph or network data which

is highly irregular. Some focus on graph-level representation

learning while others aim to learn node-level representations.

These methods have been shown to boost the performance

of many graph-level tasks such as graph classification and

node-level tasks such as node classification. Most of these

methods have been designed for single-dimensional graphs

where a pair of nodes can only be connected by one type

of relation. However, many real-world graphs have multi-

ple types of relations and they can be naturally modeled

as multi-dimensional graphs with each type of relation as

a dimension. Multi-dimensional graphs bring about richer

interactions between dimensions, which poses tremendous

challenges to the graph convolutional neural networks de-

signed for single-dimensional graphs. In this paper, we

study the problem of graph convolutional networks for multi-

dimensional graphs and propose a multi-dimensional con-

volutional neural network model mGCN aiming to capture

rich information in learning node-level representations for

multi-dimensional graphs. Comprehensive experiments on

real-world multi-dimensional graphs demonstrate the effec-

tiveness of the proposed framework.

1 introduction

Convolutional Neural Networks (CNNs) [22] have been
proven to bring breakthrough improvements on various
tasks on regular grid data such as image, video and
speech [21, 16, 18, 17]. However, graph data such as
social networks and gene data are highly irregular. The
main issue is that image data have an extremely high
level of spatial locality, which might not be the case in
graphs data. Recent efforts [5, 15, 10, 24, 8, 20, 13, 32]
have been made to generalize convolutional neural net-
works to irregular graph data. Some [5, 15, 10, 24, 8]
focus on graph-level representation learning, while oth-
ers [20, 13, 32] target on node-level representation learn-

∗Michigan State University, {mayao4,tangjili}@msu.edu
†Pennsylvania State University, szw494@psu.edu
‡IBM T. J. Watson Research Center, charu@us.ibm.com
§JD.com, yindawei@acm.org

1

2

3

4

5

6

(a) Single-dimensional

graph

1

2

3

4

5

6

(b) Graph with multiple

relations

1
2

3

4

5 6

1
2

3

4

6
5

1
2

3

4

5
6

(c) Multi-dimensional

graph

Figure 1: Single-dimensional graph and multi-dimensional
graph.

ing. These methods have been shown to advance many
graph-level tasks such as graph classification [8] and
node-level tasks such as node classification [20, 13, 32]
and link prediction [32]. In this work, we focus on
node-level representation learning with graph covolu-
tional neural networks. The majority of graph convolu-
tional networks have been developed for single dimen-
sional graphs where only one type of relation can exist
between a pair of nodes as shown in Figure 1(a). How-
ever, in many real-world graphs, multiple relations can
exist between pairs of nodes simultaneously as shown
in Figure 1(b). For example, in video sharing site like
YouTube, users can interact with each other via “sub-
scription” relation as well as various social interaction
such as “sharing” and “commenting” [34]. These com-
plex graphs with multiple relations can be naturally
treated as multi-dimensional graphs by viewing each
type of relation as a dimension as shown in Figure 1(c).
Each relation forms a unique graph structure, while the
graphs formed by different relations are not independent
to each other [3]. Since relations in different dimensions
can affect each other, nodes not only can interact with
other nodes in each dimension but also can interact with
their own “copies” in different dimensions [3]. The mul-
tiple relations in multi-dimensional graphs bring about
additional complexity. It poses tremendous challenges
to existing graph convolutional networks, which have
been designed for single dimensional graphs. Thus, ded-
icated efforts are desired to develop graph convolutional
networks for multi-dimensional graphs.

In this work, we study the problem of graph con-
volutoinal networks for multi-dimensional graphs. In
essence, we aim to tackle the following challenges: 1)

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited657

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

how to model the node interaction in each dimen-
sion while considering the interactions across dimen-
sions; and 2) how to combine the information for multi-
dimensional graph convoluitonal networks. These two
challenges are addressed by the proposed framework
mGCN. Our major contributions can be summarized
as follows: 1) We introduce a principled approach to
capture the interactions within- and across-dimensions;
2) We propose a multi-dimensional graph convolutional
network framework mGCN, which can model rich infor-
mation in multi-dimensional graphs coherently for rep-
resentation learning; and 3) We conduct comprehensive
experiments on real-world multi-dimensional graphs to
demonstrate the effectiveness of the proposed frame-
work.

2 The Proposed Framework

Before we give details about the proposed framework,
we first introduce some notations and definitions we will
use in the remaining of this work.

A multi-dimensional graph consists of a set of
N nodes V = {v1, . . . , vN} and D sets of edges
{E1, . . . , ED}, which describe the interaction between
nodes in the corresponding D dimensions. These D
types of interactions can be also described by D ad-
jacency matrices A1, . . . ,AD. For a given dimension d,
its adjacency matrix Ad ∈ R

N×N describes its connec-
tion in this dimension. Let Ad[i, j] denote the element
in i-th row and j-th column of Ad. Then Ad[i, j] = 1
when there is a link between node vi and vj in dimension
d, otherwise 0.

The graph convolutional network (GCN) [20] has
been designed for single dimensional graphs. It aims
to improve the quality of the representations by aggre-
gating information from neighbor nodes. For a given
node, its neighbors are those nodes that are directly
connected to it. In other words, traditional GCN uti-
lizes the interactions between nodes and their neighbors
to learn node representations. However, in a multi-

1
2

3

4

5 6

1
2

3

4

65

1
2

3

4

5
6

1

4

2

5

44 4

within-dimension neighbors

across-dimension neighbors

Figure 2: For node 4 in the “red” dimension, the
within-dimension neighbors are nodes 1, 2 and 5 in the
“red” dimension, while its across-dimension neighbors
are node 4 in the “blue” dimension and node 4 in the
“green” dimension.

dimensional graph, all the dimensions share the same
set of nodes, while nodes interact with each other dif-
ferently in different dimensions. Different interactions
between nodes form varied network structures in dif-
ferent dimensions as shown in Figure 2. Thus, for a
given node, it is likely that it has different neighbors
in different dimensions. These different neighbors are
specific to each dimension and we call them within-
dimension neighbors for each dimension. Furthermore,
the same node in different dimensions is inherently re-
lated. Thus, for one node in a given dimension, we also
need to consider the across-dimension interactions with
its own copies in the other dimensions. In this work,
we define these copies of a node in the other dimen-
sions as across-dimension neighbors of the given node
in the given dimension. More specifically, for a node
in a given dimension, there are within-dimension and
across-dimension interactions. These two types of inter-
actions lead to two different types of neighbors – within-
dimension and across-dimension neighbors. For a node
vi in a given dimension d, the within-dimension neigh-
bors consist of all the nodes that are connected to it in
dimension d (or for all vj whereAd[i, j] = 1). For a node
vi in a given dimension d, the across-dimension neigh-
bors consist of its own copies in the other dimensions.
For example, in Figure 2, the within-dimension neigh-
bors for node 4 in the “red” dimension are nodes 1, 2
and 5 in the “red” dimension, while its across-dimension
neighbors are node 4 in the “blue” dimension and node
4 in the “green” dimension.

To capture the within-dimension and across-
dimension information in each dimension and the gen-
eral information in the entire multi-dimensional graph,
we introduce two representations for each node – the
dimension-specific representations to denote the within-
dimension and across-dimension information in each
dimension and the general representation to denote
the general information in the entire multi-dimensional
graph. We first detail these two types of representations,
then introduce model components to capture within-
dimension and across-dimension information and finally
discuss the proposed framework.

2.1 General and dimension-specific representa-
tions The dimension-specific representations are corre-
sponding to each dimension, while the general represen-
tation is supposed to capture the information from all
the dimensions. In this section, we introduce the rela-
tions between the general representation and dimension-
specific representations. More specifically, we describe
the procedure of transforming general representation
to dimension-specific representations and the procedure
of combining dimension-specific representations to form

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited658

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

general representation. The procedure not only can
help us understand better about the relations between
dimension-specific and general representations but also
can help us reduce the representation parameters.

Let hi ∈ R
l×1 and hi,d ∈ R

q×1, d = 1, . . . , D de-
note the general representation and dimension-specific
representations for node vi, respectively. To get the
dimension-specific representations hi,d from the general
representation hi, we project the general representa-
tion to each dimension. More specifically, we intro-
duce a project matrix Wd ∈ R

q×l for each dimen-
sion d with non-linear activation functions to obtain
dimension-specific representations from general repre-
sentations as follows

hi,d = act(Wd · hi)(2.1)

where act(·) is an element-wise non-linear activation
function. Modeling the dimension-specific representa-
tions as Eq. (2.1) can naturally impose the dimension-
specific representations of each dimensions to share
some information, as they are all generated from the
same general representation. Furthermore, we can use
the project matrix Wd to understand the relations
among dimensions. The transformation in Eq. (2.1) can
be also written in the matrix form for all nodes as fol-
lows

Hd = act(Wd ·H)(2.2)

where Hd ∈ R
q×N is the matrix containing the

dimension-specific representation for all nodes in dimen-
sion d, with column i the representation hi,d for node
vi. Similarly, H ∈ R

l×N is the matrix containing the
general representations for all nodes.

To get the general representation from the
dimension-specific representations, we need to integrate
the dimension-specific representations. We propose to
use a feed forward neural network to perform the com-
bination. We concatenate the D dimension-specific rep-
resentations as the input of the feed forward network.
More specifically, the combination procedure can be rep-
resented as

hi = act(W · ConcatDd=1hi,d).(2.3)

whereW ∈ R
l×D·q, Concat() is the function to concate-

nate the dimension-specific representations and act(·) is
an element-wise non-linear activation function. Simi-
larly, the combination Eq. (2.3) can also be represented
in the matrix form as:

H = act(W · ConcatDd=1Hd).(2.4)

Similar to traditional GCN, we can have multiple lay-
ers in the mGCN. However, to simplify the illustration
of the relations of general and dimension-specific repre-
sentations, we ignore the index of the layer on all pa-
rameters in this subsection. For example, the general

representation hi in the Eq. (2.1) and Eq. (2.3) can be
from different layers. We will add the layer index when
we introduce the details of the proposed framework.

2.2 Modeling the within-dimension interac-
tions In this subsection, we introduce the modeling of
the within-dimension interaction. For a node vi, in a
given dimension d, to capture the within dimension in-
teraction, we perform the single dimensional GCN [20]
to dimension d based on the within-dimension neigh-
bors. More specifically, it can be represented as

hwi,d =
∑

vi∈Nd(vi)

Âd[i, j] · hj,d(2.5)

where Nd(vi) is the set of within-dimension neighbors

of node vi in dimension d, Âd = D−1
d (Ad + I) is the

row normalized adjacency matrix with self-loop. Dd is
a diagonal matrix with Dd[i, i] the summation of the

i-th row of Â+ I. Â[i, j] is the element of Â in i-th row
and j-th column. Note that we also include the node
itself in its within dimension neighbors Nd(vi). Aggre-
gating information from within-dimension neighbors in
Eq. (2.5) can also be represented in a matrix form as:

Hwd = Hd · Âd(2.6)

2.3 Modeling the across-dimension interactions
To model the across-dimension interactions, we perform
a similar aggregation as we do for the within dimen-
sion interaction but on the across-dimension neighbors.
To perform the across-dimension aggregation, we take a
weighted average over the dimension-specific represen-
tations of node vi:

hi,d =
∑

g=1,...,D

bg,d · hi,g(2.7)

where
∑

g=1,...,D

bg,d = 1. The weight bg,d models the the

importance of dimension g to dimension d. Dimensions
do not always affect each other equally and it is likely
that there are some dimensions that are more similar
than others. Naturally, the dimension-specific represen-
tation from a more similar dimension should contribute
more in the across-dimension aggregation step. How-
ever, this kind of correlation information between di-
mensions is not always explicitly available. Hence, it
is difficult for us to get bg,d beforehand. It is desired
that these importance scores between dimensions can
be learned during the aggregation steps. Recall that
dimension-specific representations are obtained by pro-
jecting the general representations. The projection ma-
trices are supposed to contain some descriptive informa-
tion of the dimensions. For example, if two dimensions
are highly similar, the two projection matrices should
also be highly related. Thus, we introduce an attention
mechanism to learn these scores based on these projec-
tion matrices. The importance of a dimension g to a

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited659

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

dimension d can be learned from the following function:

pg,d = att(Wg,Wd)(2.8)

where att(·, ·) is some attention function. The inputs of
this attention function are the two projection matrices
for the given two dimensions. In this work, we use a
bilinear function to model the attention function:

pg,d = tr(Wg
T
MWd)(2.9)

where tr() is the trace of a matrix and M is the
parameters to be learned in the bilinear function. We
further apply a softmax function to normalize the
importance score as:

bg,d =
exp(pg,d)

D
∑

g=1

exp(pg,d)

(2.10)

The across-dimension aggregation can also be repre-
sented in the matrix form as:

Hd =
∑

g=1,...,D

bg,d ·Hg(2.11)

𝑾"
#

𝑾$
#

𝑾%
#

𝑯#

𝑬"
#

𝑬$
𝑬(

#

𝑯)"

#
𝑯*"

#
𝑯)$

#
𝑯*$

#
𝑯)(

#
𝑯*(

#

𝑯"
𝑯$

#
𝑯(
#

𝑯#+"

𝑨-"
𝑨-$ 𝑨-(𝑏","

𝑏",$

𝑏",(
𝑏$,"

𝑏$,$

𝑏$,(𝑏(,"

𝑏(,$ 𝑏(,(

1 − 𝛼 𝛼 1 − 𝛼 𝛼 𝛼1 − 𝛼

Input general representations

Dim-specific representations
(Before aggregation)

Within-dimension and across-
dimension aggregation

Dim-specific representations
(After aggregation)

Output general representations

Figure 3: The k-th layer of mGCN framework

2.4 Multi-dimensional Graph Convolutional
Networks In this subsection, we introduce the frame-
work of the multi-dimensional GCN, mGCN. Figure 3
shows the k-th layer of mGCN. The input of this layer is
the general representations Hk generated in the (k−1)-
th layer. The general representationsHk are then trans-
formed to D dimension-specific representations accord-
ing to Eq. (2.2)

E
k
d = act(Wk

d ·Hk), d = 1, . . . , D.(2.12)

Here we use Ek
d to denote the dimension-specific repre-

sentations before aggregation to differentiate from the
dimension-specific representation after aggregation Hk

d.
After the procedures in Eq. (2.12), we then proceed

to the within- and across-dimension aggregation pro-
cedures as shown in Figure 3 according to Eq. (2.6) and
Eq. (2.11).

Hw
k
d = E

k
d · Âd, d = 1, . . . , D.(2.13)

Ha
k
d =

∑

g=1,...,D

bg,d ·Ek
g , d = 1, . . . , D.(2.14)

We then combine the results of the within- and across-
dimension aggregations as follows

H
k
d = (1− α) ·Hw

k
d + α ·Ha

k
d, d = 1, . . . , D,(2.15)

where α is the hyper-parameter to control the impor-
tance between the two components. The combination
generates the dimension-specific representations after
aggregation, which are denoted as Hk

d, d = 1, . . . , D.
Finally, we combine these dimension-specific representa-
tions to get new general representations Hk+1 according
to Eq. (2.4):

H
k+1 = act(Wk · ConcatDd=1H

k

d).(2.16)

We introduce the k-th layer of the multi-dimensional
GCN and the output is the new general representations
Hk+1, which can serve as the input of the (k + 1)-th
layer. In each layer, we use the output of the previ-
ous layer as the input. To initialize the procedure, the
input general representations H0 is needed. These ini-
tial general representations could be features associated
with the nodes, representations learned by some net-
work embedding methods, or even randomly initialized
representations. Let the input be X, then, we initialize
H0 = X. The output of the multi-dimensional GCN is
the general representationsHK formed in the (K−1)-th
layer. For convenience, we denote Z := HK .

The parameters in the model include the projection
matrices Wk

d
, d = 1, . . . , D, Wk of the fully connected

combination layer and Mk of the attention function for
k = 0, . . . ,K − 1. To train the model, different loss
functions can be designed. For example, we could use
supervised information from the node labels. In this
work, we design an unsupervised loss function using the
linkage information. More specifically, we model the
probability that a link existing between node vi and
node vj in dimension d as

p(1|vi, vj , d) = σ((WK+1
d · zi)

T (WK+1
d · zj));(2.17)

where WK+1
d is the projection matrix for dimension

d, zi is the i-th column of Z and σ(·) is the sigmoid
function σ(x) = 1/(1 + exp(−x)). The probability
that there is no link between node vi and node vj in
dimension d can be modeled as

p(0|vi, vj , d) = 1− p(1|vi, vj , d)

= 1− σ((WK+1
d · zi)

T (WK+1
d · zj))

= σ(−(WK+1
d · zi)

T (WK+1
d · zj))(2.18)

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited660

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We can now model the negative logarithm likelihood as

L =− log

∏

(vi,vj ,d)∈Tp

p(1|vi, vj , d) ·
∏

(vi,vj ,d)∈Tn

p(0|vi, vj , d)

=−
∑

(vi,vj ,d)∈Tp

log p(1|vi, vj , d)−
∑

(vi,vj ,d)∈Tn

log p(0|vi, vj , d),

(2.19)

where Tp is the set of positive samples, which consists
of all the existing links in the multi-dimensional graphs.
These links can be denoted as triplets (vi, vj , d), which
means node vi and node vj are connected in dimension
d. Tn is the set of negative samples, which consists of
all the triplets (vi, vj , d) with no link between vi and vj
in dimension d.

2.5 An Optimization Method Real-world graphs
such as social networks or computer networks are usu-
ally very sparse [1]. The number of existing links com-
pared to the number of missing links is small and usually
it can be linearly bounded by the number of nodes [1].
This means the size of Tn is large. It is computationally
expensive to consider all the pairs in the loss Eq. (2.19).
To solve this issue, we use the negative sampling ap-
proach proposed in [28]. For each (vi, vj , d) ∈ Tp, we
fix vi and d and randomly sample n nodes that are not
connected to node vi in dimension d. These n samples
are put into the set of the negative samples. In this way,
the size of Tn is only n times as large as the size of Tp.

For large graphs with millions of nodes, it is pro-
hibited to perform the within-dimension aggregation in
Eq. (2.6) for all nodes at the same time. Furthermore,
if we adopt a mini-batch procedure to optimize the loss
function, it is not necessary to calculate the represen-
tations for all the nodes during each mini-batch. Only
those nodes that are within K-hops of the nodes in the
mini-batch training samples are involved. Therefore, in
practice we only calculate the representations for those
involved nodes. However, if we use all the neighbors
for given nodes (k-hop neighbors, for k = 1, . . . ,K) in
the within-dimension aggregation step, the number of
nodes involved can still get very large, in the worst case,
it can still involve all the nodes in the graph. Hence,
we decide to sample s neighbors for a given node vi
from its within-dimension neighbors when performing
the within-dimension aggregation as similar in [13]. We
adopt a mini-batch ADAM [19] to optimize the frame-
work.

3 Experiments

In this section, we validate the effectiveness of the
proposed framework by conducting the link prediction
and node classification tasks on two real-world multi-

dimensional graphs. We first introduce the two multi-
dimensional graphs we use in this paper. Then, we
describe the link prediction and node classification tasks
with discussions of the experimental results.

Table 1: Statistics of datasets
DBLP Epinions

number of nodes 138,072 15,108
number of edges 2,015,650 485,154

number of dimensions 20 5
number of labels 10 15

3.1 Datasets In this subsection, we introduce the
two datasets we use in this paper. Some important
statistics are shown in Table 1. Detailed descriptions
of the two datasets are as follows:

1) DBLP: DBLP1 is a computer science bibliog-
raphy website. It holds bibliographic information on
major computer science journals and proceedings. We
collect all publication records from major computer sci-
ence journals and conferences during 1998-2017. We
then treat the co-authorship in each year as different
relations and form a co-authorship multi-dimensional
graph. Each paper belongs to a high-level category such
as “Theoretical Computer Science”. We assign the cat-
egory which most of the author’s papers belong to as
his/her label. 2) Epinions Epinions2 is a general re-
view site, where users can write reviews for products
and rate helpfulness for reviews written by other users.
Users in this site can also form trust and distrust rela-
tions. We form a 5-dimensional graph based on 5 dif-
ferent relations between users: 1) co-review: two users
review some common products; 2) helpfulness-rating: a
user rates the reviews written by the other user; 3) co-
rating: two users rate some common reviews; 4) trust
relation between users; and 5) distrust relation between
users. Each product belongs to a category. We assign
the category which most of the products reviewed by
the user belong to as his/her label.

3.2 Comparison algorithms Our method learns
representations for each node in the multi-dimensional
graph. So we compare our method with representa-
tive single dimensional and multi-dimensional represen-
tation learning algorithms. To apply single-dimensional
algorithms, we aggregate multi-dimensional graph into
a single dimensional graph. Note that we can also
apply single-dimensional algorithms on each dimension
and then aggregate the representations. We do not in-
clude this strategy in this work as it is likely to suffer
from the data sparsity problem. Next, we describe these

1http://dblp.uni-trier.de/
2http://www.epinions.com/

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited661

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

methods as below: 1) Non-negative matrix factor-
ization (NMF) [25]. We apply NMF to the adja-
cency matrix of the aggregated single dimensional graph
and use the factorized matrix as the representations;
2) LINE [33] is a recent proposed network embedding
method designed for single dimensional graph. We ag-
gregate the multi-dimensional graph as a single dimen-
sion graph and apply LINE on it. We use the default
setting of LINE while setting the number of training
samples to 800 millions; 3) node2vec [12] is a state-of-
the-art network embedding method designed for single-
dimensional graph. We apply node2vec on the aggre-
gated single-dimensional graph. We follow the default
setting of node2vec and conduct a grid search for q and
p as in [12]; 4)MINES [27] is a recent proposed network
embedding method designed for multi-dimensional net-
work. We apply MINES to the multi-dimensional graph
to learn the node representations; 5) GCN is a variant
of the traditional GCN [20]. The difference is that we
adopt the same loss as in mGCN instead of the origi-
nal semi-supervised loss. Additionally, we also sample
neighbors instead of using all the neighbors. We apply
it on the single dimensional graph aggregated from the
multi-dimensional graph; and 6) mGCN-noa is a vari-
ant of our method mGCN, where the weights bg,d in the
across-dimension aggregation Eq. (2.11) are all 1

D
.

3.3 Node Classification In the node classification
task, we try to predict labels for unlabeled nodes. In
the experiments setting, we hide the labels for a fraction
of nodes and use the label information of the labeled
nodes and the graph structure to perform the node
classification.

As in [29], we try different fractions of nodes to hide
their labels, the remaining nodes with labels are treated
as training samples to train a classifier. In this paper,
we set the ratio of training samples to 10%− 90% with
a step-size of 20%. We use the node representations as
the input features of nodes and train a logistic regression
classifier. The nodes with label hided are treated as the
testing set. For each of the setting, we try 10 different
splits of the training and testing and report the average
performance of the 10 experiments. The metrics we use
to measure the performance are F1-macro and F1-micro
score as in [12, 29]. For all the methods, we set the
length of the representation to 64 for fair comparison.
For node classification task, we use the final general
representations Z for our mGCN and mGCN-noa. We
use the representation generated by LINE as input for
Epinions dataset for GCN, mGCN and mGCN-noa. For
DBLP, we use the representation learned by node2vec
as the input for these methods. We set the value of α to
0.5, the number of negative samples n to 2, the number

of sample neighbors s to 10 and the number of layers K
to 1. More layers can be stacked and we leave this as a
possible future direction.

3.3.1 Experiments Results The results of node
classification for Epinions and DBLP dataset are shown
in Figure 4 and Figure 5, respectively. Note the rep-
resentations learned by NMF only achieve F1-macro
0.2380, F1-micro 0.4012 on the Epinions dataset and
F1-macro 0.2380, F1-micro 0.3580 on the DBLP dataset
both under the 90% training setting. We do not in-
clude the performance of NMF in the figures as it is not
comparable with other methods. We can make the fol-
lowing observations from these results: 1) Our method
mGCN outperforms all the baselines under all the set-
tings on both datasets, which shows the effectiveness
of our method; 2) The performance of mGCN is bet-
ter than GCN, which suggests that utilizing the multi-
dimensional relations in the multi-dimensional graph is
necessary and our proposed method mGCN can facili-
tate them well to help learn better representations; 3)
mGCN is better than MINES, which shows the effec-
tiveness of mGCN to capture the within- and across-
dimension information in a better way; 4) mGCN is
better than mGCN-noa, which indicates the effective-
ness of the attention mechanism in the across-dimension
aggregation step.

3.4 Link prediction In the link prediction task, we
try to predict whether a non-existing link will emerge in
the future based on the current graph. In the traditional
setting of link prediction task for single dimensional
graph, a fraction of links are removed from the graph
and used as the ground truth and then we try to predict
their existence using the remaining graph. In the multi-
dimensional graph setting, we perform link prediction in
different dimensions, separately. When performing link
prediction in dimension d, we first remove a fraction of
links from dimension d. Then, for each removed link,
if the two nodes connected by this link are connected
in the other dimensions, we also remove those links in
the other dimensions. After removing these links, we
use the remained graph to learn the representations for
all the methods. We then formulate the link prediction
task as a binary classification problem as in [12] using
the combination of the features of node pairs as the
input features. Different combination operations can be
used to get the feature for a node pair from the features
of the two nodes. In this paper, we use the element-
wise multiplication, as it achieves the best performance
among all the operations in [12]. When a pair of
nodes are connected by a link in dimension d, this
pair of nodes is labeled as 1, otherwise 0. To form

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited662

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

10% 30% 50% 70% 90%
Training ratio

0.36

0.38

0.40

0.42

0.44 node2vec
LINE
MINES
GCN
mGCN-noa
mGCN

(a) Epinions: F1-macro

10% 30% 50% 70% 90%
Training ratio

0.50

0.52

0.54

0.56
node2vec
LINE
MINES
GCN
mGCN-noa
mGCN

(b) Epinions: F1-micro

Figure 4: Performance Comparison of Node classification on Epinions dataset

10% 30% 50% 70% 90%
Training ratio

0.63

0.64

0.65

0.66

0.67

0.68
node2vec
LINE

MINES
GCN

mGCN-noa
mGCN

(a) DBLP: F1-macro

10% 30% 50% 70% 90%
Training ratio

0.65

0.66

0.67

0.68

0.69
node2vec
LINE

MINES
GCN

mGCN-noa
mGCN

(b) DBLP: F1-micro

Figure 5: Performance Comparison of Node classification on DBLP dataset

the training set of the binary classifier, we add all the
links in dimension d in the remaining graph as positive
samples and randomly generate equal number of non-
connected node pairs as negative samples. We form the
testing set in a similar way, using the removed links as
positive samples and randomly generated equal number
of negative samples. For the DBLP data, we only
perform link prediction task on the last dimension (Year
2017), as it is not reasonable to use future information
to predict past links. We conduct link prediction under
two different settings, one with 50% links removed and
the other one with 70% links removed. For the Epinions
dataset, we perform link prediction tasks in each of the
5 dimension with 20% of the links removed. We use
AUC score as the metric to measure the performance
of link prediction as in [12].

For the experiments on both dataset, we set the
length of the representations to 64 for fair comparison.
For mGCN and mGCN-noa, we use the WK+1

d · Z
as the representations when conducting link prediction
on dimension d. As similar in the node classification
task, we use the representations learned by LINE and
node2vec as input for Epinions and DBLP dataset
respectively. We set the value of α to 0.5, the number of
negative samples n to 2, the number of sample neighbors
s to 10 and the number of layers K to 1.

3.4.1 Experiments Results The results for link
prediction on the Epinions dataset are shown in Ta-
ble 2. We conduct link prediction experiments in each

dimension of the Epinions data the set. The AUC of
each dimension is reported in Table 2, where dim 0-4
denote the co-review dimension, the helpfulness-rating
dimension, the co-rating dimension, the trust dimen-
sion and the distrust dimension, respectively. The aver-
age performance over all dimensions is reported in the
last column. We can make the following observations
from this table: 1) The link prediction performance on
different dimensions varies a lot, which indicates that
the network structure are indeed different in each di-
mension; 2) The performance of the methods designed
for single dimensional graph (LINE, node2vec, etal) is
worse than MINEs, mGCN-noa and mGCN. This sug-
gests that simply ignoring the different types of the re-
lations and combining the multi-dimensional graph as
single dimensional graph may cause loss of information.
mGCN performs better than GCN, which further in-
dicates that the mGCN model effectively captures the
unique information from multi-dimensional graph. 3)
On average, mGCN outperforms mGCN-noa. This sug-
gests that our attention mechanism can capture the re-
lations between dimensions well.

The link prediction performance on DBLP dataset
are shown in Figure 6. We make similar observations as
those on the Epinions dataset.

4 Related work

Learning appropriate representations for nodes in graph
is essential for many graph related machine learning and

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited663

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Table 2: Performance comparison of link prediction in terms
of AUC on Epinions dataset

method dim 0 dim 1 dim 2 dim 3 dim 4 average
NMF 0.9463 0.8092 0.9381 0.8909 0.9066 0.8982
LINE 0.8612 0.7747 0.8100 0.8088 0.8888 0.8287

node2vec 0.8713 0.7866 0.8773 0.8121 0.8732 0.8441
MINES 0.9621 0.8268 0.9572 0.8036 0.8711 0.8842
GCN 0.9080 0.7512 0.8226 0.8194 0.9002 0.8403

mGCN-noa 0.9349 0.8031 0.9125 0.8642 0.9654 0.8960
mGCN 0.9434 0.8214 0.9273 0.8795 0.9648 0.9072

30% 50%
Training Ratio

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98
NMF
node2vec
LINE
MINES
GCN
mGCN-noa
mGCN

Figure 6: Performance comparison of link prediction in terms
of AUC on the DBLP dataset

data mining tasks. Early methods such as Isomap [35]
and Laplacian Eigenmap [2] try to perform dimension
reduction on the graph. These methods usually involve
computational expensive eigen-decomposition and thus
are not scalable when the graph is large. Recent meth-
ods inspired by word embedding learning such as Deep-
Walk [29], LINE [33] and node2vec [12] can scale to large
graph with millions of nodes. Recent efforts [23, 30] have
been made to connect these methods with matrix factor-
ization. There are also works [36, 7, 37, 38] trying to use
deep learning techniques to learn node representations.
Two recent surveys provide comprehensive overviews on
graph representation learning algorithms [6, 14]. Re-
cently, there are also some network embedding meth-
ods [27, 31] designed for multi-dimensional graphs.

Convolutional Neural Networks (CNNs) [22] break-
throughly improve the performance in images, videos
related task [21, 17]. This shows its great power to learn
good representations on regular grid data. However,
graph or network data are highly irregular. Efforts
have been made to generalize CNNs to graphs [5, 15,
10, 24, 8, 20, 13, 32]. Some of these methods [5, 15,
10, 24, 8] focus on generalizing CNNs for graph level-
representation learning. The other methods [20, 13,
32, 9, 11, 26] works on learning node representations
using convolutional neural networks. Most of the
aforementioned GCN methods are designed for single
dimensional graphs. Some recent surveys on this topic
can be found in [40, 39]. However, many real-world
graphs are multi-dimensional with multiple types of
relations. Some examples and basic properties of multi-
dimensional graph can be found in [4, 3]. In this work,

we propose to study graph convolutional neural network
for multi-dimensional graphs.

5 Conclusions and Future Work

In this paper, we develop a novel graph convolu-
tional network for multi-dimensional graphs. We pro-
pose to use dimension-specific representations to cap-
ture the information for node in each dimension and
general representations to capture the information for
node over the entire graph. Particularly, we pro-
pose to capture the information from both within-
dimension and across-dimension interactions when mod-
eling dimension-specific representations in each dimen-
sion. We then use a fully connected layer to com-
bine these dimension-specific representations to the gen-
eral representations. We conduct comprehensive exper-
iments on two real-world multi-dimensional networks.
The experimental results demonstrate the effectiveness
of the proposed framework.

In this work, we take a weighted average to combine
the representations from the within-dimension aggrega-
tion and across-dimension aggregation. More advanced
combination method such as feed-forward neural net-
works can be tried. Many real-world graphs or networks
are naturally evolving. Thus it would be an interesting
topic to consider the temporal information when mod-
eling graph convolutional networks.

Acknoledgements

This work is supported by the National Science Foun-
dation (NSF) under grant number IIS-1714741, IIS-
1715940 and CNS-1815636.

References

[1] A.-L. Barabási and M. Pósfai, Network science,
Cambridge University Press, 2016.

[2] M. Belkin and P. Niyogi, Laplacian eigenmaps and

spectral techniques for embedding and clustering, in
NIPS, 2002, pp. 585–591.

[3] M. Berlingerio, M. Coscia, F. Giannotti, A. Mon-

reale, and D. Pedreschi, Multidimensional networks:

foundations of structural analysis, World Wide Web, 16
(2013), pp. 567–593.

[4] S. Boccaletti, G. Bianconi, R. Criado, C. I.

Del Genio, J. Gómez-Gardenes, M. Romance,

I. Sendina-Nadal, Z. Wang, and M. Zanin, The

structure and dynamics of multilayer networks, Physics
Reports, 544 (2014), pp. 1–122.

[5] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun,
Spectral networks and locally connected networks on

graphs, arXiv preprint arXiv:1312.6203, (2013).
[6] H. Cai, V. W. Zheng, and K. C.-C. Chang,

A comprehensive survey of graph embedding: Prob-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited664

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

lems, techniques and applications, arXiv preprint
arXiv:1709.07604, (2017).

[7] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C.

Aggarwal, and T. S. Huang, Heterogeneous network

embedding via deep architectures, in SIGKDD, ACM,
2015, pp. 119–128.

[8] M. Defferrard, X. Bresson, and P. Van-

dergheynst, Convolutional neural networks on graphs

with fast localized spectral filtering, in NIPS, 2016,
pp. 3844–3852.

[9] T. Derr, Y. Ma, and J. Tang, Signed graph convolu-

tional networks, in ICDM, IEEE, 2018, pp. 929–934.
[10] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre,

R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and

R. P. Adams, Convolutional networks on graphs for

learning molecular fingerprints, in NIPS, 2015, pp. 2224–
2232.

[11] H. Gao, Z. Wang, and S. Ji, Large-scale learnable

graph convolutional networks, in SIGKDD, ACM, 2018,
pp. 1416–1424.

[12] A. Grover and J. Leskovec, node2vec: Scalable

feature learning for networks, in SIGKDD, ACM, 2016,
pp. 855–864.

[13] W. Hamilton, Z. Ying, and J. Leskovec, Inductive
representation learning on large graphs, in NIPS, 2017,
pp. 1025–1035.

[14] W. L. Hamilton, R. Ying, and J. Leskovec, Repre-
sentation learning on graphs: Methods and applications,
arXiv preprint arXiv:1709.05584, (2017).

[15] M. Henaff, J. Bruna, and Y. LeCun, Deep convolu-

tional networks on graph-structured data, arXiv preprint
arXiv:1506.05163, (2015).

[16] N. Kalchbrenner, E. Grefenstette, and P. Blun-

som, A convolutional neural network for modelling sen-

tences, arXiv preprint arXiv:1404.2188, (2014).
[17] A. Karpathy, G. Toderici, S. Shetty, T. Le-

ung, R. Sukthankar, and L. Fei-Fei, Large-scale

video classification with convolutional neural networks,
in CVPR, 2014, pp. 1725–1732.

[18] Y. Kim, Convolutional neural networks for sentence

classification, arXiv preprint arXiv:1408.5882, (2014).
[19] D. P. Kingma and J. Ba, Adam: A method for

stochastic optimization, arXiv preprint arXiv:1412.6980,
(2014).

[20] T. N. Kipf and M. Welling, Semi-supervised classifi-

cation with graph convolutional networks, arXiv preprint
arXiv:1609.02907, (2016).

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
Imagenet classification with deep convolutional neural

networks, in NIPS, 2012, pp. 1097–1105.
[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

Gradient-based learning applied to document recognition,
Proceedings of the IEEE, 86 (1998), pp. 2278–2324.

[23] O. Levy and Y. Goldberg, Neural word embedding as

implicit matrix factorization, in NIPS, 2014, pp. 2177–
2185.

[24] Y. Li, D. Tarlow, M. Brockschmidt, and

R. Zemel, Gated graph sequence neural networks, arXiv
preprint arXiv:1511.05493, (2015).

[25] C.-J. Lin, Projected gradient methods for nonnegative

matrix factorization, Neural Computation, 19 (2007),
pp. 2756–2779.

[26] Y. Ma, Z. Guo, Z. Ren, E. Zhao, J. Tang, and

D. Yin, Dynamic graph neural networks, arXiv preprint
arXiv:1810.10627, (2018).

[27] Y. Ma, Z. Ren, Z. Jiang, J. Tang, and D. Yin,
Multi-dimensional network embedding with hierarchical

structure, in WSDM, ACM, 2018, pp. 387–395.
[28] T. Mikolov, I. Sutskever, K. Chen, G. S. Cor-

rado, and J. Dean, Distributed representations of

words and phrases and their compositionality, in NIPS,
2013, pp. 3111–3119.

[29] B. Perozzi, R. Al-Rfou, and S. Skiena, Deepwalk:

Online learning of social representations, in SIGKDD,
ACM, 2014, pp. 701–710.

[30] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and

J. Tang, Network embedding as matrix factorization:

Unifying deepwalk, line, pte, and node2vec, in WSDM,
ACM, 2018, pp. 459–467.

[31] M. Qu, J. Tang, J. Shang, X. Ren, M. Zhang, and

J. Han, An attention-based collaboration framework for

multi-view network representation learning, in CIKM,
ACM, 2017, pp. 1767–1776.

[32] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d.

Berg, I. Titov, and M. Welling, Modeling relational

data with graph convolutional networks, arXiv preprint
arXiv:1703.06103, (2017).

[33] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan,

and Q. Mei, Line: Large-scale information network

embedding, in WWW, International World Wide Web
Conferences Steering Committee, 2015, pp. 1067–1077.

[34] L. Tang, X. Wang, and H. Liu, Community detection

in multi-dimensional networks, tech. report, Arizona
State University, 2010.

[35] J. B. Tenenbaum, V. De Silva, and J. C. Lang-

ford, A global geometric framework for nonlinear di-

mensionality reduction, science, 290 (2000), pp. 2319–
2323.

[36] D. Wang, P. Cui, and W. Zhu, Structural deep

network embedding, in SIGKDD, ACM, 2016, pp. 1225–
1234.

[37] S. Wang, J. Tang, C. Aggarwal, Y. Chang, and

H. Liu, Signed network embedding in social media, in
Proceedings of the 2017 SIAM international conference
on data mining, SIAM, 2017, pp. 327–335.

[38] S. Wang, J. Tang, C. Aggarwal, and H. Liu, Linked
document embedding for classification, in CIKM, 2017.

[39] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang,

and P. S. Yu, A comprehensive survey on graph neural

networks, arXiv preprint arXiv:1901.00596, (2019).
[40] Z. Zhang, P. Cui, and W. Zhu, Deep learning on

graphs: A survey, arXiv preprint arXiv:1812.04202,
(2018).

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited665

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

