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Multi-dimensional Modulation Codes for Fading
Channel

Jiantian Wu Shu Lin

Abstract

In this paper, we present some new codes which have good performance on Rician

fading channel with small decoding complexities. First, we propose a new M-way

partition chain for the L x MPSK (L < M) signal set which maximizes the intra-set

distance of each subset at each partition level. Based on this partition chain, a class

of asymptotical optimum codes has heen found. For M = 4, these codes have both

large symbol distances and product distances.

Multi-level coding scheme allows us to construct a code by hand such that the

code meets some desired parameters, e.g., symbol distance, product distance, etc.

In design of a multi-level code, we consider all factors which affect the performance

and complexity of the code, such as, the decoding scheme, decoding complexity and

performance under the decoding scheme, e.g., if the multi-stage decoding scheme is

used, the performance degradation due to the suboptimum decoding is taken into ....................

consideration. The performance for most of the codes presented in this paper has

been simulated on Rayleigh fading channel, and the results show that these codes

have good performance with small decoding complexities.



1 Introduction

In the conventional communication systems, coding and modulation are considered as

two independent segments. Engineers who designed one segment might not know the

other segment at all. In such system, each segment might be optimized, but the whole

system is far from optimium. Massey pointed out that a significant improvement can

be achieved if the channel coding and modulation are considered together[l] and

designed as a single entity. Later, Ungerboeck presented a method to combine trellis

coding with modulation using "mapping by set partitioning" technique [2]. This

method is now known as trellis coded modulation (TCM) and is widely used in

today's data communication systems.

The original TCM is used for additive white Gaussian noise (AWGN) channel. The

trellis code is designed to maximum the Euclidean distance between code sequences

transmitted on the channel. Divsalar and Simon studied the TCM on fading channel.

They found that the design criteria of codes for fading channel is different from that

for AWGN channel[4-6]. Similar results have been obtained by others [7-9]. In this

paper, we investigate multi-dimensional trellis codes for fading chalanel ............................

For simplicity, we consider the non-selective slow Rician fading channel with per-

fect phase tracking. The analytical model of the channel is shown in Figure 1. We

denote a coded sequence of length N by

x= (z,,z2,...,z:¢) (1)

where the kth element of _, zk, repesents the transmitted MPSK symbol in the kth

transmission interval. In phase notation, zk can be written as

zk = v_Eoe jCk (2)
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whereE, is the energy per MPSK symbol. E, can be expressed as E, = R. Eb, where

R is the information rate (i.e., the number of information bits per coded symbol) and

Eb is the energy per information bit.

Corresponding to z., the received signal sequence

_/ = (Yl, Y2, "', YN)

can be expressed as

(3)

yk = akzk + nk (4)

where ak is the multiplicative distortion introduced by the fading, and nk is a two-

dimensional Gaussian random vector with one-sided noise density No. In this study,

we assume that ak has the following probability density function (p.d.f.):

p(ak) = 2ake_(l+K)-KIo(2akV_( K + 1)), ak >_ 0 (5)

where K is the ratio of powers of the steady to diffuse fading signal components, I0(*)

is the zero order modified Bessel function of the first kind and E[a_] = 1 assuming

The meanthe received signal energy is equal to the transmitted signal energy E,.

and the variance of the random variable ak are given by

1,f _ e__:/2((l + K)Io(K/2) + KI1(K/2))
?Tla"- _ Vl+l_

(6)

(7)2 2
O"a -" 1 --/7_ a

respectively, where 11(*) is the first order modified Bessel function. Small values of

K indicate a severely fading, and the Rayleigh fading is a special case for K = 0 (no

steady signal component). Large values of K indicate a slight fading, and the AWGN

channel is a special case for K = _.

The interleaving is a important technique for fading channels, and the interleaving

depth must be finite in any practical system. For convenience, however, we assume
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that the interleaving depth is infinite. Based on the above assumption, an upper

bound can beobtained by computing the pair-wise error probability bound. Suppose

z is the transmitted sequence,and the metric usedin decoding is the squared Eu-

clidean distance(SED), i.e., the codesequencewith smallest SED from the received

sequenceis decodedas the transmitted code sequence. If the decoded sequenceis

instead of x., the code (path) _ is called an error path, and the pair-wise error

probability is equal to

P(z. ---+__)= Pr {m(y_,_k) < m(y_,_z)} (8)

where m(,, ,) is the metric function, i.e., the SED in this case. To describe the upper

bound, we define the following parameters. The squared Euclidean distance between

.¢. and z is given by
N

d2(Gx) = Y_ I_, - x,I 2 (9)
i=1

The symbol (Hamming) distance between sequences i and x denoted by 6n(3:, x_) is

the number of different symbols between the two sequences. The symbol distance of

the code, denoted by 6n, is defined as the minimum symbol distance between any

two code sequences. The product distance (PD) between _ and x_ denoted by Av(_k, _.z)

is defined as the product of the corresponding nonzero squared Euclidean symbol

N

A_(x_",_x) -- YI Jxk- &kl2 (10)

k=l

zk # _k

distances between _ and _z:

The product distance of the code is the minimum product distance between a pair of

code sequences with symbol distance 6t¢. The pair-wise error probability of choosing

the code sequence _ instead of z can be computed in terms of the symbol distance, the

squared Euclidean distance and the product distance. Large symbol distance needs



large numberof states in the trellis diagram of the code, which leads to very complex

and expensive decoder. Therefore, we only consider the codes with moderate symbol

distances. There are two cases in terms of the availabihty of channel information.

First, we consider the case that the channel state information is not available. For

large signal-to-noise ratio (SNR), the pair-wise error probability of choosing the code

sequence __ instead of z_ can be expressed as [8]

(v ,r d)
P(_z _ __)= P_,,,_ < 2A_(_k,z_) (11)

where d is the Euclidean distance between the two code words.

Second, if the channel state information (CSI) is available, that is, the fading

attenuation at at time k is known, the branch metric in CSI decoding is

rrt_, -- lyk - akxk] 2 (12)

The pair-wise error probability of choosing the code sequence 3: instead of z can be

expressed as [8]

P(x -'-* i) = Pa,s,a <-
(&r2d2(1 + K)e-s)_tt._

(13)

In both cases, an upper bound on the average bit error probability is obtained

from the pair-wise error probability bound as

< 7: (14)
__,x_EC

where b(_,_.x) is the number of bit errors that occur when x is transmitted and i is

chosen by the decoder, p(z) is the a priori probability of transmitted x and C is the

set of all coded sequences. The upper bound given by (14) can be evaluated by the

distance spectrum of the code.



Denote A(d,_5, A) as the average number of code sequence pairs _x, i with Eu-

clidean distance d, symbol distance 6 and product distance A. The parameter

A(d, 6, A) is called the average multiplicity of the code. For fading channels, a spectral

line is defined by Euclidean distance d, symbol distance 8, product distance A, and

an average multiplicity A(d, _, A). The set of all spectral lines of a code is called the

distance spectrum of that code.

Using the distance spectrum of the code, the above boumd can be written as

1

eb <_ -_ _ bd,6.aA(d, cS,A)Pd,_,a (15)
d,$,A

where ba,6,,a is the average number of erroneous information bits on a path character-

ized by the Euclidean distance d, symbol distance _ and product distance A and R

is the number of information bits per coded symbol.

The upper bound provides a guidance for the design of codes for a fading chan-

nel. The symbol distance is the most important parameter. It determines the rate of

the decrease of error probability. The bit error probability of a decoded sequence by

Viterbi decoding is inversely proportional to the product distance of the code. Both

symbol distance and product distance should be as large as possible, and they play

different roles on the performane of the code. At low SNR, the product distance is

more important, whereas at high SNR, the symbol distance becomes more important,

which dominates the asymptotic behavior of the code. Apart from these two param-

eters, the path multiplicity is also an important factor. To design a good code for

practical use, we have to set these parameters at reasonable values. We will see that

a code with maximized symbol distance and extremely small product distance is not

a good code.



2 Multidimensional Trellis Codes with Maximized

Symbol Distance

Optimum two dimensional trellis codes have been found by computer search [7].

Divsalar and Simon pointed out that multidimensional trellis codes have perfor-

mance/complexity advantage over two-dimensional trellis codes for fading channel[5].

They also showed that the Ungerboeck's set partition chain is not optimum for design-

ing multi-dimensional trellis codes for fading channels. They found that, by properly

partitioning multi-dimensional signal sets, trellis codes with symbol distance larger

than or equal to 2 can be easily found by hand. Codes presented in their papers

[4-6] have small numbers of states with either symbol distance 2 and information rate

equal to 2 bits/symbol or symbol distance larger than 2 and information rate less

than 2 bits/symbol. In this paper, we present codes with small number of states

and either higher inforamtion rate or better perfomance (larger symbol distance and

product distance). In this section, we discuss the trellis codes with maximized symbol

distances.

We use a set {0, 1,..., M- 1} to express the set of MPSK signal points by the

natural labelling as shown in Figure 2 for the case M = 8. Denote (n, k, dn, q) as a

code over GF(q) with block length n, number of information symbols k and minimum

Hamming distance dH (q is ommitted if q = 2).

It is obvious that a code with maximum symbol distance is the code with maximum

minimum Hamming distance as long as we regard a point in MPSK signal set as an

element in GF(M). For any signal set of MPSK, let _/, = {0, 1,..., M - 1 } _ GF(M)



be a one-to-one map, e.g.,

= o,

= ot i= 1,2,...,M- 1, (16)

where o is a primitive element of GF(M). Then the symbol distance between any

two vectors in 2L dimensional MPSK signal set (L × MPSK) is equal to the minimum

Hamming distance between any corresponding vectors c I and ca over GFL(M). Thus,

to obtain an optimum partition chain for the L × MPSK signal set in terms of symbol

distance is equivalent to design an optimum partition chain of GFL(M) in terms of

Hamming distance. In [11], it has been shown that, for L < M, there exists a

partition chain GFL(M) = RS(L,L)/RS(L,L - 1)/.../RS(L, 1)/{0} with Hamming

distances 1/2/.../L/cx_, where 0 is the all-zero vector in GFL(M) and RS(L, K) is

the Reed-Solomon code ( extended for L = M, or shortened for L < M- 1) over

GF(M) of length L and number of information symbols K. Therefore, we can use

these set partition chains to construct trellis codes with high information rates and

large symbol distances. The following is a brief description of the expression of set

partition chain GFL(M)= RS(L,L)/RS(L,L- 1)/.../RS(L, 1)/ {0}.

Let A_ = RS(L,L- i), i = 0,1,...,E- 1, and AL = {0}. Then A,+_ partitions A_

into M cosets. Denote [Ai/Ai+l] as the set of coset representatives of Ai+l in Ai, for

i = 0, 1, ..., L - 1. Due to the linearity of the codes A,, i = 0, 1, ..., M, the partition

can be expressed as

A, = _ (g(Oa, + Ai+l), fori = 0,1,...,L - 1, (17)

g(i)EGF(M)

where _. is a coset representative of Ai+l in Ai. Thus every codeword in A0 can

be completely expressed by the set of M-ary numbers 9(o)90)..g(t-l), which is the

labelling of the partition tree.
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A. Four-state 4PSK trelliscodes

To demonstrate the designing method of trellis codes based upon above set par-

tition chain, we first present an example of a 4-state 3 × 4PSK trellis code. In this

case, M = 4 and L = 3. We use the same notations a, and Ai as defined above. Let

B1 = b0)a_l + A1, B2 = b_2)al + A1, b0),b {2) 6 GF(4) and b 0) _ b TM. Let

C, = b(')ax + Ai_a2 + A2, for

Di = b(2)_aa+ A,_a2 + A:, for (Is)

where Ao = 0, A, = _,-1 for i-l, 2, 3, and 9-2 is a coset representative of A2 in

A1. Therefore, the intra-symbol distance between Ci and Dj is 1, the intra-symbol

distance between C_ and Cj (or D, and Dj), i _ j, is 2, and the inter-symbol distance

of each C, (or Di) is 3 for i=0, 1, 2, 3. We use a 4-state full-connected trellis code

as shown in Figure 3. The cosets Ci are assigned to the branches leaving the even

numbered states, and the cosets D, are assigned to the branches leaving the odd

numbered states. From the figure, the symbol distance of the trellis code is 3. The

information rate is 4/3 bits/symbol.

If we use extended Reed-Solomon codes Ai = RS(4, 4- i) (i=0, 1, 2) and the same

coding method as above, we obtain a 8-dimensional trellis code with symbol distance

3 and information rate 1.5 bits/symbol. It is obvious that the product distances of

both codes are 8.

B. Eight-state 8PSK trelliscodes

The construction method presented above can be generalized to any MPSK trellis

codes. Here we give an example of 8PSK trellis code, i.e., M = 8 and L = 3. We

use the same notations a_ and A, as defined as above. Again, let BI = b(l)al + A,,



B2 = b{2)gl + AI, b(1), b{2) E GF(8) and b(1) :_ b(2). Let

Ci = b{l)a_l + )_ia_a+ A2, for

Di = b(2)__al+ $_ + A2, for

{ = 0, 1,2,...,7,

i = 0, 1,2,...,7, (19)

where )_o = 0, Ai = a i-1 for i=l, 2, ..., 7, and g2 is a coset representative of A2 in

A_. Therefore, the intra-symbol distance between C; and Dj is 1, the intra-symbol

distance between C_ and Cj (or D; and Dj), i # j, is 2, and the inter-symbol distence

of each C, (or Di) is 3 for i=0, 1, 2, ..., 7. We use a S-state full-connected trellis

code as shown in Figure 4. The cosets C, are assigned to the branches leaving the

even numbered states, and the cosets Di are assigned to the branches leaving the odd

numbered states. From the figure, the symbol distance of the trellis code is 3. The

information rate is 2.0 bits/symbol. Because the mapping is not linear (The addition

over GF(8) does not correspond to addition modulo 8.), it is not clear that one

may or may not maximize the product distance. For the time being, an exhausitive

search may be used to select b(i) (i=1, 2) such that the minimum product distance

in all C; and D, is maximized. However, the product distance of the code is at least

64 sinS(r/8) = 0.20.

To extend this example, we notice that, for any 3 < L _< M, the partition

RS(L,L)/RS(L,L-1)/RS(L,L-2) can be used intead of RS(3,3)/RS(3,2)/RS(3, 1).

Therefore, we can construct a trellis code with symbol distance 3 using the same

method. In this case, each transition in trellis diagram represents 8 z_-2 parallel

branches. The information rate of the trellis code is 3(L - 1)/L bits/symbol.

Further extending above results, we can obtain codes with larger symbol distance.

The main idea is that, instead of using partition GFL(M) = RS(L, L)/RS(L, L -

1)/.../RS(L, 1)/ {0}, weuse RS(L,L- 1)/RS(L,L-2)/.../RS(L, 1)/ {0}. Then the

10



sameprocedure of coding can be used,and the resultant code has symbol distance

4 and the information rate 3(L - 2)/L bits/symbol. Particularly, for L = 6, the

informtion rate is 2.0 bits/symbol.

Although the above codes have the maximized symbol distances, for M > 8, the

product distances of these codes are small. These codes are not good at low (even

at moderate) SNR. However, the QPSK codes have both large symbol distances and

product distances.

3 Constructions of Multi-level Codes for Fading

Channels

For AWGN channel codes, the optimum multi-dimensional trellis codes have been

found by computer search [15]. However, suboptimal (even some optimum) codes

can be designed by hand using the multi-level coding scheme [13]. For the fading

channel codes, this situation becomes more complicated. If one uses the design rules

[7, 8] in which the symbol distance is maximized first, then choose the code with the

maximum product distance among the codes with the maximized symbol distance,

the codes constructed in last section would be optimum. But the small product

distance severely affects the performance of the codes. In fact, for two codes Cl and

C2, if the symbol distance of C1 is 1 larger than that of C2, but the product distance

of Ca is much less than that of C2, then C_ may outperform C1. Therefore, even

use computer search, we can not guarantee to find the optimum multi-dimensional

codes for fading channel. On the other hand, the multi-level coding scheme allows

one coordinate all parameters of a code such that any parameter does not severely

degrade the performance of the code .....
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Another advantageof the multi-level codesis that these codes can be decoded

either by onestageoptimum decodingalgorithmor by multi-stage decodingalgorithm.

The choiceof the decoding algorithm should be made such that the best trade-off

betweencoding gain and complexity is achieved. In the following, we will construct

several classes of multi-level codes which have performance/complexity advantage

over previously known codes.

A. Two-dimensional Multi-level Codes

A three level coding schemme for 8PSK is shown in Figure 5, where each output

bit of Ci is mapped into the ith bit of the label of a 8PSK signal point. (The 0th

bit is the least significant bit, and the 2nd bit is the most significant bit.) Let d, be

the Hamming distance of ith component code Ci, and _i be the intra-set (squared

Euclidean) distance at partition level i, for i = 0,1,2. It can be proved that the

overall code has the parameters:

= rain {d ,O< i < 2} (20)

= (21)

where k satifies &, = 6n and Ak = min {gi, di = 6H}.

The trellis structure of the overall code can be formed by taking the direct product

of trellises of component codes follows. Denote fli as the trellis of component code

Ci. If the number of signal points associated with one branch transition of each

trellis/_i is the same, then the trellis of the overall code is all of the state transitions

($1,$2,$3) ---* (S_,S_,S_), where Si --* S_ is the state transition of/3_. And the output

of the multi-level code during the state transition is the direct product of all output

of the component codes. If one of the component codes is a block code, the state

transition is period time variant (see next example).
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Example 3.1 The three component codes are as follows: Cz is a 4-state rate-l/2

convolutional code, C2 and (73 are a single-parity-check code (2N, 2N-l, 2). Then the

three-level code has symbol distance 2, product distance 4, and information rate (5N-

2)/2N bits/symbol. In this case, the second and third codes have a two-state trellis

structure whose one state transition corresponds to one symbol (Figure 6 (a)). To

form the trellis of the overall code, we rewrite the trellis of the second and third codes

as Figure 6 (b). Each state transition has two parallel branches which corresponds to

two signal symbols. The trellis of overall code has 16 states with period N branches

(2N symbols) and four parallel branches in each transition. Because this code has high

information rate, it can be used as inner code for bandwidth efficient concatenated

coding scheme.

To obtain such codes with larger symbol distance, we may use high rate block

and convolutional codes at the second and third level. Thus, the optimum decoding

becomes more complicated, and the multi-stage decoding can be used in such case.

However, the performance degradation due to multi-stage decoding becomes more

severe as the minimum Hamming distances of component codes increase. Roughly

speaking, this is because the increase of effective path multiplicity by multi-stage

decoding is exponentially proportional to the increase of the Hamming distances of

the component codes (see [12, 13]). To avoid the large effective path multiplicity,

we may use two-level codes based on partition 8PSK/BPSK which has been used for

AWGN codes [14].

Example 3.2 The coding scheme is shown in Figure 7. The first component code

is a 4-state rate-l/2 convolutional code, and the second code is a (2N, 2N-l, 2) block

code. The coding scheme is shown in Figure 7. This code have symbol distance 2

and information rate I+(2N-1)/2N.
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To construct such a code with larger symbol distance, we have to increase the

symbol distance at each level. High rate block codesor convolutional codes may

be used in the second level. The decodingcomplexity of such a code is moderate

becausethe number of statesof a high rate codewith Hamming distance equal to or

greater than 3 is too big. On the other hand, if weuseabovethree-level structure, to

obtain a code with symbol distance3 or larger, the numberof states using optimum

decodingat leastequals4 x 4× 4 = 64. Sucha codeis inferior to the one-level64-state

trellis code [7] with symbol distance 4. To obtain a code with symbol distance 3, a

moderate product distance and small number of states, we will use a multidimensional

multi-level coding scheme in the next subsection.

B. Multi-dimensional Multi-level trellis codes

The minimum symbol distance of a multi-dimensional signal set could be larger

than 1. Taking this advantage, a multi-dimensional multi-level code can be designed

more efficiency than two-dimensional multi-level code. A multi-dimensional multi-

level code also can be constructed by several multi-dimensional component codes. In

the next example, we will construct a 8-state 8-dimensional code with symbol distance

3 and information rate 2 bits/symbol.

Example 3.3 The coding scheme is shown in Figure 8. The second code is the 4-

state eight-dimensional QPSK trellis code constructed in last section with information

rate 1.5 bits/symbol. For the convenience of forming the trellis structure, the first

component code is a four dimensional binary trellis code with information rate 1/2

bit/symbol which will be described in the next paragraph.

The sigle-parity-check code (4, 3) is partitioned into 4 cosets by the code (4,

1) as follows: Ao = {0000,1111}, A_ = {1100,0011}, A2 = {1010,0101}, A3 =

14



{0110,1001}. The intra-distance between A, and Aj (i # j) is 2, and the inter-

distance of Ai (i=0, 1, 2, 3) is 4. Using a two-state trellis code whose trellis structure

is shown in Figure 9, the resultant code has the minimum Hamming distance 4.

Combing the above two trellis codes, we obtain a 8-state eight-dimensional trellis

code with symbol distance 3, product distance 8, and information rate 2 bits/symbol.

From Figure 3 and 9, the trellis stucture of the overall code is 8-state fully-connected.

Each state transition has 32 parallel branches.

The following code is based on the four-dimensional signal set partitioning.

Example 3.4 We use half of the signal points in the 2×SPSK signal constellation

and the partition chain of Divsalar and Simon's [5]. A point in 2xSPSK signal set

is denoted by a pair of labelling [i,j],O <_ i,j _< 7. Denote s, = [i,3i(mod8)], i=0,

1, ..., 7, E0 = {s_,0 < i < 7}, Ei = [0,2i] E0 = {[o,2i]_s_q,o_< j <_ 7}, i=1, 2,

3, where _ is component-wise addition modulo 8. Denote A = Eo tO E1 tO E2 tO E3,

F = {[0,0],[2,6],[4,4],[6,2]}, G = {[0,0],[4,4]}, H = {[0,0]}. Then A/Eo/F/G/H

is a principal partition chain. The coding scheme is shown in Figure 10, where Ca is a

rate-l/2 convolutional code, and El is an (n, n-l, 2) binary block code, i=2, 3, 4. Each

two output bits of C1 within one coding interval specifys a coset representative [0, 2i],

and each element in a codeword of the block codes C_, 6'3 and C4 specifys a coset

representative Eo/F, F/G, G/H, for i=2, 3, 4, respectively. The coded sequence is

produced by combining the output of these four encoders. Let C1 be a 4-state trellis

code as shown in Figure 11 and n = 8 for C2, C3 and C4, the overall code has following

parameters: symbol distance 3, product distance 2.344, and information rate 1.8125

bits/symbol. For this code, /-stage (for any l < 4) decodng can be used. We will

discuss the performance and complexity issues in the next section.
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4 Performance and Complexity

To measure the decoding complexity of a multi-dimensional trellis code, the normal-

ized branch complezity was introduced by Ungerboeck [3] and others (e.g., [5]). It

can be defined as the number of branch transitions per symbol in the trellis diagram

excluding the parallel transitions. For a L × MPSK code, if the number of states is 2 _

(v is the memory of the trellis encoder), and the number of coded bits during a trellis

transition interval is/c (i.e., 2 T' is the number of branches leaving a given node in the

trellis excluding parallel branches), then the normalized branch complexity is 2"+_'/L,

e.g., the normalized branch complexity of the code in Example 3.3 is 23+3/4 = 16

whereas the normalized branch complexity of 8-state Ungerboeck code is 23+_ - 32.

To compare the new codes with previously known codes, both performance and

complexity should be considered. For the multi-level codes, if the multi-stage decoding

is used, the effective path multiplicity will be greater than the path multiplicity of

the code. The effective path multiplicity of a code using multi-stage decoding can

be computed as the case of multi-stage decoding for codes on AWGN channel[12,

13]. From the result of multi-stage decoding for codes on AWGN channel, to get

benifit of multi-stage decoding, the ratio of effective path multiplicity to the path

multiplicity should be small. Let us regard a multi-level code as a two-level code.

If the second component code is a high rate code with small Hamming distance,

the second component code does not provide much help for the first code when the

optimum one-stage decoding is used. In this case, a two-stage decoding can be used,

and the performance degradation by the two-stage decoding is small. Here the second

component code can also be a multi-level code, and a two-stage (or multi-stage)

decoding can be used with additional small performance degradation.
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It is very time comsumingto compute the upper bound (15) for each code pre-

sented above. Instead, we usecomputer simulation to predict the performance of

thesecodeson Rayleigh fading channel.

Figure 12 shows the performance of the code in Example 3.1 using optimun and

three-stage decoding scheme. The difference between the performance by optimum

decoding and that by multi-stage decoding is large at low SNR, but small at high

SNR ( Eb/No = 20.0 dB).

The simulation results for the code in Example 3.2 is shown in Figure 13, where

the length of the block code is 8 and two-stage decoding scheme is used. The decoding

complexity of this code is about the same as that of 4-state Ungerboeck code. (The

binary (N, N-l, 2) code can be decoded by Wagner decoding algorithm [13], and its

decoding complexity can be ignored.) In the figure, we also give the performance

of the 4-state Ungerboeck code. The new code looses a little information rate but

achieves much better performance.

Figure 14 shows the performance of the code in Example 3.3. From the con-

struction of this code, the optimum decoding scheme is more suitable than two-stage

decoding. The performance of the code in Example 3.3 is better than at Eb/No > 13

dB. As mentioned before, the normalized branch complexity of this code is only half

of that of the 8-state Ungerboeck code. In the figure, we also include the simulation

results of two other codes: One is the 8-state six-dimensional trellis code constructed

in section 2B with b_°) = 0 and bO) = 1, and another is Divsalar and Simon's 4-state

four-dimensional code with R=2.0 bits/symbol [5]. It turns out that the performance

of these codes are worse than that of 8-state Ungerboeck's code although their symbol

distance are not less than that of Ungerboeck code. This is because the Ungerboeck
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code hasbetter distancespectrum.

For the code in Example 3.4, the optimum decodingis a little more complicated,

but the two-stagedecoding (One is for trellis code, and another is for block code

which consistsof three binary block codes.) is straightforward. Figure 15 presents

the simulation results of the code in Example 3.4 and a similar code, i.e., only the

first component code is replaced by an 8-state convolutional code with generator

maatrix [64, 74]( seepp.330 in [16] ) wherethe length of the block code at second

level is 8. We see that, since the symbol distance of secondcomponent code is

larger than that of the first one for the code in Example 3.4, improving the first

componentcodecansignificantly improvethe performanceof the overall code. In the

casefor which the two-stagedecodingschemeis used, the secondcomponent code

dominates the decodingcomplexity. Therefore, the modified code only increasesa

little decodingcomplexity. The normalized branch complexities of these two codes

are (2_+_+ 23+3)/2= 36 and (2s+_+ 23+s)/2= 40, respectively.

Sincethe secondcomponentcodeis composedof threebinary codes,the decoding

complexity of the block codecan be further reducedby two or three stagedecoding

for the block code. Figure 16givesthe simulation resultsof the BER of the code by

two, three and four stagedecoding, respectively. From the figure, we can see that

the differencebetweentwo-stagedecodingand three-stagedecoding can be ignored

at high SNR, and the differencebetweentwo-stageand four-stagedecodingis small.

Sinceeachbinary singleparity checkcodecanbe decodedby the Wagneralgorithm,

their decodingcomplexity is very small (muchsmaller than two-state trellis decoding

complexity at high SNR). The decoding complexity of the first trellis code is half of

that of Divsalar and Simon's 4-state four-dimensional trellis code mentioned before.

Therefore, the total decoding complexity of the new code by four stage decoding can
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be consideredto be the sameorder of that of the Divsalar and Simon's code. The

new code hassmaller information rate (1.812.5v.s. 2.0 bits/symbol). But from the

simulation results shown in Figure 17, it saves:3.2 dB at BER of 10 -4, and more

coding gain can be achieved at lower BER.

5 Conclusions

We have proposed two classes of multi-dimensional trellis codes for fading channels.

One is based on a new M-way set partition chain for the L × 3/PSI( (L _< M) signal

set which maximizes the symbol distance of each subset at each level. Some multi-

dimensional trellis codes with symbol length 3 and 4 have heen given as examples

of codes constructed based on this set partition chain. These codes can achieve very

high information rates and are asymptotically optimum for fading channel. However,

for M > 8, the product distances of these codes are small.

Multi-level coding scheme can be used to construct codes for fading channels if

the partition chain and component codes are properly chosen. A number of examples

of multi-level codes have been given. The performance degradatio n of mu!ti-stage

decoding has been considered in the designing of multi-level codes. Simulation results

show that these codes have very good performance with small decoding complexity.
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Figure 4 Trellis diagram of 8-state 8-PSK trellis code
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Figure 13 The simulation results of the code in Example 3.2 (R=1.875
bits/symbol) and 4-state Ungerboeck code (R=2.0 bits/symbol)
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Figure 16 A comparison of the code in Example 3.4 by
two, three and four stage decoding.
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