MULTI-DIMENSIONAL
 PIECEWISE POLYNOMIAL
 CURVE FITTING

by

Philip B. Zwart

This research was supported in part by the Atomic Energy Commission under Research Contract No. A(lll-1)-1493 and by the Department of Defense under. Themis Grant No. F44620-F44620-69-C-0116。

Report No. COO-1493-34
(CSSE-705)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

Any set of hyperplanes partitions R^{n} into polygonal pieces. Linearly partitioned piecewise polynomials (LPPP) result when polynomials on each of these pieces are put together in a smooth manner. There is presented an LPPP canonical form which leads to computationally feasible multi-dimensional piecewise polynomial curve fitting.
I. INTRODUCTION

The problem of explicitly describing an n-dimensional surface $z=F(x), x$ an n-vector, which approximately fits some data points $\left(x_{k}, z_{k}\right)$ arises in mathematical modeling and data analysis with computers. The data points may be the results of a computer simulation (or experimental results, surveys, economic data, etc.) of a function whose values must play a role (where smoothness is required) in a more involved simulation. One way of attempting to describe such a surface is to piece together polynomial functions. This paper is concerned with the process of selecting a piecewise polynomial function which approximates the data.

Section II first describes what the pieces of R^{n} are to be like. Any set of hyperplanes naturally partitions R^{n} into polygons. Then the concept of a linearly partitioned piecewise polynomial of degree s is defined. This corresponds to having polynomials of degree \leq s defined on each of the polygons in such a way that the resulting function in R^{n} possesses continuous derivatives of order s-l. Non-degeneracy of a partition is also defined. Section III shows that, for non-degenerate partitions, the piecewise polynomial function must take on an especially simple canonical form. Section IV contains a few comments on how the canonical form is useful in finding the desired surface $z=F(x)$.
II. DEFINITIONS:

A linear partition of R^{n} is a set of vectors $\left(a_{1} ; b_{1}\right) \ldots \ldots$, $\left(a_{m}, b_{m}\right)$, where the $a_{i}^{\prime} s$ are n-component vectors and the b_{i} 's are real numbers. Associated with a linear partition are the closed polygonal regions, R_{I}, I a subset of $1, \ldots, m_{\text {, }}$ where R_{I} is defined by

$$
R_{I}=\left\{x \mid a_{i} \cdot x \geq b_{i}, i \varepsilon I, \quad a_{i} \cdot x \leq b_{i}, i \notin I\right\}
$$

and is non-empty.
A linear partition is non-degenerate if for every linearly dependent $a_{i_{1}}, \ldots, a_{i_{k}}$ we have

$$
\operatorname{rank}\binom{a_{i_{1}}}{a_{i_{k}}}<\operatorname{rank}\binom{a_{i_{1}} \cdot b_{i_{1}}}{a_{i_{k}} \cdot b_{i_{k}}}
$$

Nondegeneracy says the intersection of any k of the hyperplanes $a_{i} \cdot x=b_{i}$, which partition R^{n}, must have dimension $n-k$. In particular, the intersection of any $n+1$ of these hyperplanes is empty.

Two regions R_{I} and R_{J} are called k-neighbors if either $I=J U\{k\}$ or $J=I U\{k\}$ 。

Linear partitions possess some properties which will be of use in the following section. We present them here.

Proposition I: For any R_{I} and R_{J}, there exist a sequence $R_{I_{1}} \ldots \ldots R_{I_{\ell}}$ such that $R_{I_{j}}$ and $R_{I_{j+1}}$ are k_{j}-neighbors, $, j=1, \ldots, \ell-1$ and $R_{I_{1}}=R_{I}, R_{I_{\ell}}=R_{J}$.

Proof: Let U be the union of all $R_{K}{ }^{\prime} s$ which can be connected to R_{I} by such chains. U is the union of a finite number of closed sets, so it is closed. We need only show that U is an open set.

Pick $x \in U$. Set U_{x} equal to the union of all R_{I} 's which contain x. x is not contained in the union of the R_{I} 's not containing x, which is a closed set containing $R^{n}-U_{x}$. So x is an interior point of U_{x}. We will show that $U_{x} \subset U$. Suppose $x \in R_{K} \subset U$: Pick $R_{L} \subset U_{X}$: Since $x \in R_{K} \cap R_{L}$, we must have $a_{i} \cdot x=b_{i}$, $\forall i \varepsilon(K-L) \cup(L-K)$. Suppose $K-L=\left\{i_{1}, \ldots, i_{r}\right\}, L-K=\left\{j_{1}, \ldots, j_{s}\right\}$. Then set $I_{j}=K-\left\{i_{1} \ldots \ldots, i_{j}\right\}, j=0, \ldots, r$, and $I_{r+j}=\left(K-\left\{i_{1}, \ldots, i_{r}\right\}\right)$
$\left\{j_{1}, \ldots . j_{j}\right\}, j=1, \ldots, s, \quad$ The $R_{I_{j}}, j=0, \ldots, r+s$ are nonempty (because each contains x) and $R_{I_{0}} \ldots \mathcal{O}_{I_{r+s}}$ is a chain of neighbors connecting R_{K} to R_{L}. Thus; $R_{L} C U$, ${ }^{\prime} R_{L} \subset U_{X}$. And x being an interior point of $U_{x} \subset U$, is an interior point of U. U being open and closed must equal R^{n}. So $R_{J} \subset U$.

Proposition 2: If the partition is non-degenerate, then $R_{I} \neq \phi$ implies R_{I} contains interior points i.e. R_{I} has dimension n. Proof: Suppose $R_{I} \neq \phi$. Pick $\hat{x} \in R_{I}$. Let $J=\left\{i \mid \hat{a}_{i} \cdot \hat{x}=\dot{b}_{i}\right\}^{\prime}$. Set $x_{J}=\hat{x}$. If, for some $k \varepsilon J$, there exists $x \in R_{I}$ such that $a_{i} \cdot x=b_{i}$ iff i\&J-\{k\}, then replace J by $J-\{k\}$ and x_{J} by this new x. If this procedure eventually exhausts J, then the last x is an interior point of R_{I}.

Suppose this procedure does not exhaust J. Then it eventually occurs that
a) $a_{j} \cdot x_{J}=b_{j} \cdot j \varepsilon J$ and
b) for $k \varepsilon J / \cap_{I} \min a_{k} \cdot x$
subject to $a_{j} \cdot x=b_{j}, j \varepsilon J-\{k\}$
is equal to $a_{k} \cdot x_{J}=b_{k}$ '
c) for $k \in J-I$
$\max a_{k} \cdot x$
subject to $a_{j} \cdot x=b_{j}, j \varepsilon J-\{k\}$
is equal to $a_{k} \cdot x_{J}=b_{j}$.
Since at least one of $J \cap I$ and $J-I$ is nonempty, we must have that for some $k \varepsilon J$, there exist multipliers of $\alpha_{j}, j \varepsilon J$ such that $\sum_{\substack{j \in J \\ j \neq k}} \alpha_{j} a_{j}=a_{k}$. Thus, the set of $a_{j}{ }^{\prime} s, j \varepsilon J$ is linearly dependent and $a_{j}{ }^{\bullet} x_{j}=b_{j}{ }^{\circ} j \varepsilon J$. This contradicts the non-degeneracy of the partition. Thus, J must be exhausted and the proposition is proved.

Proposition 3: $a_{j} \cdot x=b_{j}$
for some $x \in R_{I}$ implies that
$\operatorname{dim}\left\{x \mid a_{j} \cdot x=b_{j}\right\} \cap R_{I}=n-1$

Proof: Use an argument like that used in the proof of proposition 2 with the additional requirement that j never be removed from J.

A function F is said to be alinearly partitioned piecewise polynomial (LPPP) of degrees iff there is a linear
partition of R^{n} such that

1) Fis continuously differentiable of order s-1.
2) $\boldsymbol{F}_{I}\left(F_{\text {restricted }}\right.$ to $\left.R_{I}\right)$ is a polynomial of degree $\leq s, \forall R_{I}$.
3) E_{I} is a polynomial of degree s for some R_{I}.
4) If R_{I} and R_{J} are k-neighbors then

$$
F_{I}=F_{J} \text { in } R_{I} \cap_{\mathbb{R}_{J}}
$$

Fis a basic LPPP of degree s iff

$$
F(x)=\operatorname{sgn}\left(a_{1} \cdot x-b_{1}\right) \alpha_{1}\left(a_{1} \cdot x-b_{1}\right)^{s}
$$

for some nonzero α_{1}, some n-vector a_{1}, and some real number b_{1}. Notice that the above function is an LPPP because with the linear partition consisting of the single vector (a_{1}, b_{1})

1) $\frac{\cdots \partial^{s-1}}{\partial x_{1}^{j 1} \ldots \partial x_{n}^{j}} \cdot\left(\operatorname{sgn}\left(a_{1} \cdot x-b_{1}\right) \alpha_{1}\left(a_{1} \cdot x-b\right)^{s}\right)$ $=s!a_{1}^{j_{1}} \ldots a_{n}^{j_{n}}\left(a_{1} \cdot x-b_{1}\right) \alpha_{1}\left(a_{1} \cdot x-b_{1}\right)$
2) +3) $\quad F_{\Phi}(x)=-\alpha_{i}\left(a_{1} \cdot x-b_{1}\right)^{S}$, and

$$
F_{\{1\}}(x)=\alpha_{1}\left(a_{1} \cdot x-b_{1}\right)^{s}
$$

4) $F_{\phi}(x)=F_{\{1\}}(x)=0$, if $x \in R_{\phi} \cap R_{\{1\}}$

III. CANONICAL FORM:

An LPPP (with partition $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)$) is said to be in canonical form, if it is expressed as

$$
F(x)=F_{0}+\sum_{i=1}^{m} F_{i}
$$

where F_{0} is a polynomial and F_{i} is a basic LPPP with partition ($\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}$).

Theorem: If F is an LPPP of degree s, with non-degenerate partition, then F can be expressed in canonical form. Proof: We first prove a few lemmas.

Lemma 1: If R_{I} and R_{J} are k-neighbors, then

$$
F_{I}(x)=F_{J}(x) \forall x 3 a_{k} \cdot x=b_{k}
$$

Proof: By proposition 3, $\operatorname{dim} R_{I} \cap R_{J}=n-1$.
Since $F_{I}(x)=F_{J}(x) \quad x \in R_{I} \cap_{R_{J}}$ an $n-1$ dimensional subset of $\left\{x \mid a_{k} \cdot x=b_{k}\right\}$, and F_{I} and F_{J} are polynomials, we must have $F_{I}(x)=F_{J}(x), \quad \forall x 3 a_{k} \cdot x=b_{k}$.

Lemma 2: If R_{I} and $R_{I-\{k\}}$ are non-empty, then there exists a real number α_{k}^{I} such that $F_{I}(x)-F_{I-\{k\}}(x)=2 \alpha_{k}^{I}\left(a_{k} \cdot x-b_{k}\right)^{s}$. Proof: Let Y_{1}, \ldots, Y_{n} be a new orthogonal coordinate system which is a linear transformation of the $x_{1}, \ldots x_{n}$ coordinate system such that $y_{1}=a_{k}{ }^{\bullet} x-b_{k}$.

Now,
i) $F_{I}\left(0, Y_{2}, \ldots, Y_{n}\right)=F_{I-\{k\}}\left(0, Y_{2}, \ldots, Y_{n}\right)$, follows from lemma 1 , and
ii)

for $i_{1}+\ldots+i_{n}=r \leq s-1$, follows from the fact that F is continuously differentiable of order sol.

Expansion of F_{I} and $F_{I-\{k\}}$ in Taylor series about any point in $R_{I} \cap_{R_{I}}-\{k\}$ and use of i) and ii) gives

$$
F_{I}(y)-F_{I-\{k\}}(y)=\alpha y_{1}^{s} .
$$

Taking $\alpha_{k}^{I}=\frac{1}{2} \alpha$, we get

$$
F_{I}(x)-F_{I-\{k\}}(x)=2 \alpha_{k}^{I}\left(a_{k} \cdot x-b_{k}\right)^{s}
$$

Lemma 3: If $k, \ell \in I$ and R_{I} and $R_{I-\{\ell\}}$ satisfy
$R_{I} \cap_{R_{I-\{\ell}} \cap\left\{x \mid a_{k} \cdot x=b_{k}\right\} \neq \phi_{r}$ then $\alpha_{k}^{I}=\alpha_{k}^{I-\{\ell\}}$.

Proof: $\quad a_{\ell}{ }^{\circ} \mathrm{x}=\mathrm{b}_{\ell}$ implies that

$$
F_{I}(x)=F_{I-\{\ell\}}(x) \text { and } F_{I-\{k\}}(x)=F_{I-\{k ; \ell\}}(x)
$$

by lemma 1. Thus,

$$
F_{I}(x)-F_{I-\{k\}}(x)=F_{I-\{\ell\}}(x)-F_{I-\{k, \ell\}}(x) \forall x \cdot 3 a_{\ell} \cdot x=b_{\ell}
$$

That is, $2 \alpha_{k}^{I}\left(a_{k} \cdot x-b_{k}\right)=2 \alpha_{k}^{I-\{\ell\}}\left(a_{k} \cdot x-b_{k}\right), \forall x \geqslant a_{\ell} \cdot x=b_{\ell}$. Since $a_{k} \neq a_{\ell}$ (because $a_{k} \cdot x=b_{k}$ and $a_{\ell} \cdot x=b_{\ell}$ intersect and the partition is non-degenerate), we must have $\alpha_{k}^{I}=\alpha_{k}^{I-\{\ell\}}$. Lemma 4: For fixed k, all $\alpha_{k}^{I \prime s}$ are the same.

Proof: $\alpha_{k}^{I_{k}} s$ are only defined for $I \varepsilon d$ the set of those I's for which $k \in I$ and $R_{I} \cap\left\{x \mid a_{k} \cdot x=b_{k}\right\} \neq \phi$. Lemma 3 shows that if any two of these $R_{I}{ }^{\prime} s$ are ℓ-neighbors then the $\alpha_{k}^{I}{ }^{I} s$ are equal. It follows that if two of these, say $R_{I_{1}}$ and $R_{I_{2}}$, are connected by a chain $R_{I_{1}}, \ldots, R_{I_{h}}, I_{j} \varepsilon \& j=1, \ldots, h$ where R_{I}. and $R_{I_{j+1}}$ are ℓ_{j}-neighbors, $j=1, \ldots, h-1$, then $\alpha_{k}^{I_{1}}=\alpha_{k}^{I_{n}}$. An argument like that used in the proof of proposition 1 (with $\left\{x \mid a_{k} \cdot x=b_{k}\right\}$ replacing R^{n}) shows that such a chain exists for any I_{0} Jed. Thus, $\alpha_{k}^{I}=\alpha_{k}^{J}$ for any I, Jed\& Henceforth, the superscript will be dropped and we will use α_{k}.

We now turn to the proof of our theorem. Pick a nonempty $R_{I} \cdot$ Set $F_{0}(x)=F_{I}(x)-\sum_{i \varepsilon I} \alpha_{i}\left(a_{i} \cdot x-b_{i}\right)^{s}+\sum_{i \notin I} \alpha_{i}\left(a_{i} \cdot x-b_{i}\right)^{s}$ and $F_{i}(x)=\operatorname{sgn}\left(a_{i} \cdot x-b_{i}\right) \alpha_{i}\left(a_{i} \cdot x-b_{i}\right)^{s}, i=1, \ldots, m$. We claim that $F=F_{0}+\sum_{i=1}^{m} F_{i} . \quad$ clearly, $F_{I}(x)=F_{0}(x)+\sum_{i=1}^{m} F_{i}(x) \quad \forall x \in R_{I}$. Pick any other R_{J}. By proposition 1 there exist $R_{I_{1}} \ldots, R_{I_{\ell}}$ such that $R_{I_{1}}=R_{I^{\prime}} R_{I_{\ell}}=R_{J}$ and $R_{I_{j}}$ and $R_{I_{j+1}}$ are k-neighbors , $j=1, \ldots . . \quad$ Using lemmas 2 and 4 we get

$$
F_{J}(x)=F_{I}(x)+\sum_{k_{i} \varepsilon L^{+}} 2 \alpha_{k_{j}}\left(a_{k_{j}} \cdot x-b_{k_{j}}\right)^{s}-\sum_{k_{i} \varepsilon L^{-}} 2 \alpha_{k_{j}}\left(a_{k_{j}} \cdot x-b_{k_{j}}\right)^{s}
$$

where $L^{+}=\left\{k_{j} \mid I_{j+1}=I_{j}+\left\{k_{j}\right\}\right\}$ and $L^{-}=\left\{k_{j} \mid I_{j+1}=I_{j}-\left\{k_{j}\right\}\right\}$. Notice that
i) if i $\varepsilon I \cap J$, then i appears in L^{+}the same number of times as it appears in L^{-},
ii) if iعI-J, then i appears in L^{+}one time less often than it appears in L^{-}, and
iii) if iعJ-I, then i appears in L^{+}one more time than it appears in L^{-}.
i), ii) and iii) lead to
(1) $F_{J}(x)=F_{I}(x)+\sum_{i \varepsilon J-I} 2 \alpha_{i}\left(a_{i} \cdot x-b_{i}\right)^{s}-\sum_{i \varepsilon I-J} 2 \alpha_{i}\left(a_{i} \cdot x-b_{i}\right)^{s}$.

As noted above

$$
F_{I}(x)=F_{0}(x)+\sum_{i \in I} \alpha_{i}\left(a_{i} \cdot x-b_{i}\right)^{s}-\sum_{i \not 又 I} \alpha_{i}\left(a_{i} \cdot x-b_{i}\right)^{s}
$$

Substituting in (1) gives

$$
\begin{aligned}
& F_{J}(x)=F_{0}(x)+\sum_{i \in J} \alpha_{i}\left(a_{i} \cdot x-b_{i}\right)^{s}-\sum_{i \nless J} \alpha_{i}\left(a_{i} \cdot x-b_{i}\right)^{s} \\
& =F_{0}(x)+\sum_{i=1}^{m} F_{i}(x), \forall x \in R_{J}
\end{aligned}
$$

IV. CURVE FITTING:

Suppose we have data points $\left(x_{i}, y_{i}\right)$, $i=1, \ldots, r$, where $x_{i}=\left(x_{i j}, \ldots, x_{i n}\right)$, and we wish to determine a function
$F(x)$ such that $F\left(x_{i}\right) \quad \approx_{i}, i=1, \ldots, r$. We are interested in synthesizing F as a piecewise polynomial function of degree s possessing continuous derivatives of order s-1. We could concentrate on functions of the form

$$
F(x)=F_{0}(x)+\sum_{i=1}^{m} F_{i}(x)
$$

where $F_{0}(x)$ is a polynomial of degree s and $F_{i}(x)=\operatorname{sgn}\left(a_{i} \cdot x-b_{i}\right) \alpha_{i}\left(a_{i} \cdot x-b_{i}\right)$. The planes $\dot{a}_{i} \cdot x=b_{i}$ partition R^{n}. into regions over which the pieces of F are defined.

According to section III, if the partition is non-degenerate then $F_{0}+\sum_{i=1}^{m} F_{i}$ encompasses all possible piecewise polynomials of degree s possessing continuous derivatives of order s-l.

We wish to determine the coefficients in $F(x)=F_{0}(x)+\sum_{i=1}^{m} F_{i}(x)$ so that $F(x)$ gives the best fit to the data points. In the discussion below we take "best" to mean that the coefficients are chosen so that $\sum_{i=1}^{r}\left(F\left(x_{i}\right)-y_{i}\right)^{2}$ is minimized. (The comments in part 1 are also pertinent in the case when $\max _{i=1, \ldots \ldots, r}\left|F\left(x_{i}\right)-y_{i}\right|$ is minimized). There are two levels of complication.

1. Fixed Partition. We assume that the partition (the (a_{i}, b_{i})'s) are predetermined. The parameters to be determined are the coefficients in $F_{0}(x)$ and the $\alpha_{i}{ }^{\prime} s$. These parameters occur linearly in $F(x)$. The problem is merely a linear regression problem.

The number of parameters is equal to $N(s, n)+m$, where $N(s, n)$ is the no. of coeff. in a polynomial of degree s in n-variables.

For example, any piecewise cubic in 3 dimensions which has a non-degenerate linear partition of m planes; involves $14+m$ parameters. For $m=4$. such a piecewise cubic could have 15 pieces.
2. Free Partition. We assume that the number of planes is pre-determined but that their positions are to be chosen. The parameters to be determined are the coefficients in $F_{0}(x)$ and the $\alpha_{i}, a_{i_{j}}, b_{i}, i=1, \ldots, m, j=1, \ldots, n$. This is a problem in non-linear regression. Notice that the $F_{i}(x)$ possess continuous derivatives of order (s-l) with respect to the $\alpha_{i}, a_{i_{j}}$, and b_{i}. All higher order derivatives exist except for derivatives of $F_{i}\left(x_{k}\right)$ of order s with respect to the $a_{i_{j}}, b_{i}$ when the data point x_{k} satisfies $a_{i} \cdot x_{k}=b_{i}$. In such cases, it is reasonable to set the derivative equal to zero. (This last comment may be of interest when s = 0 or l.)

Nonlinear regression techniques, such as appear in [2], can be used on this type problem. The fact that second derivatives of F with respect to the parameters are mostly zero may be of some use.

Once the $\left(a_{i}, b_{i}\right)$'s are fixed, the other coefficients are uniquely determined by linear regression. Thus, the sum of squares of the deviations is a well-defined function of the $\left(a_{i}!b_{i}\right)$!s. An unconstrained minimization technique,
such as appears in [1], can be used to find $a_{i_{j}}, b_{i}$, $i=1, \ldots, m, j=1, \ldots, n$ which minimize this objective function. If this involves too many parameters it may be useful to fix the $a_{i}{ }_{j}$'s and only regress on the b_{i} 's.

Suppose $s=3, n=3$, and $m=4$. The nonlinear regression problem would involve 30 parameters. The minimization problem would involve 16 parameters. The minimization problem in which the partition planes are predetermined except for translation, would involve 4 parameters.

BIBLIOGRAPHY

[1] Fletcher, R. and Powell, M.J.D. - "A Rapidly Convergent Descent Method for Minimization", The Computer Journal, 6, 163-168, (1963).
[2] Marquardt, D.W. - "An Algorithm for Least-Squares Estimation of Nonlinear Parameters", SIAM Journal, 11, 2, 431-441, (1963).

