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ABSTRACT

1                                 1
Any set of hyperplanes partitions Rn into polygokal

pieces. Linearly partitioned piecewise polynomials (LPPP)

result when polynomials on each of these pieces are put

together in a smooth manner. There is presented an.LPPP

canonical form which leads to computationally feasible

multi-dimensional piecewise polynomial curve fitting.



I.  INTRODUCTION
»

The problem of explicitly describing an n-dimensional

surface z = F(x), x an n-vector, which approximately fits
5

some data points (xk'zk) arises in mathematical modeling and

data analysis with computers. The data points may be the

results of a computer simulation (or experimental results,

surveys, economic data, etc.) of a function whose values

must play a role (where smoothness is required) in a more

involved simulation. One way of attempting to describe such

a surface is to piece together polynomial functions.  This

paper is concerned with the process of selecting a piecewise

polynomial function which approximates the data.
n

Section II first describes what the pieces of R  are to

be like.: Any set of hyperplanes naturally partitions R  into·

polygons. Then the concept of a linearly partitioned piece-

wise polynomial of degree s is defined. This corresponds to

having polynomials of degree < s defined on each of the polygons-

            in such a way that the resulting function in R  possesses

continuous derivatives of order s-1. Non-degeneracy of a

partition is also defined. Section III shows that, for

non-degenerate partitions, the piecewise polynomial function

must take on an especially simple canonical form.  Section IV

contains a few comments on how the canonical form is useful

in finding the desired surface z = F(x).
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II. DEFINITIONS:

A linear partition of Rn is a set of vectors (al,bl),•••,

Cam,bm)' where the ai's are n-component vectors and the

b.'s are real numbers. Associated with a linear partition1

are the closed polygonal regions, RI' I a subset of 1,...,m,

where RI is defined by

RI = {xlai'xibi, iEI, ai'xibi, iii}

and is non-empty.

A linear partition is non-degenerate if for every                I

linearly dependent ai '...'aik we have

/ ail
 

/ ail'bila
rank <  rank

- a. , a. .b. /
ik                                                  1-k       ik

Nondegeneracy says the intersection of any k of the hyperplanes     '

ai x=bi, which partition R , must have dimension n-k.  In

particular, the intersection of any n+1 of these hyperplanes

is empty.

Two regions RI and R  are called k-neighb6rs if either

I=JO{k} or J=IO{k}.

Linear partitions possess some properties which will be

of use in the following section.  We present them here.
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Proposition I:   For any RI and,RJ' there exist a sequence

are k.-neighbors,
RIl'...,RI£ such that RI  and RIj+       J

,j=l,...,2-1 and RI =RI' RI =RJ'
1         E

Proof:  Let U be the union of all R 's which can be connected

to RI by such chains.  U is the union of a finite number

of closed sets, so it· is closed.  We need only show that

U is an open set.

Pick xEU.  Set Ux equal to the union of all RI's which

contain x. x is not contained in the union of the R 's notI

containing x, which is a closed set containing R -Ux.  So x

is an interior point of Ux.  We will show that UJZU.  Suppose

xER CU.  .Pick RLCUx, Since xER IRL' we must have aiox=b.,· 1

*ie(K-L)U(L-K). Suppose K-L = {il,0..,ir ' L-K={jl'...,js '
Then set I =K-{il'.0.oi }, j=0,0..,r, and Ir+j = (K-{il'...,ir})

i {jl'.'·,jj}, j = 10...,s.  The RIj, j = 02...,r+s are non-

r

- ernpty (because each  contains  x)   and  RI   ' .0 ,'' RI is a chain
o       r+s

of neighbors connecting RK to RL.   Thus, R ,CU, * RLCUx.

And x being an interior point of Ux U, is an interior point

of U.   U being open and closed must equal Rn.   SO R CU.3

Proposition 2: If the partition is non-degenerate, then

RI#$ implies RI contains interior points i.e. RI has dimension n.
<               -

Proof:. Suppose RItt.  Pick xERI.  Let J = {i|'ai'x = bi}'·
Set· xJ=x.  If, for some kEJ, there exists xERI such that
ai x=bi iff i EJ-{k}, then replace J by J-{k} and xJ by this

new x. If this procedure eventually exhausts J, then the

last x is an interior point of RI.
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Suppose this procedure does not exhaust J.  Then it

eventually occurs that

a) a.•x  =b- jeJ and3  J    j'
b)     for k EJ/|I    min    ak' x

subject to a •x=b , j£J-{k}
is equal to ak'xJ=bk'

c) for kEJ-I

max a •Xk

subject to aj x=b ,j EJ-{k}

is equal to ak'xJ=bj.

Since at least one of.J/)I and J-I is nonempty, we must

have that for some· k€J, there exist multipliers  of  aj,jg J  such

that a.a.=a-,  Thus, the set of a 's, jcJ is linearly dependent
 kj j j k

and a •xJ=b , j EJ.  This contradicts the non-degeneracy of the

partition. Thus,,J must be exhausted and the proposition is

proved.

Proposition 3: a.·x=b.
j       J

for some xERI implies that

dim {x|aj x=bj}ORI=n-1

Proof: Use an argument like that,used in the proof of

proposition 2 with the additional requirement. that j never

be removed from J.

A  function  F ·.is   said  to  be   a   linearly partitioned piece-

Wise polynomial (LPPP) of degrees iff there is a linear
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partition of R  such that

1)  F is continuously differentiable of order s-1.

2)  - Ft (  F restricted to RI)  is a polynomial of

degree   <   s, 4*RI ,

3)  EI is a polynomial of degree s for some RI.

4)        I f   RI    and   RJ are k-neighbors    then

FI   =    FJ   in
 

RIARJ I

F is a basic LPPP of degree s iff

F(x) = sgn(ai·x-bi)al(al.X-bl)s

for some nonzero ai, some n-vector ai, and some real number bl.

Notice that the above function is an LPPP because with the

linear partition consisting of the single vector (al,bl)

S-1
1)

3 (sgn(al,x-blba<(al.x-b )s)
jl     jn3x  ...3x1n

 1     n
= S:.al •••.an (al'x-bi)al(alox-bl)

2)+3)  F (x)= -ai(al.x-bl)s, and
.

F{1}(x)= al(al.x-bl)s

\

4)  F (x) = F{1}(x) = 0, if xER AR{ 1}
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III. CANONICAL FORM:

An LPPP (with partition (al'bl),0.0,(am'bm)) is said

to be in canonical form, if it is expressed as

m

F (x)   =  Fo   + ,I     F
1=1

1

where F, is a polynomial and Fi is a basic LPPP with

partition (ai,bi)'

Theorem: If F is an LPPP of degree s, with non-degenerate

partition, then F can be expressed in canonical form.

Proof: We first prove a few lemmas.

Lemma 1:  If RI and RJ are k-neighbors, then

F: [ (x)       =     F J(x)    *x  3     ak ' x     =     b]c .

Proof:  By proposition 3, dim RIAR  = n-1.

Since FI(x) = FJ(x) xeRIARJ' an n-1 dimensional subset of

{xlak'x=bk ' and FI and FJ are polynomials, we must have

FI(x) = FJ(X), 4 X3 ak ' x=bk 0

Lemma 2:  If RI and RI-{k  are non-empty, then there exists

a real number a  such that FI(x)-FI-{k}(x)=20 (ak'x-bk)S.
Proof: Let Yli.•·,Y be a new orthogonal coordinate systemn

which is a linear transformation of the x 1,•••,Xn coordinate

system such that yi=ak'x-bk.
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Now,

i)  FI(0'yz'o, 'yn) = FI-{k}(0'y 2'...,yA), follows from
..

lemma 1, and

r                                               3r
ii)  · ia FICO,y2'...,Yn)=

11     in                      il     in FI-{k}(0'Y2,0..,Yn)3Yl "'3 n 3yl ...3 n

fer il +•••+i =r < s-1, follows from the fact thatn -

F is continuously differentiable of order s-1.

Expansion of FI and.FI-{k  in Taylor series about any point in

RI |RI-{k  and use of i) and ii) gives

FI(y) - FI-{k}(y)   ayT .

Taking ak =   a, we get

FI (X)  - F (x) = 2ak (akox-bk)s .I-{k}

Lemma 3:  If k, ZEI and RI and RI-{g  satisfy

RI IRI- {1 /1{xlak'x=bk}   0   0,    then   a    =    ak
I-{2}

Proof:  a£•x = b£ implies that

FI(x) = FI-{£}(x) and FI-{k}(x) = FI-{k,£}(x)
by lemma 1.  Thus,

FI(x) - FI-{k}(x)  FI-{i}(x) - FI-{k,£}(X) '¥X3at•x=bi.
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I-{,}         That is, 20  (ak0 x-bk)=2ak Cak'x-bk) 04%xiag•x=bg.

Since aktag (because ak x=bk and ag•x=bg intersect and
I  I-{2}

the partition is non-degenerate), we must have ak=ak    *

Lemma 4:  For fixed k, all a 's are the same.

Proof:  ak's are only defined for IEJ the set of those

I' s     for   which    k e I    and    RIA{xI  ak' x=bk }    0 0 Lemma 3 shows

that if any two of these RI's are £-neighbors then the a 's

are equal.  It follows that if two of these, say RI  and
1

RI , are connected by a chain RI ' ...'R:[11' Ij EJ j=l'. ..,h
2                                                       1

where R and R are 2.-neighbors, j=l,...,h-1, then
I.      Ij+1      1

Il    In
ak  = ak  .  An argument like that used in the proof of

proposition 1 (with {x|ak x=bk} replacing Rn) shows that such

a chain exists   for   any  I,   JsJ     Thus,   ak  =   a    for  any

I, JEJ Henceforth, the superscript will be dropped and

we will use ak.

We now turn to the proof of our theorem. Pick a non-
S           p                                         Sempty RIo Set Fo(x)=FI(x)- I ai(aiox-bi)  + 2 ai(ai'x-bi)

iEI iiI

and Fi(x) = sgn(ai'x-bi)ai(ai'x-bi)S,i = 1 ,... 'me We claim
m m

that F =.Fo +.I Fi· Clearly, FI(x)=Fo (x) +.I Fi(x)  xERI.
1=1 1=1

Pick any other RJ.  By proposition 1 there exist RI '...FRI
1 1

such that R
Il = RI, RI£ = RJ and RI  and RIj+ 

are k-neighbors,

j = 1,...,£.  Using lemmas 2 and 4  we get

FJ(x) = FI(x) +I + 2ak.(ak,'x-bk.)s.- I _2ak.(ak,,X-bk,)sk.EL j   j     j k.EL ] ]j
J                                       J
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where L  = {k | t{k.}} and L- = {k.|I =I.-{k.}}.j,Ij+1=Ij   ] . J  j+1  J   ]
Notice that

i)  if ieIAJ, then i appears in L  the same number of

times as it appears in L-,

ii)  if iEI-J, then i'appears in L+ one time less often

than it appears in L-, and

+
iii) if isJ-I, then i appears in L  one more time than

it appears in L-.

i), ii) and iii) lead to

(1)  FJ(x) = FI(x) +  I  2ai(aiox-bi)s -   I  2ai(ai0x-bi)s.
i€J-I i€I-J

As noted above                                   

FI(x) = Fo(x) +  I  ai(ai-x-bi)s -  I-ai(ai°x-bi)S  ,
i€I iiI

Substituting in (1) gives

FJ(x) =.Fo(x) + I ai(ai'x-bi)S - I ai(ai'x-bi)S,
i€J i0J

m

=    F o   (x)      +      .  I         Fi  (X)       ,   & x E R J.
1=1

IV. CURVE FITTING:

Suppose we have data points (xi'Yi)' i = 1,...,r,

where xi = (xil ,..., xin)' and we wish to determine a function

1
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F(x) such that F(xi) = y·, i = 1,...,r.  We are interested1

, in synthesizing F as a piecewise polynomial function of

degree s possessing continuous derivatives of order s-1.

We could concentrate on functions of the form

m

F (x)  =  Fo (x)  + .  I    Fi (x)   ,
i.=1

where F,(x) is a polynomial of degree s and

Fi(x) = sgn(ai'x-bi)ai(ai'x-bi)S. The planes ai x=bi partition

Rn into regions over which the pieces of F are 'defined.

According to section III, if the partition is non-degenerate
m

then F, +  I  Fi  encompasses all possible piecewise poly-
1=1

nomials of degree s possessing continuous derivatives of

order s-1.
m

We wish to determine the coefficients in F(x)=Fa(x)+ I Fi(x)
1=1

so  that  F (x) gives  the  best  fit  to· the data points.     In  the

discussion below  we  take  "best"  to  mean  that  the coef ficients
r

are chosen so that  I (F(x.)-y.)2 is minimized.  (The comments·
i=1 11

in part 1 are also pertinent in the case when max |F(xi)-Y·I1
i=1,...,r

is minimized).  There are two levels of complication.

1. Fixed Partition. We assume that the partition (the(ai,bi)'s)
are predetermined. The parameters to be determined are the

coefficients  in  Fo (x)   and  the.ai' s. These parameters occur

linearly in F(x). The problem is merely a linear regression

problem.
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The number of parameters is equal to N(s,n)+m, where

N(s,n) is the no. of coeff. in·a polynomial of degree

s in n-variables.

For example, any piecewise cubic in 3 dimensions which

has a non-degenerate linear partition of m planes, involves

14+m parameters.  For m = 4, such a piecewise cubic could

have 15 pieces.

2.  Free Partition. We assume that the number of planes is

pre-determined but that their positions are to be chosen.

The parameters to be determined are the coefficients in F,(x)

and the ai, aij, bi, i = 1,...,m, j = 1,...,n.  This is a
problem in non-linear regression. Notice· that the Fi (x)
possess continuous derivatives of order (s-1) with respect

to the ai, aij, and bi.  All higher order derivatives exist            

except for derivativestof Fi(xk) of order s with respect

to the ai., bi when the data point xk satisfies ai.xk=bi.
J

In such cases, it is reasonable to set the derivative equal

to zero. (This last comment may be of interest when

s = 0 or 1.)

Nonlinear regression techniques, such as appear in [2],

can be used on this type problem.  The fact that second

derivatives of F with respect to the parameters are mostly

zero may be of some use.

Once the (ai,bi)'s are fixed, the other coefficients

are,uniquely determined by linear regression. Thus, the

sum of squares of the deviations is a well-defined function

of the (ai'bi)'s. An unconstrained minimization technique,
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such asappears in [1], can be used to find a. . b.,1.' 1
J

i = 1,...,m, j = 1,...,n which minimize this objective

function. If this involves too many parameters it may be

useful to fix the ai 's and only regress on the bi's.
J

Suppose s = 3,.n.= 3, and m = 4. The nonlinear

regression problem would involve 30 parameters.  The

minimization problem would involve 16 parameters. The

minimization problem in which the partition planes are

predetermined except for translation, would involve 4 parameters.

6

L_
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