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Abstract. Recurrent neural networks (RNNs) have proved effective at one di-
mensional sequence learning tasks, such as speech and online handwriting recog-
nition. Some of the properties that make RNNs suitable for such tasks, for exam-
ple robustness to input warping, and the ability to access contextual information,
are also desirable in multi-dimensional domains. However, there has so far been
no direct way of applying RNNs to data with more than one spatio-temporal
dimension. This paper introduces multi-dimensional recurrent neural networks,
thereby extending the potential applicability of RNNs to vision, video process-
ing, medical imaging and many other areas, while avoiding the scaling problems
that have plagued other multi-dimensional models. Experimental results are pro-
vided for two image segmentation tasks.

1 Introduction

Recurrent neural networks (RNNs) were originally developed as a way of extending
neural networks to sequential data. The addition of recurrent connections allows RNNs
to make use of previous context, as well as making them more more robust to warping
along the time axis than non-recursive models [15]. Access to contextual information
and robustness to warping are also important when dealing with multi-dimensional data.
For example, a face recognition algorithm should use the entire face as context, and
should be robust to changes in perspective, distance etc. It therefore seems desirable to
apply RNNs to such tasks.

However, the standard RNN architectures are explicitly one dimensional, meaning
that in order to use them for multi-dimensional tasks, the data must be pre-processed
to one dimension, for example by presenting one vertical line of an image at a time
to the network. One successful use of neural networks for multi-dimensional data has
been the application of convolution networks [10] to image processing tasks such as
digit recognition [14]. One disadvantage of convolution nets is that because they are
not recurrent, they rely on hand specified kernel sizes to introduce context. Another
disadvantage is that they do not scale well to large images. For example, sequences of
handwritten digits must be pre-segmented into individual characters before they can be
recognised by convolution networks [10].

Various statistical models have been proposed for multi-dimensional data, notably
multi-dimensional HMMs. However, multi-dimensional HMMs suffer from two serious
drawbacks: (1) the time required to run the Viterbi algorithm, and thereby calculate the
optimal state sequences, grows exponentially with the size of the data exemplars; (2) the



Fig. 1. 2D RNN Forward pass. Fig. 2. 2D RNN Backward pass.

number of transition probabilities, and hence the required memory, grows exponentially
with the data dimensionality. Numerous approximate methods have been proposed to
alleviate one or both of these problems, including pseudo 2D and 3D HMMs [7], isolat-
ing elements [11], approximate Viterbi algorithms [9], and dependency tree HMMs [8].
However, none of these methods exploit the full multi-dimensional structure of the data.

As we will see, multi dimensional recurrent neural networks (MDRNNs) bring the
benefits of RNNs to multi-dimensional data, without suffering from the scaling prob-
lems described above.

Section 2 describes the MDRNN architecture, Section 3 presents two experiments
on image segmentation, and concluding remarks are given in Section 4.

2 Multi-Dimensional Recurrent Neural Networks

The basic idea of MDRNNs is to replace the single recurrent connection found in stan-
dard RNNs with as many recurrent connections as there are dimensions in the data.
During the forward pass, at each point in the data sequence, the hidden layer of the net-
work receives both an external input and its own activations from one step back along
all dimensions. Figure 1 illustrates the two dimensional case.

Note that, although the word sequence usually denotes one dimensional data, we
will use it to refer to data examplars of any dimensionality. For example, an image is
a two dimensional sequence, a video is a three dimensional sequence, and a series of
fMRI brain scans is a four dimensional sequence.

Clearly, the data must be processed in such a way that when the network reaches a
point in an n-dimensional sequence, it has already passed through all the points from
which it will receive its previous activations. This can be ensured by following a suitable
ordering on the set of points {(x1, x2, ..., xn)}. One example of a suitable ordering is
(x1, . . . , xn) < (x′1, . . . , x

′
n) if ∃m ∈ (1, . . . , n) such that xm < x′m and xi = x′i ∀ i ∈

(1, . . . ,m − 1). Note that this is not the only possible ordering, and that its realisation
for a particular sequence depends on an arbitrary choice of axes. We will return to this
point in Section 2.1. Figure 3 illustrates the ordering for a 2 dimensional sequence.

The forward pass of an MDRNN can then be carried out by feeding forward the
input and the n previous hidden layer activations at each point in the ordered input
sequence, and storing the resulting hidden layer activations. Care must be taken at the
sequence boundaries not to feed forward activations from points outside the sequence.

Note that the ‘points’ in the input sequence will in general be multivalued vectors.
For example, in a two dimensional colour image, the inputs could be single pixels rep-



Fig. 3. 2D sequence ordering. The MDRNN forward pass starts at the origin and follows
the direction of the arrows. The point (i,j) is never reached before both (i-1,j) and (i,j-1).

resented by RGB triples, or blocks of pixels, or the outputs of a preprocessing method
such as a discrete cosine transform.

The error gradient of an MDRNN (that is, the derivative of some objective function
with respect to the network weights) can be calculated with an n-dimensional extension
of backpropagation through time (BPTT) [15]. As with one dimensional BPTT, the
sequence is processed in the reverse order of the forward pass. At each timestep, the
hidden layer receives both the output error derivatives and its own n ‘future’ derivatives.
Figure 2 illustrates the BPTT backward pass for two dimensions. Again, care must be
taken at the sequence boundaries.

At a point x = (x1, . . . , xn) in an n-dimensional sequence, define ixj and hx
k re-

spectively as the activations of the jth input unit and the kth hidden unit. Define wkj

as the weight of the connection going from unit j to unit k. Then for an n-dimensional
MDRNN whose hidden layer consists of H summation units, where θk is the acti-
vation function of hidden unit k, the forward pass for a sequence with dimensions
(X1, X2, . . . , Xn) can be summarised as follows:

for x1 = 0 to X1 − 1 do
for x2 = 0 to X2 − 1 do

. . .
for xn = 0 to Xn − 1 do

for k = 1 to H do
ak =

∑
j in

(x1,...,xn)
j wkj

for i = 1 to n do
if xi > 0 then
ak +=

∑
j h

(x1,...,xi−1,...,xn)
j wkj

hx
k = θk(ak)

Algorithm 1: MDRNN Forward Pass

Defining ôxj and ĥx
k respectively as the derivatives of the objective function with

respect to the activations of the jth output unit and the kth hidden unit at point x, the
backward pass is:



for x1 = X1 − 1 to 0 do
for x2 = X2 − 1 to 0 do

. . .
for xn = Xn − 1 to 0 do

for k = 1 to H do
ek ←

∑
j ô

(x1,...,xn)
j wjk

for i = 1 to n do
if xi < Xi − 1 then
ek +=

∑
j ĥ

(x1,...,xi+1,...,xn)
j wjk

ĥx
k ← θ′k(ek)

Algorithm 2: MDRNN Backward Pass

Fig. 4. Context available at (i,j) to a 2D
RNN with a single hidden layer.

Fig. 5. Context available at (i,j) to a
multi-directional 2D RNN.

Since the forward and backward pass require one pass each through the data se-
quence, the overall complexity of MDRNN training is linear in the number of data
points and the number of network weights.

2.1 Multi-Directional MDRNNs

At a point (x1, ..., xn) in the input sequence, the network described above has access to
all points (x′1, ..., x

′
n) such that x′i ≤ xi∀ i ∈ (1, ..., n). This defines an n-dimensional

‘context region’ of the full sequence, as illustrated in Figure 4. For some tasks, such as
object recognition, this would in principle be sufficient. The network could process the
image as usual, and output the object label at a point when the object to be recognized
is entirely contained in the context region.

Intuitively however, we would prefer the network to have access to the surrounding
context in all directions. This is particularly true for tasks where precise localization
is required, such as image segmentation. For one dimensional RNNs, the problem of
multi-directional context was solved by the introduction of bidirectional recurrent neu-
ral networks (BRNNs) [13]. BRNNs contain two separate hidden layers that process the
input sequence in the forward and reverse directions. The two hidden layers are con-
nected to a single output layer, thereby providing the network with access to both past
and future context.

BRNNs can be extended to n-dimensional data by using 2n separate hidden layers,
each of which processes the sequence using the ordering defined above, but with a



Fig. 6. Axes used by the 4 hidden layers in a multi-directional 2D network. The arrows
inside the rectangle indicate the direction of propagation during the forward pass.

different choice of axes. The axes are chosen so that each one has its origin on a distinct
vertex of the sequence. The 2 dimensional case is illustrated in Figure 6. As before,
the hidden layers are connected to a single output layer, which now has access to all
surrounding context (see Figure 5).

If the size of the hidden layers is held constant, the multi-directional MDRNN ar-
chitecture scales as O(2n) for n-dimensional data. In practice however, the computing
power of the network tends to be governed by the overall number of weights, rather
than the size of the hidden layers. This is presumably because the data processing is
shared between the layers. Since the complexity of the algorithm is linear in the num-
ber of parameters, the O(2n) scaling factor can be removed by simply using smaller
hidden layers for higher dimensions. Furthermore, the complexity of a task, and there-
fore the number of weights likely to be needed for it, does not necessarily increase with
the dimensionality of the data. For example, both the networks described in this paper
have less than half the weights than the one dimensional networks we have previously
applied to speech recognition [4,3]. For a given task, we have also found that using a
multi-directional MDRNN gives better results than a uni-directional MDRNN with the
same overall number of weights, as previously demonstrated in one dimension [4].

For a multi-directional MDRNN, the forward and backward passes through an n-
dimensional sequence can be summarised as follows:

1: For each of the 2n hidden layers choose a distinct vertex of the sequence, then define a set of
axes such that the vertex is the origin and all sequence co-ordinates are ≥ 0

2: Repeat Algorithm 1 for each hidden layer
3: At each point in the sequence, feed forward all hidden layers to the output layer

Algorithm 3: Multi-Directional MDRNN Forward Pass



1: At each point in the sequence, calculate the derivative of the objective function with respect
to the activations of output layer

2: With the same axes as above, repeat Algorithm 2 for each hidden layer

Algorithm 4: Multi-Directional MDRNN Backward Pass

2.2 Multi-Dimensional Long Short-Term Memory

So far we have implicitly assumed that the network can make use of all context to
which it has access. For standard RNN architectures however, the range of context that
can practically be used is limited. The problem is that the influence of a given input
on the hidden layer, and therefore on the network output, either decays or blows up
exponentially as it cycles around the network’s recurrent connections. This is usually
referred to as the vanishing gradient problem [5].

Long Short-Term Memory (LSTM) [6,2] is an RNN architecture specifically de-
signed to address the vanishing gradient problem. An LSTM hidden layer consists of
multiple recurrently connected subnets, known as memory blocks. Each block contains
a set of internal units, known as cells, whose activation is controlled by three multiplica-
tive units: the input gate, forget gate and output gate. The effect of the gates is to allow
the cells to store and access information over long periods of time, thereby avoiding the
vanishing gradient problem.

The standard formulation of LSTM is explicitly one-dimensional, since the cell
contains a single self connection, whose activation is controlled by a single forget gate.
However we can easily extend this to n dimensions by using instead n self connections
(one for each of the cell’s previous states along every dimension) with n forget gates.

3 Experiments

3.1 Air Freight Data

The Air Freight database [12] is a ray-traced colour image sequence that comes with a
ground truth segmentation based on textural characteristics (Figure 7). The sequence is
455 frames long and contains 155 distinct textures. Each frame is 120 pixels high and
160 pixels wide.

The advantage of ray-traced data is the true segmentation can be defined directly
from the 3D models. Although the images are not real, they are realistic in the sense
that they have significant lighting, specular effects etc.

We used the sequence to define a 2D image segmentation task, where the aim was
to assign each pixel in the input data to the correct texture class. We divided the data at
random into a 250 frame train set, a 150 frame test set and a 55 frame validation set.
Note that we could have instead defined a 3D task where the network processed the
entire video as one sequence. However, this would have left us with only one exemplar.

For this task we used a multi-directional MDRNN with 4 LSTM hidden layers.
Each layer consisted of 25 memory blocks, each containing 1 cell, 2 forget gates, 1
input gate, 1 output gate and 5 peephole weights. This gave a total 600 hidden units.
The input and output activation functions of the cells were both tanh, and the activation



Fig. 7. Frame from the Air Freight database, showing the original image (left) and the
colour-coded texture segmentation (right).

function for the gates was the logistic sigmoid in the range [0, 1]. The input layer was
size 3 (one each for the red, green and blue components of the pixels) and the output
layer was size 155 (one unit for each textural class). The network contained 43,257
trainable weights in total. As is standard for classification tasks, the softmax activation
function was used at the output layer, with the cross-entropy objective function [1]. The
network was trained using online gradient descent (weight updates after every training
sequence) with a learning rate of 10−6 and a momentum of 0.9.

The final pixel classification error rate was 7.1 % on the test set.

3.2 MNIST Data

The MNIST database [10] of isolated handwritten digits is a subset of a larger database
available from NIST. It consists of size-normalized, centered images, each of which
is 28 pixels high and 28 pixels wide and contains a single handwritten digit. The data
comes divided into a training set with 60,000 images and a test set with 10,000 images.
We used 10,000 of the training images for validation, leaving 50,000 for training.

The usual task on MNIST is to label the images with the corresponding digits. This
is benchmark task for which many algorithms have been evaluated.

We carried out a slightly modified task where each pixel was classified according
to the digit it belonged to, with an additional class for background pixels. However, the
original task can be recovered by simply choosing the digit whose corresponding output
unit had the highest cumulative activation for the entire sequence.

To test the network’s robustness to input warping, we also evaluated it on an altered
version of the MNIST test set, where elastic deformations had been applied to every
image (see Figure 8).

We compared our results with the convolution neural network that has achieved
the best results so far on MNIST [14]. Note that we re-implemented the convolution
network ourselves, and we did not augment the training set with elastic distortions,
which gives a substantial improvement in performance.

The MDRNN for this task was identical to that for the Air Freight task with the
following exceptions: the sizes of the input and output layers were now 1 (for grayscale
pixels) and 11 (one for each digit, plus background) respectively, giving 27,511 weights
in total, and the gradient descent learning rate was 10−5.



Fig. 8. MNIST image before and after deformation.

For the distorted test set, we used the same degree of elastic deformation used by
Simard [14] to augment the training set (σ = 4.0, α = 34.0), with a different initial
random field for every sample image.

Table 1 shows that the MDRNN matched the convolution net on the clean test set,
and was considerably better on the warped test set. This suggests that MDRNNs are
more robust to input warping than convolution networks.

Table 1. Image error rates on MNIST (pixel error rates in brackets)

Algorithm Clean Test Set Warped Test Set

MDRNN 0.9 % (0.4 %) 7.1 % (3.8 %)
Convolution 0.9 % 11.3 %

3.3 Analysis

One benefit of two dimensional tasks is that the operation of the network can be easily
visualised. Figure 9 shows the network activations during a frames from the Air Freight
database. As can be seen, the network segments this image almost perfectly, in spite of
difficult, reflective surfaces such as the glass and metal tube running from left to right.
Clearly, classifying individual pixels in such a surface requires the use of context.

An indication of the network’s sensitivity to context can be found by analysing the
derivatives of the network outputs at a particular point in the sequence with respect to
the inputs at all other points. Collectively, we refer to these derivatives as the sequential
Jacobian. Figure 10 shows the absolute value of the sequential Jacobian of an output
during classification of an image from the MNIST database. It can be seen that the net-
work responds to context from across the entire image, and seems particularly attuned
to the outline of the digit.



Fig. 9. 2D MDRNN applied to an image from the Air Freight database. The hidden
layer activations display one unit from each of the layers. A common behaviour is to
‘mask off’ parts of the image, exhibited here by layers 2 and 3.

4 Conclusion

We have introduced multi-dimensional recurrent neural networks (MDRNNs), thereby
extending the applicabilty of RNNs to n-dimensional data. We have added multi-directional
hidden layers that provide the network with access to all contextual information, and we
have developed a multi-dimensional variant of the Long Short-Term Memory RNN ar-
chitecture. We have tested MDRNNs on two image segmentation tasks, and found that
it was more robust to input warping than a state-of-the-art digit recognition algorithm.
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