
Multi-Dimensional Regression Analysis of

Time-Series Data Streams�

Yixin Chen1 Guozhu Dong2 Jiawei Han1 Benjamin W. Wah1 Jianyong Wang1

1 University of Illinois at Urbana-Champaign, U.S.A.
2 Wright State University, U.S.A.

Abstract

Real-time production systems and other dy-
namic environments often generate tremendous
(potentially in�nite) amount of stream data;
the volume of data is too huge to be stored
on disks or scanned multiple times. Can we
perform on-line, multi-dimensional analysis and
data mining of such data to alert people about
dramatic changes of situations and to initiate
timely, high-quality responses? This is a chal-
lenging task.

In this paper, we investigate methods for on-
line, multi-dimensional regression analysis of
time-series stream data, with the following con-
tributions: (1) our analysis shows that only a
small number of compressed regression mea-
sures instead of the complete stream of data
need to be registered for multi-dimensional lin-
ear regression analysis, (2) to facilitate on-line
stream data analysis, a partially materialized
data cube model, with regression as measure,
and a tilt time frame as its time dimension, is
proposed to minimize the amount of data to be
retained in memory or stored on disks, and (3)
an exception-guided drilling approach is devel-
oped for on-line, multi-dimensional exception-
based regression analysis. Based on this design,
algorithms are proposed for eÆcient analysis
of time-series data streams. Our performance
study compares the proposed algorithms and
identi�es the most memory- and time- eÆcient

� The work was supported in part by grants from U.S. Na-
tional Science Foundation, the University of Illinois, and Mi-
crosoft Research.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,

Hong Kong, China, 2002

one for multi-dimensional stream data analysis.

1 Introduction

With years of research and development of data ware-
house and OLAP technology [12, 7], a large number of
data warehouses and data cubes have been successfully
constructed and deployed in applications, and data
cube has become an essential component in most data
warehouse systems and in some extended relational
database systems and has been playing an increasingly
important role in data analysis and intelligent decision
support.

The data warehouse and OLAP technology is based
on the integration and consolidation of data in multi-
dimensional space to facilitate powerful and fast on-
line data analysis. Data are aggregated either com-
pletely or partially in multiple dimensions and multiple
levels and are stored in the form of either relations or
multi-dimensional arrays [1, 28]. The dimensions in a
data cube are of categorical data, such as products, re-
gion, time, etc., and the measures are numerical data,
representing various kinds of aggregates, such as sum,
average, and variance of sales or pro�ts, etc.

The success of OLAP technology naturally leads to
its possible extension from the analysis of static, pre-
integrated, historical data to that of current, dynami-
cally changing data, including time-series data, scien-
ti�c and engineering data, and data produced in other
dynamic environments, such as power supply, network
traÆc, stock exchange, tele-communication data
ow,
Web click streams, weather or environment monitor-
ing, etc. However, a fundamental di�erence in the
analysis in a dynamic environment from that in a static
one is that the dynamic one relies heavily on regression
and trend analysis instead of simple, static aggregates.
The current data cube technology is good for comput-
ing static, summarizing aggregates, but is not designed
for regression and trend analysis. \Can we extend the

data cube technology and construct some special kind of

data cubes so that regression and trend analysis can be

performed eÆciently in the multi-dimensional space?"
This is the task of this study.

In this paper, we examine a special kind of dynamic
data, called stream data, with time-series as its repre-
sentative. Stream data is generated continuously in a
dynamic environment, with huge volume, in�nite
ow,
and fast changing behavior. As collected, such data is
almost always at rather low level, consisting of vari-
ous kinds of detailed temporal and other features. To
�nd interesting or unusual patterns, it is essential to
perform regression analysis at certain meaningful ab-
straction level, discover critical changes of data, and
drill down to some more detailed levels for in-depth
analysis, when needed.

Let's examine an example.

Example 1 A power supply station \collects" in�nite
streams of power usage data, with the lowest granular-
ity as (individual) user, location, and minute. Given a
large number of users, it is only realistic to analyze the

uctuation of power usage at certain high levels, such
as by city or district and by hour, making timely power
supply adjustments and handling unusual situations.

Conceptually, for multi-dimensional analysis, one
can view such stream data as a virtual data cube, con-
sisting of one measure1, regression, and a set of dimen-
sions, including one time dimension, and a few \stan-

dard" dimensions, such as location, user-category, etc.
However, in practice, it is impossible to materialize
such a data cube, since the materialization requires
a huge amount of data to be computed and stored.
Some eÆcient methods must be developed for system-
atic analysis of such data. �

In this study, we take Example 1 as a typical sce-
nario and study how to perform eÆcient and e�ective
multi-dimensional regression analysis of stream data,
with the following contributions.

1. Our study shows that for linear and multiple linear
regression analysis, only a small number of regres-
sion measures rather than the complete stream of
data need to be used. This holds for regression on
both the time dimension and the other (standard)
dimensions. Since it takes a much smaller amount
of space and time to handle regression measures in
a multi-dimensional space than handling the stream
data itself, it is preferable to construct regression(-
measured) cubes by computing such regression mea-
sures.

2. For on-line stream data analysis, both space and
time are critical. In order to avoid imposing unre-
alistic demand on space and time, instead of com-
puting a fully materialized regression cube, we sug-
gest to compute a partially materialized data cube,
with regression as measure, and a tilt time frame

as its time dimension. In the tilt time frame, time

1A cube may contain other measures, such as total power
usage. Since such measures have been analyzed thoroughly, we
will not include them in our discussion here.

is registered at di�erent levels of granularity. The
most recent time is registered at the �nest granu-
larity; the more distant time is registered at coarser
granularity; the level of coarseness depends on the
application requirements and on how old the time
point is. This model is suÆcient for most analysis
tasks, and at the same time it also ensures that the
total amount of data to retain in memory is small.

3. Due to limited memory space in stream data anal-
ysis, it is often too costly to store a precomputed
regression cube, even with the tilt time frame. We
propose to compute and store only two critical layers
(which are essentially cuboids) in the cube: (1) an
observation layer, called o-layer, which is the layer
that an analyst (or the system) checks and makes de-
cisions for either signaling the exceptions, or drilling
on the exception cells down to lower layers to �nd
their corresponding exception \supporters"; and (2)
the minimal interesting layer, called m-layer, which
is the minimal layer that an analyst would like to
study, since it is often neither cost-e�ective nor prac-
tically interesting to examine the minute detail of
stream data. For example, in Ex. 1, we assume the
o-layer is city and hour, while the m-layer is street-
block and quarter (of hour).

4. Storing a regression cube at only two critical lay-
ers leaves a lot of room for approaches for com-
puting the cuboids between the two layers. We
propose two alternative methods for handling the
cuboids in between: (1) computing cuboids from
the m-layer to the o-layer but retaining only the
computed exception cells in between; we call this
method the m/o-cubing method; and (2) rolling-up
the cuboids from the m-layer to the o-layer, by fol-
lowing one popular drilling path, and computing
other exception cells using the the computed cuboids
along the path; we call this method the popular-path
cubing method. Our performance study shows that
both methods require a reasonable amount of mem-
ory and have quick aggregation time and excep-
tion detection time. Our analysis also compares the
strength and weakness of the two methods.

The rest of the paper is organized as follows. In
Section 2, we de�ne the basic concepts and introduce
the research problem. In Section 3, we present the the-
oretic foundation for computing multiple linear regres-
sion models in data cubes. In Section 4, the concepts of
tilt time frame and critical layers are introduced for re-
gression analysis of stream data, and two cuboid com-
putation methods, m/o-cubing and popular-path cub-
ing, are presented with their strength and weakness
analyzed and compared. Our experiments and perfor-
mance study of the methods are presented in Section 5.
The related work and possible extensions of the model
are discussed in Section 6, and our study is concluded
in Section 7.

2 Problem De�nition

In this section, we introduce the basic concepts related
to linear regression analysis in time-series data cubes
and de�ne our problem for research.

2.1 Data cubes

Let D be a relational table, called the base table, of
a given cube. The set of all attributes A in D are
partitioned into two subsets, the dimensional attributes
DIM and the measure attributesM (so DIM[M = A
and DIM \M = ;). The measure attributes function-
ally depend on the dimensional attributes in D and are
de�ned in the context of data cube using some typical
aggregate functions, such as COUNT, SUM, AVG, or
some regression related measures to be studied here.

A tuple with schema A in a multi-dimensional space
(i.e., in the context of data cube) is called a cell. Given
three distinct cells c1, c2 and c3, c1 is an ancestor of
c2, and c2 a descendant of c1 i� on every dimensional
attribute, either c1 and c2 share the same value, or c1's
value is a generalized value of c2's in the dimension's
concept hierarchy. c2 is a sibling of c3 i� c2 and c3

have identical values in all dimensions except one di-
mension A where c1[A] and c2[A] have the same parent
in the dimension's domain hierarchy. A cell which has
k non-* values is called a k-d cell. (We use \�" to in-
dicate \all", i.e., the highest level on any dimension.)

A tuple c 2 D is called a base cell. A base cell does
not have any descendant. A cell c is an aggregated
cell i� it is an ancestor of some base cell. For each
aggregated cell c, its values on the measure attributes
are derived from the complete set of descendant base
cells of c.

2.2 Time series in data cubes

A time series is a sequence (or function) z(t) that maps
each time point to some numerical value2; each time
series has an associated time interval z(t) : t 2 [tb; te],
where tb is the starting time and te is the ending time.
We only consider discrete time, and so [tb; te] here rep-
resents the sequence of integers starting from tb and
ending at te.

Example 2 The sequence z(t) : 0:62, 0:24, 1:03, 0:57,
0:59, 0:57, 0:87, 1:10, 0:71, 0:56 is a time series over any
time interval of 10 time points, e.g. [0; 9]. Figure 1 (a)
is a diagram for this time series. �

In time series analysis, a user is usually interested
in �nding dominant trends or comparing time series
to �nd similar or dissimilar curves. A basic technique
popularly used for such analyses is linear regression.

Figure 1 (b) shows the linear regression of the time
series given in Figure 1 (a), which captures the main
trend of the time series.

2Time series can be more involved. In this paper we restrict
ourselves to this simple type of time series.

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9

z(
t)

t

time series z(t)

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9

z(
t)

t

linear regression curve of z(t)

a) z(t) b) Linear regression of z(t)

Figure 1: A time series z(t) and its linear regression

Previous research considered how to compute the
linear regression of a time series. However, to the best
of our knowledge, there is no prior work that considers
linear regression of time series in a structured environ-
ment, such as a data cube, where there are a huge
number of inter-related cells, which may form a huge
number of analyzable time-series.

2.3 Multi-dimensional analysis of stream data

In this study, we consider stream data as huge volume,
in�nite
ow of time-series data. The data is collected
at the most detailed level in a multi-dimensional space.
Thus the direct regression of data at the most detailed
level may generate a large number of regression lines,
but still cannot tell the general trends contained in the
data.

Our task is to perform high-level, on-line, multi-
dimensional analysis of such data streams in order to
�nd unusual (exceptional) changes of trends, according
to users' interest, and based on multi-dimensional linear
regression analysis.

3 Foundations for Computing Linear
Regression in Data Cubes

After reviewing the basics of linear regression, we in-
troduce a compact representation of time series data
for linear regression analysis in a data cube environ-
ment, and establish the aggregation formulae for com-
puting linear regression models of time series of all cells
using the selected materialized cells.3 This enables us
to obtain a compact representation of any aggregated
cell from that of given descendant cells, and provides a
theoretic foundation for warehousing linear regression
models of time series.

For the sake of simplicity, we only discuss linear
regression of time series here. In the full paper, we
consider the general case of multiple linear regression
for general stream data with more than one regression
variable and/or with irregular time ticks.

3Only proof sketches are provided; detailed proofs are in-
cluded in the full paper.

3.1 Linear regression for one time series

Here we brie
y review the fundamentals of linear re-
gression for the case involving just one time series.

A linear �t for a time series z(t) : t 2 [tb; te] is a
linear estimation function:

ẑ(t) = �̂ + �̂t

where ẑ(t) is the estimated value of z(t), and �̂ (the
base) and �̂ (the slope) are two parameters. The dif-
ference z(t)� ẑ(t) is the residual for time t.

De�nition 1 The least square error (LSE) linear �t of

a time series z(t) is a linear �t where �̂ and �̂

are chosen to minimize the residual sum of squares:

RSS(�̂; �̂) =
Pte

t=tb
[z(t)� (�̂ + �̂t)]2.

Lemma 3.1 The parameters for the LSE linear �t

can be obtained as follows:

�̂ =

teX
t=tb

�
t� �t

SV S

�
(z(t)� �z) =

teX
t=tb

�
t� �t

SV S

�
z(t) (1)

�̂ = �z � �̂�t (2)

where (SV S denotes the sum of variance squares of t):

SV S =
Pte

t=tb
(t� �t)2 =

Pte
t=tb

(t � �t)t, �z =

P
te

t=t
b
z(t)

te�tb+1
,

�t =

P
te

t=t
b
t

te�tb+1
= tb+te

2
.

3.2 Compact representations

As far as linear regression analysis is concerned, the
time series of a data cube cell can be represented by
either of the following two compressed representations:

� The ISB representation of the time series consists

of ([tb; te]; �̂; �̂), where [tb; te] is the interval for the

time series, and �̂ and �̂ are the slope and base of
the linear �t for the time series.

� The IntVal representation of the time series consists
of ([tb; te]; zb; ze), where [tb; te] is the interval for the
time series, and zb and ze are the values of the linear
�t at time tb and te, respectively.

These two representations are equivalent in the
sense that one can be derived from the other. Thus
only the ISB representation is used here. Moreover, as
we will show later, by storing the ISB representation
of the base cells of the cube, we can compute the linear
regression models of all cells. This enables us to aggre-
gate the data cuboids without retrieving the original
time series data, and without any loss of precision.

Theorem 3.1 (a) By materializing the ISB represen-

tation of the base cells of a cube, we can compute the

ISB representation of all cells in the cube. (b) More-

over, this materialization is minimal|by materializ-

ing any proper subset of the ISB representation, one

cannot obtain the linear regression models of all cells.

Proof. We will prove (a) in sections 3.3 and 3.4.

For (b), it suÆces to show that, one cannot even ob-
tain the linear regressions of all base cells, using any
proper subset of the ISB representation of the linear
regressions of the base cells. For this it suÆces to show
that the components of the ISB representation are in-
dependent of each other. That is, for each proper sub-
set of the ISB representation, there are two linear re-
gressions, realized by two time series z1 and z2, which
have identical values on this subset but have di�erent
values on the other components of the ISB represen-
tation. To show that tb cannot be excluded, consider
the time series z1 : 0; 0; 0 over [0; 2] and z2 : 0; 0 over

[1; 2]; their linear regressions agree on te; �̂; �̂ but not

on tb. Similarly, te cannot be removed. For �̂, consider
z1 : 0; 0 and z2 : 1; 1 over [0; 1]; tb = 0; te = 1; �̂ = 0 for

both, but �̂ = 0 for z1 and �̂ = 1 for z2. For �̂, consider

z1 : 0; 0 and z2 : 0; 1 over [0; 1]; tb = 0; te = 1; �̂ = 0
for both, but �̂ = 0 for z1 and �̂ = 1 for z2. �

The theorem does not imply that the ISB repre-
sentation is the minimum necessary. The theoretical
problem of whether there is a more compact represen-
tation (using fewer than 4 numbers) than ISB is open.

3.3 Aggregation on standard dimensions

In this section and the next we consider how to derive
the ISB representation of aggregated cells in a data
cube, from the ISB representations of the relevant de-
scendant (base or otherwise) cells4. Here we consider
the case when the aggregated cells are obtained using
aggregation (roll-up) on a standard dimension.

Let ca be a cell aggregated (on a standard dimen-
sion) from a number of descendant cells c1, . . . , cK .
Here, the time series for ca is de�ned to be the summa-
tion of the time series for the given descendant cells.

That is, z(t) =
PK

i=1 zi(t), where z(t) : t 2 [tb; te]
denotes the time series for ca, and zi(t) : t 2 [tb; te]
denotes that for ci. Figure 2 gives an example.

The following theorem shows how to derive the ISB
representation of the linear regression for ca using the
ISB representations of the descendant cells. In the the-

orem, ([tab ; t
a
e]; �̂a; �̂a) denotes the ISB representation

of ca, and ([t1b ; t
1
e]; �̂1; �̂1), ..., ([t

K
b ; t

K
e]; �̂K ; �̂K) denote

the ISB representations of c1; :::; cK , respectively.

Theorem 3.2 [Aggregations on standard dimensions.]

For aggregations on a standard dimension, the ISB

representation of the aggregated cell can be derived

4When the descendant cells are not base cells, they should
have disjoint sets of descendant base cells to ensure the correct-
ness of aggregation.

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18

z1
(t

)

t

Z1(t)
LSE fitting curve

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18

z2
(t

)

t

Z2(t)
LSE fitting curve

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18

z(
t)

t

Z(t)= Z1(t) + Z2(t)
LSE fitting curve

a) z1(t) b)z2(t) c) z(t) = z1(t)+ z2(t)

Figure 2: Example of aggregation on a standard dimen-

sion of K = 2 descendant cells. The ISB representation

is ([0,19],0.540995, 0.0318379) for z1(t), ([0,19], 0.294875,

0.0493375) for z2(t), and ([0,19], 0.83587, 0.0811754) for

z(t). These satisfy Theorem 3.2.

from that of the descendant cells as follows: (a)

[tab ; t
a
e] = [t1b ; t

1
e], (b) �̂a =

PK

i=1 �̂i, (c) �̂a =
PK

i=1 �̂i.

Proof. Statement (a) is obvious.

Let na = te� tb+1, �za =

P
te

t=t
b
z(t)

na
, �zi =

P
te

t=t
b
zi(t)

na

(for i = 1:::K), and �t =

P
te

t=t
b
t

na
:

Statement (b) holds because

�̂a =
Pte

t=tb

�
t��tP

te

t=t
b
(t��t)2

(z(t)� �za)

�

=
Pte

t=tb

�
t��tP

te

t=t
b
(t��t)2

(
PK

i=1 zi(t)�
PK

i=1 �zi)

�

=
PK

i=1

�Pte
t=tb

�
t��tP

te

t=t
b
(t��t)2

(zi(t)� �zi)

��

=
PK

i=1 �̂i

Statement (c) holds because

�̂a = �za � �̂a�t =
PK

i=1 �zi �
PK

i=1 �̂i
�t

=
PK

i=1

�
�zi � �̂i�t

�
=
PK

i=1 �̂i �

The regressions in Figure 2 illustrate this theorem.

3.4 Aggregation on the time dimension

In this section we consider how to derive the ISB repre-
sentation of aggregated cells in a data cube, from the
ISB representations of the relevant descendant cells,
for the case when the aggregated cells are obtained
using aggregation (roll-up) on the time dimension.

Let ca be the aggregated cell, and c1; :::; cK the de-
scendant cells. These cells should be related as follows:
(1) The time intervals [t1b ; t

1
e], ..., [t

K
b ; t

K
e] of c1; � � � ; cK

should form a partition of the time interval [tb; te] of
ca. (2) Let z(t) : t 2 [tb; te] denote the time series
of ca. Then z(t) : [tib; t

i
e] is time series of ci. With-

out loss of generality, we assume that t
i
b < t

i+1
b for

all 1 � i < K. Figure 3 gives an example, where
[tb; te] = [0; 19], [t1b ; t

1
e] = [0; 9], and [t2b ; t

2
e] = [10; 19].

Similar to notations used in section 3.3, we write

([tab ; t
a
e]; �̂a; �̂a) for the ISB representation of ca,

([tib; t
i
e]; �̂i; �̂i) for that of ci. Moreover, we introduce

8 variables: let na = te � tb + 1, ni = t
i
e � t

i
b + 1,

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18

z(
t)

t

z(t): [0,9]
z(t): [10,19]

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18

z(
t)

t

z(t):[0,19]

a) two time intervals b) aggregated interval

Figure 3: Example of aggregation on the time dimension

of two time intervals. The ISB representations are ([0,9],

0.582995, 0.0240189), ([10,19], 0.459046, 0.047474), and

([0,19], 0.509033, 0.0431806). These satisfy Theorem 3.3.

Sa =
Pte

t=tb
z(t), Si =

Pti
e

t=ti
b

z(t), �za denote the aver-

age of z(t) : t 2 [tb; te], �zi that of z(t) : t 2 [tib; t
i
e], �ta

that of t 2 [tb; te], and �ti that of t 2 [tib; t
i
e].

All of these 8 variables can be computed from the
ISBs of the ci's. Indeed, �ti =

1
2
� (tib + t

i
e), �ta = 1

2
�

(t1b + t
K
e), �zi = �̂i + �̂i�ti (by Equation 2), Si = ni � �zi,

Sa =
PK

i=1 Si, �za =
Sa
na
. So we can use these variables

for expressing the ISB of ca.

Theorem 3.3 [Aggregations on the time dimension.]

For aggregations on the time dimension, the ISB rep-

resentation of the aggregated cell can be derived from

that of the descendant cells as follows:

(a) [tb; te] = [t1b ; t
K
e]

(b) �̂a =
PK

i=1

�
n3
i
�ni

n3
a
�na

�̂i

�

+6
PK

i=1

�
2
P

i�1

j=1
nj+ni�na

n3
a
�na

naSi�niSa
na

�

(c) �̂a = �za � �̂a�ta, where �za and �ta are derived as

discussed above, �̂a is derived as in (b).

To prove the theorem, we will need a lemma.

Lemma 3.2 For all integers i � 0 and n > 0, let

�j =
Pi+n�1

j=i j=n. Then
Pi+n�1

j=i (j � �j)2 = n3�n
12

:

We will use �(n) to denote
Pi+n�1

j=i (j � �j)2, which
is independent of i by the lemma.
Proof (Sketch) (of Thm 3.3). (a) This is obvious.

(b) From Lemmas 3.1, we have

�̂a =
Pte

t=tb
[t��t
�(na)

(z(t)� �z)]

=
PK

i=1

Pti
e

t=ti
b

[t��t
�(na)

(z(t)� �z)].

For each i, we have:Pti
e

t=ti
b

[t��t
�(na)

(z(t)� �z)]

=
Pti

e

t=ti
b

[t�
�ti

�(na)
(z(t)� �z)] +

Pti
e

t=ti
b

[
�ti��t
�(na)

(z(t)� �z)]

We can prove (by including using Lemma 3.2) thatPti
e

t=ti
b

[t�
�ti

�(na)
(z(t)� �z)] =

n3
i
�ni

n3
a
�na

�̂i,

andPti
e

t=ti
b

[
�ti��t
�(na)

(z(t)� �z)]

= 6 �
2
P

i�1

j=1
nj+ni�na

n3
a
�na

naSi�niSa
na

.

So (b) is proven.
(c) By (b) and the discussion above this theorem,

we know that all variables in the right-hand-side of

�̂a = �za � �̂a�ta, can be expressed in terms of the ISBs
of the ci's. �

4 Stream Data Analysis with Regres-
sion Cubes

Although representing stream data by regression pa-
rameters (points) may substantially reduce the data to
be stored and/or aggregated, it is still often too costly
in both space and time to fully compute and material-
ize the regression points at a multi-dimensional space
due to the limitations on resources and response time
in on-line stream data analysis. In the following, we
propose three ways to further reduce the cost: (1) tilt
time frame, (2) notion of critical layers: o-layer (obser-
vation layer) and m-layer (minimal interesting layer),
and (3) exception-based computation and drilling. We
present two algorithms for performing such computa-
tion.

4.1 Tilt time frame

In stream data analysis, people are often interested in
recent changes at a �ne scale, but long term changes
at a coarse scale. Naturally, one can register time at
di�erent levels of granularity. The most recent time is
registered at the �nest granularity; the more distant
time is registered at coarser granularity; and the level
of coarseness depends on the application requirements.

12 months 4 qtrs31 days 24 hours

Time Now

Figure 4: A tilt time frame model

Example 3 For Ex. 1, a tilt time frame can be con-
structed as shown in Figure 4, where the time frame is
structured in multiple granularities: the most recent 4
quarters (15 minutes), then the last 24 hours, 31 days,
and 12 months. Based on this model, one can compute
regressions in the last hour with the precision of quar-
ter of an hour, the last day with the precision of hour,
and so on, until the whole year, with the precision of
month5. This model registers only 4+24+31+12 = 71
units of time instead of 366� 24� 4 = 35; 136 units, a
saving of about 495 times, with an acceptable trade-o�
of the grain of granularity at a distant time. �

4.2 Notion of critical layers

Even with the tilt time frame model, it could still be
too costly to dynamically compute and store a full re-
gression cube since such a cube may have quite a few

5We align the time axis with the natural calendar time. Thus,
for each granularity level of the tilt time frame, there might be
a partial interval which is less than a full unit at that level.

standard dimensions, each containing multiple levels
with many distinct values. Since stream data analysis
has only limited memory space but requires fast re-
sponse time, it is suggested to compute and store only
some mission-critical cuboids in the cube.

In our design, two critical cuboids are identi�ed due
to their conceptual and computational importance in
stream data analysis. We call these cuboids layers and
suggest to compute and store them dynamically. The
�rst layer, called m-layer, is the minimally interest-
ing layer that an analyst would like to study. It is
necessary to have such a layer since it is often neither
cost-e�ective nor practically interesting to examine the
minute detail of stream data. The second layer, called
o-layer, is the observation layer at which an analyst (or
an automated system) would like to check and make
decisions of either signaling the exceptions, or drilling
on the exception cells down to lower layers to �nd their
lower-level exceptional descendants.

(individual-user, street-address, minute)

(user-group, street-block, quarter)

(primitive) stream data layer

o-layer (observation)

m-layer (minimal interest)

(*, city, hour)

Figure 5: Two critical layers in the regression cube

Example 4 Assume that the (virtual) cuboid
\(individual user, street address, minute)" forms
the primitive layer of the input stream data in Ex. 1.
With the tilt time frame as shown in Figure 4, the
two critical layers for power supply analysis are: (1)
the m-layer: (user group, street block, quarter), and
(2) the o-layer: (�, city, hour), as shown in Figure 5.

Based on this design, the cuboids lower than the
m-layer will not need to be computed since they are
beyond the minimal interest of users. Thus the mini-
mal regression cells that our base cuboid needs to be
computed and stored will be the aggregate cells com-
puted with grouping by user group, street block, and
quarter. This can be done by aggregations of regres-
sions (Section 3) (1) on two standard dimensions, user
and location, by rolling up from individual user to
user group and from street address to street block,
respectively, and (2) on time dimension by rolling up

from minute to quarter.
Similarly, the cuboids at the o-layer should be com-

puted dynamically according to the tilt time frame
model as well. This is the layer that an analyst
takes as an observation deck, watching the changes
of the current stream data by examining the regres-
sion lines and/or curves at this layer to make deci-
sions. The layer can be obtained by rolling up the cube
(1) along two standard dimensions to � (which means
all user category) and city, respectively, and (2) along
time dimension to hour. If something unusual is ob-
served, the analyst can drill down the exceptional cells
to examine low level details. �

4.3 Framework for exception-based analysis

Materializing a regression cube at only two critical lay-
ers leaves a lot of room for approaches for computing
the cuboids in between. These cuboids can be precom-
puted fully, partially, exception cells only, or not at all
(leave everything to on-the-
y computation). Since
there may be a large number of cuboids between these
two layers and each may contain many cells, it is often
too costly in both space and time to fully materialize
these cuboids. Moreover, a user may be only inter-
ested in certain exception cells in those cuboids. Thus
it is desirable to compute only such exception cells.

A regression line is exceptional if its slope is � the
exception threshold, where an exception threshold can
be de�ned by a user or an expert for each cuboid c, for
each dimension level d, or for the whole cube, depend-
ing on applications. Moreover, the regression line may
refer to the regression represented by one cell itself in a
cuboid, or between two points represented by the cur-
rent cell (such as the current quarter) vs. the previous
one (the last quarter), or the current hour vs. the last,
etc. In general, regression is computed against certain
points in the tilt time frame, based on users' interest
and application.

According to the above discussion, we propose the
following framework in our computation.

Framework 4.1 (Exception-driven analysis)
The task of computing a regression-based time-series
cube is to (1) compute two critical layers (cuboids):
i) m-layer (the minimal interest layer), and ii) o-layer
(the observation layer), and (2) for the cuboids
between the two layers, compute only those exception
cells (i.e., the cells which pass an exception threshold)
that have at least one exception parent (cell). �

This framework, though not covering the full search
space, is a realistic one because with a huge search
space in a cube, a user rarely has time to examine
normal cells at the layer lower than the observation
layer, and it is natural to follow only the exceptional
cells to drill down and check only their exceptional de-
scendants in order to �nd the cause of the problem(s).
Based on this framework, one only needs to compute

and store a small number of exception cells that satisfy
the condition. Such cost reduction makes possible the
OLAP-styled, regression-based exploration of cubes in
stream data analysis.

4.4 Algorithms for exception-based regression
cube computation

Based on the above discussion, we have the fol-
lowing algorithm design for eÆcient computation of
exception-based regression cubes.

First, since the tilt time frame is used in time dimen-
sion, the regression data is computed based on the tilt
time frame. The determination of exception threshold

and the reference points for the regression lines should
be dependent on the particular application.

Second, as discussed before, the m-layer should be
the layer aggregated directly from the stream data.

Third, a compact data structure needs to be de-
signed so that the space taken in the computation
of aggregations is minimized. Here a data structure,
called H-tree, a hyper-linked tree structure introduced
in [18], is revised and adopted to ensure that a com-
pact structure is maintained in memory for eÆcient
computation of multi-dimensional and multi-level ag-
gregations.

We present these ideas using an example.

Example 5 Suppose the stream data to be analyzed
contains 3 dimensions, A, B and C, each with 3 levels
of abstraction (excluding the highest level of abstrac-
tion \�"), as (A1; A2; A3), (B1; B2; B3), (C1; C2; C3),
where the ordering of � > A1 > A2 > A3 forms a high-
to-low hierarchy, and so on. The minimal interesting
layer (the m-layer) is (A2, B2, C2), and the o-layer is
(A1; �; C1). From the m-layer (the bottom cuboid) to
the o-layer (the top-cuboid to be computed), there are
in total 2� 3� 2 = 12 cuboids, as shown in Figure 6.

(A1, B2, C1)(A1, B1, C2)

(A1, B2, C2) (A2, B2, C1)

(A2, *, C2) (A2, B1, C1)

(A1, *, C1)

(A2, B2, C2)

(A1, *, C2) (A2, *, C1)(A1, B1, C1)

(A2, B1, C2)

Figure 6: Cube structure from the m-layer to the o-layer

Assume that the cardinality (the number of distinct
values) at each level has the relationship: card(A1)
< card(B1) < card(C1) < card(C2) < card(A2) <

card(B2). Then each path of an H-tree from root to

leaf is ordered as hA1, B1, C1, C2, A2, B2i. This or-
dering makes the tree compact since there are likely
more sharings at higher level nodes. Each tuple, ex-
panded to include ancestor values of each dimension
value, is inserted into the H-tree, as a path with nodes
(namely attribute-value pairs) in this order. An ex-
ample H-tree is shown in Fig 7. In the leaf node of
each path (e.g. ha11, b11, c11, c21, a21, b21i), we store
relevant regression information (namely the ISBs) of
the cells of the m-layer. The upper level regressions
are computed using the H-tree and its associated links
and header tables. A header table is constructed for
(a subset of) each level of the tree, with entries con-
taining appropriate statistics for cells (e.g. (�; b21; �)
for the bottom level in Fig 7) and a linked list of all
nodes contributing to the cells. �

C2

B2

A2

...

a22

...

Header Table H

a21

a23

a11
a12
a13

b21
Header Table H

...

...

...

a11
a12
a13

a21
a22
a23

b21
b22
b23

c21 c22 c23

a21 a22 a21 a22

b21 b22 b21 b22

ROOT

a11
a12

Atval reg. info link

Atrval reg. info link

Figure 7: H-tree structure for cube computation

Now our focus becomes how to compute the o-layer
and the exception cells between m- and o- layers. Two
interesting methods are outlined as follows.

1. m/o-cubing: Starting at the m-layer, cubing is per-
formed by aggregating regression cells upto the o-
layer using an eÆcient cubing method, such as mul-
tiway array aggregation [28], BUC [5], or H-cubing
[18]. In our implementation, H-cubing is performed
using the H-tree constructed. Only the exception
cells are retained after using the corresponding layer
in computation (except for the o-layer in which all
cells are retained for observation).

2. popular-path cubing: Starting at the m-layer, aggre-
gation of regression cells upto the o-layer is per-
formed by following a popular drilling path using
an eÆcient cubing method, such as H-cubing [18].
Then for other cuboids betweenm and o-layers, only
the children cells of an exception cell of a computed
cuboid need to be computed, with the newly com-
puted exception cells retained. Such computation
may utilize the precomputed cuboids along the pop-
ular path.

Here we present the two algorithms.

Algorithm 1 (m/o H-cubing) H-cubing for com-
puting regressions from the m- to the o- layers.

Input. Multi-dimensional time-series stream data, plus
(1) the m and o-layer speci�cations, and (2) exception
threshold(s) (possibly one per level or cuboid).

Output. All the regression cells at the m/o-layers and
the exception cells for the layers in between.

Method.

1. Aggregate stream data to the m-layer, based on
Theorems 3.2 and 3.3, and construct H-tree by scan-
ning stream data once and performing aggregation
in the corresponding leaf nodes of the tree.

2. Compute aggregation starting at the m-layer and
ending at the o-layer, using the H-cubing method6

described in [18]. The leaf-level header table (corre-
sponding to 1-d cells) is used for building the header
table for the next level (corresponding to 2-d cells),
and so on. When a local H-header computation is
�nished, output only the exception cells.
Notice that H-cubing proceeds from the leaf nodes
up, level by level, computing each combination of
distinct values at a particular dimension-level com-
bination, by traversing the node-links and perform-
ing aggregation on regression.
For example, when traversing following the links of
node b21, the local header table Hb21 is used to hold
the aggregated value for (b21; a21), (b21; a22), etc.
However, when traversing following the links of b22,
the same local header table space is reused as header
Hb22 and thus the space usage is minimized. Only
the exception cells in the (local) header tables for
each combination will be output.

Analysis. Step 1 needs to scan the stream data once
and perform aggregation in the corresponding leaves
based on Theorems 3.2 and 3.3, whose correctness has
been proved. Step 2 needs to have one local H-header
table for each level, and there are usually only a small
number of levels (such as 6 in Figure 7). Only the ex-
ception cells take additional space. The space usage is
small. Moreover, the H-cubing algorithm is fast based
on the study in [18]. �

Algorithm 2 (Popular-path) Compute regressions
from the m- to o- layers following a \popular-path".

Input and Output are the same as Algorithm 17 except
that the popular drilling path is given (e.g., the given
popular path, h(A1; C1)!B1!B2!A2!C2i, is shown
as the dark-line path in Figure 6).

Method.

6There are some subtle di�erences between the H-cubing here
and the one described in [18] because the previous cubing does
not handle multiple levels in the same dimension attribute. For
lack of space, this will not be addressed further here.

7Notice that Algorithm 1 computes more exception cells than
Algorithm 2 (i.e., more than necessary), since the former com-
putes all the exception cells in every required cuboid, while the
latter only computes (recursively) the exception cells' exception
children, starting at the o-layer.

1. The same as Step 1 of Algorithm 1, except
the H-tree should be constructed in the same
order as the popular path (e.g., it should be
h(A1; C1)!B1!B2!A2!C2i.

2. Compute aggregation by rolling up the m-layer to
the o-layer, along the path, with the aggregated re-
gression points stored in the nonleaf nodes in the
H-tree, and output only the exception cells.

3. Starting at the o-layer, drill on the exception cells at
the current cuboid down to noncomputed cuboids,
and compute the aggregation by rolling up a com-
puted cuboid residing at the closest lower level. Out-
put only the exception cells derived in the current
computation. The process proceeds recursively until
it reaches the m-layer.

Analysis. The H-tree ordering in Step 1 based on the
drilling path facilitates the computation and storage
of the cuboids along the path. Step 2 computes ag-
gregates along the drilling path from the m-layer to
the o-layer. At Step 3 drilling is done only on the ex-
ception cells and it takes advantage of the closest low
level computed cuboids in aggregation. Thus the cells
to be computed are related only to the exception cells,
and the cuboids used are associated with the H-tree,
which costs only minimal space overhead. �

In comparison of the two algorithms, Algorithms 1
and 2, one can see that both need to scan the stream
data only once. Regarding space, the former needs
(1) one H-tree with the regression points saved only at
the leaf and (2) a set of local H-header tables; whereas
the latter does not need local H-headers, but it needs
to store the regression points in both leaf and nonleaf
nodes. Regarding computation, the former needs to
compute all the cells although only the exception cells
are retained but it uses precomputed results quite ef-
fectively. In comparison, the latter computes all the
cells for the cuboids along the path only, but computes
only the exception cells at each lower level, which may
lead to less computation; however, it may not use in-
termediate computation results as e�ectively as the
former. From this analysis, one can see that the two
algorithms are quite competitive in both space and
computation time and a performance study is needed
to show their relative strength.

4.5 Making the algorithms on-line

For simplicity, so far we have not discussed how our al-
gorithms deal with the \always-grow" nature of time-
series stream data in an \on-line", continuously grow-
ing manner. We discuss this issue here.

The process is essentially an incremental compu-
tation method illustrated below, using the tilt time
frame of Figure 4. Assuming that the memory con-
tains the previously computed m and o-layers (plus
the cuboids along the popular path in the case of us-
ing the popular-path algorithm), and the stream data

arrive every minute. The new stream data are accumu-
lated (by regression aggregation) in the corresponding
H-tree leaf nodes. Since the time granularity of the m-
layer is quarter, the aggregated data will trigger the
cube computation once every 15 minutes, which rolls
up from leaf to the higher level cuboids. When reach-
ing a cuboid whose time granularity is hour, the rolled
regression information (i.e., ISB) remains in the cor-
responding quarter slot until it reaches the full hour
(i.e., 4 quarters), and then it rolls up to even higer
levels.

Notice in this process, regression data in the time
interval of each cuboid will be accumulated and pro-
moted to the corresponding coarser time granularity,
when the accumulated data reaches the correspond-
ing time boundary. For example, the regression in-
formation of every four quarters will be aggregated to
one hour and be promoted to the hour slot, and in
the mean time, the quarter slots will still retain suf-
�cient information for quarter-based regression anal-
ysis. This design ensures that although the stream
data
ows in-and-out, regression always keeps up to
the most recent granularity time unit at each layer.

5 Performance Study

To evaluate the e�ectiveness and eÆciency of our pro-
posed algorithms, we performed an extensive perfor-
mance study8 on synthetic datasets. Limited by space,
in this section, we report only the results on sev-
eral synthetic datasets9 with 100; 000 merged (i.e., m-
layer) data streams, each consisting of a varied number
of dimensions and levels. The results are consistent in
other data sets.

The datasets are generated by a data generator sim-
ilar in spirit to the IBM data generator [4] designed for
testing data mining algorithms. The convention for
the data sets is as follows: D3L3C10T100K means
that there are 3 dimensions, each dimension contains
3 levels (from the m-layer to the o-layer, inclusive), the
node fan-out factor (cardinality) is 10 (i.e., 10 children
per node), and there are in total 100K merged m-layer
tuples.

All experiments were performed on a 750MHz AMD
PC with 512 megabytes main memory, running Mi-
crosoft Windows-2000 Server. All methods were im-
plemented using Microsoft Visual C++ 6:0. We com-
pare the performance of the two algorithms as follows.

Our design framework has some obvious perfor-
mance advantages over its alternatives in some aspects.
Consequently, we do not conduct experimental per-
formance study on these aspects (otherwise we will
be comparing clear winners against obvious losers).

8Since regression analysis of time series in data cubes is a
novel subject and there are no existing methods for this problem,
we cannot compare our algorithms against previous methods.

9We are also seeking for some industry time-series data sets
for future study on real data sets.

These aspects include (1) tilt time frame vs. full non-
tilt time frame, (2) using minimal interesting layer vs.
examining stream data at the raw data layer, and (3)
computing the cube up to the apex layer vs. computing

it up to the observation layer.
Since a data analyst needs fast on-line response, and

both space and time are critical in processing, we ex-
amine both time and space consumption in our per-
formance study.

We have examined the following factors in our per-
formance study: (1) time and space w.r.t. the excep-
tion threshold, i.e., the percentage of aggregated cells
that belong to exception cells; (2) time and space w.r.t.
the size (i.e., the number of tuples) at the m-layer; and
(3) time and space w.r.t. the varied number of (dimen-
sions and) levels.

The performance results are reported in Fig 8|10.

1

10

100

1000

0.1 1 10 100

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s
)

Exception (in %)

popular-path
m/o-cubing

a) Time vs. exception

0

50

100

150

200

250

300

350

0.1 1 10 100

M
e
m

o
ry

 U
s
a
g

e
 (

in
 M

-b
y

te
s
)

Exception (in %)

popular-path
m/o-cubing

b) Space vs. exception

Figure 8: Processing time and memory usage vs. percent-

age of exception (data set: D3L3C10T100K)

Figure 8 shows processing time and memory usage
vs. percentage of exception, with the data set �xed as
D3L3C10T100K. Since m/o-cubing computes all the
cells from the m-layer all the way to the o-layer, de-
spite the rate of exception, the total processing time is
just slightly higher at high exception rate (i.e., when
most of the cells are exceptional ones) than at low ex-
ception one. However, the memory usage will change a
lot when exception rate grows since only the exception
cells are retained in memory in this algorithm. On the
other hand, popular-path computes only the popular
path plus the drilling-down exception cells; when the
exception rate is low, the computation cost is low, but
when the exception rate grows, it costs more in compu-
tation time since it does not explore sharing processing
as nicely as m/o-cubing. Moreover, its space usage is
more stable at low exception rate since it take more
space to store the cells along the popular path even
when the exception rate is very low.

Figure 9 shows the processing time and memory
usage vs. the size of the m-layer, with the cube
structure of D3L3C10 and the exception rate at 1%,
where the data sets with varied sizes are appropri-
ate subsets of the same 100K data set. When the
data size grows, popular-path is more scalable than
m/o-cubing w.r.t. running time because m/o-cubing

16

32

64

128

256

512

32 64 128 256

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s
)

Size (in K bytes)

popular-path
m/o-cubing

a) Time vs. m-layer size

32

64

128

32 64 128 256

M
e
m

o
ry

 U
s
a
g

e
 (

in
 M

-b
y

te
s
)

Size (in K-bytes)

popular-path
m/o-cubing

b) Space vs. m-layer size

Figure 9: Processing time and memory usage vs. size of

the m-layer (with cube structure of D3L3C10 and the ex-

ception rate of 1%)

computes all the cells between the two critical lay-
ers whereas popular-path computes only the cells along
popular path plus a relatively small number of excep-
tion cells. However, popular-path takes more memory
space than m/o-cubing because all the cells along the
popular path needs to be retained in memory (which
will be used in computation of exception cells of other
cuboids).

1

10

100

1000

3 3.5 4 4.5 5 5.5 6 6.5 7

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s
)

Number of Levels

popular-path
m/o-cubing

a) Time vs. # of levels

1

10

100

3 3.5 4 4.5 5 5.5 6 6.5 7

M
e
m

o
ry

 U
s
a
g

e
 (

in
 M

-b
y

te
s
)

Number of Levels

popular-path
m/o-cubing

b) Space vs. # of levels

Figure 10: Processing time and space vs. # of levels from

m- to o- layers (with the cube structure of D2C10T10K

and the exception rate at 1%)

Figure 10 shows the processing time and space us-
age vs. the number of levels from m- to o- layers, with
cube structure of D2C10T10K and the exception rate
at 1%. In both algorithms, with the growth of num-
ber of levels in the data cube, both processing time
and space usage grow exponentially. It is expected
this exponential growth will be even more serious if
the number of dimension (D) grows. This is one more
veri�cation of the \curse of dimensionality". Fortu-
nately, most practical applications in time-series anal-
ysis (such as power consumption analysis) may involve
only a small number of dimensions. Thus the method
derived here should be practically applicable.

From this study, one can see that both m/o-cubing
and popular-path are eÆcient and practically interest-
ing algorithms for computing multi-dimensional re-
gressions for time-series stream data. The choice of
which one should be dependent on the expected excep-
tion ratio, the total (main) memory size, the desired re-

sponse time, and how computing exception cells along
a �xed path �ts the needs of the application.

Finally, we note that this performance study deals
with computing the cubes for the whole set of available
stream data (such as 100K tuples). In stream data ap-
plications, it is likely that one just need to incremen-
tally compute the newly generated stream data. In
this case, the computation time should be substantially
shorter than shown here although the total memory
usage may not reduce much due to the need to store
data in two critical layers, in popular path, as well as
the retaining of exception cells.

6 Discussion

In this section, we compare our study with the related
work and discuss some possible extensions.

6.1 Related work

Our work is related to: 1) mathematical foundations
and tools for time series analysis, 2) similarity search
and data mining on time series data, 3) on-line an-
alytical processing and mining in data cubes, and 4)
research into management and mining of stream data.
We brie
y review previous research in these areas and
point out the di�erences from our work.

Statistical time series analysis is a well-studied and
mature �eld [8], and many commercial statistical tools
capable of time series analysis are available, including
SAS, SPlus, Matlab, and BMDP. A common assump-
tion of these studies and tools, however, is that users
are responsible to choose the time series to be ana-
lyzed, including the scope of the object of the time
series and the level of granularity. These studies and
tools (including longitudinal studies [10]) do not pro-
vide the capabilities of relating the time series to the
associated multi-dimensional multi-level characteris-
tics, and they do not provide adequate support for on-
line analytical processing and mining of the time series.
In contrast, the framework established in this paper
provides eÆcient support to help users form, select,
analyze, and mine time series in a multi-dimensional
and multi-level manner.

Similarity search and eÆcient retrieval of time se-
ries has been the major focus for time series-related
research in the database community, such as [11, 2, 24,
25]. Previous data mining research also paid attention
to time series data, including shape-based patterns [3],
representative trends [22], periodicity [17], and using
time warping for data mining [23]. Again, these10 do
not relate the multi-dimensional, multi-level charac-
teristics with time series and do not seriously consider
the aggregation of time series.

In data warehousing and OLAP, much progress has
been made on the eÆcient support of standard and ad-

10 http://www.cs.ucr.edu/�eamonn/TSDMA/bib.html is a
fairly comprehensive time series data mining bibliography.

vanced OLAP queries in data cubes, including selec-
tive cube materialization [19], iceberg cubing [5, 18],
cube gradients analysis [21, 9], exception [26], and in-
telligent roll-up [27]. However, the measures studied
in OLAP systems are usually single values, and previ-
ous studies do not consider the support for regression
of time series. In contrast, our work considers complex
measures in the form of time series and studies OLAP
and mining over time series data cubes.

Recently, several research papers have been pub-
lished on the management and querying of stream data
[6, 14, 15, 13], and data mining (classi�cation and clus-
tering) on stream data [20, 16]. However, these works
do not consider regression analysis on stream data.

Thus this study sets a new direction: extending data
cube technology for multi-dimensional regression anal-

ysis, especially for the analysis of stream data. This is
a promising direction with many applications.

6.2 Possible extensions

So far we only considered two types of aggregation in
time series data cubes, namely aggregation over a stan-
dard dimension, and that over the time dimension by
merging small time intervals into larger ones. We note
here that there is a third type of aggregation needed
in a time series data cube: aggregation over the time

dimension obtained by folding small time intervals at

a lower level in the time hierarchy to a higher level

one. For example, starting with 12 time series at the
daily level for the 12 months of a year, we may want
to combine them into one, for the whole year, at the
monthly level. This folds the 365 daily values into 12
monthly values. Di�erent SQL aggregation functions
can be used for folding, such as sum, avg, min, max, or
last (e.g., stock closing value). With minor extension
of the methods presented here, such time dimension
can be handled eÆciently as well.

This study has been focused on multiple dimen-
sional analysis of stream data. However, the frame-
work so constructed, including tilt time dimension,
monitoring the change of patterns in a large data cube
using anm-layer and an o-layer, and paying special at-
tentions on exception cells, is applicable to the analysis
of nonstream time-series data as well.

Moreover, the results of this study can also be
generalized to multiple linear regression to situations
where one needs to consider more than one regression
variable, for example when there are spatial variables
in addition to a temporal variable. There is a need
for multiple linear regression for multiple regression
variable applications. For example, for environmental
monitoring and weather forecast, there are frequently
networks of sensors placed at di�erent geographic lo-
cations. These sensors collect measurements at �xed
time intervals. One may wish do regression not only
on the time dimension, but also the three spatial di-
mensions. More generally, one may also include other

variables, such as human characteristics, etc. as regres-
sion variables.

It is worth noting that we have developed a gen-
eral theory for this direction in the full paper. This
theory is applicable to regression analysis using non-
linear functions, such as the log function, polynomial
functions, and exponential functions.

7 Conclusions

In this paper, we have investigated issues for on-line,
multi-dimensional regression analysis of time-series
stream data and discovered some interesting mathe-
matical properties of regression aggregation so that
only a small number of numerical values instead of
the complete stream of data need to be registered for
multi-dimensional analysis. Based on these proper-
ties, a multi-dimensional on-line analysis framework
is proposed, that uses tilt time frame, explores mini-

mal interesting and observation layers, and adopts an
exception-based computation method. Such a frame-
work leads to two eÆcient cubing methods, whose ef-
�ciency and e�ectiveness have been demonstrated by
our experiments.

We believe this study is the �rst one which explores
on-line, multi-dimensional regression analysis of time-
series stream data. There are a lot of issues to be
explored further. For example, we have implemented
and studied an H-cubing-based algorithm for comput-
ing regression-based data cubes. It is interesting to
explore other cubing techniques, such as multiway ar-
ray aggregation [28], and BUC [5], for regression cub-
ing, as well as developing eÆcient algorithms for non-
exception-driven computation algorithms. Moreover,
we believe that a very important direction is to fur-
ther develop data cube technology to cover additional,
sophisticated statistical analysis operations, that may
bring new computation power and user
exibility to
on-line, multi-dimensional statistical analysis.

References

[1] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta,

J. Naughton, R. Ramakrishnan, S. Sarawagi. On

the computation of multidimensional aggregates.

VLDB'96.

[2] R. Agrawal, K.-I. Lin, H.S. Sawhney, and K. Shim.

Fast similarity search in the presence of noise, scaling,

and translation in time-series databases. VLDB'95.

[3] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait.

Querying shapes of histories. VLDB'95.

[4] R. Agrawal and R. Srikant. Mining sequential pat-

terns. ICDE'95.

[5] K. Beyer and R. Ramakrishnan. Bottom-up compu-

tation of sparse and iceberg cubes. SIGMOD'99.

[6] S. Babu and J. Widom. Continuous queries over data

streams. SIGMOD Record, 30:109{120, 2001.

[7] S. Chaudhuri and U. Dayal. An overview of data

warehousing and OLAP technology. SIGMOD Record,

26:65{74, 1997.

[8] D. Cook and S. Weisberg. Applied Regression Includ-

ing Computing and Graphics. John Wiley, 1999.

[9] G. Dong, J. Han, J. Lam, J. Pei, and K. Wang. Min-

ing multi-dimensional constrained gradients in data

cubes. VLDB'01.

[10] P. Diggle, K. Liang, and S. Zeger. Analysis of Longi-

tudinal Data. Oxford Science Publications, 1994.

[11] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.

Fast subsequence matching in time-series databases.

SIGMOD'94.

[12] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,

D. Reichart, M. Venkatrao, F. Pellow, and H. Pira-

hesh. Data cube: A relational aggregation operator

generalizing group-by, cross-tab and sub-totals. Data

Mining and Knowledge Discovery, 1:29{54, 1997.

[13] M. Greenwald and S. Khanna. Space-eÆcient online

computation of quantile summaries. SIGMOD'01.

[14] A. Gilbert, Y. Kotidis, S. Muthukrishnan, M. Strauss.

Sur�ng wavelets on streams: One-pass summaries for

approximate aggregate queries. VLDB'01.

[15] J. Gehrke, F. Korn, and D. Srivastava. On computing

correlated aggregates over continuous data streams.

SIGMOD'01.

[16] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan.

Clustering data streams. FOCS'00.

[17] J. Han, G. Dong, and Y. Yin. EÆcient mining

of partial periodic patterns in time series database.

ICDE'99.

[18] J. Han, J. Pei, G. Dong, and K. Wang. EÆcient

computation of iceberg cubes with complex measures.

SIGMOD'01.

[19] V. Harinarayan, A. Rajaraman, and J. D. Ullman.

Implementing data cubes eÆciently. SIGMOD'96.

[20] G. Hulten, L. Spencer, and P. Domingos. Mining time-

changing data streams. KDD'01.

[21] T. Imielinski, L. Khachiyan, and A. Abdulghani.

Cubegrades: Generalizing association rules. Rutgers

University, Aug. 2000.

[22] P. Indyk, N. Koudas, and S. Muthukrishnan. Identi-

fying representative trends in massive time series data

sets using sketches. VLDB'00.

[23] E. J. Keogh and M. J. Pazzani. Scaling up dynamic

time warping to massive dataset. PKDD'99.

[24] T. Kahveci and A. K. Singh. Variable length queries

for time series data. ICDE'01.

[25] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh. Duality-

based subsequence matching in time-series databases.

ICDE'01.

[26] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-

driven exploration of OLAP data cubes. EDBT'98.

[27] G. Sathe and S. Sarawagi. Intelligent rollups in mul-

tidimensional OLAP data. VLDB'01.

[28] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An

array-based algorithm for simultaneous multidimen-

sional aggregates. SIGMOD'97.

