
Multi-dimensional SLA-based Resource Allocation for Multi-tier Cloud
Computing Systems

Hadi Goudarzi and Massoud Pedram
University of Southern California, Los Angeles, CA 90089

{hgoudarz,pedram}@usc.edu

Abstract—With increasing demand for computing and memory,
distributed computing systems have attracted a lot of attention.
Resource allocation is one of the most important challenges in
the distributed systems specially when the clients have Service
Level Agreements (SLAs) and the total profit in the system
depends on how the system can meet these SLAs. In this paper,
an SLA-based resource allocation problem for multi-tier
applications in the cloud computing is considered. An upper
bound on the total profit is provided and an algorithm based on
force-directed search is proposed to solve the problem. The
processing, memory requirement, and communication
resources are considered as three dimensions in which
optimization is performed. Simulation results demonstrate the
effectiveness of the proposed heuristic algorithm.

I. INTRODUCTION
Demand for computing power has been increasing due to the

penetration of information technologies in our daily interactions
with the world both at personal and community levels,
encompassing business, commerce, education, manufacturing,
and communication services. At the personal level, the wide
scale presence of online banking, e-commerce, SaaS (Software
as a Service), social networking etc. produce workloads of great
diversity and enormous scale. At the same time computing and
information processing requirements of various public
organizations and private corporations have also been increasing
rapidly. Examples include digital services and functions
required by the various industrial sectors, ranging from
manufacturing to housing, from transportation to banking. Such
a dramatic increase in the computing demand requires a scalable
and dependable information technology (IT) infrastructure
comprising of servers, storage, networks, physical facilities,
Electrical Grid, IT workforce, and billions of dollars in capital
expenditure and operational cost to name a few.

Modern internet applications are complex software
implemented on multi-tier architectures [6]. Each tier provides a
defined service to the next tiers and uses services from the
previous tiers. The problem of resource allocation for multi-tier
applications is harder than that for single tier applications
because tiers are not homogenous and a performance bottleneck
in one tier can decrease the overall profit (gain from meeting a
service level agreement, SLA) even if the other tiers have
acceptable service quality.

The IT infrastructure provided by the datacenter
owners/operators must meet various SLAs established with the
clients. The SLAs include compute power, memory/storage
space, network bandwidth, 24-7 availability, data security, and
so on. Infrastructure providers often end up over provisioning
their resources in order to meet the clients’ SLAs. Such over
provisioning may increase the cost incurred on the datacenters
in terms of both the electrical energy cost and the carbon
emission footprint. Therefore optimal provisioning of the
resources is imperative in order to reduce the cost incurred on
the datacenter operators as well as their environmental impact.
The problem of optimal resource provisioning is challenging
due to the diversity present in the client applications being
hosted and the SLAs. For example: some client applications

may be compute-intensive while others may be memory
intensive, some applications may run well together while others
do not, etc. We focus on the SLA based resource allocation in
the cloud computing system. There are two types of SLA
contracts. For the Gold SLA class, response time is guaranteed
and if this constraint is violated, the cloud provider pays a
penalty. For the Bronze SLA class, each client has a defined
utility function based on its response time. We used terms Gold
and Bronze (as opposed to Silver) to show the large difference
between these two SLA classes.

The IT infrastructure provided by the large datacenter
owners is often geographically distributed. This helps reduce the
peak power demand of the datacenters on the local power grid,
results in higher fault tolerance and more reliable operation of
the IT infrastructure, and even, reduced cost of ownership. A
datacenter comprises of thousands to tens of thousands of server
machines, working in tandem to provide services to the clients,
see for example [1][2]. In such a large computing system,
energy efficiency can be maximized through system-wide
resource allocation and server consolidation, this in spite of non-
energy-proportional characteristics of current server machines
[3]. Clients in cloud computing system are software applications
that require processing, memory and communication resources
in “on-demand capacity provisioning” or “lease model of the IT
infrastructure” [4]. Servers are modeled based on these three
capabilities: computational, memory, and networking
bandwidth. Cost of operation of active servers is related to the
degree of their use of these resources [5].

The remainder of the paper is organized as follows. Related
work is discussed next. In section III, the system model and
problem formulation are presented. The optimization problem
and an upper bound on the profit are given in sections IV and V.
The proposed algorithm is presented in section VI. Simulation
results and conclusions are given in the sections VII and VIII.

II. RELATED WORK
Distributed resource allocation is one of the most

challenging problems in resource management field. This
problem has attracted a lot of attention from the research
community in the last few years. In the following we provide a
review of most relevant prior work.

An analytical model for multi-tier internet services is
presented in [6]. Processor sharing model is used to derive the
average response time of the applications based on mean-value
analysis. The solution presented does not have a closed-form
because of complex modeling but the accuracy of the solution is
demonstrated. Srikantaiah et al. [5] presented energy aware
consolidation to decrease the total energy consumption of the
cloud computing system. The authors presented an experimental
method to model the energy consumption of the servers based
on the CPU and disk utilization. Based on this method, a simple
heuristic to consolidate the processing works in the cloud
computing system is presented.

Multi-dimensional resource allocation for single tier
applications in the cloud computing system is presented in [7].
SLA model based on the response time of the applications is

considered to model the profit optimization problem. This
problem is solved with generating an initial solution and using
local optimization techniques. Tang et al. [8] presents a dynamic
resource provisioning technique for the case of very large
number of servers and application sizes. The proposed heuristic
solution for this NP-hard problem is focused on the scalability
aspects of the solution. Virtualization management policies are
presented in [9] to handle the performance, efficiency and
stability of a server system. The results show that effective
dynamic resource management can greatly reduce the operation
cost of the system and improve the stability of the applications.

In [11], Zhang and Ardagna extend the early work of [10]
and present a problem statement with clients that have discrete
utility functions. The authors propose a heuristic to solve the
problem of assigning different client classes to different servers
to maximize the total profit. Ardagna et al. [12] extend this work
to profit (revenue) optimization for continuous utility functions
in a multi-tier virtualized environment. The authors use a
complex model for energy calculation to increase the accuracy
and solve the problem by generating a feasible solution and
improving it by local search. The availability of servers is
considered as a new constraint to the problem in [13]. A
heuristic to maximize the profit via decreasing the energy
consumption in cloud systems is presented in [14], where an
adaptive search based on turning servers on or off is proposed.
Resource allocation for tasks with fixed memory, disc and
processing requirements is presented in [15]. An approximation
algorithm for this problem that is proved to be NP-complete is
presented. References [16]-[18] use mathematical or economics-
based models to formulate the profit optimization problem.

In this paper, we assume that servers are characterized by
their maximum capacity in three dimensions: processing power,
memory usage, and communication bandwidth. We then focus
on multi-dimensional resource allocation in datacenters while
guaranteeing SLAs for clients with applications that require
multiple tiers (stages) of service to complete. Our paper
provides the following key features and contributions:
• A multi-dimensional resource allocation scheme to consider

communication resources for multi-tier applications that
incur large inter-server communications.

• A closed-form formula for calculating the average response
time of a client’s request for multi-tier applications.

• A unified framework for handling both strong (Gold class)
and weak (Bronze class) SLAs.

• A provable upper bound on the total profit in the system for
given clients, resources and SLAs.

• A simultaneous server consolidation and client-to-server
assignment method based on force-directed search method to
maximize the total profit accrued by the system.

III. SYSTEM MODEL
An SLA-based multi-dimensional resource allocation

scheme for the multi-tier services in a cloud computing system
(e.g., a hosting datacenter) is presented to optimize the total
expected profit. The profit is composed of the expected gain due
to satisfying the SLA contracts of the clients, the expected
penalty for violating the contracts, and the energy cost (in
dollars) of serving clients’ requests. In this paper, we use terms
“applications” and “clients” interchangeably.

A cloud computing system comprises of potentially
heterogeneous servers chosen from a set of known server types.
Servers of a given type are modeled by their processing (rate of
computational work performed by the server), communication
(available bandwidth), and main memory capacities as well as
their operational expense (cost) which is directly related to their

average power consumption. We assume that the local (or
networked) secondary (hard disc) storage is not a system
bottleneck. The operational cost of a server is modeled as a
constant power cost plus another variable power cost which is
linearly related to the utilization of the server in the processing
domain. Note that the power cost of communication resources in
a datacenter is amortized over all servers and switching gear,
assumed to be relatively independent of the clients’ workload,
and hence, not incorporated in the equation for power cost of a
server. We assume that the cloud computing system has a
central manager that has information about clients and servers.

Each client is identified by a unique id, represented by index
i. Each server is similarly identified by a unique id, denoted by
index j. There are often a set of application tiers that an
application needs to complete. For each tier, requests of the
application are distributed among some of the available servers.
Each ON server is assigned to exactly one of these application
tiers. This means that if a server is assigned to some tier, it can
only serve the requests on that specified tier. Each application
has a constraint on memory allocation in each tier. This means
that a constant amount of memory should be allocated to the ith
client in each server that serves a portion of the client’s requests
in tier t. No hard constraints are imposed on the processing and
communication resource allocations but these allocations
determine the system profit.

Table I. Notation and Definitions
Symbol Definition

Predicted average request rate of the ith client
 Agreed average request rate of the ith client per SLA

 Expected Profitability threshold on average request
rate of the ith client
Client class of the ith client

 Server class type of the jth server

Utility function value as a function of the response
time for each request in the Bronze SLA class

, , Contract response time target, utility and penalty
values for each request in the Gold SLA class

 Rate of increasing utility by decreasing the average
response time for the ith client in the Gold SLA class , , , , , ,

Average processing and communication service
times of the jth server for requests of the ith client in
the tth tier for forward and backward directions (for
communication, it is independent of server type)

 Required memory for the tth tier of the ith client

, , Total processing, communication and memory
capacities of the jth server 1
Probability that requests of ith client do not go to the
next tier and instead go back to the previous tier

 Constant power consumption of the jth server
operation. It is related to

Power consumption of the jth server in terms of the
processing resource utilization related to the
Duration of the decision epoch in seconds
Cost of energy consumption

 A pseudo-Boolean integer variable to determine if
the jth server is ON (1) or OFF (0)

 A pseudo-Boolean integer variable to determine if
the jth server is assigned to the tth tier (1) or not (0)

 Portion of the ith client’s requests that are in the tth

tier and served by the jth server , , , , , , ,
Portion of processing, communication and memory
resources of the jth server that is allocated to the tth
application tier of the ith client (forward (f) or
backward (b) directions)

To increase paper readability, Table I presents key symbols
used throughout this paper along with their definitions.
A. Multi-tier service model

Consider the ith client with an ordered set of application
tiers, . This ordered set is a subset of the available tiers in the
cloud computing system. This is a simplified model taken from
[6]. The inter-arrival time of requests for the ith client is assumed
to follow an exponential distribution with rate parameter . In
addition, in each level of the application tier, the client’s
requests are distributed among a number of servers. For each
tier, there is a probability that the requests do not go to the
next application tier and instead return to the previous tier.
Therefore there are requests moving in two different directions:
forward and backward. Although the backward requests are
served by the servers that previously served those requests in the
forward direction, because the backward streams of requests
may have different service times, they are put in different
queues. In this model, the requests in the backward direction go
to the previous tier with probability of one.

 Figure 1 shows an example of a multi-tier system with 3
tiers. D* represent the request dispatchers in different tiers. In
this figure, the solid lines represent forward requests while the
dash lines show backward requests. For this case, the ordered
subset of tiers is {u,v,w}, which is a subset of by fixing
order(u) < order(v) < order(w). Also the probabilities are related
to the specific client and the selected subset of tiers used by it.

Figure 1. An example of a client with three application tiers.
The processing and communication queues in each server

are assumed to be in series. This allows pipelining between
processing and communication processes in the servers. In
addition, we consider generalized processor sharing (GPS) at
each queue since GPS approximates the scheduling policy used
by most operating systems, e.g., weighted fair queuing and the
CPU time sharing in Linux.

Based on the queuing theory, the output of each queue with
this characteristic has an exponential distribution with a mean
value of 1⁄ . The average response time of the requests
in the queues of a resource (the parameter) can be calculated
from dividing the percentage of allocated resource () by the
average service time of the client’s request on that resource ()
multiplied by the processing or communication capacity of the
resource as the case maybe. The average arrival rate of the
requests for a resource (the parameter) can in turn be
calculated by multiplying the average arrival rate of the requests
by the probability of receiving requests in a specific tier
(calculated from probabilities, 1), and the probability
of assigning the requests to the server ().

We use and to denote forward and backward directions
whereas and denote the processing and communication parts
of the application. With this notation, the average response time

in the forward direction of processing and communication
queues for the ith client in tier t is calculated as follows: , 1, / , (1)

, 1, / , (2)

where is the probability of receiving a request in tier t, which
is related to the product of the probability of moving in the
forward direction in the previous tiers:

, (3)

In calculating average response time for the communication
queue in the forward direction, the average arrival rate for this
queue is similar to the (1) multiplied by . This is because only
requests that are going to be served in the next tier are served in
the communication queue of the forward direction of a tier. The
average response times for processing and communication
queues in the backward direction, which are omitted for brevity,
are calculated from equations similar to (1) and (2).

To make the paper more readable, we use Μ and Λ to
denote four-element vectors of the service rate and arrival rate
of the ith client assigned to the jth server for different directions
and different queues. Μ ,, ; ,, ; ,, ; ,, (4) Λ 1; ; 1; 1 (5)

In the remainder of this paper the kth element of Μ and Λ
to will be denoted by Μ , and Λ , , respectively.

Based on the GPS technique and model presented above, the
average response time of the ith client is calculated as follows:

 (6)

where , , , , (7)

B. SLA model for this system
Service Level Agreement (SLA) is an important

consideration in the system. There are different kinds of SLA in
literature but we adopt two classes of SLA’s for this paper: (i)
average response time guaranteed SLA; and (ii) SLA that has a
price pre request based on the response time. The arrival rate of
the requests is a random process, which may not even be
stationary. If the cloud manager reacts to these changes by
limiting the arrival rate of the clients, it is possible to violate the
SLA constraints or pay large penalties during busy times. It is
also possible that the cloud manager conservatively plans for the
maximum arrival rate of the clients, which in turn leads to
resource overbooking and increase in the cost of operation.

In this paper, two models of the SLA are considered: (i) the
Gold SLA class, which specifies an average response time target,
a maximum arrival rate for the client’s requests, a utility
(reward) value for each serviced request (regardless of its
response time), and a penalty if the average request response
time is missed; and (ii) the Bronze SLA class, which specifies a
maximum arrival rate and a utility function that specifies a profit
per request based on the response time. The arrival rate of a
client in the Gold SLA class is determined by a probability
distribution function (PDF) dynamically profiled and predicted
by a cloud-level monitor. This PDF is used to determine the

proper amount of resources to allocate to the servers in this SLA
class based on the penalty value set in the SLA for exceeding
the response time bound. The expected client utility (per
request) for the Gold SLA class is calculated as follows: 1 (8)

The first term in the parentheses is the constant price that the
user pays for the service whereas the second term is the
expected penalty for violating the constraint in the SLA. Based
on the resources provided to the client, it is possible to calculate
an expected profitability threshold (EPT) for the request arrival
rate i.e., the maximum arrival rate of a client’s requests that can
satisfy the average response time constraint in the Gold SLA
class. Probability of violating the contract average response time
constraint is 1 where CDF denotes the
cumulative distribution function of the predicted average arrival
rate of the ith client.

The utility function for the Bronze SLA class is a non-
increasing function of the average response time. It is possible
that the average response time is higher than a predicted average
response time, i.e., there is no guarantee for the response time in
this SLA class. We use the predicted average response time
(based on the most probable average inter-arrival rate) as the
model response time for the user associated with this SLA class.
C. Resource management problem

The goal of the resource management problem is to
maximize the total profit for serving the clients. In this system,
the decision making interval (called a decision epoch from here
on) can be defined based on dynamic parameters in the system.
In particular, the frequency of changes in the request rates of the
clients affects the acceptable decision time. This is because the
solution found by the presented algorithm is acceptable only as
long as the client behaviors remain stationary during the
decision epoch. Although some small changes in the parameters
can be effectively tracked and responded to by proper reaction
of request dispatchers, large changes cannot be handled by the
local managers.

In the following, the resource allocation problem in each
decision epoch is presented and a solution is presented.
However, we do not discuss the characterization and prediction
of clients’ behavior and dynamic changes in system parameters
as these issues fall outside the scope of the present paper.
IV. PROBLEM FORMULATION

The profit maximization problem is formulated below. ∑ ∑ ∑ ∑ , ,
(9)

Subject to: ∑ 1, (10) ∑ ∑ , (11) ∑ ∑ , , 1, (12) ∑ ∑ , , 1, (13) ∑ ∑ , 1, (14) ∑ 1, , (15) Μ Λ , , , (16) , , , , (17) , ∑ , , , (18) 0,1 , 0,1 , 0,1 , , , (19) Μ 0, , 0, 0, , , (20)
with addition of equations (6)-(8). Parameter denotes a very
small positive value.

In this problem, , , and are the optimization
parameters (cf. Table I for their definitions) whereas the other
parameters are constant or functions of the optimization
variables. In the objective function, the first part is the
summation of the client’s utilities. If a client has opted for the
Gold SLA class, the utility is calculated from (8); otherwise, the
Bronze utility function is used to calculate the utility. The
second part of the objective function is the operation cost of the
servers. The total power consumption of the servers is calculated
by adding the fixed power consumption of the ON servers and
variable (utilization-dependent) power consumption.
Multiplying the total power consumption by the duration of the
epoch produces the energy consumption. Clearly, the average
price of a KWh of electrical energy can be used to convert the
energy consumption to the operational cost in dollars.

Constraint (10) forces the servers to select only one of the
tiers whereas constraint (11) determines the ON servers based
on the allocated resources. Constraints (12), (13) and (14) are
used to limit the summation of the processing, communication
and memory resources in the servers. Constraint (15) ensures
that all requests generated by a client during a decision epoch
are served in the servers. Constraint (16) shows the lower limit
of the processing and communication resources in the servers if
the allocated client uses the Bronze SLA contract. Constraint
(17) determines the amount of the memory allocated to the
assigned clients. Assigned clients are determined by a pseudo-
Boolean parameter, . If is not zero, the value of is set
to one based on the first inequality in (18); otherwise the value
of is zero as seen from the second inequality in (18). Finally,
constraints (19) and (20) specify domains of the variables.

It can be seen that the problem formulation is a mixed
integer non-linear programming. This problem cannot be solved
by any commercial software because of the large input size
(numbers of the clients and servers are large.) An upper bound
for the profit is introduced in the next section. A heuristic
solution for this problem inspired from the force-directed
scheduling is presented in section VI.

V. AN UPPER-BOUND ON THE TOTAL PROFIT
The profit maximization is a hard problem and it is very

time consuming (it is intractable in the general case) to solve the
problem even with linear relaxation of some key system
parameters because the number of constraints is too many to use
classical optimization methods. In particular, similar problems
in the literature (for only Bronze SLA class) [12] are proved to
be neither convex nor concave after linear relaxation. More
precisely, it can be shown that even if the number and types of
the ON servers are known in advance and the utility functions
(for the Bronze SLA class) are estimated with continuous
decreasing utility functions of the response times, the objective
function is neither convex nor concave i.e., the Hessian matrix is
not positive definite or negative definite. Therefore, the problem
cannot be solved with the convex optimization methods.

We start by using familiar relaxation techniques for finding
approximate solutions to bin packing and Knapsack problems
[19] to find an upper bound on the total profit. The formulation
below describes the profit upper-bound problem statement: ∑ ∑ ∑ ∑ , ,

(21)

Subject to: ∑ ∑ , , , (22)

, , 1, , , (23)

, , 1, , , (24)

, ⁄ 1, , , (25)
with addition of constraints (15), (16) and (20). Variables of
optimization are and . Notice that the capacity constraints
(12), (13) and (14) and the constraint of only one tier for each
server (10) have been relaxed. As a result one can solve the
profit maximization problem for each client independently of
others and simply sum up the results of best profits for all clients
to get the best system profit.

One of the pseudo-Boolean variables in the original problem
statement is , which converts the problem to a bin packing like
problem. To simplify the profit upper-bound problem
formulation, we consider as a continuous variable calculated
by equation (22). Note that the resulting power cost is a lower
bound on the actual power cost of servers in the system. Even
with this relaxation, it can be shown that the Hessian matrix of
the objective function in (21) is not negative definite or positive
definite, and therefore, it is not possible to use the convex
optimization method for this problem. To address this last
difficulty, is fixed in order to make the problem a concave
optimization problem with respect to , and , .

To solve this new problem (with fixed) by using the
Karush-Kuhn-Tucker (KKT) conditions, we need to obtain the
derivatives of the profit with respect to the optimization
parameters. Taking this derivative for the Bronze class is
straight forward and omitted here for brevity. The derivation of
the profit function (Pr) with respect to , for a client in the
Gold class is given below:

, , (26)

Note that all calculations are done in .From the
definition of , , is calculated as:

, , , ,
∑ , , , , (27)

where in Λ is set to for this calculation. The other
derivatives of profit have the same form as (26) except that the
superscripts are appropriately modified.

This equation shows that, the total profit is more sensitive to
the amount of resources allocated to a client that imposes a
higher penalty value for violating its response time constraint.

Details of the solution of this optimization using KKT
conditions omitted for brevity.

The complete solution of problem (21) in case of the Bronze
SLA class can be found by applying dynamic programming
(DP) as explained next. The solution of the problem for constant

 and for each server type is calculated applying KKT
conditions. Using this solution, the partial profit of assigning an

 portion of the ith client’s requests from tier t to the jth server
is calculated. Then the DP method is used to find the best case
of assigning the client’s requests to the servers so that constraint
(15) for each tier is satisfied. Since we are dealing with profit
maximization for one client at a time, there is no need to use the
whole set of servers for each DP calculation for each client in
each tier; Instead we can use the small number of server types to
find the best request distribution rates. The pseudo code for
upper-bound calculation algorithm is given in Figure 2.

In case of the Gold SLA class, because the derivatives of the
profit with respect to optimization parameters include all of the
optimization parameters in a server, it is not possible to find the
solution of the problem in one step. Instead, iteration on the
solution found by the KKT conditions is used to reach an

acceptable for the servers. More precisely, we start with the
 value obtained for the Bronze SLA class and perform

iterations (using numerical techniques [21]) on the solution of
the problem calculated applying KKT conditions. These
iterations continue until the profits of two consecutive iterations
are nearly the same.

Figure 2. Pseudo code for calculating a profit upper bound.
As can be seen, all of the dependencies among clients and

tiers are removed with relaxation of the capacity and tier
allocation to servers. This upper bound on total profit is used as
the “golden result” against which the results of our proposed
solution are compared. In addition, we use a technique inspired
from this profit upper bound calculation to generate an initial
solution to the original problem statement as detailed below.

VI. PROFIT MAXIMIZATION SOLUTION
In this section, a heuristic, called force-directed resource

assignment or FRA, to find a solution for the optimization
problem in (9) is presented. In this heuristic algorithm, an initial
solution based on the solution given for the profit upper bound
problem is generated. Next, distribution rates are fixed and
resource sharing is improved by a local optimization step.
Finally a resource consolidation technique, inspired by the
force-directed scheduling, which is one of the most important
scheduling techniques in the high-level synthesis [20], is applied
to consolidate resources, determine the active (ON) servers and
further optimize the resource assignment.
A. Initial Solution

We start by pointing out that the order of resource
assignment to the clients and tiers affects the quality of the
solution especially when the total computation and
communication resources in the system are only just enough to
meet the client’s requirements.

A greedy technique to rank the clients and the application
tiers for each client is used to determine the order of resource
assignment processing in our constructive approach. For each
client, the following equation is used as its ranking metric:

Algorithm Profit_UB_Calc (i)
Stable = 0 and Profit = 0;
While (Stable == 0){
// Find Optimal Resource Allocation for each server type
 For (k = 1 to number of server types){

For (t Ti){
For (1/granularity of alpha to 1)

Find resource shares from KKT conditions ;}}
// Find the Best way to combine resources
 For (t Ti){

X = granularity of alpha;
Y = number of server types * constant;
For (y =1 to Y){

For (x = 1 to X){
D[x,y]=-infinity;
For (z = 1 to x){//portion of request assignment

D[x,y]=max(D[x,y],D[x-1,y-z]+partial profit
from alloc (k=div(y,constant) and =z));}

D[x,y]=max(D[x,y], D[x-1,y]);}}
Back track to find the best solution from D[X,Y];}

 IF (class client type is Gold){
Find EPT arrival rate and Calculate eqn (26) for each
server;
IF (no changes from previous step) Stable =1;}

 Else
Stable =1;}

Profit = total profit for client i;

∑ ∑ , , , , (28)

Clients are ordered in non-decreasing order of this metric
and processed in that order (going from low to high metric
values.) This allows us to assign resources to the clients that
need more resources (client’s requests give rise to fairly low
service rates) or the number of available resources is lower
(client’s requests can be served only on a relatively small
number of available servers.)

For the selected client, tiers are ordered using a similar
metric: ∑ , , , , (29)

 For example after selecting a client for resource allocation,
the required tiers for this client are ordered based on the
summation of the available servers multiplied by the service rate
of that server for that specific tier (ordered from low to high.)

After selecting a client and a tier (consider the ith client and
tier), the solution proposed in section V is used to assign
resources to the client in the tier in question. For this
assignment, some of the servers are already turned on (due to
assignment of previously processed clients) and they have a
selected tier. Also some of these ON servers have unassigned
resources. To consider these changes, servers that are assigned
to other tiers (0) are removed from the resource pool. Also
constraints in (23), (24) and (25) are replaced by the following
constraints. , , 1 , , , (30), , 1 , , , (31)⁄ 1 , , , (32)
where , and denote the previously-committed portion
of the processing, communication and memory resources to the
jth server, respectively.

Solution to this problem is the same as the upper bound
profit solution for the ith client and tth tier with following
exceptions. (i) All ON servers and some of the OFF servers
from each server type are used for the DP method; and (iii) A
small value is added to the profit of allocating resources from
ON servers to prefer these allocations in the DP method in case
of a tie.

Resource allocation in this constructive approach is not final
because some servers are turned ON and resource can indeed be
allocated better. By solving the problem of resource adjustment
for each server, the solution is optimal by considering a fixed
client to server allocation. This procedure is called
Adjust_ResourceShares() in the pseudo code.
B. Resource Consolidation using Force-Directed Search

To search the solution space, a method inspired by the force-
directed search is used. This search technique is not only a local
neighborhood search but also acts like steepest ascent. This
characteristic makes this searching technique less dependent to
the initial solution.

This algorithm is based on defined forces between servers
and clients. A client that has the highest force difference toward
a new server (difference of forces toward a new server and the
server that the client is already assigned to) is picked and if the
required server is available, the load replacement is done. After
this replacement, forces are updated and the new maximum
force differential client-to-server assignment is made. This
algorithm continues until there are no positive force differentials
for any clients. Because the total profit in this system is not

monotonically increasing, the best solution is saved in each step.
Figure 3 shows the pseudo code of this technique.

Figure 3. Pseudo code for resource consolidation.
 In this search technique, a definition of force is used that is

based on the partial profit gained from allocating each portion of
the clients’ request in a specific tier to a server with specific
type. For example, if there are differnet server types that can
execute tier t of the applications, the force toward each server
type (for the ith client) is calculated according to (33) for the
Gold SLA class and according to (34) for the Bronze SLA class: , | | , , (33) , , , , , , ,

(34)

where denotes the server type k and ’s are the results of the
optimal resource allocation problem. Also is the expected
profitability threshold on based on the new resource
allocation. To account for the cost of turning on a server that is
off, , , must be subtracted from these forces.
These values show the partial improvement in the total profit if
a portion of the clients’ requests in tier t is assigned to a server
from a specific server type.

For each client, forces toward servers having some resources
allocated to that client are calculated from other formulas to
keep different parts of the application together. This is because
splitting a client’s requests among servers reduces the total
profit in case of equal resources. Also some time, merging parts
of a client’s request increase the total profit even without
increasing the resources used. Details are omitted for brevity.

Based on these forces, the client replacement and re-
assignment of the resources are done. In each step, the highest
force differential is picked. If the selected destination server is
not one of the servers that the client is already assigned to and is
an ON server, among all the ON servers assigned to the selected
tier on the selected server type, the one with the lowest
utilization is picked. If there is any available server to pick, the
re-assignment is done only if the available resources on that

Algorithm Resource_Consolidate ()
// Search the solution space to find better profit
TP = total profit;
Initialize the forces between clients and servers;
// calculate force differentials , , , , ; , , ,
ΔF = 1;
While (ΔF > 0) {

ΔF = max (,); // client i and
j = selected source server;
k = selected destination server type;
g = selected destination server;
If (ΔF is toward an ON server in server type k){

g = find the least busy server in k, assigned to tier t;
If (lower bound constraints satisfied) goto Re-Assign;
Else goto skip Re-Assign;}

Else If (ΔF is toward an OFF server in server type k){
g = find an OFF server in k;
If (found an OFF server) goto Re-Assign;
Else goto skip Re-Assign;}

Else If (ΔF is toward a server serving client i) goto Re-
Assign;

Re-Assign: Re-assign portion of the requests to g from j;
Update force related to j, g and client i;
P = total profit;
If (P>TP) TP = P; save the state;}

Skip Re-Assign:Update the move limit; }

server satisfy the lower bound constraints on the required
resource shares.

After replacement, forces for the selected client are updated.
Also forces that are related to the selected source and
destination servers are updated. To limit the number of tries in
the algorithm and avoid loops and lockouts, we apply the
following rules:
• After re-assigning a portion of a client’s request, forces

toward destination of this re-assignment are updated as a
weighted average of the expected partial profit and resulting
partial profit.

• The re-assignment of a portion of the client’s requests to a
server type is locked after some re-assignment in order to
avoid loops.

• For a server with utilization less than a threshold, clients are
rewarded to leave the server (i.e., there will be less force to
keep the clients on the server) so that we can eventually turn
off the server.

• We limit the number of re-assignments to control the
complexity of the search method.

VII. SIMULATION RESULTS
In this section we present the simulation results of the

proposed solution to evaluate its effectiveness. The number of
server types varies between 2 and 10. For each server type, an
arbitrary number of servers exist as explained below. We
consider 10 to 100 clients in the system and for each client the
processing power and memory capacity requirements are set
with random variables to model clients with different
requirements. Ten different application tiers in the system are
considered. The number of application tiers for each client is
selected randomly to be between 3 and 5 and the probabilities of
going forward or backward in the corresponding tier graph are
randomly set with average of 80% going forward and 20%
backward for each tier. Service times for clients with different
application tiers on different server types are also modeled with
random variables. Each client is assumed to have Gold or
Bronze SLA class with probability of 50%.

To model the PDF for the arrival rate of the client requests
in the Gold SLA classes, we used linear function between zero
and the maximum arrival rates.

The power dissipation cost of different server types is
determined as the random variables. The mean of these random
variables is set based on the real experimental results. Also for
the memory capacity of the server types, random variables based
on actual available servers are considered. The processing and
communication capacities of the server types are selected
arbitrarily from the actual available servers such as Intel Xeon
processors and Gigabyte communication ports.

We used two different scenarios in terms of number of
servers. In the first scenario (low server to client ratio), the
average number of servers is 5n where n denotes the number of
clients. In the second scenario (high server to client ratio), the
average number of servers is set to 10n. Recall that from the
distribution of tiers per client, there are (on average) 4n client-
tiers in both scenarios system.

The baseline method used to compare with the results of the
proposed force-directed resource assignment algorithm (called
FRA) is an iterative method (IM) based on fixing the resource
shares and optimizing the task distribution rates and then fixing
the distribution rates and optimizing the resource shares. This is
similar to the iterative improvement approach of [12] and [13].
We also compare our results with the upper bound solution (UB)
of section V. In particular, FRA/UB and FRA/IM columns in

Table II reports the quality (expected total system profit) of our
solution with respect to the upper bound and iterative method
solution, respectively.

As can be seen, the quality of our solution compared to the
upper bound is quite different for the first and second scenarios.
This is because the upper bound solution does not capture the
resource availability in the system and only finds the best
possible profit in case of no competition among clients to
reserve the resources. Also this table shows that FRA generates
a better solution with respect to the iterative improvement
method.

To show the effectiveness of the server consolidation
technique that is proposed in this paper, an initial solution based
on the proposed initial solution with the constraint of 0.2
is generated and the force-directed search is used to find the
final solution. Trace of the execution for this case is shown in
Figure 4. In this case, number of client is set to 50 and the first
scenario is used for the number of servers.

Figure 4. An example of Resource Consolidation Improvement in case of a
bad initial solution.

The upper bound profit in this case is 2000. It can be seen
that the resource consolidation method based on the force-
directed search increases the total profit saliently because the
initial solution used for this case is not a good initial solution.
Also some decrease in the total power can be seen which is
because of the nature of the force-directed search.

Figure 5 shows the average run time of the proposed
heuristic for different number of clients and different scenarios.
Although the average number of servers for the second scenario
is double this number for the first scenario, the run time does not
increase a lot because the force-directed search is based on the
server types not the actual servers. It can be seen that in case of
having an average of 400 client-tiers and 1000 servers, the
solution is found in less than 1.5 minutes which is acceptable for
cases with decision epoch in order of half an hour.

0 100 200 300 400 500
-150

-100

-50

0

50

100

150

200

250

300

350

FDA step

T
o

ta
l p

ro
fi

t

Table II. Quality of the final solution

Client
count, n

First Scenario (low
server count – high

workload)

Second Scenario (high
server count = low

workload)
FRA/UB FRA/IM FRA/UB FRA/IM

10 58% 114% 80% 140%
20 54% 116% 71% 117%
30 57% 120% 69% 139%
40 52% 117% 76% 142%
50 57% 109% 76% 110%
60 55% 107% 80% 109%
70 53% 107% 77% 120%
80 50% 113% 76% 108%
90 49% 115% 77% 107%

100 49% 110% 84% 105%

To show the characteristic of the proposed solution, Figure
6 shows the average ratio of / for the clients with the
Gold SLA class for different ratio of / . As it is expected,
the ratio of the EPT arrival rate is increased to compensate
increase in the penalty value. For some penalty values, the EPT
arrival rate is more than the contract arrival rate which is
because of iterative nature of the resource allocation in case of
the Gold SLA class.

Figure 6. Ratio of the EPT inter-arrival rate to the maximum inter-arrival
rate for different penalty values for Gold SLA class.

Figure 7 shows the average utilization factor of the servers
in case of different / values. Lowering the value of /
means that the idle energy cost has a bigger portion in the total
energy cost in case of full utilization which may be resulted in
more consolidation in servers and less ON servers.

Figure 7. Utilization of the servers for different values.

VIII. CONCLUSION
In this paper, we considered the problem of the resource

allocation to optimize the total profit gained from the SLA
contracts and lost from operational cost. The model based on the
multi-tier applications is presented and the guarantee based SLA
is used to model the profit in the system. An upper bound on the
profit of each client is found by relaxing the capacity constraint

of the servers between different clients. A solution based on
generating an initial solution inspired from the upper bound and
a resource consolidation technique based on the force-directed
search is proposed. The quality of the solution is compared to
the upper bound solution and the iterative improvement
approach proposed in the previous work.

Acknowledgement: This work was sponsored in part by a
grant from the National Science Foundation.

REFERENCES
[1] M. Armbrust, A. Fox, et al. A view of cloud computing.

Communications of the ACM 53(4), 2010.
[2] R. Buyya. Market-oriented cloud computing: Vision, hype, and

reality of delivering computing as the 5th utility. The 9th
IEEE/ACM Symposium on Cluster Computing and the Grid, 2009.

[3] L. A. Barroso and U. Hölzle, The Case for Energy-Proportional
Computing, IEEE Computer, 2007.

[4] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster,
Capacity Leasing in Cloud Systems using the OpenNebula Engine,
Workshop on Cloud Computing and its Applications, Chicago,
Illinois, USA, 2008.

[5] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware
consolidation for cloud computing. Power Aware Computing and
Systems, San Diego, USA, December 2008.

[6] B. Urgaonkar, G. Pacifici, P. Shenoy,M. Spreitzer, and A.
Tantawi. An analytical model for multi-tier Internet services and
its applications, ACM International Conference on Measurement
and Modeling of Computer Systems, 2005.

[7] H. Goudarzi and M. Pedram, "Maximizing profit in the cloud
computing system via resource allocation," Int’l workshop on Data
Center Performance, Minneapolis, MN, Jun. 2011.

[8] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifci. A scalable
application placement controller for enterprise data centers. Int’l
Conf. on WWW, 2007.

[9] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, K. Schwan.
vManage: loosely coupled platform and virtualization management in
data centers. Int’l Conf. on Autonomic Computing, 2009.

[10] Z. Liu, M. S. Squillante and J. L. Wolf. On maximizing service-
level-agreement profits. The Third ACM Conference on Electronic
Commerce, 2001.

[11] L. Zhang and D. Ardagna. SLA based profit optimization in
autonomic computing systems. The Second Int. Conf. on Service
Oriented Computing, November 2004.

[12] D. Ardagna, B. Panicucci, M. Trubian and L. Zhang. Energy-
Aware Autonomic Resource Allocation in Multi-Tier Virtualized
Environments. IEEE Transactions on Services Computing, 2010.

[13] B. Addis, D. Ardagna, B. Panicucci, Z. Li. Autonomic
Management of Cloud Service Centers with Availability
Guarantees. IEEE 3rd International Conference on Cloud
Computing, July 2010.

[14] M. Mazzucco, D. Dyachuk, R. Deters. Maximizing Cloud Providers'
Revenues via Energy Aware Allocation Policies. IEEE 3rd
International Conference on Cloud Computing, July 2010.

[15] F. Chang, J. Ren, R. Viswanathan. Optimal Resource Allocation in
Clouds. IEEE 3rd International Conference on Cloud Computing,
July 2010.

[16] C. Santos, X. Zhu, and H. Crowder. A mathematical optimization
approach for resource allocation in large scale clusters. Technical
Report HPL-2002-64, HP Labs, March 2002.

[17] A. Chandra, W. Gongt and P. Shenoy. Dynamic resource
allocation for shared clusters using online measurements. ACM
SIGMETRICS, 2003.

[18] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat and R. P.
Doyle. Managing energy and server resources in hosting centers.
ACM SOSP, 2001.

[19] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations. Wiley, 1990.

[20] P.G. Paulin, J.P. Knight. Force-directed scheduling for the
behavioral synthesis of ASICs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol.8, no.6,
pp.661-679, Jun 1989.

[21] J.Nocedal and S. J. Wright. Numerical Optimization. Springer-
Verlag, 1999.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Ratio of the Penalty to Price in the Gold SLA class

R
at

io
 o

f
E

P
T

 λ
 t

o
 M

ax
im

u
m

 λ

First Scenario
Second Scenario

0.5 1 1.5 2 2.5 3 3.5 4
0.7

0.75

0.8

0.85

0.9

0.95

Ratio of Pj
p/Pj

0

U
ti

liz
at

io
n

 in
 t

h
e

P
ro

ce
ss

in
g

 R
es

o
u

rc
es

First Scenario
Second Scenario

Figure 5. Average run time of the FRA algorithm on 2.8GHZ E5550 server
from Intel for different number of clients.

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

Number of Clients

A
ve

ra
g

e
R

u
n

 T
im

e
(s

ec
)

First Scenario
Second Scenario

