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Abstract—With increasing demand for computing and memory, 
distributed computing systems have attracted a lot of attention. 
Resource allocation is one of the most important challenges in 
the distributed systems specially when the clients have Service 
Level Agreements (SLAs) and the total profit in the system 
depends on how the system can meet these SLAs. In this paper, 
an SLA-based resource allocation problem for multi-tier 
applications in the cloud computing is considered. An upper 
bound on the total profit is provided and an algorithm based on 
force-directed search is proposed to solve the problem. The 
processing, memory requirement, and communication 
resources are considered as three dimensions in which 
optimization is performed. Simulation results demonstrate the 
effectiveness of the proposed heuristic algorithm.  

I. INTRODUCTION 
Demand for computing power has been increasing due to the 

penetration of information technologies in our daily interactions 
with the world both at personal and community levels, 
encompassing business, commerce, education, manufacturing, 
and communication services. At the personal level, the wide 
scale presence of online banking, e-commerce, SaaS (Software 
as a Service), social networking etc. produce workloads of great 
diversity and enormous scale. At the same time computing and 
information processing requirements of various public 
organizations and private corporations have also been increasing 
rapidly. Examples include digital services and functions 
required by the various industrial sectors, ranging from 
manufacturing to housing, from transportation to banking. Such 
a dramatic increase in the computing demand requires a scalable 
and dependable information technology (IT) infrastructure 
comprising of servers, storage, networks, physical facilities, 
Electrical Grid, IT workforce, and billions of dollars in capital 
expenditure and operational cost  to name a few.  

Modern internet applications are complex software 
implemented on multi-tier architectures [6]. Each tier provides a 
defined service to the next tiers and uses services from the 
previous tiers. The problem of resource allocation for multi-tier 
applications is harder than that for single tier applications 
because tiers are not homogenous and a performance bottleneck 
in one tier can decrease the overall profit (gain from meeting a 
service level agreement, SLA) even if the other tiers have 
acceptable service quality. 

The IT infrastructure provided by the datacenter 
owners/operators must meet various SLAs established with the 
clients. The SLAs include compute power, memory/storage 
space, network bandwidth, 24-7 availability, data security, and 
so on. Infrastructure providers often end up over provisioning 
their resources in order to meet the clients’ SLAs. Such over 
provisioning may increase the cost incurred on the datacenters 
in terms of both the electrical energy cost and the carbon 
emission footprint. Therefore optimal provisioning of the 
resources is imperative in order to reduce the cost incurred on 
the datacenter operators as well as their environmental impact. 
The problem of optimal resource provisioning is challenging 
due to the diversity present in the client applications being 
hosted and the SLAs. For example: some client applications 

may be compute-intensive while others may be memory 
intensive, some applications may run well together while others 
do not, etc. We focus on the SLA based resource allocation in 
the cloud computing system. There are two types of SLA 
contracts. For the Gold SLA class, response time is guaranteed 
and if this constraint is violated, the cloud provider pays a 
penalty. For the Bronze SLA class, each client has a defined 
utility function based on its response time. We used terms Gold 
and Bronze (as opposed to Silver) to show the large difference 
between these two SLA classes. 

The IT infrastructure provided by the large datacenter 
owners is often geographically distributed. This helps reduce the 
peak power demand of the datacenters on the local power grid, 
results in higher fault tolerance and more reliable operation of 
the IT infrastructure, and even, reduced cost of ownership. A 
datacenter comprises of thousands to tens of thousands of server 
machines, working in tandem to provide services to the clients, 
see for example [1][2]. In such a large computing system, 
energy efficiency can be maximized through system-wide 
resource allocation and server consolidation, this in spite of non-
energy-proportional characteristics of current server machines 
[3]. Clients in cloud computing system are software applications 
that require processing, memory and communication resources 
in “on-demand capacity provisioning” or “lease model of the IT 
infrastructure” [4]. Servers are modeled based on these three 
capabilities: computational, memory, and networking 
bandwidth. Cost of operation of active servers is related to the 
degree of their use of these resources [5].  

The remainder of the paper is organized as follows. Related 
work is discussed next. In section III, the system model and 
problem formulation are presented. The optimization problem 
and an upper bound on the profit are given in sections IV and V. 
The proposed algorithm is presented in section VI. Simulation 
results and conclusions are given in the sections VII and VIII. 

II. RELATED WORK 
Distributed resource allocation is one of the most 

challenging problems in resource management field. This 
problem has attracted a lot of attention from the research 
community in the last few years. In the following we provide a 
review of most relevant prior work. 

An analytical model for multi-tier internet services is 
presented in [6]. Processor sharing model is used to derive the 
average response time of the applications based on mean-value 
analysis. The solution presented does not have a closed-form 
because of complex modeling but the accuracy of the solution is 
demonstrated. Srikantaiah et al. [5] presented energy aware 
consolidation to decrease the total energy consumption of the 
cloud computing system. The authors presented an experimental 
method to model the energy consumption of the servers based 
on the CPU and disk utilization. Based on this method, a simple 
heuristic to consolidate the processing works in the cloud 
computing system is presented. 

Multi-dimensional resource allocation for single tier 
applications in the cloud computing system is presented in [7]. 
SLA model based on the response time of the applications is 



considered to model the profit optimization problem. This 
problem is solved with generating an initial solution and using 
local optimization techniques. Tang et al. [8] presents a dynamic 
resource provisioning technique for the case of very large 
number of servers and application sizes. The proposed heuristic 
solution for this NP-hard problem is focused on the scalability 
aspects of the solution. Virtualization management policies are 
presented in [9] to handle the performance, efficiency and 
stability of a server system. The results show that effective 
dynamic resource management can greatly reduce the operation 
cost of the system and improve the stability of the applications. 

In [11], Zhang and Ardagna extend the early work of [10] 
and present a problem statement with clients that have discrete 
utility functions. The authors propose a heuristic to solve the 
problem of assigning different client classes to different servers 
to maximize the total profit. Ardagna et al. [12] extend this work 
to profit (revenue) optimization for continuous utility functions 
in a multi-tier virtualized environment. The authors use a 
complex model for energy calculation to increase the accuracy 
and solve the problem by generating a feasible solution and 
improving it by local search. The availability of servers is 
considered as a new constraint to the problem in [13]. A 
heuristic to maximize the profit via decreasing the energy 
consumption in cloud systems is presented in [14], where an 
adaptive search based on turning servers on or off is proposed. 
Resource allocation for tasks with fixed memory, disc and 
processing requirements is presented in [15]. An approximation 
algorithm for this problem that is proved to be NP-complete is 
presented. References [16]-[18] use mathematical or economics-
based models to formulate the profit optimization problem. 

In this paper, we assume that servers are characterized by 
their maximum capacity in three dimensions: processing power, 
memory usage, and communication bandwidth. We then focus 
on multi-dimensional resource allocation in datacenters while 
guaranteeing SLAs for clients with applications that require 
multiple tiers (stages) of service to complete. Our paper 
provides the following key features and contributions: 
• A multi-dimensional resource allocation scheme to consider 

communication resources for multi-tier applications that 
incur large inter-server communications. 

• A closed-form formula for calculating the average response 
time of a client’s request for multi-tier applications. 

• A unified framework for handling both strong (Gold class) 
and weak (Bronze class)  SLAs.  

• A provable upper bound on the total profit in the system for 
given clients, resources and SLAs. 

• A simultaneous server consolidation and client-to-server 
assignment method based on force-directed search method to 
maximize the total profit accrued by the system. 

III. SYSTEM MODEL 
An SLA-based multi-dimensional resource allocation 

scheme for the multi-tier services in a cloud computing system 
(e.g., a hosting datacenter) is presented to optimize the total 
expected profit. The profit is composed of the expected gain due 
to satisfying the SLA contracts of the clients, the expected 
penalty for violating the contracts, and the energy cost (in 
dollars) of serving clients’ requests. In this paper, we use terms 
“applications” and “clients” interchangeably. 

A cloud computing system comprises of potentially 
heterogeneous servers chosen from a set of known server types. 
Servers of a given type are modeled by their processing (rate of 
computational work performed by the server), communication 
(available bandwidth), and main memory capacities as well as 
their operational expense (cost) which is directly related to their 

average power consumption. We assume that the local (or 
networked) secondary (hard disc) storage is not a system 
bottleneck. The operational cost of a server is modeled as a 
constant power cost plus another variable power cost which is 
linearly related to the utilization of the server in the processing 
domain. Note that the power cost of communication resources in 
a datacenter is amortized over all servers and switching gear, 
assumed to be relatively independent of the clients’ workload, 
and hence, not incorporated in the equation for power cost of a 
server. We assume that the cloud computing system has a 
central manager that has information about clients and servers. 

Each client is identified by a unique id, represented by index 
i. Each server is similarly identified by a unique id, denoted by 
index j. There are often a set of application tiers that an 
application needs to complete. For each tier, requests of the 
application are distributed among some of the available servers. 
Each ON server is assigned to exactly one of these application 
tiers. This means that if a server is assigned to some tier, it can 
only serve the requests on that specified tier. Each application 
has a constraint on memory allocation in each tier. This means 
that a constant amount of memory should be allocated to the ith 
client in each server that serves a portion of the client’s requests 
in tier t. No hard constraints are imposed on the processing and 
communication resource allocations but these allocations 
determine the system profit. 

Table I. Notation and Definitions 
Symbol Definition

Predicted average request rate of the ith client 
 Agreed average request rate of the ith client per SLA 

 Expected Profitability threshold on average request 
rate of the ith client 
Client class of the ith client 

 Server class type of the jth server 
 

 
Utility function value as a function of the response 
time for each request in the Bronze SLA class  

, ,  Contract response time target, utility and penalty 
values for each request in the Gold SLA class 

 Rate of increasing utility by decreasing the average 
response time for the ith client in the Gold SLA class , , ,  , , ,  

Average processing and communication service 
times of the jth server for requests of the ith client in 
the tth tier for forward and backward directions (for 
communication, it is independent of server type)

 Required memory for the tth tier of the ith client 

, ,  Total processing, communication and memory
capacities of the jth server 1  
Probability that requests of ith client do not go to the 
next tier and instead go back to the previous tier 

 Constant power consumption of the jth server 
operation. It is related to  

 
 

Power consumption of the jth server in terms of the 
processing resource utilization related to the  
Duration of the decision epoch in seconds
Cost of energy consumption 

 A pseudo-Boolean integer variable to determine if 
the jth server is ON (1) or OFF (0) 

 A pseudo-Boolean integer variable to determine if 
the jth server is assigned to the tth tier (1) or not (0)

 Portion of the ith client’s requests that are in the tth

tier and served by the jth server , , ,  , , ,  ,
Portion of processing, communication and memory 
resources of the jth server that is allocated to the tth 
application tier of the ith client (forward (f) or 
backward (b) directions) 



To increase paper readability, Table I presents key symbols 
used throughout this paper along with their definitions. 
A. Multi-tier service model 

Consider the ith client with an ordered set of application 
tiers, . This ordered set is a subset of the available tiers in the 
cloud computing system. This is a simplified model taken from 
[6]. The inter-arrival time of requests for the ith client is assumed 
to follow an exponential distribution with rate parameter . In 
addition, in each level of the application tier, the client’s 
requests are distributed among a number of servers. For each 
tier, there is a probability  that the requests do not go to the 
next application tier and instead return to the previous tier. 
Therefore there are requests moving in two different directions: 
forward and backward. Although the backward requests are 
served by the servers that previously served those requests in the 
forward direction, because the backward streams of requests 
may have different service times, they are put in different 
queues. In this model, the requests in the backward direction go 
to the previous tier with probability of one.  

 Figure 1 shows an example of a multi-tier system with 3 
tiers. D* represent the request dispatchers in different tiers. In 
this figure, the solid lines represent forward requests while the 
dash lines show backward requests. For this case, the ordered 
subset of tiers is {u,v,w}, which is a subset of  by fixing 
order(u) < order(v) < order(w). Also the probabilities are related 
to the specific client and the selected subset of tiers used by it.  

Figure 1. An example of a client with three application tiers. 
The processing and communication queues in each server 

are assumed to be in series. This allows pipelining between 
processing and communication processes in the servers. In 
addition, we consider generalized processor sharing (GPS) at 
each queue since GPS approximates the scheduling policy used 
by most operating systems, e.g., weighted fair queuing and the 
CPU time sharing in Linux.  

Based on the queuing theory, the output of each queue with 
this characteristic has an exponential distribution with a mean 
value of 1⁄ . The average response time of the requests 
in the queues of a resource (the  parameter) can be calculated 
from dividing the percentage of allocated resource ( ) by the 
average service time of the client’s request on that resource ( ) 
multiplied by the processing or communication capacity of the 
resource as the case maybe. The average arrival rate of the 
requests for a resource (the  parameter) can in turn be 
calculated by multiplying the average arrival rate of the requests 
by the probability of receiving requests in a specific tier 
(calculated from probabilities, 1 ), and the probability 
of assigning the requests to the server ( ).   

We use  and  to denote forward and backward directions 
whereas  and  denote the processing and communication parts 
of the application. With this notation, the average response time 

in the forward direction of processing and communication 
queues for the ith client in tier t is calculated as follows: , 1, / ,  (1) 

, 1, / ,  (2) 

where  is the probability of receiving a request in tier t, which 
is related to the product of the probability of moving in the 
forward direction in the previous tiers: 

,  (3) 

In calculating average response time for the communication 
queue in the forward direction, the average arrival rate for this 
queue is similar to the (1) multiplied by . This is because only 
requests that are going to be served in the next tier are served in 
the communication queue of the forward direction of a tier. The 
average response times for processing and communication 
queues in the backward direction, which are omitted for brevity, 
are calculated from equations similar to (1) and (2).  

To make the paper more readable, we use Μ   and Λ  to 
denote four-element vectors of the service rate and arrival rate 
of the ith client assigned to the jth server for different directions 
and different queues.  Μ ,, ; ,, ; ,, ; ,,  (4) Λ 1; ; 1; 1  (5) 

In the remainder of this paper the kth element of Μ   and Λ  
to will be denoted by Μ ,  and Λ , , respectively.  

Based on the GPS technique and model presented above, the 
average response time of the ith client is calculated as follows:  

 (6) 

where , , , ,  (7) 

B. SLA model for this system 
Service Level Agreement (SLA) is an important 

consideration in the system. There are different kinds of SLA in 
literature but we adopt two classes of SLA’s for this paper: (i) 
average response time guaranteed SLA; and (ii) SLA that has a 
price pre request based on the response time. The arrival rate of 
the requests is a random process, which may not even be 
stationary. If the cloud manager reacts to these changes by 
limiting the arrival rate of the clients, it is possible to violate the 
SLA constraints or pay large penalties during busy times. It is 
also possible that the cloud manager conservatively plans for the 
maximum arrival rate of the clients, which in turn leads to 
resource overbooking and increase in the cost of operation. 

In this paper, two models of the SLA are considered: (i) the 
Gold SLA class, which specifies an average response time target, 
a maximum arrival rate for the client’s requests, a utility 
(reward) value for each serviced request (regardless of its 
response time), and a penalty if the average request response 
time is missed; and (ii) the Bronze SLA class, which specifies a 
maximum arrival rate and a utility function that specifies a profit 
per request based on the response time. The arrival rate of a 
client in the Gold SLA class is determined by a probability 
distribution function (PDF) dynamically profiled and predicted 
by a cloud-level monitor. This PDF is used to determine the 



proper amount of resources to allocate to the servers in this SLA 
class based on the penalty value set in the SLA for exceeding 
the response time bound. The expected client utility (per 
request) for the Gold SLA class is calculated as follows: 1  (8) 

The first term in the parentheses is the constant price that the 
user pays for the service whereas the second term is the 
expected penalty for violating the constraint in the SLA. Based 
on the resources provided to the client, it is possible to calculate 
an expected profitability threshold (EPT) for the request arrival 
rate i.e., the maximum arrival rate of a client’s requests that can 
satisfy the average response time constraint in the Gold SLA 
class. Probability of violating the contract average response time 
constraint is 1  where CDF denotes the 
cumulative distribution function of the predicted average arrival 
rate of the ith client. 

The utility function for the Bronze SLA class is a non-
increasing function of the average response time. It is possible 
that the average response time is higher than a predicted average 
response time, i.e., there is no guarantee for the response time in 
this SLA class. We use the predicted average response time 
(based on the most probable average inter-arrival rate) as the 
model response time for the user associated with this SLA class.   
C. Resource management problem 

The goal of the resource management problem is to 
maximize the total profit for serving the clients. In this system, 
the decision making interval (called a decision epoch from here 
on) can be defined based on dynamic parameters in the system. 
In particular, the frequency of changes in the request rates of the 
clients affects the acceptable decision time. This is because the 
solution found by the presented algorithm is acceptable only as 
long as the client behaviors remain stationary during the 
decision epoch. Although some small changes in the parameters 
can be effectively tracked and responded to by proper reaction 
of request dispatchers, large changes cannot be handled by the 
local managers.  

In the following, the resource allocation problem in each 
decision epoch is presented and a solution is presented. 
However, we do not discuss the characterization and prediction 
of clients’ behavior and dynamic changes in system parameters 
as these issues fall outside the scope of the present paper.  
IV. PROBLEM FORMULATION 

The profit maximization problem is formulated below. ∑            ∑ ∑ ∑ , ,   
(9) 

Subject to: ∑ 1,                                                  (10) ∑ ∑ ,                                     (11) ∑ ∑ , , 1,                 (12) ∑ ∑ , , 1,                  (13) ∑ ∑ , 1,          (14) ∑ 1,  ,  (15) Μ Λ  ,          , ,  (16) , ,                                 , ,  (17) , ∑ ,         , ,  (18) 0,1 , 0,1  , 0,1  ,     , ,  (19) Μ 0, , 0, 0,                   , ,  (20) 
with addition of equations (6)-(8). Parameter  denotes a very 
small positive value. 

In this problem, , ,  and  are the optimization 
parameters (cf. Table I for their definitions) whereas the other 
parameters are constant or functions of the optimization 
variables.  In the objective function, the first part is the 
summation of the client’s utilities. If a client has opted for the 
Gold SLA class, the utility is calculated from (8); otherwise, the 
Bronze utility function is used to calculate the utility. The 
second part of the objective function is the operation cost of the 
servers. The total power consumption of the servers is calculated 
by adding the fixed power consumption of the ON servers and 
variable (utilization-dependent) power consumption. 
Multiplying the total power consumption by the duration of the 
epoch produces the energy consumption. Clearly, the average 
price of a KWh of electrical energy can be used to convert the 
energy consumption to the operational cost in dollars. 

Constraint (10) forces the servers to select only one of the 
tiers whereas constraint (11) determines the ON servers based 
on the allocated resources. Constraints (12), (13) and (14) are 
used to limit the summation of the processing, communication 
and memory resources in the servers. Constraint (15) ensures 
that all requests generated by a client during a decision epoch 
are served in the servers. Constraint (16) shows the lower limit 
of the processing and communication resources in the servers if 
the allocated client uses the Bronze SLA contract. Constraint 
(17) determines the amount of the memory allocated to the 
assigned clients. Assigned clients are determined by a pseudo-
Boolean parameter, . If  is not zero, the value of  is set 
to one based on the first inequality in (18); otherwise the value 
of  is zero as seen from the second inequality in (18). Finally, 
constraints (19) and (20) specify domains of the variables. 

It can be seen that the problem formulation is a mixed 
integer non-linear programming. This problem cannot be solved 
by any commercial software because of the large input size 
(numbers of the clients and servers are large.) An upper bound 
for the profit is introduced in the next section. A heuristic 
solution for this problem inspired from the force-directed 
scheduling is presented in section VI. 

V. AN UPPER-BOUND ON THE TOTAL PROFIT 
The profit maximization is a hard problem and it is very 

time consuming (it is intractable in the general case) to solve the 
problem even with linear relaxation of some key system 
parameters because the number of constraints is too many to use 
classical optimization methods. In particular, similar problems 
in the literature (for only Bronze SLA class) [12] are proved to 
be neither convex nor concave after linear relaxation. More 
precisely, it can be shown that even if the number and types of 
the ON servers are known in advance and the utility functions 
(for the Bronze SLA class) are estimated with continuous 
decreasing utility functions of the response times, the objective 
function is neither convex nor concave i.e., the Hessian matrix is 
not positive definite or negative definite. Therefore, the problem 
cannot be solved with the convex optimization methods. 

We start by using familiar relaxation techniques for finding 
approximate solutions to bin packing and Knapsack problems 
[19] to find an upper bound on the total profit. The formulation 
below describes the profit upper-bound problem statement: ∑   ∑ ∑ ∑ , ,   

(21) 

Subject to: ∑ ∑ , , ,  (22)

, , 1,                           , ,   (23)

, , 1,                            , ,   (24)



, ⁄ 1,     , ,   (25)
with addition of constraints (15), (16) and (20). Variables of 
optimization are  and . Notice that the capacity constraints 
(12), (13) and (14) and the constraint of only one tier for each 
server (10) have been relaxed. As a result one can solve the 
profit maximization problem for each client independently of 
others and simply sum up the results of best profits for all clients 
to get the best system profit.  

One of the pseudo-Boolean variables in the original problem 
statement is , which converts the problem to a bin packing like 
problem. To simplify the profit upper-bound problem 
formulation, we consider  as a continuous variable calculated 
by equation (22). Note that the resulting power cost is a lower 
bound on the actual power cost of servers in the system. Even 
with this relaxation, it can be shown that the Hessian matrix of 
the objective function in (21) is not negative definite or positive 
definite, and therefore, it is not possible to use the convex 
optimization method for this problem. To address this last 
difficulty,  is fixed in order to make the problem a concave 
optimization problem with respect to ,  and , .  

To solve this new problem (with fixed  ) by using the 
Karush-Kuhn-Tucker (KKT) conditions, we need to obtain the 
derivatives of the profit with respect to the optimization 
parameters. Taking this derivative for the Bronze class is 
straight forward and omitted here for brevity. The derivation of 
the profit function (Pr) with respect to ,  for a client in the 
Gold class is given below: 

, ,   (26) 

Note that all calculations are done in .From the 
definition of , ,  is calculated as: 

, , , ,
∑ , , , ,   (27) 

where  in Λ  is set to  for this calculation. The other 
derivatives of profit have the same form as (26) except that the 
superscripts are appropriately modified. 

This equation shows that, the total profit is more sensitive to 
the amount of resources allocated to a client that imposes a 
higher penalty value for violating its response time constraint. 

Details of the solution of this optimization using KKT 
conditions omitted for brevity. 

The complete solution of problem (21) in case of the Bronze 
SLA class can be found by applying dynamic programming 
(DP) as explained next. The solution of the problem for constant 

 and for each server type is calculated applying KKT 
conditions. Using this solution, the partial profit of assigning an 

 portion of the ith client’s requests from tier t to the jth server 
is calculated. Then the DP method is used to find the best case 
of assigning the client’s requests to the servers so that constraint 
(15) for each tier is satisfied. Since we are dealing with profit 
maximization for one client at a time, there is no need to use the 
whole set of servers for each DP calculation for each client in 
each tier; Instead we can use the small number of server types to 
find the best request distribution rates. The pseudo code for 
upper-bound calculation algorithm is given in Figure 2. 

In case of the Gold SLA class, because the derivatives of the 
profit with respect to optimization parameters include all of the 
optimization parameters in a server, it is not possible to find the 
solution of the problem in one step. Instead, iteration on the 
solution found by the KKT conditions is used to reach an 

acceptable  for the servers. More precisely, we start with the 
 value obtained for the Bronze SLA class and perform 

iterations (using numerical techniques [21]) on the solution of 
the problem calculated applying KKT conditions. These 
iterations continue until the profits of two consecutive iterations 
are nearly the same. 

Figure 2. Pseudo code for calculating a profit upper bound. 
As can be seen, all of the dependencies among clients and 

tiers are removed with relaxation of the capacity and tier 
allocation to servers. This upper bound on total profit is used as 
the “golden result” against which the results of our proposed 
solution are compared. In addition, we use a technique inspired 
from this profit upper bound calculation to generate an initial 
solution to the original problem statement as detailed below. 

VI. PROFIT MAXIMIZATION SOLUTION 
In this section, a heuristic, called force-directed resource 

assignment or FRA, to find a solution for the optimization 
problem in (9) is presented. In this heuristic algorithm, an initial 
solution based on the solution given for the profit upper bound 
problem is generated. Next, distribution rates are fixed and 
resource sharing is improved by a local optimization step. 
Finally a resource consolidation technique, inspired by the 
force-directed scheduling, which is one of the most important 
scheduling techniques in the high-level synthesis [20], is applied 
to consolidate resources, determine the active (ON) servers and 
further optimize the resource assignment.  
A. Initial Solution 

We start by pointing out that the order of resource 
assignment to the clients and tiers affects the quality of the 
solution especially when the total computation and 
communication resources in the system are only just enough to 
meet the client’s requirements.  

A greedy technique to rank the clients and the application 
tiers for each client is used to determine the order of resource 
assignment processing in our constructive approach.  For each 
client, the following equation is used as its ranking metric: 

Algorithm Profit_UB_Calc (i)
Stable = 0 and Profit = 0; 
While (Stable == 0){ 
// Find Optimal Resource Allocation for each server type 
   For (k = 1 to number of server types){ 

For (t  Ti){ 
For (  1/granularity of alpha to 1) 

Find resource shares from KKT conditions ;}} 
// Find the Best way to combine resources 
   For (t   Ti){ 

X = granularity of alpha; 
Y = number of server types * constant; 
For (y =1 to Y){ 

For (x = 1 to X){ 
D[x,y]=-infinity; 
For (z = 1 to x){//portion of request assignment 

D[x,y]=max(D[x,y],D[x-1,y-z]+partial profit 
from alloc (k=div(y,constant) and =z));} 

D[x,y]=max(D[x,y], D[x-1,y]);}} 
Back track to find the best solution from D[X,Y];} 

   IF (class client type is Gold){ 
Find EPT arrival rate and Calculate eqn (26) for each 
server; 
IF (no changes from previous step)   Stable =1;} 

   Else 
Stable =1;} 

Profit = total profit for client i;



∑ ∑ , , , ,   (28) 

Clients are ordered in non-decreasing order of this metric 
and processed in that order (going from low to high metric 
values.) This allows us to assign resources to the clients that 
need more resources (client’s requests give rise to fairly low 
service rates) or the number of available resources is lower 
(client’s requests can be served only on a relatively small 
number of available servers.) 

For the selected client, tiers are ordered using a similar 
metric: ∑ , , , ,   (29) 

 For example after selecting a client for resource allocation, 
the required tiers for this client are ordered based on the 
summation of the available servers multiplied by the service rate 
of that server for that specific tier (ordered from low to high.) 

After selecting a client and a tier (consider the ith client and 
tier ), the solution proposed in section V is used to assign 
resources to the client in the tier in question. For this 
assignment, some of the servers are already turned on (due to 
assignment of previously processed clients) and they have a 
selected tier. Also some of these ON servers have unassigned 
resources. To consider these changes, servers that are assigned 
to other tiers ( 0) are removed from the resource pool. Also 
constraints in (23), (24) and (25) are replaced by the following 
constraints. , , 1 ,                             , ,   (30), , 1 ,                              , ,          (31)⁄ 1 ,                                      , ,         (32)
where ,  and  denote the previously-committed portion 
of the processing, communication and memory resources to the 
jth server, respectively.  

Solution to this problem is the same as the upper bound 
profit solution for the ith client and tth tier with following 
exceptions. (i) All ON servers and some of the OFF servers 
from each server type are used for the DP method; and (iii) A 
small value is added to the profit of allocating resources from 
ON servers to prefer these allocations in the DP method in case 
of a tie.  

Resource allocation in this constructive approach is not final 
because some servers are turned ON and resource can indeed be 
allocated better. By solving the problem of resource adjustment 
for each server, the solution is optimal by considering a fixed 
client to server allocation. This procedure is called 
Adjust_ResourceShares( ) in the pseudo code. 
B. Resource Consolidation using Force-Directed Search 

To search the solution space, a method inspired by the force-
directed search is used. This search technique is not only a local 
neighborhood search but also acts like steepest ascent. This 
characteristic makes this searching technique less dependent to 
the initial solution. 

This algorithm is based on defined forces between servers 
and clients. A client that has the highest force difference toward 
a new server (difference of forces toward a new server and the 
server that the client is already assigned to) is picked and if the 
required server is available, the load replacement is done. After 
this replacement, forces are updated and the new maximum 
force differential client-to-server assignment is made. This 
algorithm continues until there are no positive force differentials 
for any clients. Because the total profit in this system is not 

monotonically increasing, the best solution is saved in each step. 
Figure 3 shows the pseudo code of this technique. 

Figure 3. Pseudo code for resource consolidation. 
 In this search technique, a definition of force is used that is 

based on the partial profit gained from allocating each portion of 
the clients’ request in a specific tier to a server with specific 
type. For example, if there are  differnet server types that can 
execute tier t of the applications, the force toward each server 
type (for the ith client) is calculated according to (33) for the 
Gold SLA class and according to (34) for the Bronze SLA class: , | | , ,   (33) , , , , ,   , ,   

(34) 
 

where  denotes the server type k and ’s are the results of the 
optimal resource allocation problem. Also  is the expected 
profitability threshold on  based on the new resource 
allocation. To account for the cost of turning on a server that is 
off, , ,  must be subtracted from these forces. 
These values show the partial improvement in the total profit if 
a portion of the clients’ requests in tier t is assigned to a server 
from a specific server type.  

For each client, forces toward servers having some resources 
allocated to that client are calculated from other formulas to 
keep different parts of the application together. This is because 
splitting a client’s requests among servers reduces the total 
profit in case of equal resources. Also some time, merging parts 
of a client’s request increase the total profit even without 
increasing the resources used. Details are omitted for brevity. 

Based on these forces, the client replacement and re-
assignment of the resources are done. In each step, the highest 
force differential is picked. If the selected destination server is 
not one of the servers that the client is already assigned to and is 
an ON server, among all the ON servers assigned to the selected 
tier on the selected server type, the one with the lowest 
utilization is picked. If there is any available server to pick, the 
re-assignment is done only if the available resources on that 

Algorithm Resource_Consolidate () 
// Search the solution space to find better profit 
TP = total profit; 
Initialize the forces between clients and servers; 
// calculate force differentials , ,  , ,   ;  , , ,  
ΔF = 1; 
While (ΔF > 0) { 

ΔF = max ( , );  // client i and  
j  = selected source server; 
k  = selected destination server type; 
g   = selected destination server;  
If (ΔF is toward an ON server in server type k){ 

g = find the least busy server in k, assigned to tier t; 
If (lower bound constraints satisfied)  goto Re-Assign; 
Else goto skip Re-Assign;} 

Else If (ΔF is toward an OFF server in server type k){ 
g = find an OFF server in k; 
If (found an OFF server)  goto Re-Assign; 
Else goto skip Re-Assign;} 

Else If (ΔF is toward a server serving client i)  goto Re-
Assign; 

Re-Assign:        Re-assign  portion of the requests to g from j; 
Update force related to j, g and client i; 
P = total profit; 
If (P>TP)  TP = P; save the state;} 

Skip Re-Assign:Update the move limit;  } 



server satisfy the lower bound constraints on the required 
resource shares.  

After replacement, forces for the selected client are updated. 
Also forces that are related to the selected source and 
destination servers are updated. To limit the number of tries in 
the algorithm and avoid loops and lockouts, we apply the 
following rules: 
• After re-assigning a portion of a client’s request, forces 

toward destination of this re-assignment are updated as a 
weighted average of the expected partial profit and resulting 
partial profit. 

• The re-assignment of a portion of the client’s requests to a 
server type is locked after some re-assignment in order to 
avoid loops. 

• For a server with utilization less than a threshold, clients are 
rewarded to leave the server (i.e., there will be less force to 
keep the clients on the server) so that we can eventually turn 
off the server.  

• We limit the number of re-assignments to control the 
complexity of the search method. 

VII. SIMULATION  RESULTS 
In this section we present the simulation results of the 

proposed solution to evaluate its effectiveness. The number of 
server types varies between 2 and 10. For each server type, an 
arbitrary number of servers exist as explained below. We 
consider 10 to 100 clients in the system and for each client the 
processing power and memory capacity requirements are set 
with random variables to model clients with different 
requirements. Ten different application tiers in the system are 
considered. The number of application tiers for each client is 
selected randomly to be between 3 and 5 and the probabilities of 
going forward or backward in the corresponding tier graph are 
randomly set with average of 80% going forward and 20% 
backward for each tier. Service times for clients with different 
application tiers on different server types are also modeled with 
random variables. Each client is assumed to have Gold or 
Bronze SLA class with probability of 50%. 

To model the PDF for the arrival rate of the client requests 
in the Gold SLA classes, we used linear function between zero 
and the maximum arrival rates.  

The power dissipation cost of different server types is 
determined as the random variables. The mean of these random 
variables is set based on the real experimental results. Also for 
the memory capacity of the server types, random variables based 
on actual available servers are considered. The processing and 
communication capacities of the server types are selected 
arbitrarily from the actual available servers such as Intel Xeon 
processors and Gigabyte communication ports.  

We used two different scenarios in terms of number of 
servers. In the first scenario (low server to client ratio), the 
average number of servers is 5n where n denotes the number of 
clients. In the second scenario (high server to client ratio), the 
average number of servers is set to 10n. Recall that from the 
distribution of tiers per client, there are (on average) 4n client-
tiers in both scenarios system. 

The baseline method used to compare with the results of the 
proposed force-directed resource assignment algorithm (called 
FRA) is an iterative method (IM) based on fixing the resource 
shares and optimizing the task distribution rates and then fixing 
the distribution rates and optimizing the resource shares. This is 
similar to the iterative improvement approach of [12] and [13]. 
We also compare our results with the upper bound solution (UB) 
of section V. In particular, FRA/UB and FRA/IM columns in 

Table II reports the quality (expected total system profit) of our 
solution with respect to the upper bound and iterative method 
solution, respectively. 

As can be seen, the quality of our solution compared to the 
upper bound is quite different for the first and second scenarios. 
This is because the upper bound solution does not capture the 
resource availability in the system and only finds the best 
possible profit in case of no competition among clients to 
reserve the resources. Also this table shows that FRA generates 
a better solution with respect to the iterative improvement 
method. 

To show the effectiveness of the server consolidation 
technique that is proposed in this paper, an initial solution based 
on the proposed initial solution with the constraint of 0.2 
is generated and the force-directed search is used to find the 
final solution. Trace of the execution for this case is shown in 
Figure 4. In this case, number of client is set to 50 and the first 
scenario is used for the number of servers. 

 

Figure 4. An example of Resource Consolidation Improvement in case of a 
bad initial solution. 

The upper bound profit in this case is 2000. It can be seen 
that the resource consolidation method based on the force-
directed search increases the total profit saliently because the 
initial solution used for this case is not a good initial solution. 
Also some decrease in the total power can be seen which is 
because of the nature of the force-directed search. 

Figure 5 shows the average run time of the proposed 
heuristic for different number of clients and different scenarios. 
Although the average number of servers for the second scenario 
is double this number for the first scenario, the run time does not 
increase a lot because the force-directed search is based on the 
server types not the actual servers. It can be seen that in case of 
having an average of 400 client-tiers and 1000 servers, the 
solution is found in less than 1.5 minutes which is acceptable for 
cases with decision epoch in order of half an hour. 

0 100 200 300 400 500
-150

-100

-50

0

50

100

150

200

250

300

350

FDA step

T
o

ta
l p

ro
fi

t

Table II. Quality of the final solution 

Client 
count, n 

First Scenario (low 
server count – high 

workload) 

Second Scenario (high 
server count = low 

workload) 
FRA/UB FRA/IM FRA/UB FRA/IM

10 58% 114% 80% 140%
20 54% 116% 71% 117%
30 57% 120% 69% 139%
40 52% 117% 76% 142%
50 57% 109% 76% 110%
60 55% 107% 80% 109%
70 53% 107% 77% 120%
80 50% 113% 76% 108%
90 49% 115% 77% 107%

100 49% 110% 84% 105%



To show the characteristic of the proposed solution, Figure 
6 shows the average ratio of /  for the clients with the 
Gold SLA class for different ratio of  / . As it is expected, 
the ratio of the EPT arrival rate is increased to compensate 
increase in the penalty value. For some penalty values, the EPT 
arrival rate is more than the contract arrival rate which is 
because of iterative nature of the resource allocation in case of 
the Gold SLA class. 

 

Figure 6.  Ratio of the EPT inter-arrival rate to the maximum inter-arrival 
rate for different penalty values for Gold SLA class. 

Figure 7 shows the average utilization factor of the servers 
in case of different /  values. Lowering the value of /  
means that the idle energy cost has a bigger portion in the total 
energy cost in case of full utilization which may be resulted in 
more consolidation in servers and less ON servers. 

Figure 7. Utilization of the servers for different  values. 

VIII. CONCLUSION 
In this paper, we considered the problem of the resource 

allocation to optimize the total profit gained from the SLA 
contracts and lost from operational cost. The model based on the 
multi-tier applications is presented and the guarantee based SLA 
is used to model the profit in the system. An upper bound on the 
profit of each client is found by relaxing the capacity constraint 

of the servers between different clients. A solution based on 
generating an initial solution inspired from the upper bound and 
a resource consolidation technique based on the force-directed 
search is proposed. The quality of the solution is compared to 
the upper bound solution and the iterative improvement 
approach proposed in the previous work. 
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Figure 5. Average run time of the FRA algorithm on 2.8GHZ E5550 server 
from Intel for different number of clients. 
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