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We propose the relaxation algorithm as a simple and powerful method for determining the

transition process in growth models numerically. This method has a number of important

advantages: (1) It can easily deal with a wide range of dynamic systems including stiff

differential equations and systems giving rise to a continuum of stationary equilibria.

(2) The application of the procedure is fairly user-friendly. The only input required

consists of the dynamic system. (3) The variant of the relaxation algorithm we propose

exploits in a natural manner the infinite time horizon, which usually underlies optimal

control problems in economics. As an illustrative application, we compute the transition

process of the models of Jones [Jones, C.I. (1995) R&D-based models of economic

growth. Journal of Political Economy 103 (3), 759–784] and Lucas [Lucas, R.E., Jr.

(1988) On the mechanics of economic development. Journal of Monetary Economics 22,

3–42].

Keywords: Transitional Dynamics, Continuous Time Growth Models, Saddle-point

Problems, Multidimensional Stable Manifolds

1. INTRODUCTION

Dynamic macroeconomic theory nowadays relies heavily on infinite-horizon op-

timization models, which usually give rise to systems of nonlinear differential

equations. These dynamic systems are then interpreted to describe the evolution

of the economy under consideration. Many studies in the field of growth theory

have confined their analysis to the balanced-growth path (BGP). A comprehensive

understanding of the model under study requires, however, that we investigate in

addition the transition process. At least two important arguments support this view:
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302 TIMO TRIMBORN ET AL.

First, the positive and normative implications might differ drastically depending on

whether an economy converges toward its BGP or grows along the BGP [e.g., Jones

(1995)]. Second, dynamic macroeconomic models are often employed to conduct

comparative welfare investigations of different policy regimes or instruments. In

this context, the transition process needs to be taken into account. Linearizing

the dynamic system might be appropriate in many cases but can be potentially

misleading, especially when the analysis aims at a Pareto ranking of different pol-

icy instruments. This overall perspective is nicely summarized by the following

statement, due to Jonathan Temple (2003, p. 509): Ultimately, all that a long-run

equilibrium of a model denotes is its final resting point, perhaps very distant in

the future. We know very little about this destination, and should be paying more

attention to the journey.

The models employed in growth theory are often multidimensional in the

sense that there is more than one (predetermined) state variable. Examples com-

prise R&D-based growth models [e.g., Romer (1990); Jones (1995); Eicher and

Turnovsky (1999)] as well as human capital–based growth models [e.g., Lucas

(1988); Mulligan and Sala-i-Martin (1993); Benhabib and Perli (1994)]. This

class of models frequently exhibits characteristics that make the use of standard

procedures fairly inconvenient if not impossible. Here we would like to stress two

issues: First, assuming usual stability properties in multidimensional models im-

plies that the stable manifold is also multidimensional.1 Moreover, if the dynamic

system is characterized by stable eigenvalues that differ substantially in magnitude

(i.e., stiff differential equations), then usual procedures are either not applicable

or highly inefficient. This characteristic property is not at all a special (or even

pathological) case but instead occurs quite frequently; an example is the well-

known Jones (1995) model. Second, most standard solution procedures are not

applicable to dynamic systems giving rise to a continuum of saddle-point stable

stationary equilibria (i.e., a center manifold). This property arises, for instance, in

the popular Lucas (1988) model.

This paper contributes to the literature on dynamic macroeconomic theory

by proposing the relaxation algorithm as a powerful method for determining

the transition process in growth models numerically. We show that this proce-

dure is in general well-suited and highly efficient. This will be demonstrated by

computing the transition processes of two prominent growth models, the Jones

(1995) model and the Lucas (1988) model. Despite the fact that these models

are widely employed in growth theory, their adjustment processes have hardly

been investigated. This is probably due to the characteristics mentioned above,

which give rise to serious conceptual difficulties when it comes to computational

issues.

In the context of growth theory, the most prominent approaches to computing

the transition process comprise shooting [e.g., Judd (1998, Chapter 10)], time

elimination [Mulligan and Sala-i-Martin (1991)], backward integration [Brunner

and Strulik (2002)], the projection method [Judd (1992)], and the discretization

method of Mercenier and Michel (1994). The similarities and differences of the
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MULTIDIMENSIONAL TRANSITIONAL DYNAMICS 303

relaxation procedure and the methods mentioned above will be discussed concisely

below. The above enumeration shows that there are already some procedures that

have been used in economics to solve dynamic systems. Nonetheless, we think

that there are a number of good reasons to add the relaxation procedure into the

toolbox of dynamic macroeconomic theory.

First, our experiences with the relaxation algorithm are positive throughout.

We have applied the procedure to a wide range of dynamic systems, including

stiff differential equations and dynamic systems with saddle-point stable center

manifolds, as well as highly dimensional computable general equilibrium models.

It is remarkable that an increase in the dimension of the model under study does

not cause any conceptual problems. The researcher need not take restrictions with

respect to the model dimension into account. In addition, the procedure seems to

be efficient with respect to computer time.

Second, the application of the procedure is fairly user-friendly. Specifically,

the only input that must be provided by the researcher consists of the dynamic

system and the set of underlying parameters. No preliminary manipulations of

the dynamic system under study need to be conducted before the procedure

can be applied; this is different from most other procedures, as described in

Section 3.

Third, the variant of the relaxation algorithm that we propose exploits in a

natural manner the infinite time horizon that usually underlies standard optimal-

control problems. This is achieved by a simple transformation of real cal-

endar time into a transformed time scale (as explained in Section 2.1). For

most other procedures, this issue must be dealt with explicitly (explained in

Section 3).

Overall, it seems that the relaxation algorithm can easily cope with a large

number of problems that arise frequently in the context of multidimensional,

infinite-time-horizon optimal control problems. Finally, it should be noticed that

the focus here is on continuous-time dynamic models, which have been exten-

sively employed in growth theory. The relaxation procedure has been employed

to investigate discrete-time dynamic macroeconomic models [Laffargue (1990);

Juillard et al. (1998)]. However, the procedures employed to solve discrete-

time models numerically differ from those applied to continuous-time models

in that the stage at which the discretization is done can be chosen in the latter

case.2

The paper is structured as follows: In Section 2, the relaxation procedure is

described concisely and then evaluated numerically, employing the Ramsey–

Cass–Koopmans model as an example. Section 3 provides a short comparison

to alternative methods. In Section 4, we apply the procedure to compute the tran-

sition process of the Jones (1995) model and the Lucas (1988) model. Section 5

summarizes and concludes. The Appendix provides a more formal description of

the relaxation procedure. Finally, the relaxation algorithm has been programmed

in MatLab. This program, together with a concise instruction manual, is available

for free download at http://www.relaxation.uni-siegen.de.
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304 TIMO TRIMBORN ET AL.

2. THE RELAXATION PROCEDURE

2.1. Description of the Relaxation Procedure

Relaxation is a particular type of finite-difference method used to solve a differen-

tial equation numerically [e.g., Press et al. (1989), p. 645]. The differential equation

is replaced by an approximate finite-difference equation on a mesh of points in

time. An initial solution in the form of values associated with the mesh points is

guessed. Relaxation brings these values simultaneously into close agreement with

the unknown true solution.

Relaxation-type algorithms applied to differential equations have two very use-

ful properties. First of all, they can easily cope with boundary conditions, such

as initial conditions for state variables and transversality conditions of optimal

growth. Second, additional equations, e.g., equilibrium conditions or feasibility

constraints, can be incorporated straight away. Beyond this, by transformation of

the (independent) time variable one can solve infinite-horizon problems, as they

arise from many dynamic optimization problems in economics.

Suppose we want to compute a numerical solution of a differential equation

in terms of a large (finite) sequence of points representing the desired path. To

start with, we take an arbitrary trial solution, typically not satisfying the slope

conditions implied by the differential equation nor the boundary conditions. We

measure the deviation from the true path by a multidimensional error function

and use the derivative of the error function to improve the trial solution in a

Newton-type iteration. Hence, at each point of the path, the correction is related

to the particular inaccuracy in slope and in solving the static equation. The crucial

difference to the various shooting methods is the simultaneous adjustment along

the path as a whole.

Figure 1 illustrates the adjustment by relaxation of a linear initial guess toward

the saddle path in the Ramsey–Cass–Koopmans model. The initial guess starts with

a fixed initial value of the state variable k and an arbitrary initial value of the control

variable c. It consists of 30 mesh points lined up equidistantly between the starting

point and the known steady state of the model. In evaluating the multidimensional

error function, the algorithm realizes that the fit to the differential equation can

be improved by an upward shift of the curve without jeopardizing the boundary

conditions. After a few steps the error is sufficiently small and the algorithm stops.

The outline of the algorithm proposed in this paper leans on Press et al. (1989,

pp. 645–672). We have implemented the algorithm in MatLab. The code is pub-

lished for free download on the Internet3 and a print version is available on

request.4

We apply the method to the following kind of problem: Consider a system of Ñ

ordinary differential equations together with N − Ñ (static) equations in N real

variables. This system describes a vector field on an Ñ -dimensional surface in

RN . We impose a list of n1 boundary conditions at the starting point and n2 at

the end point of a path sufficient to determine a particular trajectory. To meet all

dimensional requirements, n1 and n2 must add up to Ñ .
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FIGURE 1. Relaxation in the Ramsey–Cass–Koopmans model.

For the finite representation of the problem, we fix a time mesh of M points

in time. In the case of an infinite time horizon, we choose a transformation to

map the interval [0,∞] to [0, 1]. At each point in time, an N -dimensional vector

has to be determined. We approximate the differential equation by M−1 systems

of equations of dimension Ñ for the slope between neighboring mesh points.

Together with Ñ boundary conditions, we have an M × Ñ -dimensional system

of equations. After adding the N − Ñ static equations, which have to hold at

each of the M mesh points, we have incorporated all restrictions available. The

final system of nonlinear equations is of dimension M ×N and involves the same

number of unknowns.

We apply a Gauss–Newton procedure to compute a root of this system. Step

by step, we adjust the trial solution until the error is sufficiently small. This

involves the solution of a linear equation with the Jacobian matrix of the system

of nonlinear equations. At first glance, there seems little chance to achieve good

solutions, because the complexity of the problem is proportional to the size of the

Jacobian matrix, which is quadratic in M .

However, the Jacobian is not an arbitrary matrix of dimension M × N . The Jaco-

bian matrix inherits a specific structure from the approximation of the differential

equation. The boundary conditions and the static equations each depend only on

one respective vector, and the interior slope is conditioned only on neighboring
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306 TIMO TRIMBORN ET AL.

vectors. Hence the Jacobian matrix shows nonzero entries only close to the diag-

onal. This can be used to solve the linear system by a special version of a Gauss

algorithm carried out recursively on N -dimensional blocks along the diagonal.

This recursive procedure makes it possible to increase the number M of mesh

points without increasing the dimension of the blocks. Only the number of blocks

increases in proportion to M . The complexity of the problem is only linear in the

number of mesh points and not quadratic. Hence, a fairly good approximation of

the continuous path is possible without using too much computer time.

2.2. Implementation of the Algorithm

To illustrate, we describe the steps that must be taken in implementing the relax-

ation algorithm using the Ramsey–Cass–Koopmans model [Ramsey (1928); Cass

(1965); Koopmans (1965)] as an example. It is important to notice, however, that

this description serves as an illustration only. The researcher who intends to solve

a specific model numerically using the program (provided as a supplement to this

paper) need not follow these steps.

It is well known that this simple growth model exhibits saddle-point stability

and hence the determination of the solution is all but trivial.5 The model gives

rise to a system of two differential equations for consumption c and capital per

effective labor k [Barro and Sala-i-Martin (2004, Chapter 2)],

ċ =
c

θ
(αkα−1 − (δ + ρ + xθ)) (1)

k̇ = kα − c − (n + x + δ)k, (2)

where α denotes the elasticity of capital in production, n the population growth

rate, δ the depreciation rate, x the exogenous growth rate of technology, ρ the

parameter for time preference, and θ the inverse of the intertemporal elasticity

of substitution, respectively. The steady state is k∗ = ( α
δ+ρ+xθ

)1/(1−α) and c∗ =

(k∗)α − (n + x + δ)k∗ and is saddle-point stable.

As a first step, one must choose a time mesh, that is, a set of points in time at

which the solution should be calculated. We select the time mesh to be uniform in

the transformed time scale (as explained in Section 2.1).

Second, the two differential equations have to be transformed into two nonlinear

equations that describe the slope between two neighboring mesh points. These

equations have to be satisfied between every two mesh points. For M mesh points,

this leads to 2 · (M − 1) nonlinear equations.

Third, two boundary conditions have to be chosen to complete the set of equa-

tions to 2 ·M . In this example, the relaxation algorithm needs one initial boundary

condition and one terminal boundary condition. We set the initial value of the

state variable (capital) equal to 10% of its steady state value. For the terminal

boundary condition there are several possibilities for formulating an equation. It

would be possible to choose each of the two equations (1) or (2) and set the RHS
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TABLE 1. Accuracy of the relaxation algorithm for the Ramsey–Cass–
Koopmans model

Number of mesh points Max error c Max error k Mean error

10 < 1.3 × 10−2 < 3.4 × 10−2 < 3.0 × 10−3

100 < 1.1 × 10−4 < 8.6 × 10−5 < 2.7 × 10−6

1,000 < 1.1 × 10−6 < 8.5 × 10−7 < 8.2 × 10−9

10,000 < 1.1 × 10−8 < 8.5 × 10−9 < 2.6 × 10−11

100,000 < 1.1 × 10−10 < 8.5 × 10−11 < 8.2 × 10−14

equal to zero. However, here the steady-state values for consumption and capital

can be computed analytically, and therefore we can set consumption equal to its

steady-state value as the terminal boundary condition. It should be noted that only

one terminal condition is needed. Thus the algorithm does not make use of the

knowledge of the steady-state value of capital. It is reached automatically.

At last, an initial guess for the solution has to be made. For instance, we can

choose c and k to be constant at their steady-state values (ct , kt )≡ (c∗, k∗).6

The Newton procedure always converges quickly, indicating a high degree of

robustness with respect to the initial guess.

2.3. Evaluation of the Procedure

For the special parameterization θ =
δ+ρ

α(δ + n + x)−x
, the representative consumer

chooses a constant saving rate s = 1
θ
, and hence the solution can be expressed

analytically [Barro and Sala-i-Martin (2004, pp. 106–110)].7 This allows us to

compare the computed results with the analytical solution, which has a precision

close to the machine epsilon. The relative error is computed for every mesh point.

Table 1 shows the maximum relative error of consumption and capital per unit

of effective labor for different numbers of mesh points. In addition, the quadratic

mean error of combined c and k provides information about the distribution

of the error.8 Table 1 reveals that multiplying the number of mesh points by

x reduces the maximum error of each solution vector by the factor 1
x2 , which

indicates the order 2 of the difference procedure. Even with a moderate number

of mesh points and therefore a short computation time, a sufficiently high degree

of accuracy can be achieved. Moreover, the accuracy can be improved to a very

high degree by increasing the number of mesh points.9 The treatment of higher-

dimensional systems with multidimensional stable manifolds is largely analogous

to the example described above. This is why the algorithm performs similarly well

for more complicated models.

3. COMPARISON TO OTHER PROCEDURES

The relaxation procedure and similar finite-difference procedures have already

been employed in various fields of economics. Prominent examples comprise
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308 TIMO TRIMBORN ET AL.

the solution of two-point boundary-value difference equations [e.g., Laffargue

(1990); Juillard et al. (1998)], differential–difference equations [e.g., Boucekkine

et al. (1997)], and partial differential equations [e.g., Candler (1999)].

However, to the best of our knowledge, the relaxation algorithm has not yet

been exploited systematically to solve deterministic continuous-time two-point

boundary-value problems in growth theory. Nonetheless, there are a few appli-

cations in the economics literature. For instance, Oulton (1993) and Robertson

(1999) employ the relaxation routine provided by Press et al. (1989) to solve a

continuous-time deterministic growth model.

We compare the relaxation procedure to the most popular alternative solution

methods employed in deterministic growth theory. These comprise backward inte-

gration [Brunner and Strulik (2002)], the finite-difference method as proposed by

Candler (1999), time elimination [Mulligan and Sala-i-Martin (1991)], projection

methods [e.g., Judd (1992); Judd (1998, Chapter 11)], and the method of Mercenier

and Michel (1994, 2001). This section is kept brief because most of the procedures

and their relative advantages are described in Judd (1998) and Brunner and Strulik

(2002).

Finite-difference methods as described by Candler (1999) employ an algorithm

similar to the relaxation procedure to solve partial differential equations. In a

first step, the Bellman equation associated with the maximization problem under

study is derived and stated as a partial differential equation. In a second step, this

equation is solved numerically. For the solution of this initial-value problem, the

equation is integrated in time until the solution is no longer time-dependent. The

strength of this procedure lies in the fact that, by stating the Bellman equation as a

partial differential equation, it can easily be extended to solve higher-dimensional

problems as well as stochastic models. This approach is conceptually different

from our procedure, because we apply the relaxation algorithm to the set of ordi-

nary differential equations derived from Pontryagin’s maximum principle, which

has been predominantly employed in the analysis of continuous-time determinis-

tic growth models. Although it is straightforward to extend the finite-difference

method to higher-dimensional systems, computational costs grow substantially

with additional state variables.10

Backward integration, as suggested by Brunner and Strulik (2002), exploits the

numerical stability of the backward-looking system by inverting time. By starting

near the steady state of the transformed system, the resulting initial-value problem

is stable and the solution converges toward the stable manifold of the forward-

looking system quickly. This method can solve systems with one-dimensional

stable manifolds efficiently and conveniently. Moreover, it is very intuitive and

can also be applied to solve discrete-time models [Strulik (2004)]. For multi-

dimensional manifolds Brunner and Strulik (2002) suggest generating starting

values on an orbit around the steady state. To pass through a prespecified point

(determined by the specific shock under study), it is necessary to iterate until the

trajectory hits this point. However, if the real parts of the stable eigenvalues differ

substantially, the problem of stiff differential equations occurs. It is well known
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that these problems are very hard to handle numerically. For large differences

between the stable eigenvalues, it is impossible to meet the prespecified point,

because the backward-directed trajectories will be attracted by the submanifold,

which is associated with the eigenvalue with the largest, in absolute terms, real part.

The resulting trajectories hence cannot represent a specified shock and potentially

have no economic meaning. Furthermore, if there exists a continuum of steady

states represented by a (saddle-point stable) center manifold, then the specific

steady state to which the economy converges depends on the initial boundary

conditions.11 If one particular steady state is chosen for backward integration,

then only one initial condition can be satisfied. To find a trajectory that fulfills all

initial conditions, an iteration process has to be applied. This procedure typically

gives rise to problems of convergence.

Mercenier and Michel (1994, 2001) propose to transform the continuous-time,

infinite-horizon problem into a finite-horizon maximization problem in discrete

time with the same steady state or balanced-growth rate. The transformed prob-

lem can be solved with a static optimization procedure. Applying the necessary

and sufficient conditions stated by Mercenier and Michel (1994, 2001) yields a

considerable improvement in the numerical accuracy of the discrete-time model.

Moreover, Alemdar et al. (2006) show that the overall optimization performance

can be improved substantially if an optimal allocation of the time mesh is chosen

for the transition. Our approach is to solve the system of differential equations

directly. Here the discretization is done at a later stage. To apply the relaxation

algorithm the researcher simply has to insert the differential equations into the

program code, instead of converting the complete maximization problem. Apart

from simplicity, the relaxation algorithm has some further advantages.

First, the proposed version of the relaxation algorithm can deal with a compact-

ification of the time interval. It is not necessary to choose an adequate terminal

time where the optimization is truncated. Also, the treatment of a post-terminal

stationary phase does not apply. Second, the relaxation algorithm leaves room for

selecting different discretization rules, also of higher order. This leads to a higher

level of accuracy with the same number of mesh points. The discretization rule of

the method of Mercenier and Michel is a first-order rule, whereas the relaxation

procedure uses a second-order rule.12

Projection methods, introduced in Judd (1992) and Judd (1998, Chapter 11),

cover a wide range of algorithms. Therefore, they can be applied to a large number

of numerical problems. For many applications, they prove to be fast and accurate,

but also require high programming effort. Moreover, they are usually applied

to solve for the policy function. However, if the model exhibits nonmonotonic

adjustments, the policy function cannot be computed at the extremal points. Fur-

thermore, if there exists a continuum of steady states represented by a center

manifold, the interval of integration is not known in advance, because it depends

on the final steady state to which the economy converges. In this case, projection

methods appear to be inappropriate. In addition, the polynomial bases and there-

fore the computation costs grow exponentially when the dimension of the problem
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increases. To avoid this “curse of dimensionality,” a special complete polynomial

basis is chosen, but still the computation costs grow considerably.

Time elimination is easy and intuitive. However, it is also plagued by some of the

disadvantages already mentioned. First, in the case of nonmonotonic adjustments,

the policy function cannot be computed at the extremal points and, second, if there

exists a continuum of steady states, the interval of integration is unknown.

4. TWO ILLUSTRATIVE APPLICATIONS

The relaxation procedure is employed to investigate the transition process of

two prominent growth models. As a first example, we consider the Jones (1995)

model. For usual calibrations this model gives rise to a system of stiff differential

equations. The four-dimensional transition toward the unique steady state appears

to be nonmonotonic. The second example, the Lucas (1988) model, implies a

saddle-point stable center manifold. The different points on this curve reflect level

effects of transition toward long-run growth.

It should be noted that the transition process of these popular growth models has

hardly been investigated in detail so far, which is probably due to the conceptual

problems mentioned above. Moreover, the numerical analysis of the Lucas model

yields a number of interesting insights, which have not yet been discussed in the

literature. For this reason we devote more space to the discussion of this model.

4.1. The Jones (1995) Model

The technology for final output Y is given by Y = αF (φL)σL
∫ A

0
x(i)1−σLdi, where

φ denotes the share of labor allocated to final-output production, x(i) the amount

of differentiated capital goods of type i, A the number of differentiated capital

goods, αF a constant overall productivity parameter, and σL the elasticity of labor

in final-output production. Noting the general symmetry among x(i) and using the

definition of aggregate capital K := Ax, the final-output technology can be written

as Y = αF(AφL)σLK1−σL . The R&D technology is Ȧ= J = αJ AηA [(1 − φ)L]ηL

with ηL := η
p

L+ηe
L, η

p

L = 1,−1 < ηe
L < 0, where Ȧ := dA/dt , αJ denotes a constant

overall productivity parameter, ηA the elasticity of technology in R&D, and ηL the

elasticity of labor in R&D.

The dynamic system that governs the evolution of the economy under study can

be summarized as13

k̇ = y − c − δk − βKnk (3)

ȧ = j − βAna (4)

ċ =
c

γ
[r − δ − ρ − (1 − γ )n] − βKnc (5)

v̇a = va[r − (βK − βA)n] − π (6)

σLy

φ
= va

η
p

Lj

1 − φ
, (7)
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where y = αF (aφ)σLk1−σL , j = αJ aηA(1 − φ)ηL , r =
(1−σL)2y

k
, π =

σL(1−σL)y

a
,

βK =
1−ηA+ηL

1−ηA
, and βA =

ηL

1−ηA
. Note that the dynamic system is expressed in scale-

adjusted variables, which are defined by y := Y/LβK , k := K/LβK , c := C/LβK ,

a := A/LβA , j := J/LβA , and va := v/LβK−βA . The (unique) stationary solution

of this dynamic system corresponds to the (unique) BGP of the economy expressed

in original variables.

Equations (3) and (4) are the equations of motion of (scale-adjusted) capi-

tal and technology, (5) is the Keynes–Ramsey rule of optimal consumption c,

(6) shows capital market equilibrium, with va denoting the (scale-adjusted) price

of blueprints, and (7) determines the privately efficient allocation of labor across

final-output production and R&D.14

The objective is to solve the four-dimensional system of differential equations

(3)–(6), taking into account the static equation (7), which must hold at all points

in time. The steady state is a saddle point with a two-dimensional stable mani-

fold. Because the steady state can be determined numerically only, the algorithm

computes the steady state of the system first by applying a Newton algorithm.

The choice of k(0) = k0 and a(0) = a0 as initial boundary conditions is obvious

because k and a are the state variables. Again, there is some freedom when it comes

to the determination of boundary conditions. We have set the RHS of equations

(5) and (6) equal to zero. Moreover, we choose once more, as an initial guess,

all variables to be constant at their steady-state values. This always lead to quick

convergence, indicating that the procedure is relatively robust with respect to the

initial guess.

The transition process considered below results from a combination of two

simultaneous shocks. Specifically, it is assumed that the overall productivity pa-

rameter in the production function for final output αF increases from 1.0 to

1.3, whereas the overall productivity parameter in the production function for

new ideas αJ decreases from 1.0 to 0.9. This shock was chosen to demonstrate

that the adjustment can be nonmonotonic [as can be recognized by inspecting

Figure 2 (vi)] and therefore the policy functions at certain points cannot be com-

puted with conventional methods.15

Figure 2 gives a summary of the adjustment process. The plots (i) to (iii) show

the time path of the jump variables c, φ, and va , plots (iv) and (v) display the

time path of the state variables k and a, and plot (vi) gives the projection of the

adjustment trajectory into the (k, a)-plane.

4.2. The Lucas (1988) Model

The second example is the model of Lucas (1988), as discussed by Mulligan and

Sala-i-Martin (1993), Caballe and Santos (1993), Benhabib and Perli (1994), and

others. The long-run equilibria of the scale-adjusted version of this endogenous

growth model form a center manifold. The different points on this curve reflect

different levels of long-run growth. From the numerical solution converging to

such a point we can read all relevant information for the comparison of different
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FIGURE 2. Summary of the transition of the Jones (1995) model.

initial states. For example, we obtain initial optimal consumption levels right away

and can easily compute utility integrals.

Assume that final output is produced from physical and human capital, k and

h. The stock of human capital can be split into a share u used for final output

production and a share 1 − u employed to increase human capital. Because of

human capital spillover effects, there are increasing returns to scale in the pro-

duction sector. Intertemporal utility of consumption c with constant elasticity of

intertemporal substitution σ−1 and discount rate ρ is to be maximized. First-order

conditions for optimal solutions can be computed in the usual way. In terms of

growth rates (denoted by a circum flex), the system is

k̂ = APK − c/k (8)

ĥ = δ(1 − u) (9)

ĉ = σ−1(αAPK − ρ) (10)

û =
(γ − α)δ

α
(1 − u) +

δ

α
−

c

k
, (11)

where APK := Akα−1h1−α+γ u1−α denotes the average productivity of capital.
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Balanced growth requires that u and c/k as well as APK be constant. The latter

requirement in turn demands that (1 − α)k̂ = (1 − α + γ )ĥ.

The common balanced-growth rate µ of k and c can be computed by solving

the system under balanced-growth assumptions:

µ =
1 − α + γ

(1 − α + γ )σ − γ
(δ − ρ).

Growth is balanced if the four variables of the system satisfy the three equations

1 − u =
1 − α

(1 − α + γ )σ − γ
(1 − ρ/δ)

c/k = ((γ − α)ψµ + δ)/α

kα−1h1−α+γ =
σµ + ρ

αA
(u∗)α−1,

where ψ := (1 − α)/(1 − α + γ ). The question arises of whether other solu-

tions initially suffering from unbalancedness converge to a BGP. One method for

checking whether convergence occurs is scale adjustment. Scale adjustment slows

the motion of variables according to their respective balanced-growth rates. The

transformed variables are

ke−µ t , he−ψµ t , ce−µ t , and u.

To avoid extra notation we continue to use the old designations of variables. The

new, adjusted growth rates are reduced by the constants of adjustment µ and ψµ,

respectively. The growth rate of u remains unchanged. Due to scale adjustment,

the BGP of the original system [shown in Figure 3 (i)] turns into a curve repre-

senting a continuum of stationary equilibria, which is labeled CSE [displayed in

Figure 3 (ii)] with the same shape. This curve represents a (saddle-point stable)

center manifold of the new system.16 An optimal solution with unbalanced initial

state conditions (k0, h0) now approaches a particular point on the curve CSE. Yet

there is no way to compute this point analytically.

Numerical computation requires the solution of a differential equation system

with two initial conditions and two final conditions.17 The initial conditions are

given by the initial values of the state variables k(0)= k0, h(0)= h0. Final con-

ditions that determine the path, and work well with the relaxation algorithm, are

stationarity conditions for the state variables, implicitly defined by k̇(∞)= 0 and

ḣ(∞)= 0.

By numerical solution of the scale-adjusted model we can now answer the

following type of question: Consider two economies (1 and 2) differing in their

initial states (k1
0, h

1
0) and (k2

0, h
2
0) only. Will they converge to the same point on

the CSE? Or will, alternatively, one economy have a permanent advantage in

the sense of exhibiting a higher level of consumption along the BGP? Figure 3

illustrates such a situation, where the solid trajectories display a development
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FIGURE 3. Summary of the transition of the Lucas (1988) model.

implying a higher long-run consumption level, as can be recognized by inspecting

Figure 3 (iii). The value of the utility integrals amounts to −4.81 for the solid path

and −9.22 for the broken one.

5. SUMMARY

We propose the relaxation algorithm as a powerful and efficient procedure for

investigating the transition process of continuous-time growth models. At a very

general level, this method has two main advantages: First, it is simpler than

most other procedures. Second, and more importantly, the relaxation procedure

can easily deal with complex dynamic systems for which conventional algorithms

appear to be inappropriate. Specifically, the relaxation procedure can easily handle

stiff differential equations as well as dynamic systems giving rise to saddle-point

stable center manifolds. It has been demonstrated that this type of systems result

from basic workhorse models in growth theory. Finally, it is important to notice

that the relaxation algorithm can easily deal with highly dimensional dynamic

systems. Potential applications comprise models with heterogeneous agents as

well as computable general equilibrium (CGE) models. Moreover, the applica-

tion of the method is restricted neither to growth models nor to infinite-horizon

problems. Especially in the field of CGE modeling, it seems that researchers often

make extensive use of simplifying assumptions to keep the analysis tractable; for
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instance, the assumption of a constant saving rate in dynamic models. We think

that the relaxation procedure enables researchers to relax most of these simplifying

assumptions in a convenient and efficient manner.18

NOTES

1. In the case of saddle-point stability, the dimension of the stable manifold equals the dimension

of the state space, whereas indeterminacy implies that the dimension of the stable manifold exceeds

the dimension of the state space.

2. Moreover, for continuous-time models, discretization schemes can be applied that yield a higher

order of accuracy.

3. http://www.relaxation.uni-siegen.de.

4. In the Appendix we give a detailed description of the algorithm.

5. Nonetheless, the model is comparably simple in that the stable manifold is one-dimensional. We

will turn to a model with a multidimensional stable manifold below.

6. This is in contrast to Figure 1, where the initial guess is an upward sloping line.

7. The analytical solution is k(t) = [ 1
(δ + n + x)θ

+ (k1−α
0 − 1

(δ + n + x)θ
)e−(1−α)(δ + n + x)t ]1/(1−α) and

c(t) = (1 − 1
θ
)k(t)α .

8. It is defined as ε = 1
NM

√

∑N
i=1 ε2

ci
+

∑N
i=1 ε2

ki
, with εci

and εki
denoting the relative error of k

and c at mesh point i, respectively.

9. It should be mentioned that the allocation of the mesh was chosen exogenously. The accuracy of

the algorithm could be improved with a self-allocating time mesh, as proposed by Press et al. (1989,

Chapter 16.5). They suggest automating the allocating of mesh points so that more mesh points are

placed in regions in which the variables are changing rapidly.

10. Press et al. (1989, p. 700) report that computational requirements increase by a factor of at

least 100 if one switches from a one-dimensional problem with 100 grid points to a two-dimensional

problem with 100 × 100 grid points.

11. For instance, in the Lucas (1988) model presented below, the actual steady state to which the

economy converges depends on the initial levels of human and physical capital, h0 and k0.

12. When the number of mesh points is multiplied by x, a first-order rule leads to a reduction of

the global error by 1
x

, whereas a second-order rule reduces the error by 1

x2 .

13. The presentation of the Jones (1995) model basically follows Eicher and Turnovsky (1999),

who formulated the social planner’s solution of the general nonscale R&D-based growth model. For a

detailed derivation of the decentralized solution see Steger (2005).

14. The presence of the static efficiency condition (equation (7)) is due to the fact that labor enters

neither final output nor R&D linearly. Hence, it is in general not possible to solve for the optimal amount

of labor explicitly. Note that the presence of an additional algebraic condition such as equation (7)

does not cause any problems for the relaxation algorithm.

15. The set of parameters used for the numerical solution is σL = 0.6, σK = 0.4, δ = 0.05,

n = 0.015, ηA = 0.6, ηL = 0.5, η
p

L = 0.6, ρ = 0.04, and γ = 1. In this case, set the ratio of the stable

eigenvalue amounts to 12.8.

16. The scale-adjusted system has one zero eigenvalue, which gives rise to a continuum of stationary

equilibria (i.e., a center manifold). For details on the basic concept of center manifolds see, for instance,

Tu (1994, pp. 187–191).

17. The set of parameters used for the numerical solution of the Lucas model is A = 1, α = 0.3,

δ = 0.1, γ = 0.3, σ = 1.5, and ρ = 0.05. With this set of parameters indeterminacy is excluded (c.f.

Benhabib and Perli, 1994).

18. Feraboli and Trimborn (2006) employ the relaxation algorithm to solve a highly dimensional

CGE model with heterogenous households exhibiting endogenous saving rates. The phase space can

be divided into a six-dimensional stable manifold and a six-dimensional unstable manifold.
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APPENDIX

In this section we go through some details of the algorithm. Consider a system of Ñ

differential equations on an open set in RN , with Ñ ≤ N . Let x̃ be the vector of those

components of the full vector xǫRN affected by f :

dx̃

dt
= f (t, x), f : R+ × RN → RÑ .

If Ñ is strictly smaller than N , the differential equations are to be supplemented by N−Ñ

equations that x has to satisfy at any time:

0 = g(t, x), g : R+ × RN → RN−Ñ .

Boundary conditions are supposed to be given in the form of n1 initial conditions and n2

final conditions. For the solution to be well determined, we need n1 +n2 to equal Ñ . Finally,

it is convenient to denote the codimension N − Ñ of the manifold given by g(t, x) = 0 by

n3. Summing up, we have

n1 initial conditions

n2 final conditions

n3 running equations

⎫

⎬

⎭

with n1 + n2 + n3 = Ñ + n3 = N.

For convenience, we rescale the time range R+ by introducing a new time parameter τ

running from 0 to 1:

τ = νt/(1 + νt) ν ∈ (0, ∞).

In terms of τ we get an equivalent differential–algebraic system,

dx̃

dτ
= ξ(τ, x) = f

(

τ

ν(1 − τ)
, x

)

/

ν(1 − τ)2

0 = φ(τ, x) = g

(

τ

ν(1 − τ)
, x

)

.

(A.1)

Define a mesh of M points in (transformed) time τ by T = {τ1, . . . , τM}. Along the mesh,

the dependent variable x falls into a list of vectors. To avoid confusion, we denote it by
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y = {y1, . . . , yM}, where yk is the value of x at τk . We use the midpoint of each interval

(τk, τk+1) for the discretization of the differential equation

ỹk+1 − ỹk = (τk+1 − τk) ξ(τ̄k, ȳk) for k = 1, . . . , M − 1, (A.2)

where τ̄k = (τk +τk+1)/2 and ȳk = (yk +yk+1)/2. An element of this sequence of difference

equations yields an Ñ -dimensional error function H : ([0, . . . , 1] × RN )2 → RÑ ,

H(τk, yk, τk+1, yk+1) = ỹk+1 − ỹk − (τk+1 − τk)ξ(τ̄k, ȳk).

Note that the matrix of partial derivatives of H with respect to yk and yk+1 differ only in

their derivatives of ỹk+1 and ỹk , respectively, and this is plus or minus the identity matrix

of dimension Ñ .

Let B denote the initial conditions

B : RN → Rn1 ,

let F denote the final conditions

F : RN → Rn2 ,

and let C denote the running conditions

C : [0, . . . , 1] × RN → Rn3 .

All together this defines a system of equations in y = (y1, . . . , yM)ǫRN ·M given a mesh

τ = (τ1, . . . , τM)ǫRM , and we are looking for a root of this system.

For the description of the algorithm it is convenient to list the equations according to the

unknown vectors yk involved. We start with the initial conditions, which only involve y1,

and end with the equations that only involve yM . Ordered this way, the system can be seen as

a system of M+1 vector equations E0(y), . . . , EM(y). The first subsystem, E0(y), depends

only on y1 and consists of n1 initial conditions. The intermediate subsystems Ek(y) for

k = 1, . . . , M −1 depend on yk and yk+1 and are of dimension N . Each of these subsystems

begins with n3 running conditions and is completed by n1 + n2 difference equations. The

last subsystem, EM(y), depends on yM and consists of n3 interior conditions together with

n2 final conditions. It has dimension n2 + n3:

E(y) ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E0(y)

...

Ek(y)

...

EM(y)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

( B(y1) )

...
(

C(yk)

H(yk, yk+1)

)

...
(

C(yM)

F (yM)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.3)

Each step of the Newton algorithm applied to E(y) = 0 computes a change �y by

solving the linear equation

DyE(y) · �y = −E(y).
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Due to the ordering of subsystems E, this equation is of the following form:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

S0,R

S1,L S1,R 0

S2,L S2,R

. . .

0 SM−1,L SM−1,R

SM,L

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎝

�y1

...

�yM

⎞

⎟

⎠
=

⎛

⎜

⎝

−E0(y)

...

−EM(y)

⎞

⎟

⎠
. (A.4)

All Sk,L and Sk,R are Jacobian matrices defined by

Sk,L =
∂Ek(y)

∂yk

, and Sk,R =
∂Ek(y)

∂yk+1

.

The upper left matrix S0,R has n1 rows and the lower right matrix SM,L only n3+n2, whereas

all other matrices Sk,L and Sk,R , resp., are N × N . Hence, the system is not overdetermined.

The solution �y can be computed by a specialized Gaussian algorithm. This algorithm starts

in the upper left corner of the matrix and works downward block by block to the lower right

corner. The result is a system in upper triangular form with a sequence of N × (n2 + n3)

nonzero blocks above the diagonal. Finally, the vector �y can computed from bottom to

top. To be more precise:

step 0: Diagonalize the first n1 columns of S0,R .

step k, k=1, . . . , M−1: Eliminate the first n1 columns of Sk,L;

diagonalize the remainder of Sk,L together

with the first n1 columns of Sk,R .

step M: Eliminate the first n1 columns of SM,L;

Diagonalize the remainder of SM,L.

step M+k, k=1, . . . , M: Solve for �yM+1−k .

The Newton algorithm refines the current guess of y by adding �y or a fraction of

this vector to y. The algorithm stops if the error E is sufficiently small according to an

appropriate norm.
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