
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Multi-Disease Classification Model using
Strassen’s Half of Threshold (SHoT) Training
Algorithm in Healthcare Sector
Manjula Devi Ramasamy1, Keerthika Periasamy2, Lalitha Krishnasamy3, Rajesh Kumar Dhanaraj4,
Seifedine Kadry5, Yunyoung Nam6
1Department of Computer Science and Engineering, Kongu Engineering College, Tamil Nadu, India. rmanjuladevi.gem@gmail.com
2Department of Computer Science and Engineering, Kongu Engineering College, Tamil Nadu, India. keerthikame@gmail.com
3Department of Computer Science and Engineering, Kongu Engineering College, Tamil Nadu, India. vrklalitha24@gmail.com
4School of Computing Science and Engineering, Galgotias University, Greater Noida, India. sangeraje@gmail.com
5Department of Applied data Science, Noroff University College, Kristiansand, Norway. Skadry@gmail.com
6Department of Computer Science and Engineering, Soonchunhyang University, South Korea

Corresponding author: Yunyoung Nam (e-mail: ynam@sch.ac.kr).

This research was supported by Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE) (P0012724, The Competency
Development Program for Industry Specialist) and the Soonchunhyang University Research Fund.

ABSTRACT In healthcare industry, Neural Network has attained a milestone in solving many real-life classification
problems varies from very simple to complex and from linear to non-linear. To improve the training process by
reducing the training time, Adaptive Skipping Training algorithm named as Half of Threshold (HOT) has been
proposed. To perform the fast classification and also to improve the computational efficiency such as accuracy, error
rate, etc., the highlighted characteristics of proposed HOT algorithm has been integrated with Strassen’s matrix
multiplication algorithm and derived a novel, hybrid and computationally efficient algorithm for training and
validating the neural network named as Strassen’s Half of Threshold (SHoT) Training Algorithm. The experimental
outcome based on the simulation demonstrated that the proposed SHOT algorithm outperforms both BPN and HOT
algorithm in terms of training time and its efficiency on various dataset such as such as Hepatitis, SPeCT, Heart, Liver
Disorders, Breast Cancer Wisconsin (Diagnostic), Drug Consumption, Cardiotocography, Splice-junction Gene
Sequences and Thyroid Disease dataset that are extracted from Machine Learning Dataset Repository of UCI. It can
be integrated with any type of supervised training algorithm.

INDEX TERMS Training Speed, Fast Learning, Fast Training, Classification Problem, Adaptive Skipping Training.

I. INTRODUCTION
Every second, the amount of healthcare data that is
being generated by the healthcare industry is growing
exponentially (approximately 30% of the world’s data
volume [1]. This growth rate will reach 36% annually
by 2025. At the same time, it is mined to extract the
valuable information. Many of today's creative
applications with big scale datasets challenge the
natural intelligence of the human brain, which is the
most intelligent system on the planet, due to
exponential growth in many scientific and medical
sectors [2]. Learning new patterns in large scale

datasets manually, in a fast and intelligent manner, is
beyond the capacity or patience of any human being.
To address this issue, researchers developed the
concept of Neural Network (NN). Since 1943, Neural
Network has attained a milestone in solving many
real-life classification problems varies from very
simple to complex and from linear to non-linear [3].
When it is viewed from the technical / implementation
aspect, training the neural network on very large
datasets with the traditional back-propagation
algorithm is still facing many challenges. One of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

biggest challenges that are faced by neural network is
the training rate. The elements that leverage the
Neural Network’s training rate are Network structure
[4], Training dataset size, computational efficiency,
and problem to classify [5]. The elements listed above
relate to each other.
Based on the problem that has been considered for
classification, the datasets will be generated and
utilized. Very large numbers of training datasets must
be fed into the neural network for training to increase
the efficiency of the training algorithm as well as to
generalize the network. The network structure can,
however, expand automatically for a larger training
dataset, leading to increased training time as well as
reduced efficiency. In practical terms, a larger
training dataset usually requires a very long training
time with more epochs that leverage the training speed.
The Half of Threshold (HoT) Adaptive Skipping
Training Algorithm is applied to increase the training
speed by minimizing Neural Network training time by
randomly presenting the samples in training datasets
to boost the training performance. Also, as the size of
the network structure increases, it contributes to
increase in the weight matrix size.
Among the operation that takes place during the
training of neural networks using back-propagation
algorithm, Matrix multiplication is the most highly
computational process. For making matrix
multiplication faster, Strassen’s algorithm [6] is
prescribed to multiply the matrices, which is shown in
the Theorem 1. By combing the highlighted
characteristics of Adaptive Skipping Training
Algorithm and Strassen’s algorithm, the overall
training time consumed by the neural network will be
reduced much with leads to increase in efficiency. By
integrating the highlighted characteristics of Half of
Threshold (HOT) Adaptive Skipping Training
algorithm with Strassen’s algorithm, a novel, hybrid,
and computationally efficient algorithm called
Strassen’s Half of Threshold (SHoT) Adaptive
Skipping Training Algorithm, for training the neural
network, has been proposed. Because of this proposed
algorithm, the cumulative training time consumed by
the neural network will be significantly increased
resulting in better training performance.

2. Related Study
Many researchers have contributed many works
towards improving the performance of training
algorithm by increasing the training speed, improving
the accuracy / decreasing the error rate, etc., in
different enhancement: estimation of initial weight
optimally, second order algorithm for faster learning
and maintaining generalization and adaptive learning

rate and momentum which has been surveyed in this
session. Proper initialization of NN initial weights in
the training algorithm's beginning point minimizes the
number of iterations in the training process, resulting
in faster training. Initial weights have been
demonstrated to affect the BPN technique.[7]. In most
cases, modest random numbers are chosen as the NN's
initial weights. Nguyen and Widrow[8] assign a
fraction of the intended response range to each hidden
node, and Drago and Ridella[9] utilize a technique
called statistically controlled activation weight
initialization (SCAWI) that calculates the maximum
value that the weights should adopt at first to avoid
neurons becoming saturated throughout the adaptation
process. Some studies recommended for utilizing a
probability distribution of the mean squared error [10]
and the DPT (Delta Pre-Training) approach [11] uses
different sets of small initial weights for initializing
and training the NN for several times and also if the
weight space is well-conditioned, then DPT is a
decent concept. If the best of this group fails to meet
the requirements, the process is restarted. Many
people support this method, although it is essentially
a trial-and-error approach with no mathematical
foundation. Premature Saturation, for example, can be
caused by initial weight values that are excessively
large. As a result, the ASCE task committee advises
that random values between -0.30 and +0.30 should
be assigned for weights and thresholds as a starting
point. [12].
For Single Hidden Layer Feedforward Neural
Networks (SLFNs), a technique called Extreme
Learning Machine (ELM), which is new and fast in
learning, was published in 2004[13][14] that selects
the weights randomly for input and derives the output
weights for output analytically. Sensitivity analysis
was employed in the development of the novel
initialization strategy for neural networks [15][16].
The outputs of the first layer are first assigned random
values. Once the original values have been modified
using sensitivity formulae, the weights are then
determined using linear equations. The main benefits
of this method can obtain a good solution in only one
epoch and with minimal time for computation.
Starting with erroneous weight values, on the other
hand, can trap the network in local minima or limit
learning progress. To speed up the learning process,
the initial weights were carefully chosen.
Previously, the momentum-coefficient was usually
treated as a constant between 0 and 1. However, the
results of the experiments revealed that the fixed
coefficient value for the momentum appears to speed
up learning only when the recent error function’s
downward gradient and the latest weight change are

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

in the same direction. The momentum coefficient
makes the weight modification to be projected up in
the slope of the error surface rather than down in the
slope as recommended when the latest negative
gradient is crossing the prior update [17]. To make
learning more successful, it is critical to change the
momentum coefficient value adaptively rather than
keeping it constant throughout the training period.
Even though the error function is not considered
quadratic, Zhang et al claim that the BPN approach's
output is converged with constant learning rate and
adaptive momentum. [18]. Both strong and weak
convergence results are confirmed as well as it can
escape local minima and so accelerating network
training. The error gradient is closed to zero as the
training enters the smooth area, causing the network
to converge slowly.
The learning rate is constant and uniform across all
weights in a layer for the BPN algorithm [19]. The
values assigned for parameter will fluctuate around
the minima of the performance surface as gradient
descent approaches minima. The network's parameter
is changed in a fixed manner while the learning rate is
constant, resulting in sluggish convergence to the goal
error [20]. Slowing down parameter updates by
allowing the learning rate to fluctuate adaptively is
one way to avoid this. This will allow the network to
make better responses after each weight update. The
essential concept behind adaptive learning rate is that
if performance falls short of the error objective at each
epoch, the learning rate is increased by a constant
value. Another constant parameter reduces the
learning rate as performance improves. Several
dynamic approaches for adaptively assigning the
learning rate have been defined, based on the factor
inclined to examine. Learning techniques based on the
Lyapunov stability theory have been suggested for
NNs[21]. The structure of Lyapunov Function-based
learning algorithm (LF I) and its modified variant (LF
II) are same as that of BPN method, with the exception
that the suggested algorithms substitute the fixed
learning rate with an adaptable learning rate. The
gradient in error is closed to zero when the training
reaches the smooth area. The adaptive learning rate
will then be high, and weight adjustment will be
delayed, resulting in slow convergence to the goal
error.
 Following that, the algorithm for changing
the weight during the training phase has been provided,
which derives the second order differential equation
from the cost functions. The quasi-Newton methods
or Levenberg–Marquardt (LM) algorithms are the
most often used second order training algorithms
[22][23] and Conjugate Gradient (CG) methods [24].

To perform the fast classification and to improve the
accuracy, a new training algorithm is proposed named
as GA-BEL that combines Genetic Algorithm
(GA) and brain-inspired emotional learning (BEL)
algorithm [25]. Based on the optimization technique
Particle Swarm Optimization (PSO), proposed a
model for learning named as PSO-FLN is proposed by
M.H.Ali et.al for Fast Learning Network(FLN) [26]
that has been experimented with the intrusion
detection system dataset KDD99 which outperforms
well in all aspect. Using the Extreme Learning
Machine (ELM) as a baseline, an algorithm to perform
fast learning is applied on the RFNN (Regular Fuzzy
Neural Network) is proposed [27] and a new fast
learning method (FLM) has been presented for
feedforward neural networks [28]. Next, based on the
concept of Adaptive Skipping, a new and fast training
approach for ANN (Artificial Neural Network) is
instituted by presenting the input samples for training
randomly [3][5] and based on the fuzzy system [29].
To train SLFN (single hidden layer feedforward
neural network) and to optimize the weight of SLFN,
an algorithm is proposed by that hybridize the self-
organizing map (SOM) algorithm with ELM
algorithm [30]. CGP-based Artificial Neural Network
(CGPANN), based on the Cartesian genetic
programming (CGP) technique, is a fast-learning
neuroevolutionary algorithm applicable for both
feedforward and recurrent networks [31]. Even
though the following methods produce good
outcomes, they are computationally intensive.
Convergence slowly has been identified as a serious
issue for all learning methods of BPN. An innovative,
hybrid, and computationally efficient neural network
training algorithm named as Strassen's Half of
Threshold (SHoT) Adaptive Skipping Training
Algorithm has been presented to improve the training
speed of BPN.

3. Proposed SHOT Algorithm
 To conduct the research study
effectively, a three-layer feedforward neural network
with multiple layers has been suggested. The
proposed neural network structure’s layout is built
with N neurons as input, P neurons as hidden and O
neurons as output. Since the prescribed neural
network is fully interconnected, neurons present in the
preceding layer are linked with each neuron in the
next layer. The input layer has the same number of
neurons as the training dataset's properties.

3.1 Basic Notation
 Each sample is partitioned into a
feature vector, X, and a target class, Y, given a training

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

dataset with M labelled training samples. Let 𝑋 ∈𝑅 × be the 2D matrix of size M × N which is
populated with the data samples from the training
dataset that contains M input samples and N number
of attributes. 𝑋 = [𝑥 𝑥 𝑥 𝑥 ⋯ 𝑥 ⋯ 𝑥 ⋮ ⋮ 𝑥 𝑥 ⋱ ⋮ ⋯ 𝑥] = 𝑥 ∈ 𝑅 × , 1 ≤ 𝑗≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑀,

Since the training dataset consumed in this research is
a supervised dataset, the corresponding target class
label, represented as 𝑇 ∈ 𝑅 , for the above M input
samples is shown below.
 𝑇 = [𝑡 𝑡 ⋮ 𝑡] = 𝑡 ∈ 𝑅 , 1 ≤ 𝑖 ≤ 𝑀
 Let 𝑉 ∈ 𝑅 × be the 2D matrix of
size N × P that holds the input-to-hidden synaptic
weight coefficient that is assigned for each connection
link established between N input neurons to P hidden
neurons. 𝑉 = [𝑣 𝑣 𝑣 𝑣 ⋯ 𝑣 ⋯ 𝑣 ⋮ ⋮ 𝑣 𝑣 ⋱ ⋮ ⋯ 𝑣] = 𝑣 ∈ 𝑅 × , 1 ≤ 𝑗≤ 𝑃, 1 ≤ 𝑖 ≤ 𝑁

 Let 𝑣⃗ represents bias vector of
size 1× P that is fed into the nodes in the hidden layer. 𝑣 ⃗ = [𝑣 𝑣 ⋯ 𝑣], 𝑤ℎ𝑒𝑟𝑒 𝑣 ∈ 𝑅 , 1 ≤ 𝑖 ≤ 𝑃

 Let 𝑊 ∈ 𝑅 × be the 2D matrix of
size P × O that holds the hidden-to-output synaptic
weight coefficient that is assigned for each connection
link established between P hidden neurons to O output
neurons. 𝑊 = [𝑤 𝑤 𝑤 𝑤 ⋯ 𝑤 ⋯ 𝑤 ⋮ ⋮ 𝑤 𝑤 ⋱ ⋮ ⋯ 𝑤] = 𝑤 ∈ 𝑅 × , 1 ≤ 𝑗≤ 𝑂, 1 ≤ 𝑖 ≤ 𝑃

 Let 𝑤⃗ represents bias vector of
size 1× O that is fed into the nodes in the output layer. 𝑤 ⃗ = [𝑤 𝑤 ⋯ 𝑤], 𝑤ℎ𝑒𝑟𝑒 𝑤 ∈ 𝑅 , 1 ≤ 𝑖≤ 𝑂

 Let 𝜑 (𝑥) and 𝜑 (𝑥) represent the
nonlinear sigmoid and linear activation function
adopted to compute the net output in the hidden and
output layer, respectively. The symbol used for
representing iteration number is t. Let 𝑠𝑓 and 𝑠𝑣 be
the skipping factor and skipping value of the ith
samples in the training dataset. Let 𝑑 be the error
threshold value. Let ic be the number of iteration /
epoch count.

Figure.1: Proposed SHOT Framework

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

3.2 Working Principle of SHOT
Step 1: Initialization Phase: Initialize the following
parameters of the constructed neural network.

● Weight value 𝜖 [−1 1]
● Biases value to small random values,

typically between -1 and 1
● Learning rate,𝜂
● Skipping value, 𝑠𝑓 , to zero
● Skipping factor, 𝑠𝑓 , to zero
● Error threshold, 𝑑

Step 2: Terminating Condition: Check whether the
terminating criterion is attained or not. If it is not
attained, repeat the step 3-8. Otherwise, go to step 9.
Step 3: Repeat the step 4-8 for M (number of training
samples in the training dataset, 𝑋) times, 1 ≤ 𝑘 ≤ 𝑀
Step 4: Present the training sample: training dataset
samples are distributed to the input layer in the
network which will just propagate it without any
computation.
Step 5: Forward Propagation: The following steps
are calculated till the output layer starting from the
hidden layer through the propagation process:
Step 5.1: For the Hidden layer, compute the activation
values as:
Apply Theorem 1 to estimate the net output value
using Strassen’s Fast Multiplication of Matrices
Algorithm which is specified in Algorithm 1.
 ℎ_𝑛𝑒𝑡 = 𝑣 + 𝑥 . 𝑣 , 1 ≤ 𝑖 ≤ 𝑃

Estimate the actual output. 𝑧 = 𝜑 (ℎ_𝑛𝑒𝑡), 1 ≤ 𝑖 ≤ 𝑃 = 11 + 𝑒 _ , 1 ≤ 𝑖 ≤ 𝑃

Step 5.2: For the Output layer, compute the
activation values as:
Apply Theorem 1 to estimate the net output value
using Strassen’s Fast Multiplication of Matrices
Algorithm 𝑜_𝑛𝑒𝑡 = 𝑤 + 𝑧 . 𝑤 , 1 ≤ 𝑖 ≤ 𝑂

Estimate the actual output 𝑦 = 𝜑 (𝑜_𝑛𝑒𝑡), 1 ≤ 𝑖 ≤ 𝑂 = 11 + 𝑒 _ , 1 ≤ 𝑖 ≤ 𝑂

Theorem 1[Strassen's Theorem]: Two N × N matrices
can be multiplied using only 𝑁 ≈ 𝑁 . … scalar
multiplications.

Step 6: Error Signal Calculation

 Using the squared error function, the error
signal for each output neuron is calculated and
performs summation over the error signal to get the
total error: 𝐸 = 12 (𝑡 − 𝑦) , 1 ≤ 𝑘 ≤ 𝑀

Step 6.1: Finding the Error derivative for hidden
to output weight
Adjust the network’s weights by calculating the
partial error derivative with respect to the weight to
minimize the error, E, globally. ∆𝑊 𝛼 − 𝜕𝐸𝜕𝑊 ∆𝑤 𝛼 − 𝜕𝐸𝜕𝑤 1 ≤ 𝑘 ≤ 𝑂

∆𝑤 = −𝜂 𝜕𝐸𝜕𝑤 1 ≤ 𝑘 ≤ 𝑂

Expand the above error function using chain rule 𝜕𝐸𝜕𝑤 = 𝜕𝐸𝜕𝑦 𝜕𝑦𝜕𝑤 𝜕𝐸𝜕𝑤 = 𝜕𝐸𝜕𝑦 𝜕𝑦𝜕𝑜_𝑛𝑒𝑡 𝜕𝑜_𝑛𝑒𝑡𝜕𝑤

The derivation of the error with respect to the
activation function is derived here 𝜕𝑜_𝑛𝑒𝑡𝜕𝑤 = 𝜕𝑧 𝑤𝜕𝑤 = 𝑧

The derivation of the activation function with
respect to the net input is shown here 𝜕𝑦𝜕𝑜_𝑛𝑒𝑡 = 𝜕 11 + 𝑒 _𝜕𝑜_𝑛𝑒𝑡 𝜕𝑦𝜕𝑜_𝑛𝑒𝑡 = 𝜕(1 + 𝑒 _)𝜕𝑜_𝑛𝑒𝑡 = −1(1 + 𝑒 _) ∙ 𝑒 _ ∙ −1 𝜕𝑦𝜕𝑜_𝑛𝑒𝑡 = 𝑒 _(1 + 𝑒 _)

 Rewriting the above equation, 𝑒(1 + 𝑒) = 1(1 + 𝑒) 𝑒(1 + 𝑒) = 1(1 + 𝑒) 1 − 1(1 + 𝑒)

 = 𝑦 . (1 − 𝑦)
 𝜕𝑦𝜕𝑜_𝑛𝑒𝑡 = 𝑦 . (1 − 𝑦)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

The derivation of the net input with respect to the
synaptic weight is shown here
 𝜕𝐸𝜕𝑦 = 𝜕 12 (𝑡 − 𝑦)𝜕𝑦 = 12 ∙ 2(𝑡 − 𝑦) ∙ 𝜕(𝑡 − 𝑦)𝜕𝑦 = (𝑡 − 𝑦) ∙ (0 − 1) = −(𝑡 − 𝑦)

 Substituting the value of each
derivative,
 ∆𝑤 = −𝜂 𝜕𝐸𝜕𝑤 = −𝜂 𝜕𝐸𝜕𝑦 𝜕𝑦𝜕𝑜_𝑛𝑒𝑡 𝜕𝑜_𝑛𝑒𝑡𝜕𝑤 = 𝜂(𝑡 − 𝑦). 𝑦 (1 − 𝑦). 𝑧
 = 𝜂𝛿 𝑧 𝑤ℎ𝑒𝑟𝑒 𝛿 = (𝑡 − 𝑦). 𝑦 . (1 − 𝑦)

Step 6.2: Finding the Error derivative for input to
hidden weight ∆𝑉 𝛼 − 𝜕𝐸𝜕𝑉
 ∆𝑣 𝛼 − 𝜕𝐸𝜕𝑣
 ∆𝑣 = −𝜂 𝜕𝐸𝜕𝑣 𝜕𝐸𝜕𝑣 = 𝜕𝐸𝜕𝑦 𝜕𝑦𝜕𝑜_𝑛𝑒𝑡 𝜕𝑜_𝑛𝑒𝑡𝜕𝑧 𝜕𝑧𝜕ℎ_𝑛𝑒𝑡 𝜕ℎ_𝑛𝑒𝑡𝜕𝑣

The derivation of the activation function with
respect to the net input is shown here 𝜕𝑧𝜕ℎ_𝑛𝑒𝑡 = 𝜕𝑧𝜕ℎ_𝑛𝑒𝑡

 𝜕𝑧𝜕ℎ_𝑛𝑒𝑡 = 𝜕 11 + 𝑒 _𝜕𝑜_𝑛𝑒𝑡

= 𝜕 1 + 𝑒 _𝜕ℎ_𝑛𝑒𝑡 = −1 1 + 𝑒 _ ∙ 𝑒 _ ∙ −1 𝜕𝑧𝜕ℎ_𝑛𝑒𝑡 = 𝑒 _1 + 𝑒 _

 Rewriting the above equation, 𝑒 _1 + 𝑒 _ = 11 + 𝑒 _ 𝑒 _1 + 𝑒 _

= 11 + 𝑒 _ 1 − 11 + 𝑒 _

 = 𝑧 . (1 − 𝑧)
 𝜕𝑧𝜕ℎ_𝑛𝑒𝑡 = 𝑧 . (1 − 𝑧)

The derivation of the net input with respect to the
synaptic weight is shown here 𝜕ℎ_𝑛𝑒𝑡𝜕𝑣 = 𝜕𝑥 𝑣𝜕𝑣 = 𝑥

∆𝑣 = −𝜂 𝜕𝐸𝜕𝑣

Substituting the value of each derivative, ∆𝑣 = −𝜂 𝜕𝐸𝜕𝑣

= −𝜂 𝜕𝐸𝜕𝑦 𝜕𝑦𝜕𝑜 𝜕𝑜𝜕𝑧 𝜕𝑧𝜕ℎ 𝜕ℎ𝜕𝑣 = [𝜂𝛿 𝑧] 𝑧 (1 − 𝑧)𝑥 = 𝜂𝛿 𝑥
Step 7: Backward Propagation
Step 7.1: Update weights hidden to output weight
using the Delta-Learning Rule 𝑤 = 𝑤 + 𝜂𝛿 𝑧
Step 7.2: Update weights input to hidden weight
using the Delta-Learning Rule 𝑣 = 𝑣 + 𝜂𝛿 𝑥

Step 8: AST Algorithm
Step 8.1: Calculate the difference between the neural
network output’s target(𝑡) and actual(𝑦)
value, 𝑡 − 𝑦 .
Step 8.2: Compare the difference (step 8.1) with the
error half of the threshold value. Whenever the
samples are classified correctly, the following
condition returns zero. |𝑡 − 𝑦 | < 𝑑 /2
Step 8.3: Determine the computing probability of all
the input samples based on 𝑡 − 𝑦 .
Step 8.4: If the 𝑝𝑟𝑜𝑏(𝑥) is 0, then the corresponding
input samples have been classified correctly and it will
be skipped from training for next 𝑠𝑓 epochs.
Step 8.5: If the 𝑝𝑟𝑜𝑏(𝑥) is 0, then skipping value 𝑠𝑣 is increased by 𝑠𝑓 . When the skipping value 𝑠𝑣
becomes zero, then the ith input samples will be
presented again for training.
Step 8.6: Based on the skipping value 𝑠𝑣 , the
modified training dataset is constructed which will be
presented in the next epoch.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

Step 9: Stop the training process

A machine learning algorithm must be tested on test
data once it has learned the fundamental patterns in
the training data. It is termed an efficient machine
learning classifier model if it performs well on the test
data and generalizes the produced dataset, which is
measured using the classifier's performance matrices.

4. Simulation-based Experimental Result and its
Analysis
To conduct the research successfully, the proposed
supervised machine learning SHOT algorithm is
simulated with the following machine configurations:
Intel® Core I5 generation- 3210M processor, CPU
speed with 2.50GHz and MATLAB Software R2010b
version.

4.1 Dataset Description
To assess the performance of the existing and
proposed SHOT algorithms, both the algorithms were
tested on datasets acquired from UCI's Machine
Learning Dataset Repository for binary and multi-
class classification problems [15]. The data collection
for the Hepatitis dataset is loaded with 155 samples of
data collected containing 19 attributes and 2 classes of
binary classification. The SPeCT Heart dataset has
267 samples in its data collection with 22 attributes
and 2 classes of binary classification. The data
collection for the Liver Disorders dataset is loaded
with 345 samples of data collected containing 7
attributes and 2 classes of binary classification. The
data collection for the Breast Cancer Wisconsin
(Diagnostic) dataset is loaded with 569 samples of
data collected containing 32 attributes and 2 classes of
binary classification. The data collection for the Drug
Consumption dataset is loaded with 1885 samples of
data collected containing 32 attributes and 7 classes of
multi-class classification. The data collection for the
Cardiotocography dataset is loaded with 2126
samples of data collected containing 23 attributes and
3 classes of multi-class classification. The Splice-
junction Gene Sequences dataset has 3190 samples in
its data collection with 19 attributes and 3 classes of
multi-class classification. The data collection for the
Thyroid Disease dataset is loaded with 7200 samples
of data collected containing 19 attributes and 3 classes
of multi-class classification. The training dataset
properties are shown in Table 1.

Table 1. Dataset Properties

4.2 Experimental Setup and Result
To perform the experiment, the supervised machine
learning algorithm is simulated with the use of 3-layer
multilayer feedforward neural network. For
enhancing the training performance by attaining more
accurate prediction, the ten-fold cross validation
technique is adapted for training the network model in
which all the training samples are given for training.
The performance of the proposed SHoT method is
evaluated using four real benchmark classification
datasets snatched from the UCI Machine Learning
Repository: Hepatitis, SPeCT, Heart, Liver
Disorders, Breast Cancer Wisconsin (Diagnostic),
Drug Consumption, Cardiotocography, Splice-
junction Gene Sequences, and Thyroid Disease.
Training time and Accuracy have been used as
performance indicators to assess the performance of
various supervised machine learning algorithms.
Training time refers to the amount of time spent by
the classifier throughout the training process. The
percentage of correctly categorized samples is used
to define accuracy. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

4.2.1 Hepatitis Dataset
The results of various learning algorithms for training
Hepatitis dataset are summarized in Table 2 for each
fold of tenfold cross validation and are compared to
the proposed SHOT approaches. In comparison to
existing methods, the accuracy produced by the
suggested SHOT methods has improved. Furthermore,
when compared to Artificial Neural Networks
utilizing BPN algorithm, the average time for the
complete training process consumed by HoT and
SHoT methods is reduced by 24% and 37%,
respectively, and by SHoT technique is reduced by 17%
when compared to HoT algorithm.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

Table 2. Comparison Results of Various Learning Algorithm Trained using Hepatitis Dataset with ŋ=1e-4

Fold
Number

BPN HoT SHoT
Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

1 83.6642 66.67 68.7064 86.67 64.6961 86.67

2 86.8873 66.67 54.1146 93.33 44.4945 100
3 78.1140 73.33 60.7247 73.33 33.7581 100
4 61.4551 80 49.8330 86.67 56.8143 93.33
5 82.0119 80 49.5782 73.33 30.4874 80

6 63.6796 100 57.3314 100 64.8616 86.67

7 79.3600 66.67 67.6834 86.67 42.2932 93.33

8 64.2809 80 50.2056 86.67 27.9781 93.33
9 79.6651 100 67.4787 80 61.0754 93.33
10 69.0190 73.33 44.5243 86.67 47.0059 100
 Avg: 74.8137 78.6670 57.0180 85.3340 47.3465 92.6660

4.2.2 SPeCT Heart Dataset
The results of various learning algorithms for training
SPeCT Heart dataset are summarized in Table 3 for
each fold of tenfold cross validation and are compared
to the proposed SHOT approaches. In comparison to
existing methods, the accuracy produced by the
suggested SHOT methods has improved. Furthermore,
when compared to Artificial Neural Networks
utilizing BPN algorithm, the average time for the
complete training process consumed by HoT and
SHoT methods is reduced by 10% and 46%,
respectively, and by SHoT technique is reduced by 39%
when compared to HoT algorithm.

Table 3. Comparison Results of Various Learning Algorithm Trained using SPeCT Heart Dataset with ŋ=1e-
4

Fold
Number

BPN HoT SHoT
Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

1 89.0843 88.89 78.6745 96.3 45.8612 96.3
2 96.3294 85.19 74.7164 92.59 49.1764 100
3 88.9225 81.48 59.1024 92.59 42.6014 81.48
4 74.1832 85.19 74.4453 96.3 48.3799 96.3

5 69.0828 70.37 77.6458 74.07 42.2692 88.89

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

6 91.6944 88.89 58.7441 74.07 48.7352 96.3

7 85.7959 88.89 105.6180 96.3 47.8319 92.59

8 74.8809 70.37 65.3217 77.78 46.1017 81.48
9 89.1431 66.67 74.1911 92.59 42.5950 96.3
10 81.9943 81.48 87.2486 77.78 43.9491 85.19
 Avg: 84.1111 80.7420 75.5708 87.0370 45.7501 91.4830

4.2.3 Liver Disorders Dataset
The results of various learning algorithms for training
Liver Disorders dataset are summarized in Table 4 for
each fold of tenfold cross validation and are compared
to the proposed SHOT approaches. In comparison to
existing methods, the accuracy produced by the
suggested SHOT methods has improved. Furthermore,

when compared to Artificial Neural Networks
utilizing BPN algorithm, the average time for the
complete training process consumed by HoT and
SHoT methods is reduced by 9% and 28%,
respectively, and by SHoT technique is reduced by 20%
when compared to HoT algorithm.

Table 4. Comparison Results of Various Learning Algorithm Trained using Liver Disorders Dataset with
ŋ=1e-4

Fold
Number

BPN HoT SHoT
Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

1 37.0966 80 47.3319 85.71 53.1991 91.43
2 40.3681 85.71 45.9930 88.57 40.5809 91.43
3 44.5172 80 39.8379 80 53.7893 94.29
4 65.2276 88.57 54.7378 85.71 50.9335 80
5 65.8828 82.86 51.1167 91.43 29.6916 94.29

6 41.9939 85.71 34.3110 80 25.8202 94.29

7 64.4417 88.57 52.4936 88.57 29.6721 88.57

8 47.0853 77.14 56.7969 85.71 29.2445 97.14
9 45.6105 88.57 47.4441 91.43 29.8929 85.71
10 65.7836 82.86 41.4965 85.71 32.2293 94.29
 Avg: 51.8007 83.9990 47.1559 86.2840 37.5053 91.1440

4.2.4 Breast Cancer Wisconsin (Diagnostic)
Dataset
The results of various learning algorithms for training
Breast Cancer Wisconsin (Diagnostic) dataset are
summarized in Table 5 for each fold of tenfold cross
validation and are compared to the proposed SHOT
approaches. In comparison to existing methods, the
accuracy produced by the suggested SHOT methods

has improved. Furthermore, when compared to
Artificial Neural Networks utilizing BPN algorithm,
the average time for the complete training process
consumed by HoT and SHoT methods is reduced by
38% and 54%, respectively, and by SHoT technique
is reduced by 25% when compared to HoT algorithm.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

Table 5. Comparison Results of Various Learning Algorithm Trained using Breast Cancer Wisconsin
(Diagnostic) Dataset with ŋ=1e-4

Fold
Number

BPN HoT SHoT
Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

1 101.3862 78.95 64.6625 94.74 43.7087 92.98
2 96.3294 78.95 63.3403 92.98 48.0980 98.25
3 88.9225 85.96 59.3364 82.46 43.7007 91.23
4 109.3300 75.44 60.7605 87.72 47.2308 96.49
5 103.9083 77.19 56.3224 91.23 43.2749 96.49

6 91.6944 89.47 56.3265 89.47 42.3389 73.68

7 85.7959 87.72 56.7478 82.46 44.3271 96.49

8 105.4725 77.19 63.7920 80.7 45.4686 98.25
9 106.1723 78.95 57.6802 96.49 45.9082 82.46
10 81.9943 85.96 59.0849 78.95 45.2612 98.25
 Avg: 97.1006 81.5780 59.8053 87.7200 44.9317 92.4570

4.2.5 Drug Consumption Dataset
The results of various learning algorithms for training
Drug Consumption dataset are summarized in Table 6
for each fold of tenfold cross validation and are
compared to the proposed SHOT approaches. In
comparison to existing methods, the accuracy
produced by the suggested SHOT methods has

improved. Furthermore, when compared to Artificial
Neural Networks utilizing BPN algorithm, the
average time for the complete training process
consumed by HoT and SHoT methods is reduced by
7% and 23%, respectively, and by SHoT technique is
reduced by 17% when compared to HoT algorithm.

Table 6. Comparison Results of Various Learning Algorithm Trained using Drug Consumption Dataset with
ŋ=1e-4

Fold
Number

BPN HoT SHoT
Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

1 93.4230 86.77 74.5535 89.95 62.0459 98.41
2 91.9963 90.48 99.8428 93.65 87.6630 92.59
3 104.6784 86.24 70.9701 92.59 80.6729 99.47
4 90.2273 92.06 97.3860 95.24 65.6849 92.59
5 86.8110 84.65 59.5250 87.3 58.6658 98.41

6 75.7399 86.77 69.3283 97.76 72.1315 98.41

7 75.7751 94.18 72.0838 91.01 48.8140 90.48

8 95.9685 89.42 104.3691 94.71 68.1416 96.83
9 95.6195 89.17 102.3419 88.89 86.3361 94.18
10 99.0994 84.12 92.5225 96.3 68.2187 97.88
 Avg: 90.9338 88.3860 84.2923 92.7400 69.8374 95.9250

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

4.2.6 Cardiotocography Dataset
The results of various learning algorithms for training
Cardiotocography dataset are summarized in Table 7
for each fold of tenfold cross validation and are
compared to the proposed SHOT approaches. In
comparison to existing methods, the accuracy
produced by the suggested SHOT methods has

improved. Furthermore, when compared to Artificial
Neural Networks utilizing BPN algorithm, the
average time for the complete training process
consumed by HoT and SHoT methods is reduced by
7% and 20%, respectively, and by SHoT technique is
reduced by 13% when compared to HoT algorithm.

Table 7. Comparison Results of Various Learning Algorithm Trained using Cardiotocography Dataset with
ŋ=1e-4

Fold
Number

BPN HoT SHoT
Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

1 103.0846 87.13 86.8696 89.67 66.8196 98.12
2 102.4240 88.3 67.6612 93.9 80.9484 90.61
3 79.5093 81.87 67.9806 93.43 96.9357 96.24
4 96.7652 81.87 113.0080 90.61 75.3049 99.06
5 107.7290 82.46 90.9146 84.98 59.5661 93.9

6 112.9056 85.96 85.0187 86.38 114.5687 92.02

7 88.8774 86.55 70.4095 91.55 79.2127 95.31

8 95.2970 89.47 113.6688 95.31 77.7937 91.55
9 108.2056 86.55 109.7794 81.87 66.6012 90.14
10 76.4921 84.21 95.8990 97.65 62.9317 98.12
 Avg: 97.1290 85.4370 90.1209 90.5350 78.0683 94.5070

4.2.7 Splice-junction Gene Sequences Dataset
The results of various learning algorithms for training
Splice-junction Gene Sequences dataset are
summarized in Table 8 for each fold of tenfold cross
validation and are compared to the proposed SHOT
approaches. In comparison to existing methods, the
accuracy produced by the suggested SHOT methods

has improved. Furthermore, when compared to
Artificial Neural Networks utilizing BPN algorithm,
the average time for the complete training process
consumed by HoT and SHoT methods is reduced by
9% and 26%, respectively, and by SHoT technique is
reduced by 18% when compared to HoT algorithm.

Table 8. Comparison Results of Various Learning Algorithm Trained using Splice-junction Gene Sequences
Dataset with ŋ=1e-4

Fold
Number

BPN HoT SHoT
Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

1 87.5880 88.4 88.1602 90.91 76.1594 96.55
2 103.3754 84.95 91.4030 91.85 77.1280 95.61
3 107.0662 86.83 83.5459 88.09 68.4007 99.37
4 113.8473 85.58 95.0122 92.48 68.4088 94.36
5 76.2946 87.77 77.9273 98.75 74.2995 98.12

6 85.9242 91.22 74.1780 92.48 66.8254 97.18

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

7 78.8116 94.04 93.3203 88.71 80.4364 98.12

8 102.8460 92.79 86.7354 88.09 69.1237 92.48
9 97.7427 89.66 86.9934 93.1 68.7194 91.54
10 109.7966 86.83 97.9197 88.4 66.3883 96.87
 Avg: 96.3293 88.81 87.5196 91.29 71.5889 96.02

4.2.8 Thyroid Disease Dataset
The results of various learning algorithms for training
Splice-junction Gene Sequences dataset are
summarized in Table 9 for each fold of tenfold cross
validation and are compared to the proposed SHOT
approaches. In comparison to existing methods, the
accuracy produced by the suggested SHOT methods
has improved. Furthermore, when compared to
Artificial Neural Networks utilizing BPN algorithm,
the average time for the complete training process
consumed by HoT and SHoT methods is reduced by
39% and 54%, respectively, and by SHoT technique
is reduced by 24% when compared to HoT algorithm.

Table 9. Comparison Results of Various Learning Algorithm Trained using Thyroid Disease Dataset with
ŋ=1e-4

Fold
Number

BPN HoT SHoT
Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

Training
Time
(in Sec)

Accuracy
(%)

1 101.3862 93.19 64.6625 87.64 42.7087 96.81
2 96.3294 86.53 63.3403 89.44 48.0980 95.56
3 88.9225 86.11 59.3364 94.03 43.7007 91.39
4 109.3300 87.08 60.7605 90 50.2308 95.56

5 103.9083 92.36 56.3224 90.83 43.2749 92.5

6 91.6944 90.97 56.3265 94.72 42.3389 97.78

7 96.7959 85.42 56.7478 92.92 44.3271 97.36

8 105.4725 88.75 63.7920 89.31 45.4686 94.31
9 106.1723 90.56 57.6802 88.47 51.0082 96.11
10 84.9943 87.92 59.0849 92.08 41.2612 98.75
 Avg: 98.5006 88.8890 59.8053 90.9440 45.2417 95.6130

4.3 Result Comparison and Discussion
4.3.1 Training Time
The training time consumed totally by various training
algorithm such as BPN, HoT and SHoT at the end of

each training fold and its average training time of all
the training fold is compared and represented in
Figure 3.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 1

Figure 3: Training Time Comparison
The average value of overall training time consumed
by HoT algorithm is reduced by 24%, 10%, 9%, 38%,
7%, 7%, 9% and 39% as that of BPN algorithm for
training the dataset such as Hepatitis, SPeCT, Heart,
Liver Disorders, Breast Cancer Wisconsin
(Diagnostic), Drug Consumption, Cardiotocography,
Splice-junction Gene Sequences and Thyroid Disease
dataset, respectively. The total time consumed by
SHoT algorithm for training is scaled down to 37%,

46%, 28%, 54%, 23%, 20%, 26%, and 54% as that of
BPN algorithm and 17%, 39%, 20%, 25%, 17%, 13%,
18% and 24% as that of HoT algorithm for training
the dataset such as Hepatitis, SPeCT, Heart, Liver
Disorders, Breast Cancer Wisconsin (Diagnostic),
Drug Consumption, Cardiotocography, Splice-
junction Gene Sequences and Thyroid Disease dataset
respectively.

Figure 4: Average Training Time Comparison

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 9

4.3.2 Accuracy
The comparison result of the accuracy consumed by various
training algorithm such as BPN, LAST and SHOT is
illustrated in the Figure 4.

Figure 5: Accuracy Comparison

From Figure 4 and 5, For the Hepatitis dataset, the accuracy
obtained by SHoT training algorithm is 15% greater than that
acquired by BPN training algorithm and 8% higher than that
produced by HoT training algorithm, and the accuracy
obtained by HoT training algorithm is 8% higher than that
obtained by BPN. For the SPeCT Heart dataset, the accuracy
obtained by SHoT training algorithm is 12% greater than that
acquired by BPN training algorithm and 5% higher than that
produced by HoT training algorithm, and the accuracy
obtained by HoT training algorithm is 7% higher than that
obtained by BPN. For the Liver Disorders dataset, the
accuracy obtained by SHoT training algorithm is 8% greater
than that acquired by BPN training algorithm and 5% higher
than that produced by HoT training algorithm, and the
accuracy obtained by HoT training algorithm is 3% higher
than that obtained by BPN. For the Breast Cancer Wisconsin
(Diagnostic) dataset, the accuracy obtained by SHoT training
algorithm is 12% greater than that acquired by BPN training
algorithm and 5% higher than that produced by HoT training
algorithm, and the accuracy obtained by HoT training
algorithm is 7% higher than that obtained by BPN. For the
Drug Consumption dataset, the accuracy obtained by SHoT
training algorithm is 8% greater than that acquired by BPN
training algorithm and 3% higher than that produced by HoT
training algorithm, and the accuracy obtained by HoT training
algorithm is 5% higher than that obtained by BPN. For the
Cardiotocography dataset, the accuracy obtained by SHoT
training algorithm is 10% greater than that acquired by BPN
training algorithm and 4% higher than that produced by HoT

training algorithm, and the accuracy obtained by HoT training
algorithm is 6% higher than that obtained by BPN. For the
Splice-junction Gene Sequences dataset, the accuracy
obtained by SHoT training algorithm is 8% greater than that
acquired by BPN training algorithm and 5% higher than that
produced by HoT training algorithm, and the accuracy
obtained by HoT training algorithm is 3% higher than that
obtained by BPN. For the Thyroid Disease dataset, the
accuracy obtained by SHoT training algorithm is 7% greater
than that acquired by BPN training algorithm and 5% higher
than that produced by HoT training algorithm, and the
accuracy obtained by HoT training algorithm is 2% higher
than that obtained by BPN.

5. Conclusions
The experimental outcome based on the simulation
demonstrated that the proposed SHOT algorithm outperforms
both HoT and BPN algorithm in terms of training time and its
efficiency. Regarding training time, the proposed SHOT
algorithm decreases the total training time it takes to train the
network, which in turn increases the training speed. In
comparison to its current supervised algorithm, such as HoT
and BPN, the accuracy obtained by the proposed SHOT
methods has been improved. Finally, the proposed SHOT
approach increases the training performance for any kind of
real-world supervised classification task by both training
speed and by accuracy compared to the current algorithm.
Also, the proposed SHOT algorithm also provides quicker
convergence and results in lower values of RMSE compared
to the HoT algorithm and standard BP algorithm. The current
research can be extended in different ways to originate new
learning algorithms such as incorporating Adaptive Skipping
Training algorithm variants, applying the optimization
technique, injecting the Fuzzy logic, and so on. For any NN
application, the proposed training algorithm can be applied.

REFERENCES

[1] D. Faggella, “Where healthcare’s big data actually comes
from,” Tech Emerg, vol. 11, 2018.

[2] S. Rajasekaran and G. A. V. Pai, Neural Networks, Fuzzy
Systems and Evolutionary Algorithms: Synthesis and
Applications. PHI Learning Pvt. Ltd., 2017.

[3] R. Manjula Devi, S. Kuppuswami, and R. C. Suganthe,
“Fast linear adaptive skipping training algorithm for
training artificial neural network,” Math. Probl. Eng., vol.
2013, 2013, doi: 10.1155/2013/346949.

[4] D. Nguyen and B. Widrow, “Improving the learning
speed of 2-layer neural networks by choosing initial
values of the adaptive weights,” IJCNN. Int. Jt. Conf.
Neural Networks, pp. 21–26, 1990, doi:
10.1109/ijcnn.1990.137819.

[5] R. M. Devi and S. Kuppuswami, “EAST: An Exponential
Adaptive Skipping Training algorithm for multilayer
feedforward neural networks,” WSEAS Trans. Comput.,
vol. 13, pp. 138–151, 2014.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3103746, IEEE

Access

VOLUME XX, 2017 9

[6] A. Levitin, Introduction to the design & analysis of
algorithms. Boston: Pearson, 2012.

[7] J. F. Kolen, J. F. Kolen, J. B. Pollack, and J. B. Pollack,
“Back Propagation is Sensitive to Initial Conditions,” in
Complex Systems, 1990, pp. 860–867.

[8] D. Nguyen and B. Widrow, “Improving the learning
speed of 2-layer neural networks by choosing initial
values of the adaptive weights,” in 1990 IJCNN
International Joint Conference on Neural Networks, 1990,
pp. 21–26 vol.3, doi: 10.1109/IJCNN.1990.137819.

[9] G. P. Drago and S. Ridella, “Statistically controlled
activation weight initialization (SCAWI),” IEEE Trans.
Neural Networks, vol. 3, no. 4, pp. 627–631, Jul. 1992,
doi: 10.1109/72.143378.

[10] W. F. Schmidt, S. Raudys, M. A. Kraaijveld, M.
Skurikhina, and R. P. W. Duin, “Initializations, back-
propagation and generalization of feed-forward
classifiers,” in IEEE International Conference on Neural
Networks, pp. 598–604, doi:
10.1109/ICNN.1993.298625.

[11] G. Li, H. Alnuweiri, Y. Wu, and H. Li, “Acceleration of
back propagation through initial weight pre-training with
delta rule,” in IEEE International Conference on Neural
Networks, pp. 580–585, doi:
10.1109/ICNN.1993.298622.

[12] “Artificial Neural Networks in Hydrology. II: Hydrologic
Applications,” J. Hydrol. Eng., vol. 5, no. 2, pp. 124–137,
Apr. 2000, doi: 10.1061/(ASCE)1084-
0699(2000)5:2(124).

[13] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew,
“Extreme learning machine: a new learning scheme of
feedforward neural networks,” in 2004 IEEE
International Joint Conference on Neural Networks
(IEEE Cat. No.04CH37541), vol. 2, pp. 985–990, doi:
10.1109/IJCNN.2004.1380068.

[14] S. Ding, H. Zhao, Y. Zhang, X. Xu, and R. Nie, “Extreme
learning machine: algorithm, theory and applications,”
Artif. Intell. Rev., vol. 44, no. 1, pp. 103–115, Jun. 2015,
doi: 10.1007/s10462-013-9405-z.

[15] E. Castillo, B. Guijarro-Berdinas, O. Fontenla-Romero, A.
Alonso-Betanzos, and Y. Bengio, “A Very Fast Learning
Method for Neural Networks Based on Sensitivity
Analysis.,” J. Mach. Learn. Res., vol. 7, no. 7, 2006.

[16] B. Guijarro-Berdinas, O. Fontenla-Romero, B. Pérez-
Sánchez, and A. Alonso-Betanzos, “A new initialization
method for neural networks using sensitivity analysis,” in
International Conference on Mathematical and Statistical
Modeling, Spain, 2006, vol. 2830.

[17] H. Shao and G. Zheng, “A New BP Algorithm with
Adaptive Momentum for FNNs Training,” in 2009 WRI
Global Congress on Intelligent Systems, 2009, pp. 16–20,
doi: 10.1109/GCIS.2009.136.

[18] G. P. Zhang, “Neural networks for classification: a
survey,” IEEE Trans. Syst. Man Cybern. Part C
(Applications Rev., vol. 30, no. 4, pp. 451–462, 2000, doi:
10.1109/5326.897072.

[19] S. Haykin, Neural networks and learning machines, 3/E.
Pearson Education India, 2010.

[20] A. M.Kh.S., O. Kh.B., and N. Sh.A., “Back Propagation
Algorithm: The Best Algorithm Among the Multi-layer
Perceptron Algorithm,” 2009.

[21] L. Behera, S. Kumar, and A. Patnaik, “On Adaptive
Learning Rate That Guarantees Convergence in
Feedforward Networks,” IEEE Trans. Neural Networks,
vol. 17, no. 5, pp. 1116–1125, Sep. 2006, doi:
10.1109/TNN.2006.878121.

[22] B. M. Wilamowski and Hao Yu, “Improved Computation
for Levenberg–Marquardt Training,” IEEE Trans. Neural
Networks, vol. 21, no. 6, pp. 930–937, Jun. 2010, doi:
10.1109/TNN.2010.2045657.

[23] H. Yu and B. M. Wilamowski, “Neural Network Training
with Second Order Algorithms,” 2012, pp. 463–476.

[24] N. Ampazis and S. J. Perantonis, “Two highly efficient
second-order algorithms for training feedforward
networks,” IEEE Trans. Neural Networks, vol. 13, no. 5,
pp. 1064–1074, Sep. 2002, doi:
10.1109/TNN.2002.1031939.

[25] Y. Mei, G. Tan, and Z. Liu, “An Improved Brain-Inspired
Emotional Learning Algorithm for Fast Classification,”
Algorithms, vol. 10, no. 2, p. 70, Jun. 2017, doi:
10.3390/a10020070.

[26] M. H. Ali, B. A. D. Al Mohammed, A. Ismail, and M. F.
Zolkipli, “A New Intrusion Detection System Based on
Fast Learning Network and Particle Swarm Optimization,”
IEEE Access, vol. 6, pp. 20255–20261, 2018, doi:
10.1109/ACCESS.2018.2820092.

[27] C. He, Y. Liu, T. Yao, F. Xu, Y. Hu, and J. Zheng, “A
fast learning algorithm based on extreme learning
machine for regular fuzzy neural network,” J. Intell.
Fuzzy Syst., vol. 36, no. 4, pp. 3263–3269, Apr. 2019, doi:
10.3233/JIFS-18046.

[28] S. Wang, F.-L. Chung, J. Wang, and J. Wu, “A fast
learning method for feedforward neural networks,”
Neurocomputing, vol. 149, pp. 295–307, Feb. 2015, doi:
10.1016/j.neucom.2014.01.065.

[29] K. Nanthini and R. M. Devi, “Adaptive fuzzy C-means
for human activity recognition,” in International
Conference on Information Communication and
Embedded Systems (ICICES2014), Feb. 2014, pp. 1–5,
doi: 10.1109/ICICES.2014.7033836.

[30] I. Jammoussi and M. Ben Nasr, “A Hybrid Method Based
on Extreme Learning Machine and Self Organizing Map
for Pattern Classification,” Comput. Intell. Neurosci., vol.
2020, pp. 1–9, Aug. 2020, doi: 10.1155/2020/2918276.

[31] M. Mahsal Khan, A. Masood Ahmad, G. Muhammad
Khan, and J. F. Miller, “Fast learning neural networks
using Cartesian genetic programming,” Neurocomputing,
vol. 121, pp. 274–289, 2013, doi:
https://doi.org/10.1016/j.neucom.2013.04.005.

