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Abstract

The application of general clock skew scheduling is practically

limited due to the difficulties in implementing a wide spectrum of

dedicated clock delays in a reliable manner. This results in a sig-

nificant limitation of the optimization potential. As an alterna-

tive, the application of multiple clocking domains with dedicated

phase shifts that are implemented by reliable, possibly expensive

design structures can overcome these limitations and substantially

increase the implementable optimization potential of clock adjust-

ments. In this paper we present an algorithm for constrained clock

skew scheduling which computes for a given number of clocking

domains the optimal phase shifts for the domains and the assign-

ment of the individual registers to the domains. For the within-

domain latency values, the algorithm can assume a zero-skew clock

delivery or apply a user-provided upper bound. Our experiments

demonstrate that a constrained clock skew schedule using a few

clocking domains combined with small within-domain latency can

reliably implement the full sequential optimization potential to date

only possible with an unconstrained clock schedule.

1 Introduction

Clock skew scheduling [1], often denoted as “cycle stealing”,

computes a set of individual delays for the clock signals of the reg-

isters and latches of synchronous circuits to minimize the clock pe-

riod. The schedule globally tunes the latching of the state holding

elements such that the delays of their incoming and outgoing paths

are maximally balanced. The computed intentional differences in

the clock arrival times, also referred to as “useful skew”, are then

implemented by designing dedicated delays into the clock distri-

bution. In practice, a clock schedule with a large set of arbitrary

delays cannot be realized in a reliable manner. This is because the

implementation of dedicated delays using additional buffers and in-

terconnections is highly susceptible to within-die variations of pro-

cess parameters. As a consequence, the practically applicable max-

imum differences for the clock arrival times are typically restricted

to less than 10% of the clock period, which limits the optimization

potential of clock skew scheduling.

As an alternative to clock skew scheduling, retiming [2] bal-

ances the paths delays by relocating the registers. Although retim-

ing provides a powerful sequential optimization method, its practi-

cal use is limited due to the impact on the verification methodology,

i.e., equivalence checking and functional simulation. Furthermore,

the use of retiming for maximum performance often causes a steep

increase in the number of registers [3], requiring a larger effort for

clock distribution and resulting in higher power consumption.

Multiple clocking domains are routinely applied in designs to

realize several clocking frequencies and also to address specific

timing requirements. For example, a special clocking domain that

delivers a phase-shifted clock signal to the registers close to the

chip inputs and outputs is regularly used to achieve timing clo-

sure for ports with extreme constraints on their arrival and required

times. In principle, a multi-domain approach could also be used to

realize larger clock latency variations for all registers. In combina-

tion with a within-domain clock skew scheduling algorithm, they

could implement an aggressive sequential optimization that would

be impractical with individual delays of register clocks. The mo-

tivation behind this approach is based on the fact that large phase

shifts between clocking domains can be implemented reliably by

using dedicated, possibly expensive circuit components such as

“structured clock buffers” [4], adjustments to the PLL circuitry, or

simply by deriving the set of phase-shifted domains from a higher

frequency clock using different tapping points of a shift register.

In our terminology, we use the term clock latency of a register

to denote its clock arrival time relative to a common origin of time.

Note that the origin can be chosen arbitrarily; different origins sim-

ply correspond to different offsets added to all register latencies.

Clock skew refers to the relative difference of the clock latencies

of registers. We use the term clock phase shift of a domain to de-

note an offset of the latency common to all registers of that domain.

The within-domain latency is defined as the difference between the

clock latency of a register and the phase shift of its domain. Thus

a zero within-domain latency means that all register latencies of a

domain are equal to the phase shift of the domain.

In current design methodologies, the specification of multiple

clocking domains is mostly done manually as no design automa-

tion support is available. In this paper we present an algorithm

for constrained clock skew scheduling which computes for a user-

given number of clocking domains the optimal phase shifts for the

domain clocks and the assignment of the circuit registers to the

domains. For the clock distribution within a domain, the algorithm

can assume a zero-skew clock delivery or apply a user-provided up-

per bound for the within-domain latency. Our experiments demon-

strate that a clock skew schedule using a few domains combined

with a small within-domain latency can reliably implement the full

optimization potential of an unconstrained clock schedule.

Our algorithm is based on a branch-and-bound search for the

assignment of registers to clocking domains. We apply a satisfi-

ability (SAT) solver based on a problem encoding in conjunctive

normal form (CNF) to efficiently drive the search and compactly

record parts of the solution space that are guaranteed to contain no

solutions better than the current one. The combination of a modern

SAT solver [5] with an underlying orthogonal optimization prob-

lem provides a powerful mechanism for a hybrid search that has

significant potential for other applications in many domains.
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For simplicity, our description will be based on circuits which

have initially a single clocking domain and include only registers

that are triggered at the same clock edge. However, all presented

concepts can be extended to more general cases including circuits

which have initially multiple, possibly uncorrelated clocking do-

mains and also include level-sensitive latches.

2 Unconstrained Clock Skew Scheduling
In this section, we revisit the algorithmic base for unconstrained

clock skew scheduling which is extended to the constrained case in

the following section. Given a sequential circuit, the objective of

generic clock skew scheduling is to determine an assignment of

latencies to registers in order to minimize the clock period, while

avoiding clocking hazards [1].

Let G ✁ ✂
V ✄ Esetup ✄ Ehold ☎ denote the timing graph for a sequen-

tial circuit. The set of vertices V corresponds to the registers in

the circuit and includes a single vertex for all circuit ports. The

sets Esetup ✆ V ✝ V and Ehold ✆ V ✝ V denote the setup edges and

hold edges, respectively. Esetup contains for each set of combina-

tional circuit paths between registers (or a port) u and v a directed

edge e ✁ ✂
u ✄ v ☎ with weight w

✂
u ✄ v ☎ ✁ Tcycle ✞ dmax

✂
u ✄ v ☎✟✞ dsetup

✂
v ☎ ,

where dmax

✂
u ✄ v ☎ represents the longest combinational delay among

all paths between u and v, dsetup

✂
v ☎ denotes the setup time at v, and

Tcycle is the cycle period. Ehold consists of a set of reversed edges

ehold
✁ ✂

v✄ u ☎ with weight w
✂
v ✄ u ☎ ✁ dmin

✂
u ✄ v ☎✠✞ dhold

✂
v ☎ , where

dmin

✂
u ✄ v ☎ is the shortest combinational delay among all paths be-

tween u and v and dhold

✂
v ☎ denotes the hold time at v.

By construction G is strongly connected and contains at least

one setup edge. We assume that all weights of hold edges are non-

negative, i.e., ✡ e ☛ Ehold : w
✂
e ☎✌☞ 0. This restriction simplifies the

presentation, however, all algorithms can be extended easily for a

relaxed condition that just prohibits negative hold time cycles.

Let l : V ✍✏✎ assign a clock latency to each register and

E ✁ Esetup ✑ Ehold . We want to determine an optimal clock skew

schedule l
✂
v ☎ ✄ v ☛ V such that:✡ ✂ u ✄ v ☎ ☛ E : l

✂
v ☎✒✞ l

✂
u ☎✔✓ w

✂
u ✄ v ☎✕☞ 0 (1)

Tcycle ✍ min

The computed values l give for each register the additional de-

lay (or advance if l ✖ 0) of its clock signal such that the circuit can

be clocked with the minimum cycle period Tcycle. Note that con-

dition (1) ensures that the setup and hold constraints are satisfied

as modeled by the edges Esetup and Ehold , respectively. Figure 1(a)

gives an example of a circuit; the corresponding timing graph is

given in part (b). The setup and hold times of registers and ports

are assumed to be 0. The solid and dashed arcs correspond to the

setup edges Esetup and hold edges Ehold , respectively.

Computation of the optimal clock schedule is closely related

to detection of the critical cycle which is the structural cycle with

the maximum value for total_delay ✗ num_registers (ignoring hold

edges). Detecting the critical cycle is equivalent to computing the

maximum mean cycle (MMC) of a weighted cyclic graph. Our

approach is mainly based on Burn’s work [6, pp. 42-56], which

is to our knowledge one of the fastest practical algorithms for the

MMC computation.

Algorithm 1 describes an adaptation of Burn’s iterative MMC

computation for the given problem. The basic idea is to iteratively

decrease Tcycle and compute the corresponding clock schedule l at

each step until a critical cycle is discovered. First, the algorithm

initializes the schedule with all latencies set to 0 and Tcycle to the
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Figure 1: Example for unconstrained clock skew scheduling: (a)

circuit structure with gate delays, (b) initial timing graph for

Tcycle
✁ 8, (c-e) timing graphs at several iterations leading to a crit-

ical cycle at Tcycle
✁ 6.

maximum edge delay plus the setup time. At each iteration, the set

of edges critical under the current schedule form the critical sub-

Algorithm 1 UNCONSTRAINEDSKEWSCHEDULING (G)

1 foreach v ☛ V : l
✂
v ☎ ✁ 0

2 Tcycle
✁ max ✢ dmax

✂
u ✄ v ☎✔✓ dsetup

✂
v ☎✤✣ ✂ u ✄ v ☎ ☛ Esetup ✥

3 while (true)

// compute critical edges of G yielding critical graph G✦
4 E ✦setup

✁ ✢ ✂ u ✄ v ☎✤✣ ✂ u ✄ v ☎ ☛ Esetup ✧ w
✂
u ✄ v ☎✔✓ l

✂
v ☎✒✞ l

✂
u ☎ ✁ 0 ✥

5 E ✦hold
✁ ✢ ✂ u ✄ v ☎★✣ ✂ u ✄ v ☎ ☛ Ehold ✧ w

✂
u ✄ v ☎✔✓ l

✂
v ☎✒✞ l

✂
u ☎ ✁ 0 ✥

6 G ✦ ✁ ✂
V ✄ E ✦setup ✄ E ✦hold ☎

7 if (G ✦ contains cycle with at least one edge e ☛ E ✦setup)

8 return l ✄ Tcycle // critical cycle found

// compute for each vertex longest distance ∆ from roots in G✦
9 repeat foreach v ☛ V until no change

10 ∆
✂
v ☎ ✁ ✩✪ ✫ 0 : if v is root of G ✦

max ✢✬✢ ∆ ✂ u ☎✔✓ 1 ✣ ✂ u ✄ v ☎ ☛ E ✦setup ✥ ✄✢ ∆ ✂ u ☎✤✣ ✂ u ✄ v ☎ ☛ E ✦hold ✥✭✥ : otherwise

// compute conservative value for reducing Tcycle

11 θ ✁ ∞
12 foreach

✂
u ✄ v ☎ ☛ Esetup

13 if (∆
✂
u ☎✒✞ ∆

✂
v ☎✔✓ 1 ✮ 0)

14 θ ✁ min ✢ θ ✄ w ✯ u ✰ v ✱✳✲ l ✯ u ✱✵✴ l ✯ v ✱
∆ ✯ u ✱✶✲ ∆ ✯ v ✱✷✴ 1 ✥

15 foreach
✂
u ✄ v ☎ ☛ Ehold

16 if (∆
✂
u ☎✒✞ ∆

✂
v ☎ ✮ 0)

17 θ ✁ min ✢ θ ✄ w ✯ u ✰ v ✱✳✲ l ✯ u ✱✵✴ l ✯ v ✱
∆ ✯ u ✱✸✲ ∆ ✯ v ✱ ✥

// update values for l and Tcycle

18 foreach v ☛ V : l
✂
v ☎ ✁ l

✂
v ☎✔✓ θ ✹ ∆ ✂ v ☎

19 Tcycle
✁ Tcycle ✞ θ

802



graph G ✦ (lines 4–6). If G ✦ contains a cycle with at least one setup

edge, the critical cycle has been found and the schedule l and best

Tcycle are returned (line 8). Otherwise, a conservative decrement

θ for the cycle period is computed based on a one-step lookahead

from the ends of the critical subgraph (lines 12–17). This calcu-

lation and the fast update of the schedule l uses the longest dis-

tance ∆
✂
v ☎ of vertex v from any root of G✦ (line 10). Note that

G ✦ may contain cycles formed by hold edges only. However, the

increments of the ∆ values along such cycles are 0 and thus con-

vergence is guaranteed. At the end of each iteration the schedule

l and Tcycle are updated (lines 18,19). Note that when algorithm

UNCONSTRAINEDSKEWSCHEDULING terminates, the sum of the

edge weights w of the critical cycles is equal to zero.

For the given example in Figure 1, the first iteration of Algo-

rithm 1 results in the graph depicted in part (c) where the two

critical edges
✂
v1 ✄ v2 ☎ and

✂
v3 ✄ v4 ☎ with delays equal to the cur-

rent clock period are highlighted. Now, ∆
✂
v2 ☎ ✁ ∆

✂
v4 ☎ ✁ 1, and

∆
✂
v1 ☎ ✁ ∆

✂
v3 ☎ ✁ 0. The edge

✂
v2 ✄ v3 ☎ determines θ ✁ 1 as the max-

imum amount by which Tcycle can be reduced. Thus Tcycle
✁ 7 at

the end of the iteration and the vertex latencies are as shown in part

(c). The following iteration (d) adds one new critical edge, and

θ ✁ 1 results in Tcycle
✁ 6. The next iteration (e) finds a critical

cycle and returns Tcycle
✁ 6 as the best possible cycle time.

3 Multi-Domain Clock Skew Scheduling

3.1 Problem Formulation
Multi-domain clock skew scheduling of a timing graph G ✁✂

V ✄ Esetup ✄ Ehold ☎ for a small number of domains imposes additional

constraints on the values for clock latencies. For a given number

of clocking domains n and a maximum permissible within-domain

latency δ, all clock latencies must fit into n value ranges✂
l
✂
d1 ☎ ✄ l ✂ d1 ☎✔✓ δ☎✹✺✹✺✹✂

l
✂
dn ☎ ✄ l ✂ dn ☎✔✓ δ☎

where l
✂
di ☎ denotes the phase shift of domain i. The objective of

multi-domain clock skew scheduling is to determine domain phase

shifts l
✂
d ☎ and register latencies l

✂
v ☎ that satisfy the above range

constraints and minimize the period Tcycle.

For a formal model we extend the definition of the timing graph

by introducing a set of domain vertices and conditional edges be-

tween registers and domains. Let G ✁ ✂
V ✄ D ✄ Esetup ✄ Ehold ✄ Econd ☎

denote a multi-domain timing graph where the set of vertices V and

sets of edges Esetup and Ehold have the same definition as before. D

represents a set of vertices that correspond to the clocking domains

and Econd
✁ ✂

V ✝ D ☎ ✑ ✂ D ✝ V ☎ are conditional edges associating

the registers to the domains. For each pair v ☛ V ✄ d ☛ D two locking

edges
✂
v ✄ d ☎ and

✂
d ✄ v ☎ are included in Econd with the conditional

weights w
✂
v ✄ d ☎ and w

✂
d ✄ v ☎ , respectively. Using a set of Boolean

variables x
✂
v✄ d ☎ ☛✻✢ 0 ✄ 1 ✥ the weights are defined as follows:

w
✂
v✄ d ☎ ✁✽✼ δ : if x

✂
v✄ d ☎ ✁ 1

∞ : otherwise

w
✂
d ✄ v ☎ ✁✽✼ 0 : if x

✂
v ✄ d ☎ ✁ 1

∞ : otherwise

The Boolean attribute x
✂
v✄ d ☎ is true if register v is assigned to

domain d. Let l
✂
d ☎ be the phase shift of domain d. The conditional

weights on the edges of Econd ensure that the latency l
✂
v ☎ of register

v is bound by l
✂
d ☎✿✾ l

✂
v ☎✿✾ l

✂
d ☎✔✓ δ if v is assigned to d.

Let E ✁ Esetup ✑ Ehold ✑ Econd . For constrained clock skew

scheduling we want to determine a set of register clock latencies

l
✂
v ☎ ✄ v ☛ V , domain phase shifts l

✂
d ☎ ✄ d ☛ D, and assignments of

registers to domains x
✂
v✄ d ☎ such that:✡ ✂ u ✄ v ☎ ☛ E : l

✂
v ☎✒✞ l

✂
u ☎✔✓ w

✂
u ✄ v ☎✌☞ 0 (2)✡ v ☛ V : ∑❀

d

x
✂
v✄ d ☎ ✁ 1 (3)

Tcycle ✍ min

Similar to the unconstrained case, constraint (2) ensures that

all setup and hold time constraints are satisfied and furthermore

that all registers assigned to a domain do not exceed the specified

maximum within-domain latency. Condition (3) specifies that each

register has to be assigned to exactly one domain.

3.2 Base Algorithm

The problem formulation for constrained clock skew schedul-

ing presented in the previous section establishes a Mixed Integer

Linear Program (MILP). Unfortunately, the size of practical prob-

lem instances involving thousands of registers makes their solution

intractable for generic MILP solvers.

Our objective is to efficiently solve the constrained clock skew

scheduling problem for a small number of domains. We use a hy-

brid approach combining a CNF-based SAT solver with a modified

version of the scheduling algorithm used in the unconstrained case.

We use the SAT solver for enumerating the assignments of regis-

ters to domains based on the presented encoding with the Boolean

variables x. Boolean constraints are applied to restrict the search

to valid assignments according to condition (3) and to incremen-

tally record parts of the solution space that do not contain solutions

that are better than the best found thus far. This recording is done

by adding conflict clauses to the SAT problem which prevent the

solver from revisiting symmetric parts of the solution space.

The basic flow of our approach is shown in Algorithm 2. After

initialization on lines 1 and 2, an empty CNF formula φ is cre-

ated with a set of variables for the registers and clocking domains.

The procedure INITIALCONSTRAINTS then adds an initial set of

Boolean constraints to φ that encode valid register-to-domain as-

signments and represent necessary conditions for the optimization

problem. Next the SAT solver is called iteratively to find a com-

plete satisfying assignment xSAT with respect to φ. For each gener-

ated satisfying assignment, one of the following applies: (1) if the

minimum possible period for the configuration is greater than the

current best value for Tcycle, then this can be detected by a negative

cycle in the graph configured by xSAT , or (2) if there are no negative

cycles, then Tcycle can be further improved using Burn’s algorithm.

In the first case the procedure NEGCYCLECONSTRAINTS

learns the negative cycles by adding corresponding CNF constraints

to φ. In the second case the modified critical cycle analysis shown

in Algorithm 3 is invoked to further improve Tcycle until a tighter

critical cycle is reached. Following this optimization step, the pro-

cedure TIGHTENINGCONSTRAINTS adds a set of new CNF con-

straints to φwhich encode the critical cycles in G and other condi-

tions that are necessary for improving the solution.

The negative and critical cycle constraints jointly ensure that no

configuration with previously encountered cycles is revisited. The

iteration between the SAT solver and the critical cycle analysis is

continued until no new solution can be found. At this point, the

values for the last Tcycle and l presents the optimal solution for the

constrained clock skew scheduling problem.
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Algorithm 2 CONSTRAINEDSKEWSCHEDULING (G)

1 Tcycle
✁ max ✢ dmax

✂
u ✄ v ☎✔✓ dsetup

✂
v ☎✤✣ ✂ u ✄ v ☎ ☛ Esetup ✥

2 φ ✁ empty CNF formula with variables ✢ x
✂
v ✄ d ☎★✣ v ☛ V ✄ d ☛ D ✥

3 INITIALCONSTRAINTS
✂
G ✄ φ☎

4 while (true)

5 xSAT
✁ SATSOLVE (φ)

6 if (xSAT
✁

UNSAT)

7 return l ✄ Tcycle

8 if (G contains negative weighted cycle)

9 NEGCYCLECONSTRAINTS
✂
G ✄ Tcycle ✄ φ✄ xSAT ☎

10 else
11 l ✄ Tcycle

✁ CONDITIONALSCHEDULE
✂
G ✄ xSAT ☎

12 TIGHTENINGCONSTRAINTS
✂
G ✄ Tcycle ✄ φ✄ xSAT ☎

The following sections describe the details of the invidual pro-

cedures used in Algorithm 2. Section 3.3 outlines how the basic

algorithm presented in this section can be further improved.

3.2.1 Algorithm CONDITIONALSCHEDULE

Algorithm 3 gives the pseudo-code for the modified critical cy-

cle analysis. The assignment to xSAT is used to “activate” some of

the conditional edges of Econd , which are then treated in the same

way as the edges of Ehold in Algorithm 1.

To simplify the presentation of the algorithmic flow, we show

all register latencies initialized to 0 and Tcycle is set to the maxi-

mum combinational delay each time Algorithm 3 is invoked. This

ensures a valid starting point for Burn’s algorithm. Furthermore,

CONDITIONALSCHEDULE is only applied if G does not contain

any negative cycle for the current Tcycle – thus it is guaranteed that

a schedule with an equal or smaller value for Tcycle can be found.

In the actual implementation, the detection of negative cycles on

line 8 of Algorithm 2 and the computation of valid register latencies

for the given best Tcycle is combined using a single analysis run.

Algorithm 3 CONDITIONALSCHEDULE (G ✄ xSAT )

1 foreach v ☛ V : l
✂
v ☎ ✁ 0

2 Tcycle
✁ max ✢ dmax

✂
u ✄ v ☎✔✓ dsetup

✂
v ☎✤✣ ✂ u ✄ v ☎ ☛ Esetup ✥

3 while (true)

4 E ✦setup
✁ ✢ ✂ u ✄ v ☎✤✣ ✂ u ✄ v ☎ ☛ Esetup ✧ w

✂
u ✄ v ☎✔✓ l

✂
v ☎✒✞ l

✂
u ☎ ✁ 0 ✥

5 E ✦hold
✁ ✢ ✂ u ✄ v ☎✤✣ ✂ u ✄ v ☎ ☛ Ehold ✧ w

✂
u ✄ v ☎✔✓ l

✂
v ☎❁✞ l

✂
u ☎ ✁ 0 ✥

6 E ✦cond
✁ ✢ ✂ u ✄ v ☎★✣ ✂ u ✄ v ☎ ☛ Econd ✧ w

✂
u ✄ v ☎✟✓ l

✂
v ☎✒✞ l

✂
u ☎ ✁ 0 ✥

7 G ✦ ✁ ✂
V ✄ E ✦setup ✄ E ✦hold ✄ E ✦cond ☎

8 if (G ✦ contains cycle with at least one edge e ☛ E ✦setup)

9 return l ✄ Tcycle // critical cycle found

10 repeat foreach v ☛ V until no change

11 ∆
✂
v ☎ ✁ ✩✪ ✫ 0 : if v is root of G ✦

max ✢✬✢ ∆ ✂
u ☎✔✓ 1 ✣ ✂ u ✄ v ☎ ☛ E ✦setup ✥ ✄✢ ∆ ✂
u ☎✤✣ ✂ u ✄ v ☎ ☛ E ✦hold ✑ E ✦cond ✥✭✥ : otherwise

12 θ ✁ ∞
13 foreach

✂
u ✄ v ☎ ☛ Esetup

14 if (∆
✂
u ☎❁✞ ∆

✂
v ☎✔✓ 1 ✮ 0)

15 θ ✁ min ✢ θ ✄ w ✯ u ✰ v ✱✶✲ l ✯ u ✱✷✴ l ✯ v ✱
∆ ✯ u ✱✸✲ ∆ ✯ v ✱✷✴ 1 ✥

16 foreach
✂
u ✄ v ☎ ☛ Ehold ✑ Econd

17 if (∆
✂
u ☎❁✞ ∆

✂
v ☎ ✮ 0)

18 θ ✁ min ✢ θ ✄ w ✯ u ✰ v ✱✶✲ l ✯ u ✱✷✴ l ✯ v ✱
∆ ✯ u ✱✶✲ ∆ ✯ v ✱ ✥

19 foreach v ☛ V : l
✂
v ☎ ✁ l

✂
v ☎✔✓ θ ✹ ∆ ✂

v ☎
20 Tcycle

✁ Tcycle ✞ θ

This provides a good starting point for tightening the critical cycle

and thus avoids unnecessary iterations of Burn’s algorithm.

3.2.2 Algorithm INITALCONSTRAINTS

There are two sets of initial constraints for the SAT solver. The

first set ensures that each register is assigned to exactly one domain.

This is encoded by the following set of CNF clauses for all v ☛ V

and all di ✄ d j ☛ D ✄ i ❂✁ j: ❃ ❀
d

x
✂
v✄ d ☎

x
✂
v✄ di ☎✔❄ x

✂
v✄ d j ☎

To avoid visiting symmetric domain assignments, one can either

encode a corresponding set of CNF constraints that exclude these

cases, or define a total ordering of the phase shifts of the individual

domains such that:

i ✖ j ❅ l
✂
di ☎✌✾ l

✂
d j ☎

In our approach we chose the latter method which can be en-

forced by adding an edge
✂
di ✄ di ✴ 1 ☎ to the timing graph with weight

w
✂
di ✄ di ✴ 1 ☎ ✁ 0. Algorithm 4 summarizes the generation of initial

constraints.

Algorithm 4 INITIALCONSTRAINTS (G ✄ φ)

1 foreach v ☛ V

2 φ ✁ φ ✑ ✢ ✂❇❆ ❀ d x
✂
v✄ d ☎❈☎ ✥

3 foreach di ✄ d j ☛ D ✄ di ❂✁ d j

4 φ ✁ φ ✑ ✢ ✂ x ✂ v✄ di ☎❉❄ x
✂
v✄ d j ☎✺☎ ✥

5 foreach i : 0 ✖ i ✖ ✣D ✣❈✞ 1

6 Ehold
✁ Ehold ✑ ✢ ✂ di ✄ di ✴ 1 ☎ ✥

7 w
✂
di ✄ di ✴ 1 ☎ ✁ 0

In the actual implementation, the edge weights are set to a

slightly tighter value w
✂
di ✄ di ✴ 1 ☎ ✁ ✞ δ excluding “overlapping” so-

lutions which can occur due to the within-domain latency of up

to δ. However, using negative weights for the domain-to-domain

edges requires special care for the initialization of the schedule l

for Burn’s algorithm.

3.2.3 Algorithm NEGCYCLECONSTRAINTS

Algorithm NEGCYCLECONSTRAINTS is invoked if the graph

currently configured cannot implement the best cycle time Tcycle

found thus far. This situation is detected by finding a cycle in G

that contains at least one setup edge and has a non-positive cycle

weight. Clearly, any such cycle must contain at least one pair of

“active” conditional edges from Econd . This is because a negative

cycle just consisting of edges from Esetup ✑ Ehold constrains the

minimum value of Tcycle independently of the domain assignment

and hence would have been detected earlier.

The negative or zero weighted cycles are encoded as CNF

conflict clauses and added to φ. For example, if a cycle con-

tains the two conditional edges
✂
v1 ✄ d1 ☎ and

✂
v2 ✄ d2 ☎ , the clause

x
✂
v1 ✄ d1 ☎❁❄ x

✂
v2 ✄ d2 ☎ is added which ensures that in the future both

edges are not activated at the same time. Since the number of cycles

is generally exponential, our implementation uses a greedy heuris-

tic which encounters all cycles up to four conditional edges. Our

experiments show that this scheme provides an efficient means to

keep the number of learned clauses small and at the same time en-

sure quick convergence. Algorithm 5 summarizes the learning of

negative cycle constraints.
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Algorithm 5 NEGCYCLECONSTRAINTS (G ✄ Tcycle ✄ φ✄ xSAT ☎
1 foreach cycle Ecycle ✆ Esetup ✑ Ehold ✑ Econd

with ∑e ❊ Ecycle
w
✂
e ☎❋✾ 0 and at least one edge e ☛ Esetup

2 φ ✁ φ ✑ ✢ ✂❇❆ ❀ e ❊ Ecycle ● Econd
x
✂
e ☎✺☎ ✥

3.2.4 Algorithm TIGHTENINGCONSTRAINTS

If no negative cycles are encountered algorithm CONDITION-

ALSCHEDULE is invoked to improve the clock period Tcycle and

calculate a corresponding schedule l. After this computation, a set

of constraints encoding the zero-weight critical cycles are added

which prevent revisiting a configuration with an identical critical

cycle.

Algorithm 6 TIGHTENINGCONSTRAINTS (G ✄ Tcycle ✄ φ✄ xSAT ☎
// Critical cycle constraints

1 foreach cycle Ecycle ✆ Esetup ✑ Ehold ✑ Econd

with ∑e ❊ Ecycle
w
✂
e ☎ ✁ 0 and at least one edge e ☛ Esetup

2 φ ✁ φ ✑ ✢ ✂❇❆ ❀ e ❊ Ecycle ● Econd
x
✂
e ☎✺☎ ✥

// Precedence constraints

3 foreach di : 0 ✖ i ✖ ✣D ✣
4 foreach d j : i ✾ j ✖ ✣D ✣
5 foreach u ✄ v ☛ V ✄ u ❂✁ v

6 wP
✂
u ✄ v ☎ ✁ SHORTESTPATHLENGTH

✂
G ✄ u ✄ v ☎

7 if (wP
✂
u ✄ v ☎✔✓ ✂

1 ✓ i ✞ j ☎ ✹ δ ✾ 0)
8 φ ✁ φ ✑ ✢ ✂ x ✂ v✄ di ☎✔❄ x

✂
u ✄ d j ☎❈☎ ✥

Algorithm 6 gives the general computation of the tightening

constraints learned when Tcycle is improved. The critical cycle con-

straints are computed on lines 1–2. Lines 3–8 determine the prece-

dence constraints which arise due to the enforceable value order-

ing of phase shifts between individual domains, similar to the ones

generated in procedure INITIALCONSTRAINTS. For example, if

the weight of an edge
✂
u ✄ v ☎ ☛ Esetup ✑ Ehold is less than or equal

to 0, condition (2) in the MILP formulation implies l
✂
v ☎❍☞ l

✂
u ☎ .

Because of the assumed ordering of domains this inequality can

be learned through the following set of clauses generated for all

di ✄ d j ☛ D : i ✖ j:

x
✂
v✄ di ☎❉❄ x

✂
u ✄ d j ☎

These clauses effectively capture the constraint that any satis-

fying configuration xSAT can only allow assignments x
✂
u ✄ di ☎ and

x
✂
v✄ d j ☎ where i ✾ j. The condition can be applied more generally

by including any path from u to v formed by edges of Esetup ✑ Ehold

with negative path weight. When Tcycle is decreased, all edges in

Esetup decrease in weight. The precedence constraint can then be

implied on a subset of paths in G ✁ ✂
V ✄ Esetup ✄ Ehold ☎ whose weights

become negative. Again, overlapping solutions can be avoided

by tightening these constraints by the sum of the bounds on the

within-domain latencies. For an efficient generation of precedence

constraints, an incremental All-Pairs-Shortest-Path algorithm [7] is

used to update the shortest path delays between any pair of nodes

in G whenever Tcycle is improved.

3.2.5 Example

Figure 2 shows the multi-domain timing graphs for two config-

urations for the example of Figure 1 with two clocking domains

and within-domain latency δ ✁ 0. The minimum period with two

domains (Tcycle
✁ 7) is achieved by configuration (b). Note that

with three domains the minimum clock period is 6, which is just

the solution for the unconstrained case as derived in Figure 1. In-

deed, the optimum clock period achieved in the unconstrained case

provides a lower bound for the optimum period when the number

of domains is constrained.

For the constrained clock skew scheduling example in Figure 2,

there are at most ✣D ✣ ■V ■ ✁ 25 ✁ 32 different configurations to ex-

plore in order to compute the smallest period with two domains.

The key for efficiently pruning the search is based on the obser-

vation that the period of a particular configuration is limited only

by the subset of the register-domain assignments that correspond

to critical cycles in the timing graph. For example, after the SAT

solver generates the configuration in Figure 2(a), we can avoid

any other configuration with either the assignments x
✂
v1 ✄ d1 ☎ ✁

x
✂
v2 ✄ d1 ☎ ✁ 1 or x

✂
v3 ✄ d2 ☎ ✁ x

✂
v4 ✄ d2 ☎ ✁ 1, since the corresponding

critical cycles always limit Tcycle to 8. This is encoded by adding

the following two CNF conflict clauses to φ:
✂
x
✂
v1 ✄ d1 ☎✔❄ x

✂
v2 ✄ d1 ☎✺☎

and
✂
x
✂
v3 ✄ d2 ☎✔❄ x

✂
v4 ✄ d2 ☎✺☎ .

When the configuration in Figure 2(b) is visited, Tcycle is up-

dated to 7 and the corresponding critical cycles are learned. In this

manner, the algorithm continuously generates valid configurations,

prunes the remaining search space by learning critical cycles, and

improves Tcycle until the SAT solver is unable to find another satis-

fying register-domain assignment.

(a) (b)Tcycle ❏ 8 Tcycle ❏ 7

l ❑ d1 ▲✺❏ 0 l ❑ d2 ▲✺❏ 0

l ❑ v4 ▲✺❏ 0

l ❑ v1 ▲✺❏ 0l ❑ v2 ▲❈❏ 0

l ❑ vio ▲❈❏ 0

l ❑ v3 ▲❈❏ 0

l ❑ v1 ▲❈❏ 0

l ❑ d1 ▲✺❏ 0 l ❑ d2 ▲❈❏ 1

l ❑ v2 ▲✺❏ 1

l ❑ v4 ▲✺❏ 1

l ❑ v3 ▲❈❏ 0

l ❑ vio ▲✺❏ 0

Figure 2: Two register-domain assignments for the circuit from

Figure 1 optimized for two clocking domains: (a) 1. configuration:✢ x
✂
v1 ✄ d1 ☎ ✁ x

✂
v2 ✄ d1 ☎ ✁ x

✂
vio ✄ d1 ☎ ✁ 1 ✄ x ✂ v3 ✄ d2 ☎ ✁ x

✂
v4 ✄ d2 ☎ ✁ 1 ✥ ;

Critical cycles:
✂
d1 ✄ v1 ✄ v2 ☎ , ✂ d2 ✄ v3 ✄ v4 ☎ ; Tcycle

✁ 8, (b) 2. configura-

tion: ✢ x
✂
v1 ✄ d1 ☎ ✁ x

✂
v3 ✄ d1 ☎ ✁ x

✂
vio ✄ d1 ☎ ✁ 1 ✄ x ✂ v2 ✄ d2 ☎ ✁ x

✂
v4 ✄ d2 ☎ ✁

1 ✥ ; Critical cycles:
✂
d1 ✄ v1 ✄ v2 ✄ v3 ☎ , ✂ d2 ✄ v2 ✄ v3 ✄ v4 ☎ ; Tcycle

✁ 7.

3.3 Further Algorithmic Improvements

The base algorithm works efficiently for larger circuits up to

three clocking domains. However, in the case of more clocking

domains, the exponential nature of the problem may cause long

runtimes. Note that the search can be interrupted at any point; all

encountered solutions are valid; thus the last one can serve as sub-

optimal schedule.

We observed that the runtime can be reduced significantly when

the search is composed of the following three phases: (1) initial es-

timation of a good solution based on binning of the unconstrained

clock schedule, (2) gradual improvement of this solution based on

a limited search space that preserves the ordering of the uncon-

strained schedule and (3) final full search with temporary limitation

removed. When artificially over-constraining the search during the

first two phases, the solver converged significantly faster. Further-

more, many negative cycle and tightening constraints can be added

for the final full search which in turn improves its run time.

Algorithm 7 gives an overview of this refined algorithm; the

following sections elaborate on the details of the first two phases.
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Algorithm 7 REFINEDCONSTRAINEDSKEWSCHEDULING (G)

1 Tcycle
✁ max ✢ w

✂
u ✄ v ☎✤✣ ✂ u ✄ v ☎ ☛ Esetup ✥

// Phase 1: Use constraints from binning unconstrained schedule

2 Tcycle
✁ INITIALSOLUTION (G ✄ Tcycle)

// Phase 2: Use constraints to preserve partial ordering of

// unconstrained schedule

3 Tcycle
✁ PARTIALORDERSOLUTION (G ✄ Tcycle)

// Phase 3: Full search

4 l ✄ Tcycle
✁ FULLSOLUTION (G ✄ Tcycle)

5 return l ✄ Tcycle

Algorithm 8 PARTIALORDERINGCONSTRAINTS (G ✄ φ)

1 l ✄ T ✦cycle
✁ UNCONSTRAINEDSKEWSCHEDULING (G)

2 foreach
✂
u ✄ v ☎ ☛ E

3 if l
✂
u ☎ ✮ l

✂
v ☎

4 foreach di ✄ d j ☛ D ✄ i ✖ j

5 φ ✁ φ ✑ ✢ ✂ x ✂ u ✄ di ☎✔❄ x
✂
v✄ d j ☎❈☎ ✥

3.3.1 Initial Solution

A simple approach to derive a good initial value for Tcycle is

to solve the unconstrained clock skew scheduling problem for G

using Algorithm 1 and then distribute the resulting latencies greed-

ily into ✣D ✣ bins of size lmax ✲ lmin■D ■ , where lmax and lmin represent the

maximum and minimum latency of the unconstrained schedule, re-

spectively. The actual clock period for this solution is computed by

translating the latency binning into corresponding register-domain

edges in G followed by single run of Algorithm 3.

Furthermore, the best solution for ✣D ✣▼✞ 1 domains provides an

upper bound for Tcycle with ✣D ✣ domains. Since the algorithm runs

significantly faster for fewer clocking domains, a previously com-

puted solution for fewer domains can be used as an alternative start-

ing point if it’s value for Tcycle is smaller than the one from binning.

3.3.2 Partial Ordering Heuristic

After the initialization step, we can introduce a set of partial

ordering constraints on the domain assignments of registers. The

partial ordering helps in trimming the search space, but may in turn

also exclude the optimum solution. The heuristic assumes that if

in the unconstrained skew schedule register u has a latency greater

than that of register v, then there exists an optimum constrained

skew schedule that has u assigned to a domain equal to or higher

than v. The constraint generation for this heuristic is detailed in

Algorithm 8. The SAT-based search is then applied to this over-

constrained problem. The resulting clock period is a good starting

point for the final run of the solver to compute the exact optimum.

The partial ordering heuristic appears to be exact for small cir-

cuits; however, one can show that the ordering constraints may ex-

clude better solutions as illustrated by a simple counter-example

given in Figure 3. For this graph, the optimum Tcycle is 4 for the

unconstrained case. The latencies at each vertex to achieve this pe-

riod are shown in the figure. Note that the constrained version of

the problem will require at least 8 clocking domains to achieve this

period.

Let dv denote the domain that vertex v is assigned to. Allowing

only two clocking domains and zero within-domain latency (i.e.,

δ ✁ 0), the path from v1 to v4 restricts the optimal period achiev-

able with two domains to 8. The phase shifts of the individual

domains are l
✂
d1 ☎ ✁ 0 and l

✂
d2 ☎ ✁ 2. The domain assignments of

the individual vertices are dv1

✁ dv3

✁ d1 and dv2

✁ dv4

✁ d2, with

the remaining vertices assigned to either domain.

To preserve the latency ordering of the unconstrained schedule,

the partial ordering heuristic requires the constraints dv1 ✾ dv2 ✾
dv3 ✾ dv4

. However, the constraint dv2 ✾ dv3
clearly violates all

optimal domain-register assignments. The application of partial or-

dering constraints results in a period of 10, which is sub-optimal.

T ◆ 10T ◆ 10 T ◆ 6 T ◆ 2

T ◆ 2T ◆ 2T ◆ 2T ◆ 2

T ◆ 2 T ◆ 2

10 106 2

22 22

2 2

l ❖ v1 P❘◗ 0 l ❖ v2 P❘◗ 6 l ❖ v3 P❘◗ 8 l ❖ v4 P❙◗ 14 l ❖ v5 P❘◗ 12

l ❖ v6 P❙◗ 10l ❖ v7 P❘◗ 8l ❖ v8 P❘◗ 6l ❖ v9 P❘◗ 4l ❖ v10 P❙◗ 2

v2 v3 v4 v5

v6v7v8v9v10

v1

Figure 3: Example to demonstrate that the partial ordering heuristic

may over-constrain the solution space and thus lead to a suboptimal

schedule and cycle period.

4 Previous Work

The original definition of the clock skew optimization problem

was given by Fishburn [1]. He formulated the unconstrained clock

skew scheduling problem as a linear program, similar to the spec-

ification given in Equation (1) earlier in this paper. Deokar and

Sapatnekar [8] translated this problem to a graph-theoretical set-

ting. The idea of their approach is to perform a binary search for

the smallest period Tcycle characterized by the absence of a negative

weight cycle in the constraint graph.

Albrecht, et al. [9] proposed a solution for a concurrent cycle

time and slack optimization based on the parametric shortest path

algorithm [10]. They extend the basic framework to balance slacks

on all circuit paths in order to restrict uncertainties in the imple-

mentation of delay buffers and clock tree synthesis.

To our knowledge, the practically fastest algorithm applicable

for unconstrained clock skew scheduling has been published by

Burns [6]. Here, the computation of the optimal clock schedule

is related to the detection of the critical cycle. Burn’s algorithm

provides a fast method to identify the critical cycle and distribute

the smallest amount of latency necessary for the registers to attain

the optimal cycle period. It is this algorithm that we use in the inner

loop of our approach for constrained clock skew scheduling.

There is no work that proposes a solution to the constrained

clock skew scheduling problem that is considered in this paper.

Toyonaga, et al. [11] proposed an algorithm based on simulated

annealing to synthesize a semi-synchronous clock tree optimizing

a function of clock period and area. However, the focus there was

on generating a feasible clock tree as opposed to finding an optimal

solution for the cycle time in the clock skew scheduling problem.

The work that comes closest to our problem of constrained clock

skew scheduling was published by Singh and Brown [12]. The au-

thors consider the problem of clock skew scheduling using a fixed,

small set of clocking domains with pre-determined phase shifts to

be implemented in FPGA’s. The solution is a slight modification of

the unconstrained clock skew scheduling method and uses an itera-

tive Bellman-Ford algorithm. However, the quality of their results

is only as good as the predefined phase shift values. In contrast, our

work considers the more general problem of multi-domain clock

skew scheduling where the phase shifts of the domain can be mod-

ified for optimal performance.
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5 Experimental Results

To evaluate the algorithm and observe its performance on prac-

tical designs, we have created a prototype implementation using

the presented methods on top of the SAT solver Chaff [5]. Our

benchmark suite consisted of the 31 ISCAS89 sequential circuits

and 8 industrial designs. The ISCAS benchmarks were technol-

ogy mapped through SIS [13] using the library lib2.genlib. The

industrial circuits were generated by a commercial logic synthesis

tool using industrial ASIC libraries. We applied the REFINEDCON-

STRAINEDSKEWSCHEDULING algorithm to determine the mini-

mum feasible clock period with up to four clocking domains and

a within-domain latency of up to 10% of the initial cycle period

corresponding to the longest combinational delay including setup

time. The experiments were conducted on a PentiumIII 2GHz pro-

cessor with 2GB RAM running Linux. The results are reported in

Tables 1 and 2. Table 3 presents the run times and the number of

SAT solver iterations for the industrial circuits.

Columns 2 and 3 in Tables 1 and 2 give the number of vertices

and edges in the timing graph. Column 4 reports the optimal clock

period T∞
cycle achievable through clock skew scheduling with an un-

constrained number of domains. This is a lower bound. Column 5

shows the initial cycle time for the circuit corresponding to a zero-

skew schedule which is simply the longest combinational path de-

lay. This is an upper bound and corresponds to a configuration with

one domain and zero within-domain latency, denoted as T
1 ✰ 0

cycle
. The

subsequent columns report the optimum clock period computed by

our algorithm for a bounded number of domains and within-domain

latency of 0%, 5%, and 10% of T
1 ✰ 0

cycle. The numbers reported in a

column with a label of T
x ✰ y

cycle
indicate the optimum cycle time for x

clock domains and a within-domain latency of δ ✁ y% ✹ T
1 ✰ 0

cycle
. We

highlighted all dominating solutions, i.e., the non-bold entries re-

flect solutions for which there exist an equivalent or better one with

fewer domains or a smaller value for the within-domain latency.

The algorithm easily optimized all ISCAS benchmarks – for a

majority of instances, the optimum was achieved with less than

three domains. The total run time on the first 27 ISCAS bench-

marks was less than a minute. The last four circuits took only

slightly longer. The results reported in Table 2 indicate a con-

siderable cycle time improvement in most of the industrial cir-

cuits. Even with two domains and a within-domain latency of

δ ✁ 5% ✝ T
1 ✰ 0

cycle
, the industrial benchmarks achieved on average

90% of the optimum cycle time (T∞) possible. With three domains

and 5% ✝ T
1 ✰ 0

cycle
latency, these benchmarks come as close as 95% of

the optimum solution. In fact, for six of the eight industrial bench-

marks, we achieve the lowest clock period possible through clock

skew scheduling with four domains; four among these reached the

optimum with three domains. The run times were reasonable, given

the high complexity of the problem. For design D2, with four do-

mains and no within-domain skew, we terminated the algorithm

after 20 hours; it had achieved a cycle time of 15.89 as shown. We

re-ran that case with a tight initial guess (from a previous run) and

the algorithm terminated in 17 hours with the optimum cycle time,

which for that case is 15.41.

Figure 4 tracks the progress of the three phases of the algo-

rithm over time for seven industrial designs constrained by four

clocking domains and zero within-domain latency. Circuit D4 is

not included because the optimum period was trivially computed

and there was no iterative improvement. The execution time and

clock period have been normalized: 100% corresponds to the clock

period of the zero-skew schedule T
1 ✰ 0

cycle
. The curves are not a

comparison of relative progress - rather, they capture the rate at

which Tcycle is improved. The three phases of the REFINEDCON-

STRAINEDSKEWSCHEDULING algorithm are indicated by a dot-

ted segment denoting the initial solution, a solid line represent-

ing phase 2 where partial ordering constraints are introduced and

a dashed line denoting the last phase where a full search is per-

formed. From the graph, it can be observed that the cycle times

improve most dramatically early in the algorithm. Hence, with lim-

ited CPU time, one can stop the algorithm shortly into phase 3 and

still expect very good improvements in cycle time.
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Figure 4: Graphical tracking of the algorithm’s progress over time

for seven industrial designs optmized for four clocking domains

and zero within-domain latency. The dotted, solid, and dashed seg-

ments denote phases 1, 2, and 3, respectively of Algorithm 7.

6 Conclusions

In this paper we presented an algorithm for constrained clock

skew scheduling which computes for a fixed number of clocking

domains the optimal phase shifts for the domains and the assign-

ment of the individual registers to the domains. For the within-

domain latency values, the algorithm can assume a zero-skew clock

delivery or apply a user-provided upper bound. Our algorithm

is based on a branch-and-bound enumeration of the register-to-

domain assignments. We apply a CNF-based SAT solver for the

enumeration process and use learning of CNF constraints to pre-

vent invalid register assignments and to record sets of inferior solu-

tions which should not be revisited. The actual evaluation of each

assignment is performed by an incremental maximum mean cycle

analysis on the constraint graph.

Our experiments indicate, that despite the potential complex-

ity of the enumeration process, the presented algorithm is efficient

for modestly sized circuits and works even for circuits with several

thousand registers reasonably fast. Furthermore, our results show

that a constrained clock skew schedule with few clocking domains

and zero or 5% within-domain latency can in most cases achieve the

optimal cycle time dictated by the critical cycle of the circuit. The

resulting multi-domain solution provides a significant advantage

over the corresponding unconstrained clock skew schedule which

typically has large variations of register latencies and thus cannot

be implemented in a reliable manner.
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Design # FF # Edges T∞
cycle δ = 0% ❚ T

1 ❯ 0
cycle

δ = 5% ❚ T
1 ❯ 0
cycle

δ =10% ❚ T
1 ❯ 0
cycle

T
1 ❯ 0
cycle

T
2 ❯ 0
cycle

T
3 ❯ 0
cycle

T
4 ❯ 0
cycle

T
1 ❯ 5
cycle

T
2 ❯ 5
cycle

T
3 ❯ 5
cycle

T
4 ❯ 5
cycle

T
1 ❯ 10
cycle

T
2 ❯ 10
cycle

T
3 ❯ 10
cycle

T
4 ❯ 10
cycle

s1196 19 365 22.28 22.28 22.28 22.28 22.28 22.28 22.28 22.28 22.28 22.28 22.28 22.28 22.28

s1423 76 2235 73.13 79.04 75.35 73.82 73.13 75.08 73.13 73.13 73.13 73.13 73.13 73.13 73.13

s298 16 86 10.79 13.05 11.36 10.79 10.79 12.40 10.79 10.79 10.79 11.75 10.79 10.79 10.79

s420 18 146 21.13 22.06 21.13 21.13 21.13 21.13 21.13 21.13 21.13 21.13 21.13 21.13 21.13

s526 23 167 11.22 13.48 11.79 11.22 11.22 12.81 11.22 11.22 11.22 12.13 11.22 11.22 11.22

s641 21 486 29.51 29.98 29.51 29.51 29.51 29.51 29.51 29.51 29.51 29.51 29.51 29.51 29.51

s832 7 213 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22

s953 8 94 15.36 17.32 15.77 15.36 15.36 16.48 15.36 15.36 15.36 15.59 15.36 15.36 15.36

s1238 19 365 24.33 26.15 24.36 24.33 24.33 24.84 24.33 24.33 24.33 24.33 24.33 24.33 24.33

s1488 8 266 23.18 23.58 23.18 23.18 23.18 23.18 23.18 23.18 23.18 23.18 23.18 23.18 23.18

s208 10 70 9.91 10.84 9.91 9.91 9.91 10.30 9.91 9.91 9.91 9.91 9.91 9.91 9.91

s344 17 121 13.14 15.57 14.32 13.19 13.14 14.79 13.54 13.14 13.14 14.16 13.14 13.14 13.14

s382 23 175 9.63 14.06 11.55 9.77 9.63 13.36 10.71 9.63 9.63 12.66 10.01 9.63 9.63

s386 8 129 9.60 10.56 9.97 9.60 9.60 10.03 9.62 9.60 9.60 9.74 9.60 9.60 9.60

s444 23 175 8.10 13.92 10.84 9.55 8.88 13.22 10.14 8.86 8.18 12.53 9.45 8.18 8.15
s526n 23 167 11.31 13.57 11.91 11.31 11.31 12.89 11.31 11.31 11.31 12.21 11.31 11.31 11.31

s713 21 486 30.58 30.58 30.58 30.58 30.58 30.58 30.58 30.58 30.58 30.58 30.58 30.58 30.58

s838 34 298 44.66 45.59 44.66 44.66 44.66 44.66 44.66 44.66 44.66 44.66 44.66 44.66 44.66

s1494 8 266 23.85 24.71 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85 23.85

s27 5 21 5.06 6.58 5.75 5.06 5.06 6.25 5.42 5.06 5.06 5.92 5.09 5.06 5.06

s349 17 121 13.51 15.89 14.72 13.60 13.51 15.09 13.93 13.51 13.51 14.51 13.51 13.51 13.51

s400 23 175 9.89 14.59 11.62 10.15 10.08 13.86 10.89 9.89 9.89 13.13 10.16 9.89 9.89

s510 8 103 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29

s5378 165 2180 22.89 28.84 25.93 23.17 22.94 27.40 24.21 22.89 22.89 25.96 22.89 22.88 22.88

s820 7 213 16.74 16.74 16.74 16.74 16.74 16.74 16.74 16.74 16.74 16.74 16.74 16.74 16.74

s9234 140 2226 33.77 34.75 33.96 33.77 33.77 33.77 33.77 33.77 33.77 33.77 33.77 33.77 33.77

s13207 471 3885 53.36 57.35 55.13 53.46 53.36 54.48 53.36 53.36 53.36 53.36 53.36 53.36 53.36

s15850 565 16375 85.27 98.38 92.24 88.70 88.42 93.46 87.04 85.27 85.27 88.54 85.27 85.27 85.27

s35932 1442 6128 286.32 289.47 286.32 286.32 286.32 286.32 286.32 286.32 286.32 286.32 286.32 286.32 286.32

s38584 1451 17900 286.62 288.60 287.04 286.62 286.62 286.62 286.62 286.62 286.62 286.62 286.62 286.62 286.62

s38417 1465 31980 86.19 87.76 86.19 86.19 86.19 86.19 86.19 86.19 86.19 86.19 86.19 86.19 86.19

Table 1: Results of multiple-domain clock skew optimization on ISCAS89 sequential benchmark circuits.

Design # FF # Edges T∞
cycle δ = 0% ❚ T

1 ❯ 0
cycle

δ = 5% ❚ T
1 ❯ 0
cycle

δ =10% ❚ T
1 ❯ 0
cycle

T
1 ❯ 0
cycle

T
2 ❯ 0
cycle

T
3 ❯ 0
cycle

T
4 ❯ 0
cycle

T
1 ❯ 5
cycle

T
2 ❯ 5
cycle

T
3 ❯ 5
cycle

T
4 ❯ 5
cycle

T
1 ❯ 10
cycle

T
2 ❯ 10
cycle

T
3 ❯ 10
cycle

T
4 ❯ 10
cycle

D1 2245 46048 2.79 3.78 3.67 3.22 3.04 3.65 3.53 3.08 2.98 3.56 3.34 2.90 2.82
D2 2921 250737 15.26 17.94 17.04 16.46 15.89 17.05 15.62 15.26 15.26 16.14 15.26 15.26 15.26

D3 6316 21006 4.41 6.48 5.95 5.58 4.73 6.16 5.66 4.98 4.43 5.89 5.30 4.74 4.42
D4 2694 16518 3.69 3.69 3.69 3.69 3.69 3.69 3.69 3.69 3.69 3.69 3.69 3.69 3.69

D5 3065 18030 2.95 3.86 3.72 3.60 3.38 3.72 3.55 3.43 3.21 3.61 3.47 3.27 3.00
D6 574 2294 4.55 9.03 5.06 4.67 4.55 8.58 4.84 4.55 4.55 8.16 4.63 4.55 4.55

D7 852 47370 16.34 20.47 18.92 17.61 16.71 19.45 17.66 16.37 16.34 18.43 16.34 16.34 16.34

D8 2368 9181 1.74 2.03 1.97 1.84 1.83 1.96 1.90 1.80 1.78 1.90 1.79 1.78 1.74

Table 2: Results of multiple-domain clock skew optimization on some industrial circuits.

Design # FF # Edges T∞
cycle

δ = 0% ❚ T
1 ❯ 0
cycle

δ = 5% ❚ T
1 ❯ 0
cycle

δ =10% ❚ T
1 ❯ 0
cycle

T
1 ❯ 0
cycle

T
2 ❯ 0
cycle

T
3 ❯ 0
cycle

T
4 ❯ 0
cycle

T
1 ❯ 5
cycle

T
2 ❯ 5
cycle

T
3 ❯ 5
cycle

T
4 ❯ 5
cycle

T
1 ❯ 10
cycle

T
2 ❯ 10
cycle

T
3 ❯ 10
cycle

T
4 ❯ 10
cycle

D1 2245 46048 5s 1s/2 5s/6 4m/50 200m/321 1s/2 5s/7 5m/44 355m/854 1s/2 20s/7 8m/39 372m/839

D2 2921 250737 1m 20s/2 6m/56 120m/1735 1200m/2327 21s/2 28s/2 2m/3 2m/2 20s/3 35s/2 2m/2 2m/2

D3 6316 21006 45s 5s/2 33s/25 2m/36 450m/2234 6s/2 16s/5 4m/19 195m/622 6s/2 20s/5 1m/6 4m/8

D4 2694 16518 1s 1s/2 1s/2 1s/2 1s/2 1s/2 1s/2 1s/2 1s/2 1s/2 1s/2 1s/2 1s/2

D5 3065 18030 1m 3s/2 4s/3 7s/5 2m/52 3s/2 4s/3 14s/8 5m/69 3s/2 6s/3 40s/6 10m/71

D6 574 2294 5s 1s/2 1s/3 2s/12 4s/17 1s/2 1s/3 2s/7 2s/3 1s/2 1s/3 2s/4 2s/3

D7 852 47370 1m 7s/2 19s/16 2m/128 10m/224 7s/2 12s/2 1m/4 3m/4 9s/2 45s/2 1m/2 1m/2

D8 2368 9181 25s 1s/2 2s/3 30s/37 30m/902 1s/2 2s/5 30s/37 2m/69 1s/2 3s/5 5s/6 15s/7

Table 3: Program run times / Number of SAT solver invocations for the industrial circuits in Table 2.
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