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Abstract

People use sketches to express and record their ideas in many domains, including mechanical engi-
neering, software design, and information architecture. In recent years there has been an increasing
interest in sketch-based user interfaces, but the problem of robust free-sketch recognition remains
largely unsolved. Current computer sketch recognition systems are difficult to construct, and either
are fragile or accomplish robustness by severely limiting the designer’s drawing freedom.

This work explores the challenges of multi-domain sketch recognition. We present a general
framework and implemented system, calledSketchREAD, for diagrammatic sketch recognition.
Our system can be applied to a variety of domains by providing structural descriptions of the
shapes in the domain. Robustness to the ambiguity and uncertainty inherent in complex, freely-
drawn sketches is achieved through the use of context. Our approach uses context to guide the
search for possible interpretations and uses a novel form of dynamically constructed Bayesian net-
works to evaluate these interpretations. This process allows the system to recover from low-level
recognition errors (e.g., a line misclassified as an arc) that would otherwise result in domain level
recognition errors. We evaluated SketchREAD on real sketches in two domains—family trees and
circuit diagrams—and found that in both domains the use of context to reclassify low-level shapes
significantly reduced recognition error over a baseline system that did not reinterpret low-level clas-
sifications. We discuss remaining challenges for multi-domain sketch recognition revealed by our
evaluation. Finally, we explore the system’s potential role in sketch-based user interfaces from a
human computer interaction perspective.

Thesis Supervisor: Randall Davis
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Chapter 1

Introduction

This work addresses the challenges of creating a computer system capable of of understanding

the informal, messy, hand-drawn sketches typically created during the design process. Our the-

sis is that high-level context can be combined with low-level stroke information to provide robust,

multi-domain sketch recognition. We validate this thesis through the design and implementation of

a system called SketchREAD (Sketch Recognition Engine for Any Domain) that “understands” a

user’s sketch in that it parses a user’s strokes as they are drawn and interprets them as objects in a

domain of interest. While previous sketch recognition systems have placed constraints on the user’s

drawing style or performed only limited sketch recognition, SketchREAD allows the user to draw

freely and attempts to recognize all the symbols in the user’s sketch. We evaluated SketchREAD

on real sketches in two domains and show that the use of context can significantly improve recog-

nition performance. Our evaluation also makes concrete a number of remaining challenges for

two-dimensional multi-domain sketch recognition. For simple domains, SketchREAD’s robustness

and lack of constraint on drawing style allows us to explore the usability challenges of incorpo-

rating free-sketch recognition into diagram creation tools. We used SketchREAD to incorporate

free-sketch recognition into a diagram creation tool for PowerPoint and present guidelines for cre-

ating this type of sketch recognition-based user interface.

1.1 Building a Natural and Powerful Sketch Tool

Designers in many disciplines use sketching to express their ideas throughout the design process.

Sketching provides a lightweight and natural way to put down ideas during the early stages of de-

sign. Sketches can be used to record both physical designs (e.g., mechanical and electrical engineer-

17



ing designs) and conceptual designs (e.g., organizational charts and software diagrams). Computers

have emerged as powerful design tools with at least one notable exception—they offer little or no

support for free-hand sketching. As a result, people usually sketch their designs on paper first, trans-

ferring them to the computer only when they are nearly complete. There are two related reasons for

this behavior. First, many designers do not use pen-based computer technology, and the mouse is

a clumsy input device for free sketching; it is more suited to menu-based interfaces. Second, most

diagram creation and design programs are not targeted to the early stages of design. Because they

are targeted at the later stages of design, they assume users know exactly what they are drawing

and force users to input their designs through a series of menus—an input style that is far from the

freedom that paper provides a designer in part because it forces them to be precise in their design.

While in recent years there has been an increasing interest in sketch-based user interfaces

[48, 63, 69], the problem of robust free-sketch recognition remains largely unsolved. Because ex-

isting sketch recognition techniques are difficult to implement and are error-prone or severely limit

the user’s drawing style, many previous systems that support sketching perform only limited recog-

nition. ScanScribe, for example, uses perceptual guidelines to support image and text editing but

does not attempt to recognize the user’s drawing [69]. Similarly, the sketch-based DENIM system

supports the design of web pages but recognizes very little of the user’s sketch [63]. Systems of this

sort involve the computer in the early design, making it easy to record the design process, but they

do not always facilitate automatic transition from the early stage design tool to a more powerful

design system.

A tool with the power of existing design tools but that is useful in early design should allow

designers to sketch as freely as they would with pencil and paper, while offering considerable ad-

vantage over paper. The power of computer design tools comes from their ability to work with the

user’s designs as domain-specific diagrams. One way we can provide the same power in a sketch-

based tool is to build a program that can understand the user’s design in domain-specific terms as

she sketches.

One of the most difficult problems in creating a sketch recognition system is handling the trade-

off between ease of recognition and drawing freedom. The more we constrain the user’s drawing

style, the easier recognition becomes. For example, if we enforce the constraint that each component

in the domain must be a carefully drawn symbol that can be created with a single stroke, it is

relatively easy to build recognizers capable of distinguishing between the symbols, as was done

with Palm Pilot Graffiti. The advantage of using restricted recognizers is accuracy; the disadvantage

18



is the designer is constrained to a specific style of sketching.

Previous recognition-intensive systems have focused on tasks where drawing style assumptions

can greatly reduce recognition complexity. Longet al. focus on designing special graphical symbols

that will not be confused easily by the computer [54]. This approach improves recognition, but it

limits the designer to a specific set of single-stroke symbols that may be natural only for certain

tasks. The Quickset system for recognizing military course of action (COA) diagrams uses multi-

modal information to improve recognition of sketched symbols [83], but assumes that each symbol

will be drawn independently, and that the user will likely speak the name of the symbol when

drawing it. These assumptions aid recognition, but may fail for design tasks in other domains. In

electrical engineering, for example, designers draw several symbols without pausing and probably

do not speak the name of the symbols they draw. Other previous systems have similar constraints

on drawing style or do not provide the level of recognition robustness we seek here [4, 73, 32].

While the previous systems have proven useful for their respective tasks, we aim to create a

general sketch recognition system that does not rely on the drawing style assumptions of any one

domain. To be usable, a sketch recognition-based system must make few enough mistakes that

sketching is less work than using a more traditional (i.e., menu-based) interface. To be broadly

effective the system’s architecture should be easily applied across a variety of domains, without

having to re-engineer the system.

In addition, there are a number of usability challenges in incorporating free sketch recognition

into a design tool. These challenges include, but are not limited to:

• When and how to display recognition feedback

• How to allow the user to edit her diagrams

• How to allow the user to specify the recognition domain

• How to handle and allow the user to correct recognition errors

1.2 A Motivating Example

Like handwriting and speech understanding, sketch understanding is easy for humans, but difficult

for computers. We begin by exploring the inherent challenges of the task.

Figure 1-1 shows the beginning of a sketch of a family tree, with the strokes labelled in the

order in which they were drawn. The symbols in this domain are given in Table 1.1. This sketch is
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Figure 1-1: A partial sketch of a family tree.

Male Female Child-link Marriage-link Divorce-link

Table 1.1: The symbols in the family tree domain.

based on the real data collected from users shown in Figure 1-3, but has been has been redrawn to

illustrate a number of challenges using a single example. The user started by drawing a mother and

a father, then drew three sons. He linked the mother to the sons by first drawing the shafts of each

arrow and then drawing the arrowheads. (In our family tree diagrams, each parent is linked to each

child with an arrow.) He will likely continue the drawing by linking the father to the children with

arrows and linking the two parents with a line.

Although relatively simple, this drawing presents many challenges for sketch recognition. While

previous recognition systems address some of these challenges, our system is the first to address all

of them using a general framework that can be extended to multiple domains.

The first challenge illustrated in Figure 1-1 is the incremental nature of the sketch process.

Incremental sketch recognition allows the computer to seamlessly interpret a sketch as it is drawn

and keeps the user from having to specify when the sketch is complete. To recognize a potentially

incomplete sketch, a computer system must know when to recognize a piece of the sketch and when
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to wait for more information. For example, Stroke 1 can be recognized immediately as a female,

but Stroke 6 cannot be recognized without Stroke 7.

The second challenge is that many of the shapes in Figure 1-1 are visually messy. For example,

the center arrowhead (Stroke 11) looks more like an arc than two lines. Next, the stroke used to

draw the leftmost quadrilateral (Stroke 3) looks like it is composed of five lines—the top of the

quadrilateral has a bend and could be reasonably divided into two lines by a stroke parser. Finally,

the lines in the rightmost quadrilateral (Strokes 6 and 7) obviously do not touch in the top left corner.

The third issue is segmentation: It is difficult to know which strokes are part of which shapes.

For example, if the computer knew that Strokes 9 and 11 were part of one shape, the system would

likely be able to match an arrow pattern to these strokes using a standard algorithm, such as a

neural network. Unfortunately, segmentation is not an easy task. The shapes in this drawing are

not clearly spatially segmented, and naively trying different combinations of strokes is prohibitively

time consuming. To simplify segmentation, many previous systems (e.g., [63, 83]) assume each

shape will be drawn with temporally contiguous strokes. This assumption does not hold here.

There are also some inherent ambiguities in how to segment the strokes. For example, lines in

our domain indicate marriage, but not every line is a marriage-link. The shaft of the leftmost arrow

(Stroke 8) might also have been interpreted as a marriage-link between the female (Stroke 1) and the

leftmost male (Stroke 3). In this case, the head of that arrow (Stroke 12) could have been interpreted

as a part of the drawing that is not yet complete (e.g., the beginning of an arrow from the leftmost

quadrilateral (Stroke 3) to the top quadrilateral (Stroke 2)).

Finally, how shapes are drawn can also present challenges to interpretation. The head of the

rightmost arrow (part of Stroke 10) is actually made of three lines, two of which are meant to

overlap to form one side of the arrowhead. In order to recognize the arrow, the system must know

to collapse those two lines into one, even though they do not actually overlap. Another challenge

arises because the same shape may not always be drawn in the same way. For example, the arrows

on the left (Strokes 8 and 12, and Strokes 9 and 11) were drawn differently from the one on the right

(Stroke 10) in that the user first drew the shaft with one stroke and then drew the head with another.

This variation in drawing style presents a challenge for segmentation and recognition because a

system cannot know how many strokes will be used to draw each object, nor the order in which the

parts of a shape will appear.

Many of the difficulties described in the example above arise from the messy input and visual

ambiguity in the sketch. It is the context surrounding the messy or ambiguous parts of the drawing
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shaft

head1

head2

DEFINE ARROW

(Subshapes
(Line shafthead1 head2))

(Constraints
(coincidentshaft.p1 head1.p1)
(coincidentshaft.p1 head2.p2)
(equalLengthhead1 head2)

(largershafthead1)
(acuteAnglehead1 shaft)
(acuteAngleshafthead2))

Figure 1-2: The description of the shape “arrow.” More details on this description are given in
Chapter 2.

that allows humans to interpret these parts correctly. We found that context also can be used to help

our system recover from low-level interpretation errors and correctly identify ambiguous pieces of

the sketch. Context has been used to aid recognition in speech recognition systems; it has been

the subject of recent research in computer vision [74, 75] and has been used to a limited extent in

previous sketch understanding systems [4, 32, 63]. We formalize the notion of context suggested

by previous sketch recognition systems. This formalization improves recognition of freely drawn

sketches using a general engine that can be applied to a variety of domains.

1.3 Approach Overview

We use a probabilistic, hierarchical shape description language to describe the shapes in a domain.

Each shape is composed of components and constraints between those components. Figure 1-2

shows a simple use of the language to describe an arrow (which can be used in a number of domains).

This language is described in more detail in Chapter 2 and in previous work by Hammond and

Davis [37]. A hierarchical representation is useful because it enables re-use of geometric shapes

(e.g., rectangles and arrows) across a variety of domains and because many sketched symbols are

compositional. The representation is probabilistic to reflect variation in the way objects are drawn,

due both to noise in the data and individual drawing styles.

Recognizing the sketch is a matter of parsing a user’s strokes according to the specified visual

language. Visual language parsing has been studied [60], but most previous approaches assume

diagrammatic input free from low-level recognition errors and cannot handle realistic, messy, stroke-
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based input. Mahoney and Fromherz use mathematical constraints to cope with the complexities

of parsing sketches of curvilinear configurations such as stick figures [58]. Shilmanet al. present

a parsing method similar to our approach [72], with two differences. First, their work employs a

spatially-bounded search for interpretations that quickly becomes prohibitively expensive. Second,

their parsing method builds and scores a parse tree for each interpretation independently; we allow

competing interpretations to influence each other.

As the user draws, our system uses a two-stage, generate-and-test recognition process to parse

the strokes into possible interpretations. This two-dimensional parsing problem presents a challenge

for a real-time system. Noise in the input makes it impossible for the system to recognize low-level

shapes with certainty or to be sure whether or not constraints hold. Low-level misinterpretations

cause higher-level interpretations to fail as well. On the other hand, trying all possible interpretations

of the user’s strokes guarantees that an interpretation will not be missed, but is infeasible due to the

exponential number of possible interpretations.

To solve this problem we use a combined bottom-up and top-down recognition algorithm that

generates the most likely interpretations first (bottom-up), then actively seeks out parts of those

interpretations that are still missing (top-down). Our approach uses a novel application of dynami-

cally constructed Bayesian networks to evaluate partial interpretation hypotheses and then expands

the hypothesis space by exploring the most likely interpretations first. The system does not have to

try all combinations of all interpretations, but can focus on those interpretations that contain at least

a subset of easily-recognizable subshapes and can recover low-level subshapes that may have been

mis-recognized.

1.4 Results Overview

We apply our recognition system to three domains: family tree diagrams, relationship diagrams,

and electrical engineering diagrams. Tables 1.1, 1.2, and 1.3 list the shapes our system recognizes

in each of these domains. Complete specifications for each of the three domains is given in Ap-

pendix A.

We collect and analyze real user data for both the family tree and electrical engineering do-

mains. Figure 1-3 shows the range of sketches our system is able to recognize. For the family

tree domain, SketchREAD correctly recognizes 77% of the symbols in the diagrams, which is 48%

fewer recognition errors than a baseline version of SketchREAD that does not reinterpret low-level

23



Shapes

Connectors

Table 1.2: The symbols in the Relationship Diagram domain. Boxes and ellipses represent entities
that can be related using lines and arrows.

Wire Resistor Transistor Voltage src. Battery

Diode Current src. Ground Capacitor A/C src.

Table 1.3: The symbols in the circuit domain.

classifications. For the circuit domain, SketchREAD correctly identifies 62% of the total shapes, a

17% reduction in error over the baseline system. We also examine SketchREAD’s running time to

determine how it scales with the number of strokes in the sketch and find that the time to process

each stroke increases only slightly as the sketch gets larger. However, we note that SketchREAD

does not yet run in real time on complex sketches, and certain sketched configurations cause the sys-

tem to run for a long time. We present more results, including both a qualitative and a quantitative

analysis of the system’s performance, in Chapter 5.

Using the relationship diagram domain, we implemented a sketch-based PowerPoint diagram-

creation tool to explore the usability issues involved in creating sketch recognition user interfaces

(SkRUIs). Based on iterative design and evaluation of this tool, we present guidelines for creating

these types of interfaces in Chapter 6.
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Figure 1-3: Examples of family trees and circuit diagram sketches.

1.5 Contributions

This work explores the task of online sketch understanding for early design. It makes five significant

contributions within the fields of sketch understanding and intelligent user interface design. We

present each contribution below in the order in which it will be discussed in this dissertation.

• First, this thesis presents a general framework for sketch recognition that can be extended to

multiple domains. It presents a method for recognizing objects in sketches based on object

descriptions so that the generic recognition engine can be extended to a new domain by pro-

viding structural descriptions for the objects in that domain; no training data is necessary, al-

though training data may be used to determine probabilities used in the system. Furthermore,

this system works with hierarchical descriptions that separate low-level shape descriptions

from domain-specific shape patterns. This separation allows the engine to be extended to

multiple domains without creating new shape recognizers for lower-level shapes.

• Second, this thesis presents a novel application of dynamically constructed Bayesian networks

specifically developed for two-dimensional, constraint-based recognition. Hidden Markov

Models (HMMs) assume one-dimensional (usually time-ordered) data, while Markov Ran-

dom Fields (MRFs) generally allow for only local influence between neighboring pieces of

the image or sketch. We specify Bayesian networks that can be dynamically constructed in
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response to the user’s strokes. In contrast to HMMs and MRFs, these Bayesian networks can

reflect arbitrary relationships between any pieces of the user’s sketch.

• Third, our system simultaneously segments and recognizes the objects in freely-drawn, often

messy sketches, making fewer assumptions about the way shapes will be drawn than previous

recognition systems. We use domain information to effectively handle noise in the drawing

by reinterpreting strokes that are misrecognized in the low-level step.

• Fourth, our implementation has been applied successfully to three domains: relationship di-

agrams, family tree diagrams and electrical engineering diagrams. There are few, if any,

reported recognition results for our task. We collected real sketches of family tree diagrams

and electrical engineering diagrams and present recognition results on these test sets. Us-

ing these results, we analyze the practical strengths of our approach and discuss remaining

challenges for multi-domain sketch recognition systems.

• Finally, we used our recognition engine to explore the design implications of building sketch

recognition user interfaces (SkRUIs). While pen-based user interfaces have been explored

previously, our system enables the exploration of a fundamentally new type of interaction in

which the user sketches freely while the system recognizes the drawing in the background.

We implemented a sketch recognition-based interface for creating PowerPoint diagrams and

performed informal user studies to explore the difficulties involved in creating this type of in-

terface. We present guidelines for building SkRUIs, taking into account both user preferences

and realistic requirements of sketch recognition algorithms.

1.6 Outline

The structure of this thesis is as follows. The next three chapters discuss our approach to sketch

recognition: Chapter 2 describes how knowledge is represented in our system; Chapter 3 describes

how uncertainty is managed during the recognition process; and Chapter 4 describes how our system

searches for possible interpretations of the user’s sketch, including how it recovers from low-level

recognition errors. Next, Chapter 5 presents the application domains and the results of applying our

engine to these domains. Chapter 6 presents our PowerPoint application and the results of our user

study. Finally, Chapter 7 discusses related work in sketch understanding and similar recognition

tasks, and Chapter 8 presents conclusions.
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Chapter 2

Knowledge Representation

The problem this dissertation addresses is how to build a sketch recognition system that is easily

extensible to a number of domains. Central to this problem is the question of how to represent the

symbols to be recognized in a given domain.

The goal of any recognition system is to match its input against against an internal representa-

tion of a shape or set of shapes and identify the best match or matches (if any) for the given input.

However, how each system represents the shape or shapes to be recognized (and consequently how

each system matches the input to this internal representation) varies from system to system. For

example, one system might represent each shape as a bit-mapped image template of the canonical

form of that shape. Then to perform recognition, that system would apply a series of legal transfor-

mations to the input data (e.g., rotation, scaling) to determine whether or not the pixels in the input

can be made to line up with the pixels in the template. In contrast, a different system might represent

each shape not as an image but as a collection of features extracted from the shapes. Examples of

potential features include the ratio between the height and width of the bounding box of the shape,

the total length of the strokes in the shape relative to the size of the bounding box, the number of

corners in the shape, etc. Recognition in this system would then extract the same features from the

input data and determine whether or not the features extracted from the input data are close enough

to the features stored for each shape.

While many different representations can be used to perform recognition, the choice of internal

shape representation affects recognition task difficulty. In the example above, recognition using the

feature-based approach is more straightforward than the template-matching approach as it involves

only a relatively small number of easy to calculate features rather than multiple transformations of
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the whole input. However, depending on the shapes in the domain, it may be extremely difficult to

devise a set of features that reliably separates one shape from another.

Our system represents symbols to be recognized using a probabilistic, hierarchical descrip-

tion language. In choosing our representation, we considered several desired functionalities of our

recognition system. First, the system should be extensible to new domains, requiring few training

examples. Second, the system should be able to distinguish between legal and illegal shape transfor-

mations when performing recognition. Legal transformations include not only rotation, translation

and scaling but also some non-rigid shape transformations. For example, the angle between a line

in the head of an arrow and the shaft may range from about 10 degrees to about 80 degrees, but

an angle greater than 90 degrees is not acceptable. Third, we would like to use this recognition

system to compare various techniques for providing recognition feedback to the user, so the system

should be able to recognize the sketch as the user draws to allow the system to potentially provide

recognition feedback at any point in the drawing process. Finally, the system should be able to cope

with the noise inherent in hand-drawn diagrams (e.g., lines that are not really straight, corners that

do not actually meet, etc.).

This chapter describes our hierarchical description language and discusses how this choice of

representation allowed us to construct a system that meets the requirements above. We begin by

introducing the deterministic properties of the language, then discuss how uncertainty is incorpo-

rated into the descriptions. Finally, we discuss the advantages and disadvantages of this choice of

representation.

2.1 Hierarchical Shape Descriptions

Each shape in the domain to be recognized is described using a hierarchical description language,

called LADDER, being developed by others in our group [37]. We introduce the language through

examples from the family tree and circuit domains.

We refer to any pattern recognizable in a given domain as ashape. Compound shapesare those

composed ofsubshapes. Compound shapes must be non-recursive. Describing a compound shape

involves specifying its subshapes and any necessaryconstraintsbetween those subshapes. As an

example, the description of an arrow is given in Figure 2-1. The arrow has three subshapes—the

line that is the shaft and the two lines that combine to make the head. The constraints specify

the relative size, position and orientation necessary for these three lines to form an arrow shape
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shaft

head1

head2

DEFINE ARROW

(Subshapes
(Line shafthead1 head2))

(Constraints
(coincidentshaft.p1 head1.p1)
(coincidentshaft.p1 head2.p2)
(equalLengthhead1 head2)
(largershafthead1 )
(acuteAnglehead1 shaft)
(acuteAnglehead2 shaft))

Figure 2-1: The description of the shape “arrow.” Once defined, this shape can be used in descrip-
tions of domain-specific shapes, as in Figure 2-2 and Figure 2-3.

(as opposed to just being three arbitrary lines). Once a shape has been defined, other shapes may

use that shape in their descriptions. For example, the child-link symbol in the family tree domain

(Figure 2-2) and the current source symbol in the circuit domain (Figure 2-3) both use an arrow as

a subshape.

Shapes that cannot be broken down into subshapes are calledprimitive shapes. The set of

primitive shapes includes free-form strokes, lines, arcs and ellipses. Although primitive shapes

cannot be decomposed into subshapes, they may have namedsubcomponentsthat can be used when

describing other shapes, e.g., the endpoints of a line,p1 andp2, used in Figure 2-1.

Domain shapesare shapes that have semantic meaning in a particular domain. Child-link and

current-source are both domain shapes, but arrow and line are not because they are not specific

to any one domain.Domain patternsare combinations of domain shapes that are likely to occur,

for example the child-link pointing from a female to a male, indicating a relationship between

mother and son in Figure 2-2. Compound shape descriptions with no constraints (e.g., the child-

link description) are used to rename a generic geometric shape (e.g., the arrow) as a domain shape

so that domain-specific semantics may be associated with the shape.

The language provides support for a shorthand vector notation to handle shapes that have many

repeating components (e.g., the lines in a quadrilateral (Figure 2-4)). This shorthand is provided

for convenience in writing shape descriptions. SketchREAD converts the components in the vector
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link
p1 p2mother son

DEFINE FEMALE

(Subshapes
(Ellipsee))

DEFINE MALE

(Subshapes
(Quadrilateralq))

DEFINE CHILD -L INK

(Subshapes
(Arrow a))

DEFINE MOTHER-SON

(Subshapes
(Maleson)
(Femalemother)
(Child-Link link))

(Constraints
(toucheslink.shaft.p1 mother)
(toucheslink.shaft.p2 son))

Figure 2-2: Descriptions of several domain shapes (Female, Male and Child-Link) and one domain
pattern (Mother-Son) in the family tree domain.

a
e

DEFINE CURRENT-SOURCE

(Subshapes
(Ellipsee)
(Arrow a))

(Constraints
(containse a))

Figure 2-3: The description of a Current Source from the circuit domain.

into separately represented components. Appendix A gives a complete set of shape descriptions for

each of our domains as well as the available constraints.
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DEFINE QUADRILATERAL

(Subshapes
(vector Linel[4]))

(Constraints
(coincidentl[i].p2 l[i + 1].p1)
(coincidentl[4].p2 l[1].p1))

Figure 2-4: The description of a quadrilateral written using compact vector notation.

2.2 Handling Noise in the Drawing

To recognize symbols, the system compares the user’s input against the available shape descriptions.

Recognition information for primitive shapes and constraints are built into SketchREAD; compound

shapes are recognized by first identifying the subshapes and then verifying that the necessary con-

straints between those subshapes hold. The system’s goal is to choose the best set of domain shapes

for a given set of strokes.

While recognition appears straightforward, Chapter 1 illustrated that ambiguity in the drawing

can make recognition more difficult. It is often difficult to recognize low-level shapes (e.g., lines

are never perfectly straight) and constraints often do not hold exactly (e.g., lines are rarely precisely

the same length). The next two chapters discuss the details of the recognition process. Here, we

describe the language constructs that help the system cope with the inevitable noise and ambiguities

in the drawing. We discuss two different types of variation supported by our representation: signal-

level noise and description-level variation.

2.2.1 Signal-level noise: Objective vs. Subjective measures

Shape descriptions specify the subshapes and constraints needed to form a higher-level shape, and

the system’s goal is to determine whether or not the necessary shapes exist and the constraints

between them hold. However, sketches often are messy, and people rarely draw constraints that

hold exactly. For example, although a user intends to draw two parallel lines, it is unlikely that these

lines will be exactly parallel. We call this type of variationsignal-level noise.

Because of signal-level noise, low-level shape and constraint interpretations must be based both

on the data and on the context in which that shape or constraint appears. Consider whether or not the

user intended for the two bold lines in each drawing in Figure 2-5 to connect. In 2-5(a) and 2-5(b),
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(a) (b) (c)

Figure 2-5: The importance of both data and context in determining whether or not the bold lines
were intended to connect.

the bold lines are identically spaced, but the context surrounding them indicates that in 2-5(b) the

user intended for them to connect, while in 2-5(a) the user did not. On the other hand, the stroke

information should not be ignored. The thin lines in drawings 2-5(b) and 2-5(c) are identical, but

the distance between the endpoints of the bold lines in these figures indicate that the these lines are

intended to connect in 2-5(b) but not in 2-5(c).

For each low-level shape and constraint we identify an objectively measurable property that cor-

responds to that shape or constraint. For example, the property related to the constraintcoincident

is the distance between the two points in question normalized by the length of the lines contain-

ing the points in question. This objectively measurable property allows the system to separate the

information provided by the stroke data from the information provided by the surrounding context

to determine whether or not the constraint actually holds. Chapter 3 discusses precisely how these

low-level measurements and the contextual data are combined, and Appendix B give further details.

2.2.2 Description-level variation: Optional Components and Constraints

All of the shapes considered so far have been modeled using a fixed number of subshapes and a

set of required constraints between those subshapes. These descriptions signify that when a user

draws these symbols, she should draw all of the subparts specified. In contrast, some shapes have

subcomponents that can be omitted legally when they are drawn. For example, consider the ground

symbol described in Figure 2-6. The user may draw up to six horizontal lines, but three of these

lines optionally may be omitted. These three lines are flagged asoptional in the shape description,

indicating that when the user draws the ground symbol, the number of horizontal lines she includes

may vary from three to six. We call this type of variationdescription-level variation.

Constraints may also be flagged as optional, indicating that they often hold, but are not required
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base

l1
l2

l3
l4

l5
l6

required

optional

Standard Notation Vector Notation

DEFINE GROUND

(Subshapes
(Line base)
(Line l1)
(Line l2)
(Line l3)
(optionalLine l4)
(optionalLine l5)
(optionalLine l6))

(Constraints
(perpendicularbasel1)
(touchesl1 base.p2)
(parallell1 l2)
(parallell2 l3)
(parallell3 l4)
(parallell4 l5)
(parallell5 l6)
(smallerl2 l1)
(smallerl3 l2)
(smallerl4 l3)
(smallerl5 l4)
(smallerl6 l5)
(nextTol1 l2)
(nextTol2 l3)
(nextTol3 l4)
(nextTol4 l5)
(nextTol5 l6)
(alignedl1 l2)
(alignedl2 l3)
(alignedl3 l4)
(alignedl4 l5)
(alignedl5 l6))

DEFINE GROUND

(Subshapes
(Line base)
(vector Linel[3, 6]))

(Constraints
(perpendicularbasel1)
(touchesl1 base.p2)
(parallell[i] l[i + 1])
(smallerl[i + 1] l[i])
(nextTol[i] l[i + 1])
(alignedl[i] l[i + 1]))

Figure 2-6: The ground symbol from the Circuit Diagram domain. Three of the lines in the symbol
are optional, meaning the user may draw a valid ground symbol that does not contain those lines.
Both standard and vector descriptions are given for this symbol.
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in the description of a symbol. For example, we could define the domain shapewire as having

the single subshapeline and the optional constraint that the line is horizontal or vertical. This

constraint is not strictly required, as wires may be drawn diagonally, but they are often drawn either

horizontally or vertically. Constraints pertaining to optional components are considered required if

the optional component is present unless they are explicitly flagged as optional.

Optional components may also be specified using the shorthand vector notation described above.

To specify a vector of components, some of which are optional, a minimum and a maximum number

of components must be specified. Components up to the minimum number specified are required,

those between the minimum and maximum number are optional. The vector specification for the

ground symbol is given in Figure 2-6.

Understanding the difference between signal-level noise and description-level variation is cen-

tral to understanding our representation of uncertainty. Signal-level noise is distinguished from

description-level variation by considering the user’s intent when she draws a symbol. For example,

in a ground symbol thebaseline should be perpendicular to linel1. In a given drawing, the angle

between those lines may actually be far from 90 degrees due to signal-level noise (which might be

caused by the user’s sloppiness), but the lines are still intended to be perpendicular. On the other

hand, the ground symbol may not contain linel6, not because the user was being sloppy, but be-

cause the user did not intend to include it when drawing the symbol. We discuss how we model

each variation in the next chapter.

2.3 Strengths and Limitations

We chose this symbolic, hierarchical representation based on the recognition system guidelines

presented in the first part of this chapter. Here, we consider how this representation supports the

creation of such a system. As every representation choice has trade-offs, we also consider the

limitations of this approach and briefly discuss how these limitations can be addressed.

The first requirement was that our system must be extensible to new domains, requiring few

training examples. To extend the system to a new domain, a user must simply describe the domain

shapes and patterns for the new domain. Because the system can use the same hierarchical recog-

nition process, it does not need to be trained with a large number of examples for each new shape.

Furthermore, basic geometric shapes can be defined once and reused in a number of domains.

The second requirement was that our system must accept legal non-rigid transformations of
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Figure 2-7: Battery (left) and ground (right) symbols from the Circuit Diagram domain. Note that
the battery symbol is a subset of the ground symbol.

sketched symbols without accepting illegal transformations. This requirement is handled by the fact

that constraints can be defined to accept a wide range of relationships between shapes. For example,

acuteAnglerefers to any angle less than 90 degrees. Furthermore, only constraints explicitly stated

in the shape definition are verified. Constraints that are not specified may vary without affecting the

system’s interpretation of the shape. For example, the definition of a quadrilateral given in Figure 2-

4 does not constrain the relative lengths of the lines or the angles between those lines, leaving the

system free to interpret any set of four correctly connected lines as a quadrilateral.

The third requirement was that the system be able to recognize a sketch as it is being drawn.

To support this goal, our representation in terms of a shape’s subcomponents allows the system to

detect when it has seen only some of the subcomponents of a given shape. Using these partial in-

terpretations, the system can decide which interpretations are likely complete and which might still

be in the process of being drawn. This capability is particularly important when shape descriptions

overlap, as in the battery and the ground symbol in the circuit domain (Figure 2-7). When the user

draws what could look like a battery or part of a ground symbol, the system can detect the partial

ground interpretation and wait until the user has drawn more strokes to give its final interpretation

instead of immediately interpreting the strokes as a battery.

The final requirement was that our system must deal with the noise in hand-drawn diagrams. Our

representation allows us to handle signal-level noise by separating low-level objective measurements

from judgments about whether or not constraints hold.

Although our representation satisfies the above requirements, it also imposes some restrictions.

First, even with a well designed language, specifying shape descriptions may be difficult or time-

consuming. To address this difficulty, other members of our group are developing a system to

learn shape descriptions based on few examples [76]. As the user draws a shape, the learning

system parses the user’s strokes into low level components such as lines, arcs, and ellipses. The

learner then calculates the existing constraints between these components and uses perceptual cues

to deduce which constraints are most important the shape description. Once the system has learned
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a shape (e.g., a rectangle) it can then use that shape in its description of other shapes (e.g., a house).

The output of the learning system is a description of a domain shape in the visual language.

Second, even if we could build a system to learn shape descriptions, some shapes may be dif-

ficult or impossible to describe in terms of any simple low-level components or constraints. Those

domains with free-form shapes, such as architecture, may have many shapes that cannot be easily

described. Our representation is appropriate only for domains with highly structured symbols.

Finally, using this representation it is difficult to represent text or unrecognized strokes. This

limitation must be addressed in the recognition system itself. The system should be capable of

detecting text or unrecognized strokes and processing them using a different recognition technique

or leaving them as unrecognized. Separating text from diagrams is a challenging problem that we

do not address. A complementary system must be used in conjunction with our recognition system

to distinguish between annotations and diagrams.
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Chapter 3

Hypothesis Evaluation

The problem of two-dimensional sketch recognition is to parse the user’s strokes according to the

specified visual language to determine the best set of known patterns to describe the input. In order

for a shape to be recognized, the system must detect the necessary subshapes and constraints be-

tween those subshapes. This two-dimensional parsing problem presents a challenge for a real-time

system. Because sketched objects rarely appear in their canonical representations (for example, an

arrow may point in any direction, may vary in size, and may be drawn in a variety of styles), recog-

nizing an object in a sketch involves recovering the underlying shape of the object in the face of this

legal variation. Low-level interpretations potentially can help guide the search for possible higher-

level interpretations; for example, if the system detects two connected lines, it can first try to match

a quadrilateral whose corner lines up with the connection between the lines. However, noise in the

input makes it impossible for the system to recognize low-level shapes with certainty or to be sure

whether or not constraints hold. Low-level misinterpretations cause higher-level interpretations to

fail as well. Trying all possible interpretations of the user’s strokes guarantees that an interpretation

will not be missed, but it is infeasible due to the exponential number of possible interpretations.

To solve this problem we use a combined bottom-up and top-down recognition algorithm that

generates the most likely interpretations first (bottom-up), then actively seeks out parts of those

interpretations that are still missing (top-down). Our approach uses a novel application of dynami-

cally constructed Bayesian networks to evaluate partial interpretation hypotheses and then expands

the hypothesis space by exploring the most likely interpretations first. The system does not have to

try all combinations of all interpretations, but can focus on those interpretations that contain at least

a subset of easily-recognizable subshapes and can recover any low-level subshapes that may have
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been mis-recognized.

We use a two-stage generate-and-test method to explore possible interpretations for the user’s

strokes. In the first stage, the system generates a number ofhypotheses, or possible interpretations

for the user’s strokes, based on the shape descriptions described in Chapter 2. We refer to each

shape description as atemplatewith oneslot for each subpart. Ashape hypothesisis a template

with an associated mapping between slots and strokes. Similarly, aconstraint hypothesisis a pro-

posed constraint on one or more of the user’s strokes. Apartial hypothesisis a hypothesis in which

one or more slots are not bound to strokes. Our method of exploring the space of possible interpre-

tations depends on our ability to assess both complete and partial hypotheses for the user’s strokes.

This chapter describes our hypothesis evaluation technique; the next chapter describes how these

hypotheses are generated.

We use a constraint-based approach to hypothesis evaluation, evaluating higher-level shapes

and patterns by evaluating their subcomponents and the constraints between them. Our method for

evaluating possible interpretations differs from previous constraint-based approaches (e.g., [26, 31,

78]) in two ways. First, our technique must be able to evaluate partial hypotheses (e.g., an arrow

with no shaft) because we wish to interpret drawings as they develop, and because the strength of

partial hypotheses guides the interpretation of new strokes as they are processed. Second, because

sketches are noisy, we cannot determine whether or not constraints hold simply by looking at the

stroke data. For example, two lines intended to connect to form a corner of a square may not actually

be connected, and there is no threshold we use to determine how far apart they may be and still be

considered connected. The decision as to whether they should be considered connected depends on

context (see Figure 2-5). The system’s certainty in an interpretation should be influenced both by

the stroke data and by the context provided by the surrounding possible interpretations.

Bayesian networks provide a way of reasoning about uncertainty in the world by combining

prior knowledge and observations of the world. To handle both of the above issues, we use a

Bayesian network in which each node represents a hypothesis for part of the user’s drawing. Missing

data can be treated as unobserved nodes in the network when the system assesses likely hypotheses

for the strokes that have been observed thus far. Furthermore, the system’s belief in a given hypoth-

esis can be influenced both by the stroke data (through the node’s children) and the context in which

those shapes appear (through the node’s parents). This chapter describes how we apply dynamically

constructed Bayesian networks to the task of constraint-based recognition.
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3.1 Dynamically Constructed Graphical Models

Time-based graphical models, including Hidden Markov Models (HMMs) and Dynamic Bayesian

Networks (DBNs), have been applied successfully to time-series data in tasks such as speech un-

derstanding. To the extent that stroke order is predictable, HMMs and DBNs may be applied to

sketch understanding. Ultimately, however, sketch understanding is different because we must

model shapes based on two-dimensional constraints (e.g., intersects, touches) rather than on tempo-

ral constraints (i.e., follows), and because our models cannot simply unroll in time as data arrives

(we cannot necessarily predict the order in which the user will draw the strokes, and things drawn

previously can be changed). Therefore, our network represents spatial relationships rather than

temporal relationships.

It is not difficult to use Bayesian networks to model spatial relationships. The difficult part of

using Bayesian networks for sketch understanding is that they are traditionally used to model static

domains in which the variables and relationships between those variables are known in advance.

Static networks are not suitable for the task of sketch recognition because we cannot predicta

priori the number of strokes or symbols the user will draw in a given sketch. In fact, there are many

tasks in which the possible number of objects and relationships may not be modeleda priori. For

example, when reasoning about military activity, the number of military units and their locations

cannot be known in advance. For such tasks, models to reason about specific problem instances

(e.g., a particular sketch or a particular military confrontation) must be dynamically constructed in

response to a given input. This problem is known as the task ofknowledge-based model construction

(KBMC).

A number of researchers have proposed models for the dynamic creation of Bayesian networks

for KBMC. Early approaches focused on generating Bayesian networks from probabilistic knowl-

edge bases [29, 30, 34, 67]. A recently proposed representation representation, called Network

Fragments, represents generic template knowledge directly as Bayesian network fragments that can

be instantiated and linked together at run-time [51]. Finally, Kolleret al. have developed a number

of a number of object-oriented frameworks including Object Oriented Bayesian Networks (OOBNs)

[46, 66] and Probabilistic Relational Models (PRMs) [28]. These models represent knowledge in

terms of relationships among objects and can be instantiated dynamically in response to the number

of objects in a particular situation.

Although the above frameworks are powerful, they are not directly suitable for sketch recog-
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nition because they are too general in some respects and too specialized in others. First, with this

type of general model, it is a challenge simply to decide how to frame our recognition task in terms

of objects, network fragments, or logical statements. Second, because these models are general,

they do not make any assumptions about how the network will be instantiated. Because of the size

of the networks potentially generated for our task, it is sometimes desirable to generate only part

of a complete network, or to prune nodes from the network. In reasoning about nodes that are in

the network, we must account for the fact that the network may not be fully generated or relevant

information may have been pruned from the network. Finally, these models are too specific in that

they have been optimized for responding to specific queries, for example, “What is the probability

that a particular battery in our military force has been hit?” In contrast, our model must provide

probabilities for a full set of possible interpretations of the user’s strokes.

We present a framework for dynamically constructing Bayesian networks specifically targeted

to the task of constraint-based recognition. Our framework is closely related to both Network Frag-

ments and Object Oriented Bayesian Networks, but designed to handle the specific problems pre-

sented above that arise in the recognition task. We provide a Bayesian network representation to

perform constraint-based recognition. We show how these networks grow in response to the in-

coming data and how to represent information compactly to reduce the size and complexity of the

network. We begin by considering how the system evaluates a single hypothesis for a given set of

strokes, and then consider how to aggregate individual hypotheses to determine the best set of inter-

pretations for a complete sketch. Finally, we give implementation details and discuss our inference

method.

3.2 Shape Fragments: Evaluating a Single Hypothesis

Briefly, Bayesian networks consist of two parts: a Directed Acyclic Graph that encodeswhich

factors influence one another, and a set of Conditional Probability Distributions which specifyhow

these factors influence one another.1 Each node in the graph represents something to be measured,

and a link between two nodes indicates that the value of one node is directly dependent on the

value of the other. Each node contains a conditional probability function (CPF), represented as

a conditional probability table (CPT) for discrete variables, specifying how it is influenced by its

1We provide enough background on Bayesian networks to give the reader a high-level understanding of our model.
To understand the details, those unfamiliar with Bayesian networks are referred to [12] for an intuitive introduction and
[44] for more details.
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s1

s4

s3s2

CS hypothesis CS1
Subshapes:

e à ellipse hypothesis E1
a à arrow hypothesis A1

Constraints:
C1 = (contains ellipse-fit(s1)

shape-fit(s2, s3, s4))

Arrow hypothesis A1
Subshapes:

shaft à line hypothesis L1
head1 à line hypothesis L2
head2 à line hypothesis L3

Constraints:
C2 = (coincident line-fit(s2).p1 line-fit(s3).p1) 
C3 = (coincident line-fit(s2).p1 line-fit(s4).p1) 
C4 = (equalLength line-fit(s3) line-fit(s4)) 
C5 = (shorter line-fit(s3) line-fit(s2)) 
C6 = (acuteAngle line-fit(s2) line-fit(s3)) 
C7 = (acuteAngle line-fit(s2) line-fit(s4)) 

Primitive hypotheses
E1 = ellipse-fit(s1)
L1 = line-fit(s2)
L2 = line-fit(s3)
L3 = line-fit(s4)

Figure 3-1: A single current source hypothesis (CS1) and associated lower-level hypotheses. Shape
descriptions for the arrow and current source (with labeled subshapes) are given in Figures 3-2
and 3-3.

parents.

To introduce our Bayesian network model, we begin by considering how to evaluate the strength

of a single current source (CS) hypothesis for the stokes in Figure 3-1. The description of a current

source symbol is given Figure 3-2. Based on the hierarchical nature of the shape descriptions, we

use a hierarchical method of hypothesis evaluation. Determining the strength of a particular current

source hypothesis is a matter of determining the strengths of its corresponding lower-level shape and

constraint hypotheses. A particular current source hypothesis,CS1, specifies a mapping between the

subparts in the current source description and the user’s strokes via lower-level hypotheses for the

user’s strokes (Figure 3-1).E1 is an ellipse hypothesis fors1, A1 is an arrow hypothesis involving

strokess2, s3 ands4 (through its line hypotheses), andC1 a constraint hypothesis that an ellipse fit

for strokes1 contains strokess2, s3, ands4. A1 is further broken down into three line hypotheses

(L1, L2 andL3) and six constraint hypotheses (C2, ..., C7) according to the description of the arrow

(Figure 3-3) Thus, determining the strength of hypothesisCS1 can be transformed into the problem

of determining the strength of a number of lower-level shape and constraint hypotheses.
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a
e

DEFINE CURRENT-SOURCE

(Subshapes
(Ellipsee)
(Arrow a))

(Constraints
(containse a))

Figure 3-2: The description of a current source from the circuit domain.

shaft

head1

head2

(Subshapes
(Line shaft)
(Line head1)
(Line head2)

(Constraints
(coincidentshaft.p1 head1.p1)
(coincidentshaft.p1 head2.p2)
(equalLengthhead1 head2)
(shorterhead1 shaft)
(acuteAnglehead1 shaft)
(acuteAnglehead2 shaft))

Figure 3-3: The description of an arrow.

3.2.1 Network Structure

The Bayesian network for this recognition task is shown in Figure 3-4. There is one node in the

network for each hypothesis described above, and each of these nodes represents a boolean random

variable that reflects whether or not the corresponding hypothesis is correct. The nodes labeled

O1, ..., O11 represent measurements of the stroke data that correspond to the constraint or shape

to which they are linked. The variables corresponding to these nodes have positive real numbered

values. For example, the variableO2 is a measurement of the squared error between the strokes1

and the best fit ellipse to that stroke. The value ofO2 is a real number between 0 and the maximum
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CS1

E1

L2L1

A1

O2 O5O4O3

L3 C3C2

O8O7O6

C4 C6C5

O11O10O9

C7

C1

O1

s1 s2 s4s3

Figure 3-4: A Bayesian network to verify a single current source hypothesis. Labels come from
Figure 3-1.

possible error between any stroke and an ellipse fit to that stroke. The boxes labeleds1, ..., s4 are not

part of the Bayesian network but serve to indicate the stroke or strokes from which each measure-

ment,Oi, is taken (e.g.,O2 is measured froms1). P (CS1 = t |ev) (or simplyP (CS1|ev))2, where

ev is the evidence observed from the user’s strokes, represents the probability that the hypothesis

CS1 is correct.

There are three important reasons why the links are directed from higher-level shapes to lower-

level shapes instead of in the opposite direction. First, whether or not a higher-level hypothesis is

true directly influences whether or not a lower-level hypothesis is true. For example, if the arrow

hypothesisA1 is true, then it is extremely likely that all three line hypotheses,L1, L2, L3, are

also true. Second, this representation allows us to model lower-level hypothesis as conditionally

independent given their parents, which reduces the complexity of the data needed to construct the

network. Finally, continuous valued variables are difficult to incorporate into a Bayesian network if

they have discrete valued children. Our representation ensures that the measurement nodes, which

have continuous values, will be leaf nodes. These nodes can be pruned when they do not have

evidence, thus simplifying the inference process.

Each shape description constrains its subshapes only relative to one another. For example, an

2Throughout this chapter,t means true, andf means false.

43



arrow may be made fromanythree lines that satisfy the necessary constraints. Based on this obser-

vation, our representation models a symbol’s subshapes separately from the necessary constraints

between those subshapes. For example, nodeL1 represents the hypothesis that strokes2 is a line.

It’s value will be true if the user intended fors2 to be any line, regardless of its position, size or

orientation. Similarly,C2 represents the hypothesis that the line fit tos2 and the line fit tos3 are

coincident.

The conditional independence between subshapes and constraints might seem a bit strange at

first. For example, whether or not two lines are the same length seems to depend on the fact that they

are lines. However, observation nodes for constraints are calculated in such a way that their value is

not dependent on the true interpretation for a stroke. For example, when calculating whether or not

two lines are parallel, which involves calculating the different in angle between the two lines, we

first fit lines to the strokes (regardless of whether or not they actually look like lines), then measure

the relative orientation of those lines. How well these lines fit the strokes is not considered in this

calculation.

The fact that the shape nodes are not directly connected to the constraint nodes has an important

implication for using this model to perform recognition: There is no guarantee in this Bayesian

network that the constraints will be measured from the correct subshapes because the model allows

subshapes and constraints to be detected independently. For example,C3 in Figure 3-4 indicates

thatL2 andL3 (the two lines in the head of an arrow) must be the same length, not simply that any

two lines must be the same length. To satisfy this requirement, The system must ensure thatO6 is

measured from the same strokes thatO3 andO4 were measured from. We use a separate mechanism

to ensure that only legal bindings are created between strokes and observation nodes.

The way we model shape and constraint information has two important advantages for recogni-

tion. First, this Bayesian network model can be applied to recognize a shape in any size, position and

orientation.CS1 represents the hypothesis thats1, ..., s4 form a current source symbol, but the exact

position, orientation and size of that symbol is determined directly from the stroke data. To consider

a new hypothesis for the user’s strokes, the system simply creates a copy of the necessary Bayesian

network structure whose nodes represent the new hypotheses and whose measurement nodes are

linked to a different set of the user’s strokes. Second, the system can allow competing higher-level

hypotheses for a lower-level shape hypothesis to influence one another by creating a network in

which two or more hypotheses point to the same lower-level shape node. For example, the system

may consider an arrow hypothesis and a quadrilateral hypothesis involving the same line hypoth-
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esis for one of the user’s strokes. Because the line hypothesis does not include any higher-level

shape-specific constraint information, both an arrow hypothesis node and a quadrilateral hypothesis

node can point to the single line hypothesis node. These two hypotheses then become alternate,

competing explanations for the line hypothesis. We further discuss how hypotheses are combined

below.

Our model is generative, in that we can use the Bayesian network for generation of values for

the nodes in the network based on the probabilities in the model. However, our model is fundamen-

tally different from the standard generative approach used in computer vision in which the system

generates candidate shapes (for example, a rightward facing arrow) and then compares these shapes

to the data in the image. The difference is that the lowest level of our network represents measure-

ments of the strokes, not actual stroke data. So although our model can be used to generate values

of stroke data measurements, it cannot be used to generate shapes which can be directly compared

to the user’s strokes. However, because the system can always take measurements from existing

stroke data, our model is well suited for hypothesis evaluation.

3.2.2 Conditional Probability Distributions

Next, we consider the intuition behind the CPTs for a node given its parents for the hypotheses

in Figure 3-1. We begin by considering the distributionP (E1|CS1). Intuitively, we setP (E1 =

t |CS1 = t) = 1 (and conversely,P (E1 = f |CS1 = t) = 0), meaning that if the user intended to

drawCS1, she certainly intended to drawE1. This reasoning follows from the fact that the ellipse

is a required component of the CS symbol (and that the user knows how to draw CS symbols).

P (E1|CS1 = f ), on the other hand, is a little less obvious. Intuitively, it represents the probability

that the user intended to drawE1 even though she did not intend to drawCS1. This probability

will depend on the frequency of ellipses in other symbols in the domain (i.e., higher if ellipses are

common).

BecauseCS1 has no parents, it must be assigned a prior probability. This probability is simply

how likely it is that the user will drawCS1. This probability will be high if there are few other shapes

in the domain or if CS symbols are particularly prominent, and low if there are many symbols or if

the CS symbol is rare. Exactly how these prior probabilities are determined is discussed further in

Chapter 5.

The bottom layer of the network accounts for signal level noise by modeling the differences

between the user’s intentions and the strokes that she draws. For example, even if the user intends

45



to drawL1, her stroke likely will not matchL1 exactly, so the model must account for this variation.

ConsiderP (O2|E1 = t). If the user always drew perfect ellipses, this distribution would be 1 when

O2 = 0, and 0 otherwise. However, most people do not draw perfect ellipses (due to inaccurate pen

and muscle movements), and this distribution allows for this error. It should be high whenO2 is

close to zero, and fall off asO2 gets larger. The wider the distribution, the more error the system

will tolerate, but the less information a perfect ellipse will provide.

The other distribution needed isP (O2|E1 = f ) which is the probability distribution over ellipse

error given that the user did not intend to draw an ellipse. This distribution should be close to

uniform, with a dip around 0, indicating that if the user specifically does not intend to draw an

ellipse, she might draw any other shape, but probably won’t draw anything that resembles an ellipse.

Details about how we determined the conditional probability distributions between primitive shapes

and constraints and their corresponding measurement nodes are given in Appendix B.

3.2.3 Observing Evidence from Stroke Data

Finally, we discuss how information from the user’s strokes is incorporated into the network to

influence the system’s belief inCS1. If we assume that the user is done drawing, the values of

O1, ..., O11 are fully observable by taking measurements of the strokes. The system can then use

those values to inferP (CS1|O1, ..., O11). If we do not assume the user is done drawing, we may

still evaluateP (CS1|ev) where the setev contains allOi corresponding to strokes the user has

drawn so far.

We may model the current source (partial) hypothesisCS1 even before the drawing is complete.

An observation node that does not have an observed value intuitively corresponds to a stroke that

the user has not yet drawn. Because observation nodes are always leaf nodes, the missing data has

neither a positive nor a negative effect on the system’s belief in a given interpretation.CS1 may be

strongly believed even ifO1 is missing. As described in Chapter 4, the system uses the strength of

incomplete interpretations to help guide the search for missed low-level interpretations.

3.3 Recognizing a Complete Sketch

The Bayesian network introduced above can be used to detect a single instance of a CS symbol in

any size, position or orientation. However, a typical sketch contains several different symbols as

well as several instances of the same symbol.
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s1

s4

s2

s3

Figure 3-5: Four strokes, three of which form an arrow. The system might try boths2 ands3 as a
line in the head of the arrow.

To detect other shapes in our domain, we may create a Bayesian network similar to the network

above for each shape. We call each of these Bayesian networks ashape fragmentbecause these

fragments can be combined to create a complete Bayesian network for evaluating the whole sketch.

Above, we assumed that we were given a mapping between the user’s strokes and the observa-

tion nodes in our network. In fact, the system must often evaluate a number of potential mappings

between strokes and observation nodes. For example, if the user draws the four strokes in Figure 3-

5, the system might try mapping boths2 ands3 to L2. As described above, each interpretation for

a specific mapping between strokes and observation nodes is called a hypothesis, and each hypoth-

esis corresponds to a single node in the Bayesian network. In this section we discuss how multiple

hypotheses are combined to evaluate a complete sketch.

Given a set of hypotheses for the user’s strokes, the system instantiates the corresponding shape

fragments and links them together to form a complete Bayesian network, which we call theinter-

pretation network. To illustrate this process, we consider a piece of a network generated in response

to Strokes 6 and 7 in the example given in Figure 1-1, which is reproduced in Figure 3-6. Figure 3-7

shows the part of the Bayesian network representing the possible interpretations that the system

generated for these strokes. Each node represents a hypothesized interpretation for some piece of

the sketch. For example,Q1 represents the system’s hypothesis that the user intended to draw a

quadrilateral with strokes 6 and 7. A higher-level hypothesis is compatible with the lower-level hy-

potheses it points to. For example, ifM1 (the hypothesis that the user intended to draw a male with

strokes 6 and 7) is correct,Q1 (the hypothesis that the user intended to draw a quadrilateral with

strokes 6 and 7) andL1, ..., L4 (the hypotheses that the user intended to draw 4 lines with strokes

6 and 7) will also be correct. Two hypotheses that both point to the same lower-level hypothesis

represent competing interpretations for the lower level shape and are incompatible. For example,

A1, Q1 are two possible higher-level interpretations for lineL1, only one of which may be true.
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Figure 3-6: The partial sketch of a family tree from Chapter 1.

Each observation node is linked to a corresponding stroke or set of strokes. In a partial hy-

pothesis, not all measurement nodes will be linked to stroke data. For example,A1 is a partial

hypothesis—it represents the hypothesis thatL1 andL2 (and, hence, Stroke 6) are part of an arrow

whose other line has not yet been drawn. Line nodes representing lines that have not been drawn

(L5 andL6) are not linked to observation nodes because there is no stoke from which to measure

these observations. We refer to these nodes (and their corresponding hypotheses) asvirtual.

The probability of each interpretation is influenced both by stroke data (through its children) and

by the context in which it appears (through its parents), allowing the system to handle noise in the

drawing. For example, there is a gap between the lines in the top-left corner inQ1 (see Figure 3-6);

stroke data only weakly supports the corresponding constraint hypothesis (not shown individually).

However, the lines that formQ1 are fairly straight, raising probabilities ofL1, ..., L4, which in turn

raise the probability ofQ1. Q1 provides a context in which to evaluate the coincident constraint,

and becauseQ1 is well supported byL1, ..., L4 (and by the other constraint nodes), it raises the

probability of the coincident constraint corresponding toQ1’s top-left corner.

The fact that partial interpretations have probabilities allows the system to assess the likelihood

of incomplete interpretations based on the evidence it has seen so far. In fact, even virtual nodes

have probabilities, corresponding to the probability that the user (eventually) intends to draw these

shapes but either has not yet drawn this part of the diagram or the correct low-level hypotheses

have not yet been proposed because of low-level recognition errors. As we describe below, a partial

interpretation with a high probability cues the system to examine the sketch for possible missed

low-level interpretations.
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Constraints
for Q1
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for A1

Observations O3 O4

Stroke7
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Constraints
for A2

Observations

L6

Figure 3-7: A portion of the interpretation network generated while recognizing the sketch in Fig-
ure 3-6.

3.3.1 Linking Shape Fragments

When Bayesian network fragments are linked during recognition, each nodeHn may have several

parents,S1 . . . Sm, where each parent represents a possible higher-level interpretation forHn. We

use a noisy-OR function to combine the influences of all the parents ofHn to produce the complete

CPT forP (Hn|S1, . . . , Sm). The noisy-OR function models the assumption that each parent can

independently cause the child to be observed. For example, a single stroke might be part of a

quadrilateral or an arrow, but both interpretations would favor that interpretation of the stroke as a

line.

The intuition behind Noisy-OR is that each parent that is true will cause the child to also be true

unless something prevents it from doing so. The probability that something will prevent a parent

Si = t from causingHn = t to be true isqi = P (Hn = f |Si = t). Noisy-OR assumes that all the

qi’s are independent, resulting in the following:

P (Hn = t|S1, S2, . . . , Sm) = 1−
∏

i

qi

for eachSi = t. We setqj = P (Hn = f |Sj = t) = 0 for all parentsSj in which Hn is a

required subshape or constraint, and we setqk = P (Hn = f |Sk = t) = 0.5 for all parentsSk in

which Hn is an optional subshape or constraint. A consequence of these values is thatSj = t ⇒
P (Hn|S1, . . . , Sm) = 1 for anySj in whichHn is required, which is exactly what we intended.
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Noisy-OR requires thatP (Hn|S1 = S2, . . . , Sm = f ]) = 0. The result of this requirement is

that any shape or constraint has zero probability of appearing if it is not part of a higher-level shape

or pattern. This behavior may be what is desired; however, if it is not, we may create an additional

parent,Sa, to model the probability that the user intends to drawHn alone, not as part of a shape or

pattern.

We experimented with a noisy-XOR construct, implemented using a “gate node” similar to that

described in [9]. Although this XOR construct is technically a better model for the semantics of

sketch recognition (only one higher-level interpretation may be true), in practice we found that the

noisy-OR semantics were simpler and in fact produced better results. Using the XOR construct,

when one parent interpretation received slightly more support than the others, it immediately drove

the probability of all the other parent interpretations to zero. In effect, a noisy-OR node in a Bayesian

network behaves as a non-aggressive XOR. The behavior of Bayesian networks is such that if a

node with evidence has multiple parents and one parent node receives high probability, it becomes

the “cause” for the child node and “explains away” the need for the other parents. The fact that

one parent is true does not actively prohibit the other parents from being true, but it causes their

probabilities to tend back to their prior values. For more information, see [12].

3.3.2 Missing Nodes

Throughout this process, we have assumed that all of the hypothesized interpretations will exist as a

node in the Bayesian network. However, for reasons discussed in Chapter 4, there are two reasons a

hypothesis might be missing from the network. First, the system does not always initially generate

all higher-level interpretations for a shape. Second, the system prunes unlikely hypotheses from the

network to control the network’s size.

We would like hypotheses that have not yet been generated or that have been pruned nevertheless

to influence the strength of the hypotheses in the network. For example, if there are two potential

interpretations for a stroke—a line and an arc—and the system prunes the line interpretation because

it is too unlikely, the probability of the arc should go up. On the other hand, if the system has only

generated an arc interpretation, and has not yet considered a line interpretation, the probability of

the arc should remain modest because the stroke might still be a line.

We model nodes not present in the network through an additional parent,Snp, for each node

Hn in the graph. We defineqnp = P (Hn = f |Snp = t) and setSnp = t. The value ofqnp

takes into account which nodes have been eliminated from the graph and which have not (yet) been
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instantiated, and it is calculated as follows. LetT1, . . . , Tp be the set of shapes that have an element

of typeHn as a child but do not exist as parents ofHn in the network. We refer toT1, . . . , Tp as

potential parentsof Hn. For example, for nodeL1 in Figure 3-7, this set would contain the single

elementML because the marriage-link is the only shape in the family tree domain that has a line as

a subshape but is not already a parent ofL1 in the graph. LetT1, . . . , Ti be the subset of potential

parents that have never appeared as a parent forHn, andTi+1, . . . , Tp be the subset that were once

parents forHn but have been pruned from the network. Then,qnp =
∏i

j=1 1− P (Tj). We call

P (Tj) thesimple marginal probabilityof Tj . It is calculated by calculating the marginal probability

based only on the priors of the parents and ancestors ofTj in a network containing exactly one

instance of each parent ofTj .

The effect ofqnp is to allow only those shapes that have not yet been instantiated as parents

of Hn to contribute to the probability thatHn = t. If the simple marginal probabilities of the

missing parents are high,qnp will be low, and thus will help raiseP (Hn|S1, . . . , Sm, Snp). If all

the potential parents ofHn have previously been pruned,qnp will be 1 and thus have no effect on

P (Hn|S1, . . . , Sm, Snp).

3.4 Implementation and Bayesian Inference

Our system updates the structure of the Bayesian network in response to each stroke the user draws.

To perform this dynamic Bayesian network construction, we use an off-the-shelf, open source

Bayesian network package for Java called BNJ [1]. Our system manages the hypotheses for the

user’s strokes as they are generated and pruned. When these hypotheses need to be evaluated (e.g.,

before they are pruned), our system creates a Bayesian network in BNJ by creating the necessary

nodes and links as BNJ Java objects. Our system can then use a number of methods that are built-in

to BNJ for reasoning about the probability of each node.

Generating and modifying the BNJ networks can be time consuming due to the exponential

size of the conditional probability tables (CPTs) between the nodes. We use two techniques to

improve the system’s performance. First, BNJ networks are only generated when the system needs

to evaluate the likelihood of a given hypothesis. This on-demand construction is more efficient

than continuously updating the BNJ network because batch construction of the CPTs is often more

efficient than incremental construction of these tables. Second, the system modifies only the portion

of the BNJ network that has changed between strokes instead of creating it from scratch every
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time. The process of keeping track of the added and removed hypotheses adds a slight bookkeeping

overhead, but this overhead is far less than the work required to regenerate the entire network after

each stroke.

To determine the likelihood of each hypothesis, our system uses the BNJ network to find the

marginal posterior probability for each node in the network. We experimented with several in-

ference methods including the junction tree algorithm [52, 43], Gibbs sampling, and loopy belief

propagation (loopy BP) [65, 79]. Both the junction tree algorithm and loopy BP produced mean-

ingful marginal posterior probabilities, but after some experimentation we were unable to obtain

useful results using Gibbs Sampling. We discovered that although the junction tree algorithm gave

meaningful results, the networks produced by our system were often too complex for the algorithm

to process in a reasonable amount of time. We found that when the junction tree algorithm produced

a clique including more than 11 nodes the processing took too long to be acceptable. Unfortunately,

for more complicated diagrams and domains, clique sizes greater than 11 were quite common.

Fortunately, we found loopy BP to be quite successful for our task. Although the algorithm is

not guaranteed to converge to correct values, we found that on our data the algorithm almost always

converged. There were probably only two or three instances in hundreds of tests where the values

did not converge. We initialized the messages to 1 and ran the algorithm until node values were

stable to within 0.001.

Loopy BP was significantly faster than the junction tree algorithm, but for complex data it was

still occasionally slower then we wished. To speed up the system’s performance, we added two

restrictions. First, we terminated the belief propagation algorithm after 60 seconds of processing

if it had not converged by this time. This restriction was needed only a about a dozen times in

the 80 circuit diagrams we processed, but it prevented the rare case were belief propagation took

20 minutes to converge. Second, we allowed each node to have no more than 8 parents (i.e., only

8 higher-level hypotheses could be considered for a single hypothesis). This restriction ensured a

limit on the complexity of the graphs produced by the system. For the family tree domain, this

limitation had no effect on the system’s performance because the system never generated more than

8 higher-level hypotheses for a lower-level hypothesis. However, in the circuit domain, higher-

level hypotheses were occasionally prevented from being considered due to this limitation. For

complex domains such as circuit diagrams, we will need to work on finding more efficient inference

algorithms to allow the system to process more complex networks in a reasonable amount of time.

We will also explore other methods of simplifying the network structure that do not prevent the
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system from considering possibly correct hypotheses.

3.5 Summary

In this chapter we have described a model for dynamically constructing Bayesian networks to rep-

resent varying hypotheses for the user’s strokes. Our model, specifically developed for the task of

recognition, allows both stroke data and contextual data to influence the probability of an interpreta-

tion for the user’s strokes. Using noisy-OR, multiple potential higher-level interpretations mutually

influence each other’s probabilities within the dynamically constructed Bayesian network. Finally,

we provide a method of incorporating the influence of nodes not present in the network to allow

these networks to be simplified without affecting their semantics.

Although this model gives us a way to reason about possible hypotheses for the user’s strokes,

it does not specify how to generate these hypotheses. The process of hypothesis generation is the

subject of the next chapter.
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Chapter 4

Hypothesis Generation

In our system, recognition is a two-stage process involving hypothesis generation and hypothe-

sis evaluation. The previous chapter described how hypotheses are evaluated using dynamically

constructed Bayesian networks. The focus of this chapter is how these candidate hypotheses are

generated.

The major difficulty in hypothesis generation is to generate the correct interpretation as a candi-

date hypothesis without generating too many hypotheses to consider in real time. A naive approach

to hypothesis generation would be simply to attempt to match all shapes to all possible combinations

of strokes, but this approach would produce an exponential number of interpretations. Our method

of evaluating partial interpretations allows us to use a bottom-up/top-down generation strategy that

greatly reduces the number of hypotheses considered but still generates the correct interpretation

for most shapes in the sketch.

Our hypothesis generation algorithm has three basic steps, executed after each stroke the user

draws.

1. Bottom-up Step: The system parses the newest stroke into one or more primitive objects us-

ing a domain-independent recognition toolkit developed in previous work [71]. Based on this

low-level classification, the system hypothesizes higher-level interpretations for this stroke

even even if not all the subshapes of the higher-level pattern have been found.

2. Top-down Step: The system attempts to find subshapes that are missing from the partial inter-

pretations generated in the bottom-up step, often by reinterpreting strokes that are temporally

and spatially proximal to the proposed shape.
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3. Pruning Step: The system prunes off unlikely interpretations to keep the number of interpre-

tations manageable.

Although our algorithm seems straightforward, there are a number of specific challenges that

must be addressed to make it work. First, in the bottom-up step, the system must have an effec-

tive policy for instantiating hypotheses. One part of this hypothesis is specifying a threshold for

generating a new hypothesis, e.g., requiring a minimum number of subshapes to be present and

constraints to be met. Second, when generating and filling in hypotheses, the system must have a

method for deciding how and where a shapes fits into a higher level shape. For example, an arrow

is made of three lines. When hypothesizing that a particular line is part of an arrow, the system

must also determine which part of the arrow that line best corresponds to. Because bindings can

be ambiguous before all the subparts of a higher level interpretation are present, the system should

be able to shuffle bindings in response to new information. The third challenge arises because the

system uses high-level interpretations to recover from low-level interpretation errors, and, hence,

it must have a specific method for reinterpreting strokes in response to incomplete higher-level in-

terpretations. Fourth, the system relies on a variety of pruning methods to manage the number of

hypotheses. In addition to pruning hypotheses with a low score in the Bayesian network, the system

also prunes old, incomplete hypotheses and hypotheses containing redundant information. Finally,

once the interpretations have been generated and scored, the system must choose a consistent set of

interpretations for the user’s strokes from among the many conflicting possible interpretations.

To further discuss each of the challenges above we again return to the example from Chapter 1

in which the user has begun to draw a family tree diagram (reproduced here as Figure 4-1).

4.1 Hypothesis Creation

When the user draws a new stroke, it is passed first to a domain-independent, low-level classification

toolkit [71]. This toolkit classifies the stroke as one of the following: a line, an arc, a series of

connected lines (apolyline), a series of Bezier curves, a combination of lines and curves, or none of

the above. Unlike previous recognition toolkits, this recognition system is capable of breaking the

stroke into a number of primitive shapes (e.g., a series of lines) rather than classifying it as a single

shape. This ability affords the user more freedom in drawing her shapes, as she does not have to

draw each primitive shape with a single stroke.

Based on low-level interpretations of a stroke, the bottom-up step generates a set of hypotheses
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Figure 4-1: The partial sketch of a family tree from Chapter 1.

to be evaluated using the Bayesian network mechanism presented in the previous section. For

example, in the example in Figure 4-1, the user’s first stroke is correctly identified by the low-level

recognizer as an ellipse, and from that ellipse the system generates the interpretationfemale.

The proposed interpretations are calledtemplatesthat have aslot for each subshape. In this

example, the ellipse hypothesis was filled into the ellipse slot in the female template, and there are

no remaining empty slots. However, in other cases a template will only be partially filled, and future

interpretations may be placed in empty slots. For example, when the user draws Stroke 6, the system

generates a partially filled quadrilateral hypothesis, into which the two lines from Stroke 7 may be

filled.

Naive bottom-up interpretation, in which the system generates every possible higher-level hy-

pothesis for each low-level shape, can easily generate too many hypotheses to considered in real-

time. In addition, recall that each higher-level interpretation for a given shape becomes a parent of

that node in the Bayesian network, leading to a large and highly connected graph structure, making

inference far more time consuming. The system relies on a number of strategies to limit the number

of generated partial interpretations.

The first strategy is that the system does not generate a compound shape that consists of more

than one subshape until at least two subshapes and one constraint between those subshapes are

present. When the system attempts to fit two or more shapes into a single higher-level shape, it

first checks to ensure that a minimum number of constraints between the subshapes appear to be
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met. Our model allows the system to use context to recognize shapes despite the fact that that some

of the constraints required for that shape may not appear to hold in isolation (e.g., the constraint

that the lines formed by Strokes 6 and 7 are coincident in the top left corner of the quadrilateral

in Figure 4-1). To enable this context-based evaluation, the system cannot rule out interpretations

simply because some of the constraints appear to fail in isolation. On the other hand, the system

should not generate a hypothesis if too many constraints are violated.

To determine when to generate a hypothesis, the system needs a way to measure how well each

constraint holds based on the stroke data. For each constraint, we define a corresponding property

that can be measured objectively from the stroke data, as discussed in 2.2.1. For example, the

property related to the constraint “parallel” is the angle between the two lines. Each property has a

continuous value and a different range. For example, the angle between two lines is a real number

between 0 and 180, while the ratio between the lengths of two lines is a positive real number. To

allow the system to compare values, we translate the value of each property into a standardized

measurement of how well a constraint holds, which we call theconstraint measurement.

In determining the number of values for the constraint measurement, our goal was to choose the

minimum number that would carry sufficient information for hypothesis generation. As mentioned

previously, two values is insufficient because it is often impossible to tell whether or not a constraint

holds based on low-level data alone. On the other hand, it is unlikely that there are ten meaningful

categories for how well a constraint holds based on the stroke data. We collected data for each

constraint by asking 27 subjects to draw simple shapes and constraints. For each constraint, we

measured the value of its corresponding property for sketches where the property was present and

sketches were the property was not present. Based on this data, we discovered three meaningful val-

ues for each constraint measurement. The first values corresponds to the region in which the value

of the property strongly supports the constraint. For property values in this region the constraint is

almost always true. The second value corresponds to the region in which the property only weakly

supports the constraint. In this region the constraint is sometimes true, but is sometimes false. The

third value corresponds to the region in which the property contradicts the constraint. In this region,

the constraint is rarely, if ever, true. We assign numerical values to each region: zero (property

strongly supports constraint), one (property weakly supports constraint), and two (property contra-

dicts constraint).1 Appendix B gives the exact properties and thresholds we use in determining how

1Our representation allows future constraint measurements to have more than three values and be comparable to our
three-valued constraint measurements. Zero always represents the region in which the property most strongly supports
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Figure 4-2: A sketched ground symbol.

well each constraint holds.

For the system to generate a single template containing two or more objects, at least half of the

necessary constraint measurements between those objects must be zero, and no more than one may

be two. This threshold was determined empirically. For example, in Figure 4-2, the system would

generate a ground template involving Strokes 1 and 2 even though they do not touch, because the

stroke data strongly supports the constraint that they are perpendicular. However, the system would

not generate a battery template for Strokes 1 and 4 because two of the necessary constraints (that

the lines are parallel and that they are next to one another) are contradicted by the stroke data.

The second strategy the system uses to control the number of generated hypotheses is that the

system does not generate higher-level interpretations for interpretations that are only partially filled.

For example, the two lines generated from Stroke 6 in Figure 4-1 results in two partial hypothe-

ses: an arrow and a quadrilateral (Figure 4-3(a)). The system does not generate any higher-level

hypotheses for either the arrow or the quadrilateral because neither is full. When the user draws

the other two sides of the quadrilateral with her next stroke (Stroke 7), the system fills in the rest

of the quadrilateral hypothesis and generates the next higher-level hypothesis for the now complete

quadrilateral, i.e., a male (Figure 4-3(b)). (Notice, however, that this male hypothesis will not be

combined yet with the female hypothesis generated from Stroke 1 to form a mother-son domain

pattern because there are no constraints directly constraining the female relative to the male in the

mother-son template, as per the first strategy, described above.)

Third, each time a new shape is hypothesized, the system first attempts to fit this shape into

existing templates that use that shape before creating new templates. In Figure 4-3, the system fit

the constraint.
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(a) Hypothesis generated from Stroke 6.
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Figure 4-3: Hypotheses generated from Strokes 6 and 7 in the sketch in Figure 4-1
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Figure 4-4: Two labellings ofp1 andp2 that allow the same two lines to be recognized as part of
different higher-level shapes.

L3 andL4 into the template for quadrilateralQ1 and did not create a new quadrilateral template.

However, it was unable to fitL3 andL4 into A1, and created a second arrow template (A2) to

account for linesL3 andL4.

When an interpretation can be fit into more than one slot in a higher-level template (e.g., lines

L1 andL2 might be the head of anA1, or one side of the head and the shaft), the system arbitrarily

chooses one valid fit rather than generating one hypothesis for each potential fit. We discuss below

how the system can shuffle shapes in a template when it attempts to fit more subshapes.

4.1.1 Subcomponent Labeling

Some constraints, such as the coincident constraint, constrain the subcomponents of a pair of shapes

relative to one another. This subcomponent reference presents a challenge for the system because

there is often more than one way to label the subcomponents in a shape. For example, consider the

two lines in Figure 4-4. They might be the head of an arrow, or the side of a quadrilateral. However,

given the descriptions for an arrow and for a quadrilateral in Figure 4.1.1, the lines must have their

endpoints labeled differently to be fit into the two templates.
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shaft

head1

head2

l1

l2l4

l3

DEFINE ARROW

(Subshapes
Line shaft
Line head1

Line head2)
(Constraints

(coincidentshaft.p1 head1.p1)
(coincidentshaft.p1 head2.p2)
(equalLengthhead1 head2)
(largershafthead1 )
(acuteAnglehead1 shaft)
(acuteAnglehead2 shaft))

DEFINE QUADRILATERAL

(Subshapes
(vector Linel[4]))

(Constraints
(coincidentl[i].p2 l[i + 1].p1)
(coincidentl[4].p2 l[1].p1))

Figure 4-5: Descriptions for an arrow and a quadrilateral.

Subcomponent labeling is a challenging problem that our system cannot yet handle in a general

case, as we discuss in the next chapter. However, this problem is most prominent in our domains for

the endpoints of lines. For the specific case of line endpoint labeling, we have solved this problem

by creating two hypotheses for every line that is not part of a polyline—one with each of the two

possible end point labellings.

4.1.2 Polylines

When the system processes polylines, it assumes that all the lines in a single polyline will be used in

one interpretation. For example, in Figure 4-3 the system did not generate marriage link templates

for any of linesL1–L4 (resulting from Strokes 6 and 7) because they were all part of polyline

objects. While this assumption does not always hold, in practice we find that it is often true and

greatly reduces the number of possible interpretations.

Furthermore, in matching polylines into higher-level compound shapes, the system takes advan-

tage of the connectivity of the lines in a polyline to narrow down the possible bindings from lines

to slots. Because of the endpoint labeling problem discussed above, the number of theoretically

possible sets of lines in a polyline withn lines is2n. However, by matching the connection points

in the polyline with the connection points in the template, the system can consider a greatly reduced
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Figure 4-6: A labeling ofp1 andp2 for each line in a polyline that allows the system to recognize a
quadrilateral.

set of these bindings. For example when fitting a polyline into a quadrilateral template, the system

need only try endpoint labellings that put all the lines in the same direction, as shown in Figure 4-6,

and need not try any other endpoint labellings.

4.2 Slot Binding

The second challenge in hypothesis generation is determining the correct mapping between lower

level shapes and the subparts in higher-level shapes. In this section, we consider the challenges

of this task and present two algorithms for performing this mapping. We compare the relative

performance of the two algorithms in the next chapter.

In some cases, particularly when the user draws the subparts of a symbol in a predicted drawing

order, filling shapes into a template is straightforward. For example, the description of a ground

symbol is shown in Figure 4-7. As the user draws the ground symbol in Figure 4-8(a), the system

fits the first line into thebaseslot in the template, the next line into thel1 slot, the next line into the

l2 slot, and so on.

On the other hand, the stroke ordering in Figure 4-8(b) results in an incorrect, but seemingly

reasonable, binding between lines and slots in which the line recognized from Stroke 4 is filled into

slot l3. Consequently, when the user draws Stroke 5, it cannot be correctly bound to slotl3. In order

to recognize the ground symbol, the system must shuffle the components that have already been

bound to this template.

Shuffling the subparts within a template can be time consuming. With a straightforward ap-

proach, the process of finding the best fit form strokes intos slots is
(m

s

)
. At first, it would seem

that stroke orderings that lead the system to produce incorrect mappings between subshapes and

template would be relatively rare, so the system should not have to shuffle the subparts in a template

very often. Unfortunately, there is a more severe consequence of the above situation. In the course
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DEFINE GROUND

(Subshapes
Line base
(vector Linel[3, 6])

(Constraints
(perpendicularbasel1)
(touchesbasel1 base.p2)
(parallell[i] l[i + 1])
(smallerl[i + 1] l[i])
(nextTol[i] l[i + 1])
(alignedl[i] l[i + 1]))

Figure 4-7: The ground symbol from the Circuit Diagram domain.

1

2

3
4

5
(a) An expected stroke order.
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(b) An unexpected stroke order.

Figure 4-8: Two different stroke orders subjects used when drawing a ground symbol.

of generating and filling templates, the system often tries to fit a shape into a template into which

it does not fit at all. The system cannot immediately distinguish between the cases where an object

will fit into a template if the subparts already bound to that template are shuffled and the cases where

an object cannot be fit into a template. In order to determine the difference, the system must attempt

to shuffle the components in a template every time an object does not fit into that template, to ensure

that it really does not fit.

The system must do this shuffling because constraints between subcomponents are calculated

on demand, as the system attempts to fit a new shape into a template. Thus, the system cannot tell if
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L1

L2

L3

Figure 4-9: Two lines that form part of an arrow (L1 andL2) and a third line (L3) that is obviously
not part of the arrow.

a shape meets the necessary constraints to be fit intoanyslot in the template without attempting to

fit it into each slot. In most of these cases, however, considering the constraints before fitting the the

shape into the template would allow the system to rule out immediately a number of potential ways

to bind the shape into template. For example, the line labeledL3 in Figure 4-9 could not possibly

be part of any arrow interpretation involvingL1 andL2 because it has no point which is coincident

with either line.

While relying on constraints can help the system prune the search space for hypotheses, there

are two challenges to using this approach. First, relying on constraints may cause the system to miss

a correct interpretation because, due to signal-level noise, some constraints do not appear to hold

based on stroke data alone. Second, pruning the search space using constraints needs to take less

time than trying the different mappings between slots and shapes for it to be an effective strategy.

Meeting this requirement is not always trivial. The constraints in a template refer to slots, which are

essentially variables. Given a set of constraints that hold between shapes in the drawing, finding a

mapping between the shapes in those constraints and the variables in the template constraints is an

NP-hard problem.

Taking these challenges into consideration, we use the following method to prune the search

space based on constraints when shuffling the components in a template. Given a new shape,Sn,

the system gathers all of the existing shapes within a spatial and temporal bound that do not rely on

the same strokes as the new shape.2 For each object in this set,Se, the system calculates the values

of each applicable constraint betweenSe andSn. If the value of this constraint is0, the system

records that the constraint,Ci, holds betweenSe andSn. For those constraints that are commutative

(e.g., parallel), the system calculates the value of the constraint in both directions. At the end of this

process the system has accumulated only the constraints that are strongly supported by the stroke

2Two stroke shapes cannot be fit into a higher-level interpretation if they are derived from the same stroke because
these shapes represent competing interpretations for the user’s stroke.
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Template Constraints Object Constraints
C1: (coincidentshaft.p1 head1.p1) (shorterL1 L2)
C2: (coincidentshaft.p1 head2.p2) (coincidentL1.p1 L2.p1)
C3: (equalLengthhead1 head2) (acute-angleL1L2)
C4: (shorterhead1 shaft) (shorterL3 L2)
C5: (acuteAnglehead1 shaft) (shorterL1 L3)
C6: (acuteAnglehead2 shaft)

(a) Constraints

head1 head2 shaft
C1 C3 C4 C5 C2 C3 C6 C1 C2 C4 C5 C6

L1 x x x x x x x
L2 x x x x x x x
L3 x x

(b) Constraint Table

Table 4.1: The constraint table built while trying to fit the three lines in Figure 4-9 into an arrow
template. Template constraints and detected object constraints are shown in the top table.

data.

To fit Sn into a template,t, that already contains shapesS1...Sk, the system uses a voting

algorithm inspired by template matching algorithms in computer vision [24]. The system constructs

a table containing columns for each slot int and rows for each shape(Sn, S1, . . . Sk). Each column

has a subcolumn for each constraint that pertains to that slot. Table 4.1(a) shows an example for the

arrow template, given the sketch in Figure 4-9. Next, the system gathers all calculated constraints

pertaining to(Sn, S1, . . . Si) (shown in Figure 4.1(a)). We distinguish betweenobject constraints,

which are the constraints determined to hold between existing shapes andtemplate constraints,

which are the constraints required by a template. For each object constraint, the system puts an

“x” in the corresponding row for each column that pertains to the matching template constraint.

For example, the first object constraint in the list in Table 4.1(a) results in two “x”s in the table:

one in rowL1, columnhead1-C4, and the other in rowL2, columnshaft-C4. The full table in

Table 4.2 shows the results of processing all the object constraints in Table 4.1(a). Finally, the

system considers each row of the complete table and allows a component to be fit into any slot

where it has satisfied at least 75% of the constraints. Notice that in this example, there is no such

slot for eitherL3 or L2, so the system does not try to shuffle the components in the arrow template

even thoughL1 satisfies enough constraints to be fit into the slot forhead1

Intuitively, we expect that the above algorithm will improve processing time when there are
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relatively few constraints that are satisfied between shapes in the sketch. In practice we find that

for simple sketches this is indeed the case. For more complicated sketches, as we will see in the

next chapter, running time is dominated by the Bayesian network inference. We refer to the above

algorithm as the constraint-based template generation algorithm, and the original algorithm as the

slot-based template generation algorithm. We compare the performance of these two algorithms

empirically in the next chapter.

4.3 Recovering from Low-level Errors

In the bottom-up template generation steps, the system considers only the best low-level interpreta-

tion generated by the low-level toolkit. Often on messy data, it is difficult or impossible to correctly

identify low-level shapes without considering the stroke in the context of the larger sketch, and the

low-level toolkit often generates an incorrect low-level interpretation.

The top-down step allows our system to recover from low-level recognition errors by consid-

ering two common sources of error made by the low-level toolkit. First, the system attempts to

reclassify a stroke as a line, arc or an ellipse to fill in nearby partially filled hypotheses requiring

these shapes. Second, the system attempts to re-segment polylines to fit them into higher-level

shapes. For example, in the drawing in Figure 4-1, Stroke 3 is incorrectly, but reasonably, parsed

into 5 lines by the low-level recognizer. Because the system does not know about 5-line objects,

but does know about things that contain fewer than 5 lines, it attempts to re-segment the stroke

into 2 lines, 3 lines and 4 lines (with a threshold on acceptable error). It succeeds in re-segmenting

the stroke into 4 lines and successfully recognizes the lines as a quadrilateral. The portion of the

interpretation network involved with parsing this stroke is given in Figure 4-10. Although the 4-line

fit is not perfect, the network allows the context of the quadrilateral in addition to the stroke data to

influence the system’s belief in the 4-line interpretation. Also note that the 5 lines from the original

segmentation are still present in the interpretation network.

The top-down step also fills in hypotheses generated by the bottom-up step in order to allow the

bottom-up hypothesis to use a simpler and faster method for generating hypotheses. Recall that a

higher-level hypothesis is not proposed until there are at least two subshapes with a constraint be-

tween them present in the sketch. Consequently, in Figure 4-1, the mother-son relationship between

the female and the rightmost male is not proposed until after the arrow between the two shapes is

drawn (Stroke 10). The system proposes an arrow, and then a child-link, interpretation for Stroke
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Figure 4-10: The part of the interpretation network for the interpretation of the drawing in Figure 4-1
that pertains to the two line segmentations for Stroke 3.

10 and then looks for other shapes with which to combine the child-link to produce higher-level

domain patterns. To save time, it tries to combine the child-link interpretation with only one other

interpretation (e.g., either the female or the male, but not both), rather than considering all possible

sets of shapes that might be combined to form higher-level interpretations. It then instantiates a

mother-son domain pattern that contains only the female and the child-link, but not the male. The

top-down step can then fill in the male hypotheses to complete the domain pattern correctly.

In the final form of low-level error recovery, the top-down step collapses overlapping polylines

in order to recognize shapes such as the arrow created by Stroke 10 in Figure 4-1. For any lines in

a polyline with an angle less than 15 degrees, the system proposes a single line to account for both

lines. As long as there is a higher level template into which this collapsed polyline may be fit, the

system keeps this collapsed version of the polyline. If the collapsed polyline cannot be fit into a

higher level template, the system prunes the collapsed hypothesis.

4.4 Pruning Hypotheses

The system controls the number of interpretations in the network through pruning. The system

prunes hypotheses based on three criteria: likelihood, age and redundancy. The system prunes any

hypotheses that are not likely interpretations for the user’s strokes. The pruning step compares all

competing interpretations for a given node and prunes any that are more than a set threshold below

the best interpretation. Next, the system prunes incomplete hypotheses that are older than a given

threshold under the assumption that if the user has not completed a shape within a set period of time,
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it is unlikely that this shape is the correct interpretation for the user’s strokes. The system prunes any

incomplete hypotheses that have not had a slot filled with shapes resulting from the user’s previous

two strokes, and it prunes all domain patterns that have not been modified in the user’s previous four

strokes. Note that the top-down step is capable of regenerating these pruned hypotheses if the user

returns to complete the shape. Finally, because each line is represented in the system twice (each

with a different labeling for endpointsp1 andp2), the system often contains a number of redundant

interpretations. The system prunes any interpretation that is more than a set threshold below another

incomplete interpretation of the same type that uses the same subshapes.

4.5 Selecting an Interpretation

As each stroke is drawn the sketch system uses a greedy algorithm to select the best interpretation for

the sketch. It queries the Bayesian network for the strongest complete domain shape interpretation,

sets aside all the interpretations inconsistent with this choice, chooses the next most likely remaining

domain interpretation, and so forth. It leaves uninterpreted strokes that are part of partial hypotheses.

Although the system selects the most likely interpretation at every stroke, it does not eliminate

other interpretations. Partial interpretations remain and can be completed with the user’s subse-

quent strokes. Additionally, the system can change its interpretation of a stroke when more context

is added. While interpretations are selected after every stroke, determining when to display these

interpretations to the user is by itself an interesting and difficult question of human computer inter-

action. We further explore this issue in Chapter 6.

4.6 Summary

This chapter presented our approach to hypothesis generation for sketch recognition. We intro-

duced several techniques for controlling the number of hypotheses generated. We introduced two

techniques for generating hypotheses: the slot-based approach and the constraint based approach.

Finally, we showed how to use partial hypotheses to reinterpret strokes that were incorrectly recog-

nized by the low-level classifier. In the next chapter we illustrate the strengths and weaknesses of

each of these ideas by exploring the system’s performance on real-world data.
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Chapter 5

Evaluation

Motivated by the desire to construct a multi-domain sketch recognition engine for use in early-

stage design tools, we have presented a new domain-variable context-based approach to sketch

recognition. A system that is intended to be broadly useful for the construction of early-stage

design tools should provide:

• Recognition accuracy: The system should be able to accurately recognize freely drawn,

messy sketches. It should not necessarily require feedback from the user to guide interpreta-

tion; providing recognition feedback can be distracting.

• Real-time performance: The system should recognize the user’s sketches in real time so the

designer can interact with recognized diagrams at any point during the design process.

• Domain flexibility : The system should be applicable to a variety of domains without requir-

ing programming or extensive amounts of training data.

Although we have not yet succeeded in building a system that meets each of these requirements

completely, we have taken a number of substantial steps toward each goal and, in doing so, exposed

several remaining challenges. We show how our system is applied to two non-trivial domains—

family trees and circuits—and discuss the inherent challenges in each domain. We provide examples

that show our system is capable of using context to resolve ambiguity in messy sketches, we present

quantitative recognition and running time performance results on complex, messy sketches from

each domain, showing that the use of context improves recognition performance. Finally, an exam-

ination of the system’s recognition errors and running time bottlenecks illuminates the remaining

challenges in building a multi-domain sketch recognition engine.
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Wire Resistor Transistor Voltage Source Battery

Diode Current Source Ground Capacitor A/C Source

Table 5.1: The symbols in the circuit domain.

Male Female Child-link Marriage-link Divorce-link

Table 5.2: The symbols in the family-tree domain.

5.1 Applying SketchREAD

While there exist a number of domain-specific recognition systems (e.g., [4, 36, 49]), there have

been relatively few attempts to build a multi-domain system. Weisman [78] and Lank [50] proposed

domain-retargetable systems, but their systems require a significant amount to programming to ap-

ply them to a domain. The contribution of our work, and complementary work by Hammond and

Davis [38], is that our engine can be applied to a particular domain without any programming.

To show that SketchREAD achieves this goal, we applied it to two non-trivial domains—family

trees and circuits—and found that it is capable of recognizing sketches in both domains without

reprogramming. Applying SketchREAD to a particular domain involves two steps: specifying the

structural descriptions for the shapes in the domain and specifying the prior probabilities for the

domain patterns and any top-level shapes not used in domain patterns, i.e., those that will not have

parents in the generated Bayesian network. (Refer to Chapter 3 for details on how probabilities are

assigned to other shapes.) For each domain, we wrote a description for each shape and pattern in that

domain. Tables 5.1 and 5.2 give the shapes in each domain, and Appendix A gives full descriptions

for all the shapes and the domain patterns.

We specified only shape descriptions (no domain pattern descriptions) for the circuit diagrams

because of a limitation in how our implemented system handles subcomponent labeling (discussed
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in Section 5.6.1). We describe below how the lack of domain patterns for circuit diagrams may have

affected the system’s performance. Note, however, that the domain shapes themselves still provide

a context in which to interpret lower-level interpretations and constraints in the circuit domain.

We hand-estimated priors for each domain pattern and top level shape, based on our intuition

about the relative prevalence of each shape. For example, in our family-tree diagrams, we esti-

mated that Marriage relationships were much more likely than Partnership relationships, and we

setP [Mar] = 0.1 andP [Part] = 0.001. These priors represent the probability that a group of

strokes chosen at random from the page will represent the given shape and, in most cases, should

be relatively low. The priors we used in our tests are given in Appendix B, but as discussed below,

the system’s recognition performance was relatively insensitive to the exact values of these priors.

Having to set priors by hand could be difficult for a system designer who may know very little

about probabilities. We suggest two ways to assist the system designer with this task. First, through

experimentation, we found that recognition performance to be relatively insensitive to the exact

values of these priors. For example, in the circuit diagrams, increasing all the priors by an order of

magnitude did not affect recognition performance. Instead what matters is the relative values of the

prior probabilities. Based on this observation, we could build a system that translates the system

designer’s knowledge about the relative strengths of each domain pattern and top-level shape into

the prior probabilities used by the system. As a second approach, the prior probabilities could be

learned from data. While SketchREAD does not require labeled training data, if the system designer

has access to such data, SketchREAD should use the data effectively.

5.2 Data Collection

SketchREAD is capable of recognizing simple sketches nearly perfectly in both the family-tree and

circuit domains, but we wanted to test its performance on more complex, real-world data. There is

no standard test corpus for sketch recognition, so we collected our own sketches and have made them

available online athttp://rationale.csail.mit.edu/ETCHASketches to encourage

others to compare their results with those presented here.

Our goal was to collect sketches that were as natural and unconstrained as the types of sketches

people produce on paper to test the limits of our system’s recognition performance. To collect these

sketches, we used a data collection program for the Tablet PC developed by others in our group that

allows the user to sketch freely and displays the user’s strokes exactly as she draws them, without
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performing any type of recognition. Most of our users had played with a Tablet PC before they

performed our data collection task but had never used one for an extended period of time. None

used any type of pen-based computer interface on a regular basis. The users first performed a few

warm-up tasks, at the end of which all users expressed comfort drawing on the Tablet PC.

To collect the family-tree sketches, we asked each of 10 users to draw her family tree using the

symbols presented in Table 5.2. Users were told to draw as much or as little of the tree as they

wanted and that they could draw the shapes however it felt natural to them. Because erasing strokes

introduces subtleties into the recognition process that our system is not yet designed to deal with,

users were told that they could not erase, and that the exact accuracy of their family-tree diagram

was not critical.

We then recruited 10 different subjects with basic knowledge of circuit diagram construction

and showed them examples of the types of circuits we were looking for. After a warm-up task,

subjects were instructed to draw several circuits. We specified the number and types of components

to be included in the circuit and then asked them to design any circuit using those components.

Subjects were instructed not to worry about the functionality of their circuits, but that they should

try to produce realistic circuits. We collected 80 diagrams in all.

Figure 5-1 shows the range of complexity of the sketches in each domain. In the family-tree

domain, we collected ten sketches of varying complexity containing between 24 and 102 strokes

(mean=50, s.d.=26) and between 16 and 60 symbols (mean=34, s.d.=15). In the circuit domain, we

collected 80 diagrams with between 23 and 110 strokes (mean=39, s.d.=13) and between 10 and 63

symbols1 (mean=24, s.d.=8).

One limiting assumption that SketchREAD currently makes is that the user will not draw more

than one symbol with a single stroke. Unfortunately, in drawing circuit diagrams, users often draw

many symbols with a single stroke, e.g., a series of resistors and wires. To allow SketchREAD

to handle the circuit diagrams, we manually divided strokes containing multiple objects. This is

clearly a limitation of our current system; we discuss below how it might be handled.

5.3 Evaluation Methodology

In evaluating the performance of our system, direct comparisons with previous work are difficult, as

there are few (if any) published results for this type of recognition task. The closest published sketch

1Wires drawn with a single stroke were counted as only one symbol, even if they were bent.
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(a) Family-Tree Sketches

(b) Circuit Sketches

Figure 5-1: Examples that illustrate the range of complexity of the sketches collected.

recognition results are for the Quickset system, which also uses top-down information (through

multi-modal input) to recognize sketched symbols, but this system assumes users will draw all of a

single shape and then pause, making its recognition task different from ours [83].

We compared SketchREAD’s recognition performance with the performance of a strictly bottom-

up approach of the sort used in previous systems [4, 63]. This strictly bottom-up approach combined

low-level shapes into higher-level patterns without top-down reinterpretation. Even though our

baseline system did not reinterpret low-level interpretations, it was not trivial. It used the Bayesian
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Missed line

Missed line

Missed line

Missed line

Ground: 0/4 
Resistor: 4/4
Battery: 2/2 + 3 false positive
Transistor: 0/2

(a) Baseline

Too messy

Ground: 3/4 
Resistor: 4/4
Battery: 2/2 + 1 false positive
Transistor: 2/2

(b) SketchREAD

Figure 5-2: Recognition performance example. Numbers in the boxes give overall performance
(number correct/total).

network mechanism to resolve inherent ambiguities in the drawings (e.g., are two strokes a battery

or part of a ground symbol?). Also, because the bottom-up step generates hypotheses even when

not all required constraints are met, the baseline system could cope with some noise in the sketch.

SketchREAD is designed to alleviate the need for domain-specific recognition systems. Al-

though we do not present a direct comparison between SketchREAD and a domain-specific recog-

nition system, we discuss SketchREAD’s strengths and limitations relative to such a system in

Section 5.6.3.

5.4 Qualitative Performance

Qualitative analysis of the system’s performance reveals that our system’s hypothesis generation

and hypothesis evaluation mechanisms behave as expected. The system can successfully reinter-

pret low-level strokes to generate correct hypotheses that were missed in the bottom-up step. In

addition, the Bayesian network mechanism successfully aggregates information from stroke data

and context, resolves inherent ambiguities in the drawing, and updates its weighting of the various

existing hypotheses as new strokes are drawn.

Figure 5-2 illustrates how our system is capable of handling noise in the sketch and recovering

from missed low-level interpretations. In the baseline case (Figure 5-2(a)), one line from each

ground symbol was incorrectly interpreted at the low-level, so the correct ground symbol hypotheses

were never generated. SketchREAD was able to reinterpret those lines using the context of the

ground symbol in three of the four cases to identify the symbol correctly (Figure 5-2(b)). In the
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Figure 5-3: Part of three possible ground symbols.

fourth case, one of the lines was simply too messy, and SketchREAD preferred (incorrectly) to

recognize the top two lines of the ground symbol as a battery.

The system’s performance depends on both its ability to generate the correct hypotheses and

its ability to weight the correct hypotheses higher than the incorrect hypotheses. We show through

an example that the Bayesian network scores hypotheses correctly in several respects: it prefers

to group subshapes into the fewest number of interpretations, it allows competing interpretations

to influence one another, it updates interpretation strengths in response to new stroke data, and it

allows both stroke data and context to influence interpretation strength.

To illustrate the points above, we consider in detail how the system responds as the user draws

the three sets of strokes in Figure 5-3. To simplify the example, we consider a reduced circuit

domain in which users only draw wires, resistors, ground symbols and batteries. Figures 5-4(a)

and 5-4(b) show the Bayesian networks produced in response to the user’s first two and first three

strokes, respectively. Note that the structure of the network is the same despite the noise in some

of the drawings2; the values of the shaded nodes change in response to the noise. Observed nodes

may have one of three values: 0 (stroke data strongly supports the shape or constraint), 1 (stroke

data weakly supports the shape or constraint), and 2 (stroke data does not support the shape or

constraint).

For the clean ground symbol (Figure 5-3(a)), posterior probabilities are given in Table 5.3. In

this case the stroke data strongly supports all the shapes and constraints, so all shaded nodes have

value 0. After the first two strokes, the battery symbol and the ground symbol have equal weight.

The fact that the ground and battery symbols have the same weight at this point might seem coun-

terintuitive. After all, after two strokes the user has drawn what appears to be a complete battery,

but has only drawn a small piece of the ground symbol. Recall, however, that the Bayesian network

models not what has been drawn, but what the userintends to draw. After just two strokes, it is

2In Figures 5-3(b) and 5-3(c), even though the user’s second and third strokes do not necessarily look like lines, the
system will generate line a hypothesis for each of these strokes in the top-down step.
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Wire-1 Ground-1Battery-1

NextTo-1

Wire-2

Parallel-1Smaller-1Aligned-1

Line-2Line-1

SqErr-1 SqErr-2

Meas-4Meas-3Meas-2Meas-1

(a) After two strokes

Wire-1 Ground-1Battery-1

NextTo-1

Wire-2

Parallel-1Smaller-1Aligned-1

Line-2
Line-1

SqErr-1 SqErr-2

Meas-4Meas-3Meas-2Meas-1

Line-3

NextTo-2 Parallel-2Smaller-2Aligned-2

Meas-8Meas-7Meas-6Meas-5

Battery-2 Wire-3

SqErr-3

(b) After three strokes

Figure 5-4: The Bayesian network produced after the first two and three strokes of the ground
symbol in Figure 5-3.

just as likely that the user is in the process of drawing a ground symbol. After the third stroke,

the ground symbol’s probability increases because there is more evidence to support it, while the

battery’s probability decreases. The fact that the ground symbol is preferred over the battery il-

lustrates that the system prefers interpretations that result in a fewer number of symbols (Okham’s

razor). Interpretations that involve more of the user’s strokes have more support and get a higher

score in the Bayesian network. The fact that the battery symbol gets weaker as the ground symbol

gets stronger results from the “explaining away” behavior in this Bayesian network configuration:

each of the low-level components (the lines and the constraints) are effectively “explained” by the

existence of the ground symbol, so the battery is no longer needed to explain their presence.

Next, we show that small amounts of noise in the data are counteracted by the context provided

by higher-level shapes. The slightly noisy second and third strokes (Figure 5-3(b)) cause the values

of SqErr-2 and SqErr-3 to be 1 instead of 0 (all other shaded node values remain 0) and result in

the node values given in Table 5.4(a). The probability of the ground symbol interpretation is still
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Name P [Shape|stroke data]
after 2 strokes after 3 strokes

Wire-1 0.4 0.4
Wire-2 0.4 0.4
Wire-3 N/A 0.4
Battery-1 0.51 0.09
Battery-2 N/A 0.09
Ground-1 0.51 0.95
Line-1 1.0 1.0
Line-2 1.0 1.0
Line-3 N/A 1.0
Aligned-1 1.0 1.0
Smaller-1 1.0 1.0
NextTo-1 1.0 1.0
Parallel-1 1.0 1.0
Aligned-2 N/A 1.0
Smaller-2 N/A 1.0
NextTo-2 N/A 1.0
Parallel-2 N/A 1.0

Table 5.3: Posterior probabilities for the network in Figure 5.4 for the sketch in Figure 5-3(a).

high, due to the fact that Line-1 and all of the constraints are still strongly supported by the data.

In addition, the probabilities for the line nodes are high, indicating that the context provided by the

ground symbol provides support for the line interpretations even when the evidence from the data is

not as strong.

On the other hand, if the data is too messy, it causes the the probability of the higher-level

interpretations to decrease. The sketch in Figure 5-3(c) causes the value of SqErr-2 to be 1, and

SqErr-3 to be 2, and results in the posterior probabilities given in Table 5.4(b). In this case, Lines-

1 and Line-2 are accounted for by Battery-1. The probability of Ground-1 decreases because the

hypothesis Line-3 is contradicted by the user’s third stroke.

5.5 Quantitative Results

In this section we present quantitative recognition and running time results for the family tree and

circuit domains. Although SketchREAD does not perform perfectly on every sketch, its generality

and performance on complex sketches illustrates its promise over previous approaches. In addi-

tion to comparing SketchREAD’s performance to the performance of the baseline system, we also
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Name P [Shape|stroke data]
after 2 strokes after 3 strokes

Wire-1 0.41 0.4
Wire-2 0.38 0.4
Wire-3 N/A 0.4
Battery-1 0.51 0.1
Battery-2 N/A 0.1
Ground-1 0.51 0.94
Line-1 1.0 1.0
Line-2 0.96 1.0
Line-3 N/A 1.0
Aligned-1 0.98 1.0
Smaller-1 0.98 1.0
NextTo-1 0.98 1.0
Parallel-1 0.98 1.0
Aligned-2 N/A 1.0
Smaller-2 N/A 1.0
NextTo-2 N/A 1.0
Parallel-2 N/A 1.0

(a) Interpretation Strengths for Sketch in Figure 5-3(b)

Name P [Shape|stroke data]
after 3 strokes

Wire-1 0.42
Wire-2 0.37
Wire-3 0.01
Battery-1 0.91
Battery-2 0.0
Ground-1 0.03
Line-1 0.99
Line-2 0.92
Line-3 0.03
Aligned-1 0.95
Smaller-1 0.96
NextTo-1 1.0
Parallel-1 0.96
Aligned-2 0.51
Smaller-2 0.62
NextTo-2 0.0
Parallel-2 0.62

(b) Interpretation Strengths for Sketch in
Figure 5-3(c)

Table 5.4: Posterior probabilities for the network in Figure 5.4 for the sketch in Figure 5-3.

compare performance of the two hypothesis generation algorithms (slot-based and constraint-based)

presented in Section 4.2.

5.5.1 Recognition Accuracy

We measure recognition performance for each system by determining the number of correctly iden-

tified objects in each sketch (Table 5.5 and Table 5.7). Each table lists the baseline system perfor-

mance and the performance of both the Slot (SR-Slot) and Constraint (SR-Con) hypothesis gener-

ation algorithms in SketchREAD. In all cases, both hypothesis generation algorithms significantly

outperform the baseline system (p ¿ 0.001); however, the difference in performance between the

two methods is not significant.

For the family-tree diagrams SketchREAD performs consistently and notably better than our

baseline system. On average, the baseline system correctly identifies 50% of the symbols while

SketchREAD-Slot correctly identified 77%, a 54% reduction in the number of recognition errors.

Due to inaccurate low-level recognition, the baseline system performed quite poorly on some of
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Size #Shapes % Correct
BL SR-Slot SR-Con

Mean 50 34 50 77 73
S1 24 16 75 100 94
S2 28 16 75 87 100
S3 29 23 57 78 72
S4 32 22 31 82 77
S5 38 31 54 87 74
S6 48 36 58 78 91
S7 51 43 26 72 72
S8 64 43 49 74 60
S9 84 49 42 61 59

S10 102 60 57 80 72

Table 5.5: Recognition rates for the baseline system (BL) and the two hypothesis generation al-
gorithms in SketchREAD: Slot (SR-Slot) and Constraint (SR-Con). The size column indicates the
number of strokes in each sketch.

Total % Correct
BL SR-Slot SR-Con

Female 66 94 97 94
Male 71 52 76 75
Child 170 32 73 66

Marriage 29 52 69 66
Divorce 3 0 0 0

Table 5.6: Recognition rates by shape.

the sketches. Improving low level recognition would improve recognition results for both systems;

however, SketchREAD reduced the error rate by approximately 50% on each example regardless

of the performance of the baseline system on a particular example. Because it is impossible to

build a perfect low-level recognizer, SketchREAD’s ability to correct low-level errors will always

be important.

Table 5.6 reveals that SketchREAD has the greatest improvement for males (quadrilaterals)

and child-links (arrows). This trend arises because the most common error made by the low-level

recognizer is to mis-segment poly-lines. SketchREAD is able to re-segment these lines successfully

by considering the context in which they appear.

Circuit diagrams present SketchREAD with more of a challenge for several reasons. First, there

are more shapes in the circuit diagram domain and the shapes are more complex. Second, there is a

stronger degree of overlap between shapes in the circuit diagrams. For example, it can be difficult

to distinguish between a capacitor and a battery. As another example, a ground symbol contains
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Total % Correct # False Pos
BL SR-Slot SR-Con BL SR-Slot SR-Con

AC Source 4 100 100 100 35 38 29
Battery 96 60 56 89 56 45 71

Capacitor 39 56 74 69 27 32 14
Wire 1182 62 69 67 478 450 372

Ground 98 18 53 55 0 5 5
Resistor 330 51 52 53 7 7 8

Voltage Source 43 2 37 47 1 6 8
Diode 77 22 15 17 0 0 0

Current Source 44 7 10 11 0 0 0
Transistor 43 0 7 7 0 16 14

Table 5.7: Aggregate recognition rates for the baseline system (BL) and SketchREAD (SR) for the
circuit diagrams by shape.

within it (at least one) battery symbol. Finally, there is more variation in the way people draw

circuit diagrams, and their sketches are messier, causing the low-level recognizer to fail more often.

They tend to include more spurious lines and over-tracings.

Overall, SketchREAD correctly identifies 62% of the shapes in the circuit diagrams, a 17%

reduction in error compared to the baseline system. It is unable to handle more complex shapes,

such as transistors, because it often fails to generate the correct mapping between strokes and pieces

of the template. Although the system attempts to shuffle subshapes in a template in response to

new input, for the sake of time it cannot consider all possible mappings of strokes to templates. We

discuss below how we might extend SketchREAD to improve its performance on complex domains

such as circuit diagrams.

Finally, although the difference in recognition performance between the two hypothesis genera-

tion methods is not significant, it is notable that they produce different results at all. The reason for

this difference will be discussed below.

5.5.2 Running Time

We also examined SketchREAD’s running time to determine how it scales with the number of

strokes in the sketch. Figures 5-5 and 5-6 graph the processing time for each stroke added to each

sketch for each domain. In Figure 5-5(a), one family-tree diagram takes a particularly long time

to process; that diagram has been omitted from this graph. Three things about these graphs are

important. First, although SketchREAD does not yet run in real time, the time to process each

stroke in general increases only slightly as the sketch gets larger. Second, the spikes in the graphs
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Figure 5-5: The median incremental time it takes the system to process each stroke in the family-tree
diagrams for each hypothesis generation algorithm. Vertical lines indicate standard deviation.
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Figure 5-6: The median incremental time it takes the system to process each stroke in the circuit
diagrams for each hypothesis generation algorithm. Vertical lines indicate standard deviation.

indicate that the system takes longer to process some strokes than others. Finally, the processing

time for the circuit diagrams is longer than the processing time for the family trees, although this

difference is not statistically significant.

By instrumenting the system, we determined that processing time is dominated by the inference

in the Bayesian network, and that all of the above phenomena can be explained by examining the size

and complexity of the interpretation network. The number of nodes in the interpretation network

grows approximately linearly as the number of strokes increases (Figures 5-7 and 5-8). This result

is encouraging, as the network would grow exponentially using a naive approach to hypothesis

generation. The increase in graph size accounts for the slight increase in processing time in both

graphs. The spikes in the graphs can be explained by the fact that some strokes not only increase the
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Figure 5-7: The median size of the Bayesian network when processing each stroke in the family-tree
diagrams. Vertical lines indicate standard deviation. Vertical bars are absent after stroke 80 because
there was only one family-tree diagram with more than 80 strokes.
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Figure 5-8: The median size of the Bayesian network when processing each stroke in the family-tree
diagrams. Vertical lines indicate standard deviation.

size of the network, but have more higher-level interpretations, creating more fully connected graph

structures, which causes an exponential increase in inference time. After being evaluated, most of

these high-level hypotheses are immediately pruned, accounting for the sharp drop in processing

time on the next stroke. Finally, the fact that circuits take longer to process than family trees is

related to the relative complexity of the shapes in the domain. There are more shapes in the circuit

diagram domain and they are more complex, so the system must consider more interpretations for

the user’s strokes, resulting in larger and more connected Bayesian networks.

We find that Bayesian network inference takes longer using the constraint-based hypothesis gen-

eration algorithm than using the slot-based algorithm. For the family trees, the difference in total
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processing time is not significant, but the difference in inference time was (Wilcoxon Signed-Rank

Test,p < 0.01). For circuit diagrams, the Bayesian network inference accounts for a larger propor-

tion of the total processing time in both the constraint-based and slot-based hypothesis generation

cases. The difference in total processing time as well as inference time between the two systems is

also significant (p < 0.001). This result implies that the Constraint-based algorithm produces less

fully connected graphs, a point we discuss below.

5.6 Discussion

In this section we discuss SketchREAD’s limitations and how they can be addressed so that its

overall performance can be improved to better handle more complicated domains. We discuss how

to improve the system’s recognition performance and running time, as well as how SketchREAD

compares to a domain-specific recognition engine.

5.6.1 Recognition Performance

SketchREAD significantly improves the recognition performance of unconstrained sketches. How-

ever, its accuracy, especially for complicated sketches and domains, is still too low to be practical

in most cases. We consider six major sources of recognition error and how they might be addressed

to improve the system’s performance.

The first source of recognition error comes from the fact that SketchREAD does not distinguish

between compatible and incompatible higher-level interpretations for a shape. In general, higher-

level interpretations for a shapes are incompatible. For example, in the family-tree domain, a line

may be part of an arrow or part of a quadrilateral, but not both. However, some domain patterns are

compatible—a female may be part of a marriage and any number of mother-daughter relationships

at the same time. Our representation does not distinguish between the two cases. Above we saw that

the “explaining away” behavior of the Bayesian network allowed the system to weight competing

hypotheses correctly. This same behavior causes the system to weight compatible interpretations

incorrectly. For the system to behave correctly, we need to introduce a different Bayesian network

structure for compatible relationships that allows them to coexist or even mutually reinforce one

another rather than compete with one another.

The second source of error is related to limitation with our constraint-based recognition method.

SketchREAD has trouble recognizing shapes that constrain the subcomponents of their subshapes.
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Figure 5-9: The description of a diode.

For example, the description of a diode (Figure 5-9) includes the constraint that pointp2 of l2 of

triangle t must touch linel. In isolation, the lines in a triangle are all the same, and the system

arbitrarily labels theml1, l2 and l3. If the labels are not placed correctly, the system will not be

able to recognize the diode symbol. This problem arises from the fact that the system assigns labels

when a shape is created, rather than when that shape is fit into a template for a higher-level shape.

Dynamically assigning labels to subcomponents is a non-trivial problem that we do not yet handle.

Because the problem of subcomponent labeling causes such a problem for lines, we handle them as

a special case. When the system recognizes a line, it arbitrarily assigns a labeling ofp1 andp2 to

the endpoints. Because this labeling is likely to be incorrect, the system instantiates a second line

interpretation with the opposite endpoint labeling. This policy aids recognition, but often results in

a number of redundant interpretations for the user’s sketch.

The third source of error is due to the lack of sufficient context provided by the descriptions

for each domain. On a small scale, domain patterns for the circuit domain could have prevented

false positives and aided recognition. Errors such as the one in Figure 5-10, in which the system

incorrectly but reasonably chose the wire above the voltage source as the minus sign in the voltage

source and labeled the true minus sign as a wire, could have been prevented if the system knew

that voltage sources must be attached to wires on both sides. On a larger scale, the system is also

lacking more global context that could aid recognition. For example, in the family-tree diagrams,

each person is allowed to be involved in only one marriage relationship, but can be involved in any

number of parent-child relationships.
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(a) SketchREAD’s incorrect labeling (b) The voltage source symbol

Figure 5-10: An incorrectly recognized voltage source symbol.

A fourth source of error arises from the necessary limitation on the number of higher-level inter-

pretations a shape may have. To control the complexity of the Bayesian network, we limit the num-

ber of parents a node in the graph may have (i.e., we limit the number of higher level interpretations

for each shape). This limitation causes a less fully connected graph structure, measured by deter-

mining the size of the largest clique produced using the junction tree inference algorithm [52, 43].

Occasionally, there are too many high level interpretations to consider and some must be ignored.

Running time improvements suggested below could allow the system to consider more higher level

interpretations in a reasonable amount of time.

A fifth source of recognition error has to do with the fact that our recognition algorithm treats

every stroke the user draws as a meaningful piece of a symbol, which is not always the case. Spu-

rious lines and over-tracing hindered the system’s performance in both accuracy and running time.

A preprocessing step to merge strokes into single lines would likely greatly improve the system’s

performance. Also, in the circuit diagram domain, users often drew more than one object with a

single stroke. A preprocessing step could help the system segment strokes into individual objects.

Finally, while SketchREAD always corrected some low-level interpretation errors, its overall

performance still depended on the quality of the low-level recognition. Our low-level recognizer

was highly variable and could not cope with some users’ drawing styles. In particular, it often

missed corners of polylines, particularly for symbols such as resistors. Other members of our group

are working on a low-level recognizer that adapts to different users’ drawing styles.
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5.6.2 Processing Time

In general SketchREAD’s processing time scaled well as the number of strokes increased, but it

occasionally ran for a long period. The system had particular trouble with areas of the sketch that

involved many strokes drawn close together in time and space and with domains that involve more

complicated or overlapping symbols. This increase in processing time was due almost entirely to

increase in Bayesian network complexity.

We suggest two possible solutions. First, part of the complexity arises because the system tries

to combine new strokes with low-level interpretations that are already part of complete, correct

high-level interpretations. These new interpretations are pruned immediately, but they temporarily

increase the size and complexity of the network, causing the bottlenecks noted above. In response,

we are testing methods for “confirming” older interpretations and removing their subparts from

consideration in other higher-level interpretations. The system would also confirm their value as

true in the Bayesian network so that their posterior probabilities do not have to be re-computed.

Second, we can modify the system’s inference algorithm. We experimented with several infer-

ence algorithms and found that Loopy Belief Propagation was the only one that gave accurate results

in a reasonable amount of time. Loopy Belief Propagation is an inference algorithm that repeatedly

sends messages between the nodes until each node has reached a stable value. Each time the system

evaluates the graph, it resets the initial messages to 1, essentially erasing the work that was done

the last time inference was performed, even though most of the graph remains largely unchanged.

Instead, this algorithm should begin by passing the messages it passed at the end of the previous

inference step.

Next we compare the running time between the two hypothesis generation methods. We found

that the Constraint method took considerably less time on inference, suggesting that it produced

simpler interpretation graphs. This result was unexpected because we anticipated that the main sav-

ings of the Constraint algorithm would be in the time it took to generate the hypotheses. However,

it appears that the Constraint algorithm actually produces fewer overlapping higher level interpre-

tations for lower-level interpretations, resulting in a simpler interpretation graph. This result can be

explained by the fact that our threshold for fitting shapes into template in the Slot algorithm was

more liberal than the method the constraint algorithm was using to generate hypothesis. That both

methods performed with similar recognition performance implies that the thresholding method used

in the Slot algorithm is too liberal.
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Figure 5-11: Four lines that meet our under-constrained description of a quadrilateral but that we
did not intend to recognize.

5.6.3 Challenges of a Multi-domain Recognition System

One advantage of SketchREAD over a domain-specific system is that it does not require program-

ming in order to be applied to a new domain. On the other hand, writing shape descriptions is

not always trivial. We were surprised at the number of false positives our system produced and

at the difficulty we faced in writing domain descriptions that were constrained enough to prevent

these false positives. In particular for circuit diagrams, we modified our descriptions several times,

adding more constraints each time. Originally, we hypothesized that our shape descriptions could

be slightly under-constrained because people would not draw shapes that differed significantly from

the correct description. However, we did not anticipate that the system would encounter a number

of shapes that inadvertently satisfied those under-constrained descriptions, shapes that the user did

not intend to produce, but ended up creating in the process of drawing all of the shapes together in

one diagram. For example, we did not include the constraint that the lines in a quadrilateral should

not cross, although we intended for this constraint to hold. Users never produced quadrilaterals

such as the one in Figure 5-11 on purpose, but this shape appears several times among the shafts

of the arrows in the top-right sketch in Figure 5-1(a). The difficulty we faced in creating effective

shape descriptions highlights the importance of a system to help people develop their shape descrip-

tions or an automatic system to learn them, such as those being developed by Hammond [35] and

Veselova [76].

The main advantage of using a domain-specific system is in the efficiency of searching for and

generating hypotheses. If we can write specific recognizers for each shape, we can tailor them to the

patterns users typically use when drawing that shape. For example, for certain shapes, people have a

preferred drawing style or order. This natural drawing order should be exploited in a multi-domain
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system to help the system constrain the search for possible hypotheses for the user’s strokes. This

idea is being explored by Sezgin [70].

5.7 Summary

We have demonstrated how our system performs on real-world data in two non-trivial domains. We

find that it was successfully able to reinterpret low-level missed interpretations to improve perfor-

mance over a baseline system. We also illustrated that the semantics of our model have promise for

incorporating context into recognition and allowing higher level information to influence low-level

interpretations to resolve ambiguity in the drawing.

Our goal is to use SketchREAD in sketch recognition user interfaces to explore the human

computer interaction issues involved in creating such interfaces. Although SketchREAD is not yet

powerful enough to handle unconstrained sketches in complicated domains, for simple domains

it performs accurately in near real time. In the next chapter how it was used in an implemented

sketch recognition user interface and we explore user interface issues for a recognition-based digram

creation tool.
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Chapter 6

Building Sketch Recognition User

Interfaces

To date, sketch recognition has not been reliable enough to use in pen-based interfaces. Most

current pen-based computer design tools explicitly avoid recognizing the user’s strokes. Our long-

term goal is to make sketch recognition reliable enough that it can be incorporated into sketch-

based early stage design tools for a wide range of domains. We call this class of systemsSketch

Recognition User Interfacesor SkRUIsto emphasize that they are not merely pen-based tools, but

also recognition-based tools.

Building a robust recognition engine is only one of the challenges in building a usable SkRUI.

We face a number of challenges in incorporating free sketch recognition into a design tool, including

when to display recognition feedback, how to integrate sketching with editing, and how to allow the

user to correct recognition errors. SkRUIs are fundamentally user interfaces, and to study the above

issues, we need to build and test such an interface with actual users.

Although not ready to be used in SkRUIs for complex domains, SketchREAD may currently be

used in simple domains where the shapes have little overlap and are drawn spatially separated. In

keeping with this observation, we used SketchREAD to build a sketch-based system for constructing

relationship diagrams in PowerPoint. This tool recognizes naturally drawn diagrams and automat-

ically imports them into PowerPoint. It combines the ease of drawing on paper with PowerPoint’s

sophisticated presentation capabilities.

SketchREAD produced few errors in this simple domain, enabling us to examine a number

of usability challenges of incorporating free-sketch recognition into a diagram creation tool. We
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present guidelines for creating this type of Sketch Recognition-based User Interface based on a

series of informal user studies with a prototype implementation. These guidelines take into consid-

eration both the requirements needed to maintain robust sketch recognition and what felt natural to

users.

6.1 Application

The interface design is shown in Figure 6-1. Our sketch recognition application communicates with

PowerPoint, but runs in a separate window. The user sketches diagrams directly onto the slide in

the center of the window. The slide is automatically updated to reflect the slide currently showing

in PowerPoint, and the objects sketched are automatically added to the PowerPoint slide when the

user switches back to the PowerPoint window. The user may edit the diagram either by entering

edit mode using the toggle buttons at the top of the window, or by entering “online” edit mode by

holding down the pen until the cursor changes to an arrow (when the user lifts the pen the system

returns to sketch mode). The user may edit all shapes in the diagram, even if she did not originally

sketch them.

The system supports both recognized drawing, where the user’s strokes become clean Power-

Point objects, and unrecognized drawing, where the user’s strokes appear on the slide exactly as

they were drawn.

6.2 System Evaluation

Throughout the design process, we conducted formative evaluation to guide the system’s design.

The goal of this evaluation was to understand users’ perceptions of our tool and what they wanted

from such a tool, rather than to prove that we had created an effective system.

We evaluated our interface with three users on three prototypical tasks involving diagram cre-

ation. Each was a common task performed during diagram creation and was selected to explore a

specific aspect of interacting with the system. The first task explored how the user used the diagram

creation tool to create a new drawing, beginning with the task of creating a new slide, which is done

using the menu. The second task explored the interaction between the pen-based creation tool and

keyboard text entry and editing: We asked users to create a diagram and then label it using Power-

Point. Our system does not support handwriting recognition, and we wanted to see if this presented
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Figure 6-1: The final design of our PowerPoint diagram creation tool.

a problem or if users felt comfortable using the keyboard to enter text. The third task explored the

interaction between sketching and editing using the pen. We asked the user to sketch a diagram and

then move and delete pieces of the diagram and then continue to draw.

We used several evaluation methods throughout the design process. Our design/evaluation

stages included a paper prototype tested with users, a low-fidelity computer prototype both tested

with users and evaluated using heuristics, and the final system tested with users.

6.3 Design Guidelines

We give guidelines and advice for incorporating sketch recognition into diagram creation tools

based on this design/evaluation process and our knowledge of the requirements for robust sketch

recognition.
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Figure 6-2: A close-up of the PowerPoint diagram creation tool.

Display recognition results when the sketch is complete

The system should display recognition results after a user has completed a diagram (or piece of a

diagram), rather than after every stroke. Previous work has suggested that recognition feedback can

distract the user during the design task [40]; we have observed this effect in previous work [3]. In

response, our diagram creation interface did not display recognition feedback while users sketched.

We found that users sketched their diagrams without pausing between shapes and did not appear

to expect recognition feedback. Only one user paused after drawing his first stroke, expecting that

stroke to be recognized, and he acknowledged that his expectations were based on his interaction

with our previous recognition interface.

In determining when to display recognition results, our observations suggest that a SkRUI can

should rely on explicit cues to determine when to display recognition results. A difficult problem

in determining when to display recognition results is determining when the user is done sketching.

Implicit cues such as how long the user has paused since her last stroke are not always reliable.

Particularly in design tasks, users may pause in the middle of the task, but do not want to receive

recognition feedback at this point. In our evaluation, we found window focus was a reliable indicator

that the user had completed a sketch because of the fact that when user’s had completed a sketch,

they usually switched back to the PowerPoint window. Users also clicked the “Show” button at the

top of the window (Figure 6-2). Both methods of indicating they were done drawing did not seem

to inconvenience the user in their tasks. We conclude that asking the user to explicitly inform the

system when a diagram is complete (or at least partially complete) is a viable option for a SkRUI.

Provide obvious indications to distinguish free sketching from recognition

Allowing the user to draw strokes that remain unrecognized by the system presents a challenge for

a SkRUI. For example, a user might want to add an informal, sketched annotation next to a clean

recognized diagram. Because SketchREAD recognizes freely drawn sketches, where symbols can

be composed of more than one stroke, it is difficult to determine when the user wants her strokes
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recognized and when she wants them to remain unrecognized. To support this functionality, we

provide explicit “free sketch” and “recognition” modes. The combo box at the top of the window

(Figure 6-2, currently set to “Shape and Connector diagram”) indicates the system’s current recog-

nition mode. We found that users could understand the difference between the modes, but many

users forgot what mode they were in, despite the label at the top of the window. One user drew

an entire digram in free-sketch mode and could not figure out why the system failed to recognize

his strokes. The system needs to use more obvious clues (such as changing the cursor or the stroke

style, perhaps) to help users remain aware of what recognition mode they are in.

Restrict recognition to a single domain until automatic domain detection becomes feasible

Our application supports the recognition of only one domain: relationship diagrams. We would

eventually like to build a tool that supports the recognition of more than one domain. We exper-

imented with such a system in our early paper prototypes, asking users to draw both relationship

diagrams and circuit diagrams. To recognize the user’s strokes, SketchREAD must know in which

domain the user is drawing. Automatic domain detection represents a technical challenge that our

system cannot yet handle, so we asked users to explicitly choose the domain. Despite this request,

users tended to attribute universal recognition capabilities to the system and did not understand that

they had to specify a particular recognition domain. For example, we asked users to draw a relation-

ship diagram right after they had drawn a circuit diagram. If they failed to change the recognition

domain, we indicated that their sketch had been incorrectly recognized as a (messy) circuit diagram.

None of our three users performing this task correctly switched domains, and none of them could

figure out what had gone wrong. We conclude that single-domain tools will be most effective until

automatic domain detection becomes a feasible alternative, or until we explore more effective ways

to help the user understand the system’s underlying recognition model.

Incorporate pen-based editing

The system should incorporate as much editing capability as possible (including copy, paste, align-

ment, resizing, etc.) into a sketch-based diagram creation interface because users wanted to simulta-

neously create and clean up their drawings. In our final testing, one user repeatedly redrew a circle

until it was the exact same size as another on the screen. After drawing the circle she carefully

aligned it with the two she had already drawn. The ability to copy, paste, and align her objects could

have saved her a considerable amount of effort. Although this behavior may not be as prevalent for
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rough design tasks, based on previous work [3], we anticipate that users will still want the ability to

copy and paste parts of their drawings.

Sketching and editing should use distinct pen motions

The system should the system should support pen-based editing gestures that are distinct from any

pen movement the user would make while sketching. These gestures allow for the user to avoid

explicitly specifying sketching and editing mode, but should be specifically designed to be less

prone to mis-recognition in a free-sketch system.

SkRUIs require large buttons

When given the option of buttons, menus, and keyboard shortcuts, users chose to use the button with

few exceptions. Furthermore, these buttons should be larger than traditional buttons because of the

difficulties in targeting with the pen. In our initial tests, users could not reliably click buttons that

were the same size as those designed for a mouse-based interface. When we enlarged the button-size

they had no trouble.

The pen must always respond in real time

We are trying to build a system that is as natural as sketching on paper. To do so, the system

must not allow recognition to interfere with the user’s drawing. It is acceptable that recognition not

occur in exactly real time; users tolerated a slight recognition delay once they were done drawing.

However, it is extremely important that the computational requirements of the recognition system

not overwhelm the system’s ability to display the user’s strokes exactly as they are drawn. In our

tests, when the user’s strokes did not appear when the user’s tried to sketch them, users became

agitated, repeatedly drawing the same shape until it appeared under their pen as they drew. These

added strokes confused the recognition system, causing it to add extra shapes to the user’s diagrams.

Because the users thought they had drawn a single shape, they could not understand the existence

of the extra shapes in the diagram.

6.4 Extensions

In our simple domain, SketchREAD rarely produced errors. However, in general SketchREAD will

never eliminate recognition error, and the user will have to correct the system’s errors. Sketch-
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READ’s interpretation-graph architecture could itself be used to reduce the burden placed on the

user in correcting the system’s errors. Often in complicated diagrams, errors are interconnected:

If there are many competing interpretations, choosing the wrong interpretation for one part of the

diagram often will lead the system to choose the wrong interpretation for the surrounding strokes.

SketchREAD could display its recognition results on top of the user’s original strokes, so that the

user can see the context of these results. Then, the user could help the system by tracing over

the strokes for one of the symbols that was mis-recognized. This retracing would help the system

recover from the error because the user’s strokes would be cleaner and because the system would

know that they were all part of a single symbol. Then, based on this new interpretation, the system

could reevaluate the surrounding strokes and (hopefully) recover some of the missed interpretations

that might still exist but simply were not currently chosen as the best interpretation.

One of the main causes of recognition error might be dealt with through UI design. The system

had trouble with the fact that the users varied the structure of their symbols even though they were

explicitly shown the desired structure for each symbol. For example, although we instructed people

to draw a voltage source using a circle with a plus and a minus next to it, some people put the

plus and minus inside the circle. SketchREAD is designed to handle variations in the way people

draw, but cannot handle such fundamental changes to the shape of the symbol. Although ideally we

would like to support all methods people have for drawing each object, this might never be possible.

Instead, a simple interactive training step before a new user uses the interface could help eliminate

this type of variation without imposing too many limitations on the user’s drawing style.

The diagram creation tool presented here is an early prototype with limited functionality, not yet

powerful enough for deployment or more formal user studies. We aim to extend its functionality and

conduct a more formal comparison between this system and PowerPoint to help us better understand

the utility of our system. A more formal evaluation will also help us refine the design and evaluation

guidelines presented here.
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Chapter 7

Related Work

With the rise of pen-based technologies, the number of sketch-based computer tools is increasing.

Sketch-based computer systems have been developed for a variety of domains including mechanical

engineering [4, 33, 73], user interface design [11, 48, 63], military course of action diagrams [14,

22], mathematical equations [61], musical notation [8, 23], software design [36, 49], and image

editing [69]. In addition, a few multi-domain recognition toolkits have been proposed [50, 56].

It is important to recognize that building a sketch-based system is not necessarily the same

as building a sketch recognition system. The focus of many of the systems above (including

[11, 22, 48, 63, 69]) was on creating a good user interface—a worthwhile and challenging task in

itself. Rather than trying to tackle the problem of sketch understanding, these researchers designed

interfaces that would help users accomplish sketch-based tasks, but provided little free-sketch recog-

nition. This dissertation, by contrast, presents a new recognition technique rather than an in-depth

exploration of user interface issues. Accordingly, this chapter focuses on previous algorithms for

online sketch recognition as well as algorithms for related tasks including speech recognition, dia-

gram recognition, and computer vision.

7.1 Online Sketch Recognition

Sketch recognition algorithms can be divided into three categories:sketch beautification, ges-

ture recognition, andcontinuous sketch recognition. Sketch beautification focuses on cleaning up

roughly drawn strokes, while the other two categories focus on providing meaning for the user’s

strokes. The core difference between gesture and continuous sketch recognition is that gesture

recognition deals with only classification given a set of strokes, while continuous sketch recogni-
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tion simultaneously deals with segmentation and classification.

7.1.1 Sketch Beautification

Hand drawn diagrams are easy to produce, but too messy for most uses. Sketch beautification

focuses on cleaning up hand drawn strokes.

Although often associated with recognition, beautification is largely orthogonal to recognition

and can be used with or without recognizing the symbols in the user’s diagrams. Sketch beauti-

fication systems such as Pegasus [41] and Easel [42] do no symbolic recognition, relying instead

on common geometric constraints to tidy up the user’s strokes as they are drawn, allowing users

to create formal diagrams quickly and naturally. When beautification is used in conjunction with

symbol recognition, it can provide a natural way for a sketch system to convey its interpretation of

the diagram to the user, as in [5] and [6].

7.1.2 Gesture Recognition

Just as speech recognition began with isolated word recognizers, sketch recognition began by focus-

ing on gesture recognition. Approaches have been developed for both single stroke and multi-stoke

gesture recognition.

A large body of work focuses on single-stroke gesture, orglyph, recognition. Early work in

this area was done by Rubine [68]. His system recognized a set of glyphs through the use of stroke

features (e.g., the area of the bounding box) rather than the raw ink. More recent work by Longet

al. [54] notes that the careful design of gestures can further improve recognition. He has developed

a system that helps users design a set of gesture commands that will not be confused easily by the

computer [55]. Work by Sezginet al. demonstrated a single-stroke segmentation system that found

the corners in a user’s stroke and classified the stroke either as a line, an ellipse, or a set of lines or

curves (or a combination) [71]. These basic shapes then can be used to form more complex objects.

Single-stroke classification is useful for some tasks and can be an invaluable subcomponent of

a sketch-based design tools, but used on its own it suffers from two main limitations. First, by

definition, users must draw each symbol with a single stroke, often using a pre-specified drawing

style (e.g., a horizontal line may only be recognized if it is drawn from left to right). Second, these

recognizers deal with each stroke in isolation and do not incorporate the context in which the stroke

was drawn.

98



The Quickset system extends the notion of gesture recognition to multiple strokes. Given a set

of strokes known to form a single symbol, Quickset recognizes a pre-segmented set of strokes as

a military course of action diagram symbol, using multi-modal information (speech) to improve

recognition performance. Quickset uses a multi-tiered recognition architecture to integrate speech

input with drawing input, allowing these noisy signals to mutually disambiguate one another. Oviatt

et al. have shown that this mutual disambiguation can improve recognition [64].

Because of its segmentation assumptions, gesture recognition, both for single strokes and mul-

tiple strokes, has become robust enough to be integrated into usable sketch-based design tools. A

number of existing sketch systems use mainly gesture recognition rather than continuous sketch

recognition to process the user’s strokes [14, 17, 23].

7.1.3 Continuous Sketch Recognition

Continuous sketch recognition involves segmenting and recognizing the user’s strokes simultane-

ously. The process of finding the correct stroke groupings can take exponential time in the worst

case. This running-time bottleneck has led researchers to make a number of limiting (and often

faulty) assumptions about how the sketch will be drawn to aid segmentation.

A number of online sketch recognition systems rely on temporal constraints to prune the search

space. The UML system developed by Lanket al. assumes that objects are drawn using consecutive

strokes [49]. Other systems limit the search space even more by employing a greedy recognition

strategy—once a high-level shape (e.g., an open-headed arrow) is identified, its low-level shapes

(e.g., the lines) are not considered in any future high-level interpretations [63, 78, 80]. While this

approach does not limit objects to being drawn with consecutive strokes, it creates undesired inter-

dependencies within object descriptions. For example, the shapes in UML include both an open-

headed arrow and a diamond-headed arrow. In drawing a diamond-headed arrow, the user might

first draw an open-headed arrow and then close the diamond head. However, because the system

immediately recognizes the open-headed arrow, the diamond-headed arrow would not be recognized

unless it had previously been defined as an open-headed arrow with two additional lines.

Recent work by Sezginet al. relies on preferred stroke orders to aid recognition [70]. He

showed that when asked to draw a symbol more than once, people tended to draw it in the same

order and that certain regularities exist between individuals. He used these to construct a Hidden

Markov Model based on these orders for recognizing each symbol. Because not all stroke orders

can be modeled, he suggests that his model be used to compliment a shape-based model such as the
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one presented here.

Many online sketch recognition systems use spatial constraints to limit their search. Spatial

constraints can be used in two ways. First, most systems consider only groups of strokes that

fall within a spatial bound (e.g. [4, 36, 72]). This spatial bound on its own may not be enough,

especially for regions that contain many overlapping strokes. For example, if there are ten lines

that all fall within a small region, to identify an arrow, the system still may have to try(10 · 9 · 8)

combinations of these lines. To further limit the search space, many systems set a hard threshold

on constraints between subshapes (e.g., two lines connect if their endpoints are less than ten pixels

apart) [4, 48, 49, 50, 57, 78]. Using these thresholds in the arrow example above, the system would

only have to consider sets of lines whose endpoints were connected. Finding these connections

would require searching near only10 ·2 = 20 line endpoints and would result in considerably fewer

combinations to consider. Unfortunately, as we have argued, it is difficult (if not impossible) to set

a threshold on these constraints that suitably prunes the search space and does not rule out correct

combinations of strokes. Whether or not two lines are part of an arrow depends on whether or not

they connect; however, whether or not they appear to connect actually can depend on whether or

not they are part of an arrow.

Finally, many on-line sketch recognition systems rely on user feedback to maintain a correct

segmentation and interpretation. When a sketch system makes its interpretation of the sketch imme-

diately clear as the user draws, the user can immediately correct any missed interpretations, avoiding

confusion later on. However, Honget al. note that the recognition results and the process of keeping

the system’s understanding of the drawing correct can interfere with the design process [40]. The

goal of our system is to recognize a sketch completely in the background, without requiring any

feedback from the user.

7.2 Related Recognition Tasks

Although the field of online sketch recognition is relatively small, it is closely related to many other

fields. We review related work on the tasks of speech recognition, handwriting recognition, diagram

recognition, and computer vision as they relate to online sketch recognition.
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7.2.1 Speech and Handwriting Recognition

Our approach to sketch recognition was inspired by early work in speech recognition. The Hearsay-

II system used a blackboard system to maintain multiple hierarchical interpretations for a user’s

utterance [19], relying on the context that the higher levels provided to help disambiguate the signal.

While our architecture is similar, we take a more structured approach to modeling the uncertainty

throughout the recognition process with the use of Bayesian networks.

Handwriting consists of two-dimensional shapes (letters) produced with a one dimensional sig-

nal. Because of the strong temporal component of handwriting, a standard recognition approach

models features of a user’s stroke in a temporal stream using a Hidden Markov Model or sim-

ilar time-based model. However, a few approaches use a shape-based approach, modeling two-

dimensional relationships independent of time. Work by Burl and Perona uses a shape based rep-

resentation of characters or partial words and then a hierarchical word model to spot keywords in

cursive text [10]. Recent work by Cho and Kim uses a Bayesian network model similar to our model

to recognize Hangul Characters based on their shape [13]. The shape models used by these systems

are more detailed than our models because of the complex and subtle variations in the shapes of

handwritten characters.

7.2.2 Diagram Recognition

Like sketch understanding, diagram recognition also involves recognizing two-dimensional sym-

bols, but diagrams generally do not contain temporal information. On the other hand, compared to

sketches, diagrams are relatively clean and free from low-level noise.

Recognizing a diagram (like recognizing a sketch) is a matter of parsing the elements in the di-

agram according to a specified visual language. A variety of general two-dimensional parsing tech-

niques have been developed for diagram recognition [39, 59, 60]. Given a set of two-dimensional,

hierarchical shape descriptions, these systems combine low-level shapes in a diagram according

to the constraints given in the shape descriptions to produce higher-level descriptions for the dia-

gram. Of course, when grouping these shapes, it may be possible to combine them in more than

one way, leading to ambiguities during parsing. While natural-language systems encounter these

same parsing ambiguities, the fact that diagrams are two-dimensional provides even more room for

ambiguities.

As in our system, targeted parsing routines can help avoid the combinatoric explosion caused

101



by parsing ambiguities. For example, a system by Kasturi uses targeted segmentation routines to

separate text from shapes in diagrams and then to recognize those shapes [45]. Specific routines,

such as a dashed-line finder and a routine that specifically detects text that is connected to graphics,

help this system avoid infeasible processing times. Too many targeted routines can sacrifice the gen-

erality of a system, but some specific low-level processing routines can greatly improve recognition

without relying on too many domain assumptions.

7.2.3 Computer Vision

In general, recognizing objects in an image is more difficult than recognizing patterns in a sketch

because of the difficulty of segmentation—separating the objects in the image from the background

and from one another. In addition, the sketched symbols we aim to recognize are generally sim-

pler and more stylized than objects in the natural world. Nonetheless, both tasks involve two-

dimensional object recognition, and here we examine how our approach relates a number of com-

puter vision techniques. For the sake of clarity, we divide our discussion into two (overlapping)

categories: techniques that use relational and spatial models, techniques that use graphical models.

Vision using Relational and Spatial Models

One of the fundamental questions in computer vision is how to represent the objects to be recog-

nized, given that the position, orientation and size of the object may vary widely from image to

image. There are two general ways to deal with this problem. Data-based approaches represent an

object as a set of examples, each in a different size, orientation and position in the image. Recog-

nition involves a direct comparison between each exemplar and a new image to be recognized.

Model-based approaches, by contrast, use a single, often abstract, representation of each object to

be recognized that can be transformed to match objects in different sizes, positions and orienta-

tions. Model-based recognition involves comparing various legal transformations of the model to

the image to be recognized.

The abstract nature of many sketched symbols leads to a wide variation in how they are drawn.

For example, a quadrilateral must have four sides, but there are no restriction on the relative lengths

of or angles between those sides. We would need a prohibitively large amount of data to represent

any legal quadrilateral we might encounter, so we focus on model-based approaches which allow us

to naturally represent this type of under-constrained symbolic patterns.

The main challenge for model-based recognition is efficiently searching for the correct match
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between a transformed version of the model and a portion of the image. In the worst case this

process involves comparing all possible transformations of a model to each portion of an image—

clearly an unfeasibly large search problem. For rigid objects, a number of approaches have been

proposed to make this approach more efficient [25]. Here, as our objects are not rigid, we examine

a number of techniques for improving the efficiency of this search for models of non-rigid objects.

A relational model is a hierarchical non-rigid object model that represents an object as a set of

subshapes and relationships between them. For example, using a relational model a quadrilateral

would be represented as four lines with the appropriate connections between the endpoints of those

lines. We use a probabilistic version of this model to represent sketched symbols, but, as used in

many early computer vision systems [20, 82], these models were originally deterministic.

Matching the relational object model in an image involves verifying that all of the necessary

subparts and relationships are present in the image. One effective way to perform this match is

to represent the objects and relationships in each model, as well as the low-level shapes and rela-

tionships in each image (discovered using low-level recognition routines), as a graph. Then, recog-

nition involves matching the model graphs to the image graphs. This problem, called subgraph

isomorphism, is NP-complete, and much work has been devoted to developing efficient matching

approaches [2, 15, 18, 21, 62]. A related approach constructs a tree of possible matches model fea-

tures and image features. Each level in the tree encodes all the possible matches between a single

image feature and all possible model features. Each path from the root to the leaves of the tree

represents a complete hypothesized match between image features and model features. Because the

complete tree is too large to consider in real time, researchers have proposed methods for efficiently

pruning the tree without sacrificing interpretation correctness [31].

Deterministic relational models are limited by the fact that there is no systematic way to model

the importance of the various subcomponents or relationships that make up a model. Probabilistic

variations on relational models address this problem. A face detection approach by Burl and Perona

uses a hierarchical generative model to recognize a face in terms of its subparts and incorporates

spatial information in the model. They represent a face as two eyes, a nose, and a mouth, that must

satisfy specific spatial relations. They use an eye, nose and mouth detector to detect the presence of

each low-level facial component and then answer the question, given that they have detected eyes

at positionsx1 andx2, a nose atx3 and a mouth atx4, what is the probability that there is a face at
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positionF? In other words, how does

P [one face at F|Xle = x1, Xre = x2, Xm = x3, Xn = x4]

compare to

P [no face|Xle = x1, Xre = x2, Xm = x3, Xn = x4]

Note that this model is robust to low-level sensor failures (e.g., even if the mouth has not been

detected,P [one face at F|Xle = x1, Xre = x2, Xn = x4] may still be quite high. Furthermore,

unlike in deterministic relational models, it provides a natural way to weight the input of certain

sensors higher than others. For example, we might know that our mouth detector produces many

false positives. Hence detecting a mouth should not raise the system’s belief that there is a face

present as much as detecting a nose does.

The fundamental difference between these previous approaches and our approach is in the rich-

ness of constraints between subcomponents that can be modeled. Early relational models supported

wide variety of constraints, but represented these constraints simply as being present or not present.

Recent approaches such as as the face detection system by Burl and Perona allow noisy detectors

to have less influence over the overall interpretation of the image, but the relationships that they are

able to express are purely spatial. They support positional constraints such as above, or left-of; we

generalize the notion of constraint and allow for a richer variety of constraints, for example relative

size, or relative orientation while maintaining the advantages of a probabilistic framework.

Vision using Graphical Models

Several other graphical model based approaches to computer vision are closely related to our work.

A number of approaches use graphical models to enforce local consistency between neighbor-

ing regions in an object. Although Hidden Markov Models (HMMs) are traditionally used to model

one dimensional, time-dependent data, a number of systems have adapted these techniques to rec-

ognizing two-dimensional data. A system by Mulleret al. transform two dimensional features into

a one-dimensional input stream by starting at the center of the object and spiraling outward, measur-

ing features such as the percentage of black pixels in a small image block at the given location. Li

et al. use two dimensional HMMs to model the spatial dependencies between neighboring regions

of an object. Both of these approaches work best on pre-segmented regions of an image.

Markov Random Fields (MRFs) are another type of graphical model that can be used to model
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the dependencies between neighboring regions of an image [27]. In recent work, Coughlan and

Ferriera define an MRF where each node in the MRF is a point in the shape to be recognized and

the edges in the MRF constrain the positions of these points relative to one other [16]. Their model

is successful at recognizing patterns in an image in the face of a high degree of noise and distractor

shapes, although it can only be used to locate a single instance of a single shape in an image.

Although quite powerful, MRFs are best at describing local dependencies (for example, a straight

edge is more likely to continue in the same direction in a neighboring region than to suddenly switch

direction). It is not as clear how to use them to encode higher level dependencies (e.g., that there

should be four lines in a quadrilateral).

There are a limited number of systems that use hierarchical Bayesian models to represent objects

to be recognized. Bienenstock proposes a theoretical formulation for composing low-level objects

into higher-level groupings inspired by the task of text recognition [7]. Westling and Davis [81],

Kumar and Desai [47] and Liang et. al. [53] all propose general, hierarchical Bayesian network

based approaches to object recognition that are very similar to our own approach. Unfortunately,

how these models fare when used for recognition is not well documented and further evaluation is

needed to illustrate their strengths and weaknesses in practice.

Recent work by Wachsmuth and Sagerer uses a dynamically constructed Bayesian network ar-

chitecture to match verbal utterances to visual objects [77]. While they face many of the same chal-

lenges in dynamically constructing their networks, their task differs from ours in that they do not use

their networks to perform object recognition. They use Bayesian networks to model the correspon-

dence between the visual signal and the audio signal, but they constrain the “visual” recognition by

supplying observations about the object’s type and color. As a result, their network does not allow

the speech signal to influence the visual interpretation of the scene. Our approach, on the other

hand, uses a Bayesian network to model the structure of the shapes themselves, assuming that only

low-level observations (e.g., the curvature of the stroke) can be observed. Although we have not yet

tried it, we believe that speech and visual information could be integrated using our representation

so as to allow the speech signal to influence the visual interpretation as well.

7.3 Summary

Online sketch recognition is a new and emerging field that has developed in response to the rise of

pen-based technologies. We categorized the task of sketch recognition into three subtasks: beau-
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tification, gesture recognition and continuous sketch recognition. The work presented in this dis-

sertation is among a small but growing body of work that attempts to solve most difficult of the

three, continuous sketch recognition. To solve this problem, we draw from related work in speech

and handwriting understanding, diagram understanding and computer vision. Although there is

much work left to be done, this work presented in this dissertation fills an important gap in field

of online sketch recognition: it presents a model that allows context to improve the recognition of

continuously drawn, messy sketches.
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Chapter 8

Conclusion

This dissertation has presented a new method of online continuous sketch recognition. Here we

review its five contributions:

• We presented general framework for sketch recognition that can be extended to multiple do-

mains. We described the framework and illustrated its use in two non-trivial domains.

• We presented a novel application of dynamically constructed Bayesian networks specifically

developed for two-dimensional, constraint-based recognition. We illustrated through example

that these successfully allow both context and stroke data to influence the system’s interpreta-

tion of the sketch. We also demonstrated that these networks can be constructed automatically

in response to the user’s strokes.

• We showed that our system simultaneously segments and recognizes the objects in freely-

drawn, often messy, sketches, relying on several methods for generating hypotheses for the

user’s strokes. This recognition process involved being able to reinterpret low-level interpre-

tations based on higher-level context.

• We presented recognition results for the task of continuous sketch recognition in two domains:

family trees and circuits. The sketches we collected will be made publicly available as an

initial standard test set for this relatively unexplored task.

• Finally, based on the design and implementation of a SkRUI for Power Point diagram creation,

we presented guidelines for building SkRUIs.
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In summary, we have shown how to use context to improve online sketch interpretation and

demonstrated its performance in SketchREAD, an implemented sketch recognition system that can

be applied to multiple domains. We have shown that SketchREAD is more robust and powerful

than previous systems at recognizing unconstrained sketch input in a domain. The capabilities of

this system have applications both in human computer interaction and artificial intelligence. Using

our system we will be able to further explore the nature of usable intelligent computer-based sketch

systems and gain a better understanding of what people would like from a drawing system that is

capable of understanding their freely-drawn sketches as more than just strokes. This work provides

a necessary step in uniting artificial intelligence technology with novel interaction technology to

make interacting with computers more like interacting with humans.
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Appendix A

Shapes and Constraints

This Appendix lists all of the constraints and shape descriptions used

in our experiments. Other shapes can be defined using any of the

shapes here.

Table A.1: Primitive Shapes

SHAPE NAME SUBCOMPONENTS

p1

p2 Stroke p1, p2

Ellipse

p1 p2

Line p1, p2

p1

p2 Arc p1, p2
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Table A.2: Constraints

EXAMPLE NAME ARGUMENTS

p1

p2

coincident p1, p2

e l touches e, l

q l nextTo q, l

l1

l2 parallel l1, l2

l1

l2 perpendicular l1, l2

l1
l2

intersects l1, l2

l1

l2

aligned l1, l2

l1 l2 equalLength l1, l2

l1

l2 smaller l1, l2

q e contains e, q
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EXAMPLE NAME ARGUMENTS

l1

l2

acuteAngle l1, l2

Table A.3: Geometric Shapes

SHAPE NAME SUBSHAPES CONSTRAINTS

l1

l2l4

l3

Quadrilateral

Line l1

Line l2

Line l3

Line l4

coincidentl1.p2 l2.p1

coincidentl2.p2 l3.p1

coincidentl3.p2 l4.p1

coincidentl4.p2 l1.p1

l1 l2

l3

Triangle

Line l1

Line l2

Line l3

coincidentl1.p2 l2.p1

coincidentl2.p2 l3.p1

coincidentl3.p2 l1.p1

l1

l2
Plus

Line l1

Line l2

perpendicularl1 l2

intersectsl1 l2

shaft

head1

head2

Arrow

Line shaft

Line head1

Line head2

coincidentshaft.p1 head1.p1

coincidentshaft.p1 head2.p1

acuteAnglehead1 shaft

acuteAngle

head2 shaft

equalLengthhead1 head2

largershafthead1

l1
l2

l3

l4

Polyline Vector Linel[3, n] coincidentl[i].p2 l[i + 1].p1
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Table A.4: Relationship Diagrams

SHAPE NAME SUBSHAPES CONSTRAINTS

Domain Shapes

q Item-Quad Quadrilateralq

e Item-Ellipse Ellipsee

l
Link-Line Line l

a
Link-Arrow Arrow a

Domain Patterns

link
i1 i2 Connect-Line

Item i1

Item i2

Link-Line link

toucheslink .l.p1 i1

toucheslink .l.p2 i2

link
i1 i2 Connect-Arrow

Item i1

Item i2

Link-Arrow link

toucheslink .a.shaft .p1 i1

toucheslink .a.shaft .p2 i2
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Table A.5: Family Tree Diagrams

SHAPE NAME SUBSHAPES CONSTRAINTS

Domain Shapes

q Male Quadrilateralq

e Female Ellipsee

a
Child-Link Arrow a

l
Marriage-link Link l

pl

Divorce-link Polylinepl

Domain Patterns

ml
m f Marriage

Malem

Femalef

Marriage-linkml

touchesml.l.p1 m

touchesml.l.p2 f

dl

m f Divorce

Malem

Femalef

Divorce-linkdl

touchesdl.pl.p1 m

touchesdl.pl.p2 f

ml
m1 m2 Partner-Male

Malem1

Malem2

Marriage-Linkml

toucheslink .l.p1 m1

toucheslink .l.p2 m2
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Table A.5: Family Tree Diagrams (cont.)

SHAPE NAME SUBSHAPES CONSTRAINTS

ml
f1 f2 Partner-Female

Femalef1

Femalef2

Marriage-Linkml

toucheslink .l.p1 f1

toucheslink .l.p2 f2

link
m s Mother-Son

Femalem

Males

Child-link link

toucheslink .a.shaft .p1 m

toucheslink .a.shaft .p2 s

link
m d Mother-Daughter

Femalem

Femaled

Child-link link

toucheslink .a.shaft .p1 m

toucheslink .a.shaft .p2 d

link
f s Father-Son

Malef

Males

Child-link link

toucheslink .a.shaft .p1 f

toucheslink .a.shaft .p2 s

link
f d Father-Daughter

Malef

Femaled

Child-link link

toucheslink .a.shaft .p1 f

toucheslink .a.shaft .p2.d
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Table A.6: Circuit Diagrams

SHAPE NAME SUBSHAPES CONSTRAINTS

Domain Shapes

l
Wire Line l

pl

Resistor Polylinepl

acuteAnglepl.l[i] pl.l[i + 1]

equalLengthpl.l[i + 1]

pl.l[i + 2]

base

slant1

slant2

ah1

ah2

BJT

Line base

Line slant1

Line slant2

Line ah1

Line ah2

touchesslant1.p1 base

touchesslant2.p1 base

coincidentah1.p1 ah2.p1

touchesah1.p1 slant2

touchesah2.p1 slant2

equalLengthah1 ah2

e
minus plus Voltage-Source

Ellipsee

Line minus

Plus

plus

nextToplus e

nextTominus e

l1

l2

Battery
Line l1

Line l2

smallerl2 l1

parallell1 l2

nextTol1 l2

alignedl1 l2

t l Diode
Trianglet

Line l

touchest.l2.p2 l

equalLengtht.l1 l

parallelt.l1 l

a
e Current-Source

Ellipsee

Arrow a
containse a
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Table A.6: Circuit Diagrams (cont.)

SHAPE NAME SUBSHAPES CONSTRAINTS

base
l1l2 l3l4 l5l6

Ground
Line base

Vector Linel[3, 6]

touchesbase.p1 l[1]

perpendicularbase l[1]

parallell[i] l[i + 1]

nextTol[i] l[i + 1]

smallerl[i + 1] l[i]

alignedl[i] l[i + 1]

l1 l2 Capacitor
Line l1

Line l2

parallell1 l2

equalLengthl1 l2

nextTol1 l2

alignedl1 l2

s
e AC-Source

Ellipsee

Strokes
containse s
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Appendix B

Prior Probabilities, Primitives and

Constraints

Here we list the values used in the Bayesian network and hypothesis generation algorithms. These

values were determined empirically, in some cases through manual experimentation and in others

through taking measurements from collected data.

B.1 Prior Probabilities

Table B.1 lists the prior probabilities we used for each of the top-level shapes and domain patterns

in the family tree and circuit domains. We set these probabilities by hand based on our assessment

of the relative probabilities of each shape or pattern. As discussed in Section 5.1, the system’s

performance was relatively insensitive to the exact values of these priors.

B.2 Properties and Constraints

Table B.4 lists each constraint, and gives the method by which properties measured from the appli-

cable objects are translated into the correspondingconstraint measurement. In addition, primitive

shapes have relatedshape measurementsthat indicate how well the low-level data supports the

primitive shape (Table B.3). Notation used in both tables is given in Table B.2.

The constraint measurements and shape measurements correspond to the measurement nodes

linked to each primitive shape and constraint in the Bayesian network. The last column in Tables B.3

and B.4 givesP (Oi|Ci) for each shape and constraint measurement,Oi, and its corresponding
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Name Prior Probability
Marriage 0.2
Divorce 0.01
Partnership (M and F) 0.001
Mother-daughter 0.2
Mother-son 0.2
Father-daughter 0.2
Father-son 0.2

(a) Family Trees

Name Prior Probability
Wire 0.4
Resistor 0.05
Capacitor 0.05
Transistor 0.05
Ground 0.05
Diode 0.05
Voltage Source 0.05
Battery 0.05
A/C Source 0.05
Current Source 0.05

(b) Circuits

Table B.1: Prior probabilities for shapes and domain patterns in the family tree and circuit domains.

Notation
o Any Shape
s A stroke or part of a stroke
l, a, e Line, Arc, Ellipse
l.p1 An endpoint ofl
l.m The midpoint ofl
Il1l2 The intersection point ofl1 andl2
bo Bounding box of shapeo
bo1o2 Bounding box containing botho1 ando2

βl Perpendicular bisector ofl
o.c The center of the bounding box of shapeo
ls (as, es) The best fit line (arc, ellipse) to strokes
||s|| The length of strokes
lsqe(x, s) Least squared error between shapex and strokes
d(p1, p2) Distance betweenp1 andp2

d(p1, bo) Distance betweenp1 and the bounding box ofo
θl Orientation ofl
size(o) The size of a shape, defined for each shape.

Table B.2: Notation used in Tables B.3 and B.4.
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Primitive Shapes

Shape (S) Shape Measurement (O) CPT
Value (v) Condition P (O = v|S) P (O = v|¬S)
0 lsqe(ls, s)/||s|| < 0.5 0.98 0.122

Line 1 0.5 ≤ lsqe(ls, s)/||s|| < 2.7 0.01999999 0.258
2 otherwise 0.0000001 0.620
0 lsqe(as, s)/||s|| < 0.167 0.97 0.13

Arc 1 0.167 ≤ lsqe(as, s)/||s|| < 1.45 0.015 0.248
2 otherwise 0.005 0.622
0 lsqe(es, s)/||s|| < 0.1203 0.8882 0.14

Ellipse 1 0.1203 ≤ lsqe(es, s)/||s|| < 1.29 0.1006 0.136
2 otherwise 0.0112 0.724

Table B.3: How shape measurements are derived from properties of the strokes.

constraint or primitive shape,Ci.

These CPTs were determined empirically from low-level data from users. Our goal was to

estimateP (Oi|Ci), or the probability distribution for some measurement of the user’s stroke,Oi,

given that the user was trying to (or trying not to) draw the primitive or constraint,Ci. Accordingly,

we asked 27 users each to draw approximately 100 primitive shapes and constraints.

From this data, for each constraint we collected a set of instances in which the user intended to

produce the shape or constraint,Ci and a set of instances in which the user intended to not produce

Ci. For example, for the parallel constraint, the first set contained instances in which the user was

told to draw parallel lines and the second set contained instances in which the user was told to draw

acute angles, obtuse angles and perpendicular lines. We measured properties of the users strokes

corresponding toCi for each sketch in both sets. For example, for the constraint measurement

pertaining to the constraintparallel, the property we used was the orientation difference between

the two lines.

We then used these property values to determine simultaneously the best mapping from the

continuous valued properties to the discrete valued measurements (Oi) as well as the distribution

P (Oi|Ci). We iteratively clustered the property values into an increasing number of clusters begin-

ning with 3. A given iteration hadn clusters,G0
i ...G

n
i , where the index of each cluster corresponds

to the possible values forOi. For each cluster,Gj
i , we measured the proportion of positive (and neg-

ative) examples that fell into that cluster, and used that value asP (Oi = j|Ci) (andP (Oi = j|¬Ci).

We stopped increasing the number of clusters when adding more clusters did not provide significant

additional information in the conditional probability distribution. For all constraints, 3 seemed to
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Constraints

Constraint (C) Constraint Measurement (O) CPT
Value (v) Condition P (O = v|C) P (O = v|¬C)
0 d(l1.p1, l2.p1) < 20 0.9487 0.1644

Coincident 1 20 ≤ d(l1.p1, l2.p1) < 30 0.025 0.2637
2 otherwise 0.0263 0.5719
0 d(l1.p1, bo) < 30 0.7 0.2

Touches 1 30 ≤ d(l1.p1, l2.p1) < 45 0.2 0.3
2 otherwise 0.1 0.5
2 d(co1 , co2) > 75 0.0 1.0

NextTo or bo1o2 containscoi , i 6= {1, 2}
0 otherwise 1.0 0.0
0 |θl1 − θl2 | < 9 0.8917 0.0923

Parallel 1 9 ≤ |θl1 − θl2 | < 18 0.1083 0.0462
2 otherwise 0.0 0.8615
0 2 < |θl1 − θl2 | < 80 0.8919 0.1111

AcuteAngle 1 |θl1 − θl2 | < 95 0.0135 0.0635
2 otherwise 0.0946 0.7302
0 84 < |θl1 − θl2 | < 96 0.8917 0.0923

Perpendicular 1 75 < |θl1 − θl2 | < 105 0.1083 0.0462
2 otherwise 0.0 0.8615
0 βl1 intersectsl2 andβl2 intersectsl1 0.8917 0.0923
0 d(l1.m, l2) < 3/8 ∗ ||l1||

andd(l2.m, l1) < 3/8 ∗ ||l2|| 0.7 0.02
Intersects 1 d(l1.m, l2) < 5/8 ∗ ||l1||

andd(l2.m, l1) < 5/8 ∗ ||l2|| 0.295 0.2
2 otherwise 0.005 0.78
0 βl1 intersectsl2 andβl2 intersectsl1 0.8917 0.0923

Aligned 1 βl1 intersectsl2 or βl2 intersectsl1 0.0923 0.0462
2 otherwise 0.0 0.8615
0 size(o1) < 0.8 ∗ size(o2) 0.8917 0.0923

Smaller 1 size(o1) < size(o2) 0.1083 0.2462
2 otherwise 0.0 0.6615

Contains 0 bo1 containsbo2 1.0 0.0
2 otherwise 0.0 1.0

Table B.4: How the constraint measurements are derived from properties of the strokes and shapes.

be a sufficient number of clusters and hence values forOi.

120



Bibliography

[1] Bayesian network tools in java (bnj). http://bnj.sourceforge.net.

[2] H. A. Almohamad and S. O. Duffuaa. A linear programming approach for the weighted graph

matching problem.IEEE pattern analysis and machine intelligence, pages 522–525, 1993.

[3] Christine Alvarado and Randall Davis. Preserving the freedom of sketching to create a natural

computer-based sketch tool. InHuman Computer Interaction International Proceedings, 2001.

[4] Christine Alvarado and Randall Davis. Resolving ambiguities to create a natural sketch based

interface. InProceedings. of IJCAI-2001, August 2001.

[5] James Arvo and Kevin Novins. Fluid sketches: Continous recognition and morphing of simple

hand-drawn shapes. InUIST, 2000.

[6] James Arvo and Kevin Novins. Smart text: A synthesis of recognition and morphing. InAAAI

Spring Symposium on Smart Graphics, pages 140–147, Stanford, California, 2000.

[7] Elie Bienenstock, Stuart Geman, and Daniel Potter. Compositionality, mdl priors, and object

recognition. In T. Petsche M. C. Mozer, M. I. Jordan, editor,Advances in Neural Information

Processing Systems 9, pages 838–844. MIT Press, 1997.

[8] D. Blostein and L. Haken. Using diagram generation software to improve diagram recogni-

tion: A case study of music notation.IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(11), 1999.

[9] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-specific in-

dependence in Bayesian networks. InProceedings of UAI ’96, 1996.

[10] Michael C. Burl and Pietro Perona. Using hierarchical shape models to spot keywords in

cursive handwriting. InProceedings of CVPR ’98, 1998.

121



[11] Anabela Caetano, Neri Goulart, Manuel Fonseca, and Joaquim Jorge. Sketching user inter-

faces with visual patterns.Proceedings of the 1st Ibero-American Symposium in Computer

Graphics (SIACG02), pages 271–279, 2002.

[12] Eugene Charniak. Bayesian networks without tears: making bayesian networks more accessi-

ble to the probabilistically unsophisticated.Artificial Intelligence, 12(4):50–63, 1991.

[13] Sung-Jung Cho and Jin H. Kim. Bayesian network modeling of hangul characters for on-line

handwriting recognition. InProceedings of the Seventh International Conference on Document

Analysis and Recognition (ICDAR’03), 2003.

[14] P. R. Cohen, M. Johnston, D. R. McGee, S. L. Oviatt, J. Pittman, I. Smith, L. Chen, and

J. Clowi. Quickset: Multimodal interaction for distributed applications. InProceedings of

Mutimedia ’97, 1997.

[15] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for matching

large graphs.3rd IAPR-TC15 Workshop on Graph-based Representation, 2001.

[16] James M. Coughlan and Sabino J. Ferreira. Finding deformable shapes using loopy belief

propagation. InProceedings of the Seventh European Conference on Computer Vision, 2002.

[17] Christian Heide Damm, Klaus Marius Hansen, and Michael Thomsen. Tool support for coop-

erative object-oriented design: Gesture based modeling on an electronic whiteboard. InCHI

2000. CHI, April 2000.

[18] Fred DePiero and David Krout. Lerp: An algorithm using length-r paths to determine subgraph

isomorphism.Pattern Recognition Letters, pages 33–46, 2003.

[19] Lee Erman, Frederick Hayes-Roth, Victor Lesser, and Raj Reddy. The hearsay-ii speech-

understanding system: Integrating knowedge to resolve uncertainty.Computing Surveys,

12(2):213–253, June 1980.

[20] M. A. Fischler and R. A. Elschlager. The representation and matching or pictorial structures.

IEEE Transactions on Computers, 22(1):67–92, January 1973.

[21] Robert B. Fisher. Polynomial-time geometric matching for object recognition.International

Journal of Computer Vision, pages 37–61, 1997.

122



[22] Kenneth D. Forbus, Jeffry Usher, and Vernell Chapman. Sketching for military course of

action diagrams. InProceedings of IUI 2003, 2003.

[23] A. S. Forsberg, M. K. Dieterich, and R. C. Zeleznik. The music notepad. InProceedings of

UIST ’98. ACM SIGGRAPH, 1998.

[24] David A. Forsyth and Jean Ponce.Computer Vision: A Modern Approach, chapter 18. Prentice

Hall, 2003.

[25] David A. Forsyth and Jean Ponce.Computer Vision: A Modern Approach. Prentice Hall,

2003.

[26] R. P. Futrelle and N. Nikolakis. Efficient analysis of complex diagrams using constraint-based

parsing. InICDAR-95 (International Conference on Document Analysis and Recognition),

pages 782–790, Montreal, Canada, 1995.

[27] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images.IEEE Transations of Pattern Analysis and Machine Intelligence, pages

721–741, 1984.

[28] Lise Getoor, Nir Friedman, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational

models. InIJCAI, pages 1300–1309, 1999.

[29] Sabine Glessner and Daphne Koller. Constructing flexible dynamic belief networks from first-

order probabilistinc knowledge bases. InSynbolic and Quantitatice Approaches to Reasoning

and Uncertainty, pages 217–226, 1995.

[30] Robert P. Goldman and Eugene Charniak. A language for construction of belief networks.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3), March 1993.

[31] W. Eric L. Grimson. The combinatorics of heuristic search termination for object recognition

in cluttered environments.IEEE Trans. on PAMI, 13(9):920–935, September 1991.

[32] Mark Gross and Ellen Yi-Luen Do. Ambiguous intentions: a paper-like interface for creative

design. InProceedings of UIST 96, pages 183–192, 1996.

[33] Mark D. Gross. The electronic cocktail napkin - a computational environment for working

with design diagrams.Design Studies, 17:53–69, 1996.

123



[34] Peter Haddawy. Generating bayesian networks from probability logic knowledge bases. In

Proceedings of UAI ’94, 1994.

[35] Tracy Hammond, 2005. PhD Thesis, Massachusetts Institute of Technology, to be published.

[36] Tracy Hammond and Randall Davis. Tahuti: A geometrical sketch recognition system for uml

class diagrams.AAAI Spring Symposium on Sketch Understanding, pages 59–68, March 25-27

2002.

[37] Tracy Hammond and Randall Davis. LADDER: A language to describe drawing, display,

and editing in sketch recognition.Proceedings of the 2003 Internaltional Joint Conference on

Artificial Intelligence (IJCAI), 2003.

[38] Tracy Hammond and Randall Davis. Automatically transforming symbolic shape descriptions

for use in sketch recognition.Proceedings of the Nineteenth National Conference on Artificial

Intelligence (AAAI-04), 2004.

[39] Richard Helm, Kim Marriott, and Martin Odersky. Building visual language parsers. In

Proceedings of CHI 1991, pages 105–112, 1991.

[40] Jason Hong, James Landay, A. Chris Long, and Jennifer Mankoff. Sketch recognizers from the

end-user’s, the designer’s, and the programmer’s perspective.Sketch Understanding, Papers

from the 2002 AAAI Spring Symposium, pages 73–77, March 25-27 2002.

[41] T. Igarashi, Satoshi Matsuoka, Sachiko Kawachiya, and Hidehiko Tanaka. Interactive beauti-

fication: A technique for rapid geometric design. InUIST ’97, pages 105–114, 1997.

[42] D. L. Jenkins and R. R. Martin. Applying constraints to enforce users’ intentions in free-hand

2-D sketches.Intelligent Systems Engineering, 1992.

[43] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in causal probabilistic

networks by local computations.Computational Statistics Quarterly, 4:269–282, 1990.

[44] Finn V. Jensen.Bayesian Networks and Decision Graphs. Statistics for Engineering and

Informaion Science. Springer, 2001.

[45] Rangachar Kasturi, Sing T. Bow, Wassim El-Masri, Jayesh Shah, James R. Gattiker, and

Umesh B. Mokate. A system for interpretation of line drawings.IEEE Transactions on Pattern

Analysis and Machine Intelligence, 12(10):978–992, October 1990.

124



[46] Daphne Koller and Avi Pfeffer. Object-oriented bayesian networks. InProceedings of the

Thirteenth Annual Conference on Uncertainty, pages 302–313, Providence, RI, August 1-3

1997.

[47] V. P. Kumar and U. B. Desai. Image interpretation using bayesian networks.IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 18(1):74–77, 1996.

[48] James A. Landay and Brad A. Myers. Interactive sketching for the early stages of user interface

design. InProceedings of CHI 95, pages 43–50, 1995.

[49] Edward Lank, Jeb S. Thorley, and Sean Jy-Shyang Chen. An interactive system for recogniz-

ing hand drawn UML diagrams. InProceedings for CASCON 2000, 2000.

[50] Edward H. Lank. A retargetable framework for interactive diagram recognitiont. InPro-

ceedings of the Seventh International Conference on Document Analysis and Recognition (IC-

DAR’03), 2003.

[51] Kathryn B. Laskey and Suzanne M. Mahoney. Network fragments: Representing knowledge

for constructing probabilistic models. InProceedings of UAI ’97), 1997.

[52] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical

structures and their application to expert systems.Journal of the Royal Statistical Society,

50(2):157–224, 1988.

[53] Jianming Liang, Finn V. Jensen, and Henrik I. Christensen. A framework for generic object

recognition with bayesian networks. InProceedings of the First International Symposium on

Soft Computing for Pattern Recognition, 1996.

[54] A. Chris Long, Jr., James A. Landay, Lawrence A. Rowe, and Joseph Michiels. Visual sim-

ilarities of pen gestures. InProceedings of the CHI 2000 conference on Human factors in

computing systems, 2000.

[55] Allan Christian Long. Quill: a Gesture Design Tool for Pen-based User Interfaces. Eecs

department, computer science division, U.C. Berkeley, Berkeley, California, December 2001.

[56] Wei Lu, Wei Wu, and Masao Sakauchi. A drawing recognition system with rule acquisi-

tion ability. In Proceedings of the Third International Conference on Document Analysis and

Recognition, volume 1, pages 512–515, 1995.

125



[57] James V. Mahoney and Markus P. J. Fromherz. Handling ambiguity in constraint-based recog-

nition of stick figure sketches.SPIE Document Recognition and Retrieval IX Conf., San Jose,

CA, January 2002.

[58] James V. Mahoney and Markus P. J. Fromherz. Three main concerns in sketch recognition and

an approach to addressing them. InSketch Understanding, Papers from the 2002 AAAI Spring

Symposium, pages 105–112, Stanford, California, March 25-27 2002. AAAI Press.

[59] Kim Marriott and Bernd Meyer. Towards a hierarchy of visual languages. InProceedings of

the 1996 IEEE Symposium on Visual Languages, 1996.

[60] Kim Marriott, Bernd Meyer, and Kent Wittenburg. A survey of visual language specification

and recognition. In Kim Marriott and Bernd Meyer, editors,Visual Language Theory, pages

5–85. Springer-Verlag, 1998.

[61] Nicolas Matsakis. Recognition of handwritten mathematical expressions. Master’s thesis,

Massachusetts Institute of Technology, 1999.

[62] B. Messmer and H Bunke. A new algorithm for error-tolerant subgraph isomorphism detec-

tion. IEEE Trans. PAMI, Vol 20, 493 - 505, 1998.

[63] Mark W. Newman, James Lin, Jason I. Hong, and James A. Landay. DENIM: An informal web

site design tool inspired by observations of practice.Human-Computer Interaction, 18(3):259–

324, 2003.

[64] Sharon Oviatt. Mutual disambiguation of recognition errors in a multimodal architecture. In

Proceeding of the CHI 99 Conference on Human Factors in Computing Systems: the CHI is

the Limit, pages 576–583, 1999.

[65] Judea Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, 1988.

[66] Avi Pfeffer, Daphne Koller, Brian Milch, and Ken Takusagawa. SPOOK: A system for proba-

bilistic object-oriented knowledge representation. InProceedings of UAI ’99), pages 541–550,

August 1999.

[67] David Poole. Probabilistic Horn abduction and Bayesnian networks.Artificial Intelligence,

1993.

126



[68] Dean Rubine. Specifying gestures by example. InComputer Graphics, volume 25(4), pages

329–337, 1991.

[69] Eric Saund, David Fleet, Daniel Larner, and James Mahoney. Perceptually supported image

editing of text and graphics. InProceedings of UIST ’03, 2003.

[70] Tevfik Metin Sezgin. Phd thesis proposal. MIT PhD Thesis, to be published 2005.

[71] Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch based interfaces: Early

processing for sketch understanding. InThe Proceedings of 2001 Perceptive User Interfaces

Workshop (PUI’01), Orlando, FL, November 2001.

[72] Michael Shilman, Hanna Pasula, Stuart Russell, and Richard Newton. Statistical visual lan-

guage models for ink parsing. InSketch Understanding, Papers from the 2002 AAAI Spring

Symposium, pages 126–132, Stanford, California, March 25-27 2002. AAAI Press.

[73] Thomas Stahovich, Randy Davis, and Howrad Shrobe. Generating multiple new designs from

a sketch.Artificial Intelligence, 104(1-2):211–264, 1998.

[74] Thomas M. Strat and Martin A. Fischler. Context-based vision: Recognizing objects using

information from both 2-d and 3-d imagery.IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 13(10):1050–1065, 1991.

[75] Antonio Torralba and Pawan Sinha. Statistical context priming for object detection. InPro-

ceedings of ICCV ’01, pages 763–770, 2001.

[76] Olya Veselova and Randall Davis. Perceptually based learning of shape descriptions.Pro-

ceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-04), 2004.

[77] S. Wachsmuth and G. Sagerer. Bayesian Networks for Speech and Image Integration. InProc.

of AAAI-2002, pages 300–306, Edmonton, Alberta, Canada, 2002.

[78] Luke Weisman. A foundation for intelligent multimodal drawing and sketching programs.

Master’s thesis, Massachusetts Institute of Technology, 1999.

[79] Yair Weiss. Belief propagation and revision in networks with loops. Technical report, Mas-

sachusetts Institute of Technology, November 1997. AI Memo No. 1616, CBCL Paper No.

155.

127



[80] Liu Wenyin, Wenjie Qian, Rong Xiao, and Microsoft Research China Xiangyu Jin. Smart

sketchpad - an on-line graphics recognition system. InSixth International Conference on

Document Analysis and Recognition (ICDAR ’01), pages 1050–1054, 2001.

[81] M. E. Westling and L. S. Davis. Interpretation of complex scenes using Bayesian networks.

Lecture Notes in Computer Science, 1352, 1997.

[82] Patrick H. Winston. Learning structural description from examples.PVC, 1975.

[83] Lizhong Wu, Sharon L. Oviatt, and Philip R. Cohen. Multimodal integration—a statistical

view. IEEE Transaction on Multimedia, 1(4):334–341, December 1999.

128


