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Abstract

Laser-Induced Breakdown Spectroscopy (LIBS) has been successfully applied for multi-elemental analysis of solidified mineral melt samples

containing several oxides present in various concentrations. The plasma was generated using a Nd:YAG laser and the spectra were acquired using

an Echelle spectrometer, coupled to an ICCD detector, which covers a spectral range from 200 to 780 nm. Using a set of 19 calibration samples,

we first established univariate calibration curves for the major elements (Al, Fe, Mg, Ca, Ti and Si). We found out that the presence of matrix

effects makes such a model, traditionally used in LIBS, not satisfying for quantitative analysis of such samples. Indeed, no sufficiently linear

trends can be extracted from the calibration curves for the elements of interest considering all the samples. Instead, a much more robust calibration

approach was obtained by considering a multivariate model. The matrix effects are then taken into account by correcting the spectroscopic signals

emitted by a given species due the presence of the others ones. More specifically, we established here a calibration model using a 2nd order

polynomial linear multivariate inverse regression. The capability of this approach was then checked using a 2nd set of samples with an unknown

composition. A good agreement was observed between the analysis provided by X-ray fluorescence (XRF) and the LIBS measurements coupled

to the multivariate model for the unknown samples.

Crown Copyright © 2007 Published by Elsevier B.V. All rights reserved.
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1. Introduction

The glass producing industry faces the major challenge of

increasing productivity to reduce cost and maximize the

benefits from existing equipment. During refining, it is critical

that operating parameters can be adjusted and controlled so that

the chemistry of the melt is within predetermined limits. There

is an increasing interest in technologies able to aid in the

automation, quality and process control of the glass production

processes. Techniques are sought for the continuous real-time

monitoring of mineral melt composition and the various

elements involved in the production of glass. The main

chemical compounds present in the mineral melt are generally

oxides such as SiO2, Al2O3, Fe2O3, MgO, CaO, TiO2, Na2O,

K2O, P2O5 and MnO.

Presently, charge compositions in many industrial processes

are monitored by periodic sampling followed by time-consum-

ing sample preparation and laboratory analysis. The required

steps for analysis by conventional techniques involve taking a

sample from the melt, solidification of the sample, transport of

the sample to a central laboratory, sample preparation and finally

analysis, e.g., by conventional techniques such as atomic ab-

sorption spectroscopy (AAS) [1], X-ray fluorescence analysis

(XRF) [2], inductively coupled plasma coupled to atomic

emission spectroscopy (ICP-AES) spectroscopy [3], and ICP

mass spectrometry (ICP-MS) [3]. These methods appear to be
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hampered in practice by their off line character. Virtually

eliminating or shortening this delay through real-time in-situ

Laser-Induced Breakdown Spectroscopy (LIBS) analysis has

the potential to significantly increase productivity and improve

process control. LIBS is a form of atomic emission spectroscopy

based on plasma induced by focusing a laser beam on the

sample. LIBS has features whichmake it useful tool for real-time

measurements. This includes: multi-element analysis, non-

contact measurements regardless of the material to be analyzed,

high measuring speed, and no sample preparation or the

preparation can be done by the laser beam itself.

LIBS investigations of glass were carried out by several

groups [4–12]. In contrast to the analysis of metallic alloy, the

analysis by LIBS of glass whether it is in the solid or liquid

phase presents some difficulties due to the lack of major

element for normalization and the large range of variation of the

major or minor elements concentration. The influence of the

wide ranges of analyte concentrations in glass samples poses a

major problem for quantification. In fact, the line intensity of a

given analyte element is not only affected by the concentration

of that analyte but also with the variation of concentrations of

other elements which is known in the literature by matrix

effects. In these conditions the univariate approach, traditionally

used in LIBS analysis, will not be appropriate since it provides

values with large uncertainty and makes the LIBS measurement

not reliable. Other chemometric alternatives should be used and

further works need to be done in order to provide accurate and

reliable measurements of the glass composition. The goal of the

work presented here was to provide a method based on LIBS for

the quantitative analysis of glass sample. The main issue to be

solved here includes matrix effects due to the wide range of

analyte concentrations. We would like to point out here that

most of the LIBS literature was devoted to the analysis of minor

or trace element, from a few ppm to a few %, in an appro-

ximately constant matrix. Very few works were devoted to the

analysis of minor or major elements in a varying matrix.

Furthermore, the use of chemometrics in LIBS analysis is still in

its infancy by comparison to other conventional techniques

based on near-infrared spectroscopy [13,14]. (More details

about chemometrics can be found in [15] and [16].) To take into

account the matrix effects, different chemometrics approaches,

such as partial least square (PLS) [17,18] and principal

components regression (PCR) [18–20] have been already

used in LIBS. They are based on orthogonal projections of

the LIBS spectral data for extracting the relevant information to

feed the multivariate model therefore. However, several works

have already shown that a simplest data selection can be used

prior to the multivariate regression for steel [21,22], slag [23],

aluminum [24] and even wood preservatives [25]. In this paper,

the latter was also considered here due to the industrial context

of this work.

2. Experimental

For this work, we disposed 19 solidified mineral melt

samples which mainly contain the SiO2, Al2O3, Fe2O3, MgO,

CaO, TiO2, Na2O, K2O, P2O5 and MnO oxides. These samples

were directly taken from the mineral melt in a plant and were

made by pouring a small amount of liquid glass into a platinum

mold waiting until solidification. They were then machined by

cutting a slice with a diamond saw in order to offer a flat surface

to the laser. We show in Table 1 the composition of these

samples, where the concentrations are given in % weight,

characterized using the X-ray fluorescence (XRF) technique.

The experiments were carried out using a Q-switched Nd:

YAG laser (Continuum, Surelite II) that can deliver up to

600 mJ/pulse at a wavelength of 1064 nm with a pulse duration

of 7 ns FWHM and a maximum repetition of rate of 10 Hz. The

Table 1

Sample designation and composition

Designation SiO2 Al2O3 Fe2O3 MgO CaO TiO2 Na2O K2O P2O5 MnO

1 41.8 19.9 6.9 7.7 19.2 1.5 1.3 0.8 0.4 b0.1

2 62.6 4.4 4.5 25.0 1.3 0.2 0.9 0.5 b0.1 b0.1

3 46.1 16.0 6.4 11.2 16.1 1.2 1.1 0.8 0.6 b0.1

4 55.4 6.9 2.0 12.8 20.9 0.5 0.5 0.6 0.1 b0.1

5 45.8 20.0 3.4 8.1 16.8 0.6 3.5 0.7 0.1 b0.1

6 32.7 15.5 5.7 14.4 27.8 1.2 1.1 0.7 0.3 b0.1

7 48.6 31.6 1.2 0.4 14.4 0.1 3.0 0.2 b0.1 b0.1

8 45.2 25.5 4.0 4.2 16.8 0.8 2.0 0.5 0.2 b0.1

9 39.3 21.4 3.2 9.1 22.8 0.7 1.6 0.5 0.8 b0.1

10 47.7 18.0 6.3 7.0 17.4 1.3 1.2 0.9 0.3 b0.1

11 44.7 23.7 5.0 5.4 17.7 1.0 1.8 0.6 0.3 b0.1

12 42.1 15.7 7.0 16.1 15.4 1.2 1.0 0.7 0.3 b0.1

13 35.8 16.9 5.6 6.7 31.5 1.1 1.0 0.7 0.3 b0.1

14 37.7 17.8 15.7 6.8 17.6 1.4 1.1 0.8 0.3 b0.1

15 39.7 18.8 11.2 7.3 18.5 1.4 1.2 0.8 0.3 b0.1

16 49.5 14.4 13.0 9.6 6.9 2.0 2.7 1.1 0.7 b0.1

17 45.7 17.0 9.9 8.7 13.1 1.7 2.0 1.0 0.5 b0.1

18 40.5 11.6 9.9 8.1 23.1 1.5 2.8 0.9 1.8 b0.1

19 46.8 19.1 6.7 5.2 13.5 2.9 3.5 1.5 0.3 b0.1

The concentrations are given in % weight.

The values in bold indicate the minimum and maximum concentrations for each chemical compound.
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laser energy was set here to 100 mJ and the beam was focused

onto the target using a plano-convex BK7 lens (25.4 mm

diameter, focal length f=25 cm) perpendicularly to the target

normal. In these conditions, the measured spot diameter onto

the surface of the samples was 600 μm, which yields a laser

fluence of about 35 J/cm2. The ablation was experienced in air

at atmospheric pressure. A schematic drawing of the experi-

mental set-up is shown in Fig. 1.

The light emitted by the plasma was collected using a 1.5 m

long, 600 μm core diameter optical fiber connected to the

entrance of the spectrometer. A Czerny–Turner spectrometer

appears not to be the best option here since it was too much

time-consuming and did not offer a sufficient compromise

between the observed spectral range and the spectral resolution.

Indeed, the rich spectrum resulting from the strong presence of

iron in the calibration samples requires the use of a high-

resolution spectrograph to avoid spectral interferences. As a

matter of fact, a typical 0.5 m focal length Czerny–Turner

spectrometer equipped with a 2400 lines/mm grating gives a

good resolution of about 0.03 nm. However, since the width of

the spectral window (about 7 nm) should not be sufficient to

observe all the elements simultaneously, several spectral

windows must be considered. Consequently, we preferred

using an Echelle spectrometer (ESA3000, LLA, Germany)

coupled with an intensified CCD detector (Kodak KAF-1001,

1024×1024 pixels). This equipment offers a large spectral

range, from 200 to 780 nm, while keeping a very high

resolution, from 0.005 to 0.019 nm depending on the spectral

region. (We point out here that spectra exhibit some gaps above

the 580 nm due to the mismatch of the spectral orders and the

size of CCD intensifier.) Therefore, the end of the optical fiber

was connected to the entrance slit (35 μm width and 500 μm

height) of the Echelle spectrometer.

The operating conditions consist here in a delay tdelay=4 μs

and a gate width tint=10 μs. Since for each laser pulse the total

data processing with our spectrograph is about 4.2 s, we need to

use a low repetition rate with the ablation laser, which was here

0.24 Hz (which corresponds to 1 shot every 4.2 s). The low

repetition rate was a limitation dictated by the readout of the

CCD detector. However, in our conditions, it has an advantage

of reducing the fluctuations from shot to shot by decreasing the

formation of aerosols in front of the target that deteriorates the

reproducibility of measurement.

For this study, we limited our effort to the study of the major

oxides which are, according to Table 1, SiO2, Al2O3, Fe2O3,

MgO, CaO and TiO2. Actually, it appeared that no suitable lines

were found for the other oxides, Na2O, K2O and P2O5 in our

experimental conditions. Indeed, this is due to the low

concentrations of these elements in the samples and the low

sensitivity of the ICCD detector/Echelle spectrograph in the

spectral regions where these elements emit the most intensively

(UV region and/or in the red region of the spectrum). In

addition, MnO was not considered in our model due to its very

low concentration (less than 0.1%— see Table 1). The selected

spectral lines used for the calibration of the elements of interest

are presented in Table 2.

These lines were chosen suitably in order to minimize

spectral interferences and self-absorption. In addition, the

intensity of these lines was supposed to vary linearly with the

concentration within the range of concentration for all the

Fig. 1. Schematic experimental set-up with the Echelle spectrometer.

Table 2

Spectral lines used for the calibration

Elements of interest Calibration lines Ei (cm
−1) Ej (cm

−1) Aji (s
−1)

Al Al(I) 265.249 nm 0 37,689.41 0.13

Fe Fe(I) 404.582 nm 11,976.23 36,686.16 0.86

Mg Mg(I) 383.829 nm 21,911.18 47,957.03 0.38

Ca Ca(I) 585.746 nm 23,652.30 40,719.85 0.66

Ti Ti(II) 337.280 nm 94.10 29,734.54 1.1

Si Si(I) 390.553 nm 15,394.37 40,991.88 0.12
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samples considered in this paper. It is also important to mention

here that we assumed that all the oxide molecules are

dissociated into the plasma in order to be able to assimilate

the atomic concentration as the oxide one. This is generally the

case for LIBS plasmas due to the high temperatures, typically

some electron-volts initially.

In Fig. 2, we show a selected, ranging from 382 to 391 nm,

region of the Echelle spectrum obtained with the samples

denoted 2 and 9. Specifically, the Mg(I) 383.829 nm and the Si

(I) 390.553 nm lines used for the calibrations are observed in

this window. This LIBS spectrum confirms that there is more

SiO2 and MgO in sample 2 (62.6% SiO2 and 25%MgO) than in

sample 9 (32.7% SiO2 and 14.4% MgO) as shown in Table 2.

The high resolution of the Echelle spectrometer is also well

demonstrated in Fig. 2.

Therefore, for each sample, in order to get a representative

sampling, and account for any eventual spatial inhomogeneity,

we acquired 10 spectra at each of the 25 positions of a 5×5

matrix with a 1 mm intersite distance. At each position, the

experimental procedure consisted firstly in firing 100 cleaning

shots, at a repetition rate of 3 pulses/s, in order to avoid

detecting contaminations at the surface of the samples.

Therefore, we acquired the spectra corresponding to the

subsequent 10 shots. The samples were automatically translated

during the LIBS measurements using a double axis motorized

stage (Newport, UTM 100 mm) controlled by a programmable

controller (Newport, model ESP 300). The repetition accuracy

of translation is about 1 μm.

3. Results and discussion

3.1. Calibration curves

3.1.1. Normalized univariate regression

Based on the spectra acquired using the Echelle spectrograph

using our set of calibration samples (see Table 1 for their

composition), we first performed a univariate calibration for the

selected lines shown in Table 2. In order to minimize the signal

variations due to laser energy fluctuations and to random

changes in plasma position relative to the collection optics, it is

preferable to normalize, spectrum to spectrum, the signals of the

elements of interest. In this study, the internal standardization is

achieved using the Si(I) 390.553 nm line. The choice of this line

is mainly guided by the fact that its variations over the

concentration of SiO2 appear to be relatively weak for our batch

of samples: from 32.7% (sample 6) to 62.6% (sample 2). On the

contrary, the concentrations of the other elements are too

disparate to be reliable.

We present on Fig. 3a–e the intensity of the elements of

interest normalized by the signal of Si(I) 390.553 nm as a

function of the concentration ratio, obtained with the 19

calibration samples. The vertical error bars on each data point

indicate the fluctuations, from shot to shot, between the 250

shots performed on each sample. They can be attributed to slight

inhomogeneity of the samples and the LIBS technique itself

through fluctuations of the laser energy and the collection of

light. In addition, it is also well known that the reproducibility

of an Echelle spectrometer can be strongly affected by

fluctuations of the ambient temperature. Indeed, the index of

refraction of the separating-orders prism into the Echelle

spectrometer is very sensitive with the temperature, so the

position of the optical image on the CCD, called the

Echellogram. The relatively small experimental error bars

indicate that we can provide a reasonable reproducibility of the

measurements using the LIBS technique in these conditions.

Taking into account the error bars, it clearly appears from

Fig. 3 that there is no evidence of linear trend between the

intensity ratios and the concentration ratios, considering all the

samples. This behavior has already been observed experimen-

tally by S. Palanco et al. [21] while establishing a calibration

curve for iron using a set of stainless-steel samples. Indeed, they

found out a poor correlation, R2=0.3371, between the Fe(I)

358.119 nm line intensity and the iron concentration. However,

for Al2O3, Fe2O3 and MgO oxides, we can reasonably extract

linear tendencies from Fig. 3 eliminating a few samples.

3.1.2. Normalized multivariate regression

We showed that a univariate calibration is not enough

satisfying here due to the presence of significant matrix effects

in the spectroscopic signals with our samples. However, in

atomic emission spectroscopy techniques, such a limitation can

be generally reduced using mathematical post-processing

procedures based on chemometrics. It consists basically in

taking into account, for the signal for a given element, the

signals of the other major elements present into the matrix. The

goal of such approaches is mainly to improve the precision and

the accuracy on the LIBS measurements when compared with a

prediction based on a univariate calibration.

In [21], it is shown that the influence of the matrix effects in

LIBS can be reduced using a linear multivariate regression for

steel samples. Indeed, for most of the elements (Fe, Cr, Ni, Cu

and Ti) present in the sample, the coefficient of determination

R2 of the corrected calibration curves was higher than 0.98. In

[22], a partial least square (PLS) regression model was used to

perform quantitative analyses by LIBS of preservatives on
Fig. 2. Illustration of a region of a single laser shot spectrum obtained with the

Echelle spectrometer for glass samples denoted 2 and 9.
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Fig. 3. Univariate calibration curves for the selected spectral line normalized by the Si(I) 390.553 nm line: (a) Al(I) 265.249 nm, (b) Fe(I) 404.582 nm, (c) Mg(I)

383.826 nm, (d) Ca(I) 585.746 nm and (e) Ti(II) 337.280 nm.
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treated woods. The Cu, As, Zn and Cr concentrations predicted

by LIBS were in good agreement with the ones measured with a

standard technique. Finally, in [23], analysis of Fe, Ca and Si in

slag samples from a steel plant using LIBS provided better

results when combined with a multivariate approach instead a of

a univariate approach.

In this paper where LIBS was applied on solidified glass

samples exhibiting complex matrices, a 2nd order polynomial

multivariate inverse regression was considered. This approach

is similar to the linear multivariate model described in [21] but

light departure from linear correlation between spectroscopic

signals and light self-absorption effects can be also modeled.

We give in the following a detailed overview about the

mathematical treatment and its physical interpretation in the

case of optical spectroscopy.

If we designate by n the number of samples used to establish

the calibration and m the number of components of interest (m is

also the number of emission lines). For a given component

labeled by j (where 1≤ j≤m), the linear multivariate inverse

regression method limited to the 2nd order consists simply in

writing:

Cj

� �

¼ b0;j þ
X

m

i¼1

bi;j Ii½ � þ bmþi;j Ii½ �2
� �

þ ej
� �

ð1Þ

where [Cj] is the vector of net (or normalized) concentration of

the jth component, the coefficients bi,j are known as the

parameters of the non-linear multivariate regression, [Ii] is the

vector of the net (or normalized) line intensities of the ith

component, and finally [ej] is the vector of the residuals which

corresponds basically to the discrepancies between the

prediction given by the multivariate regression model and

the linear regression obtained with the multivariate results.

The dimension of these three vectors is n. A simplified

approach consists in writing Eq. (1) in the following matrix

form:

Cj

� �

¼ U½ � Bj

� �

þ ej
� �

ð2Þ

where

U ¼

1 I1;1 ::: I1;m I1;1
� �2

::: I1;m
� �2

1 I2;1 ::: I2;m I2;1
� �2

::: I2;m
� �2

::: ::: ::: ::: ::: ::: :::
1 In;1 ::: In;m In;1

� �2
::: In;m

� �2

0

B

B

B

@

1

C

C

C

A

is a matrix of dimensions n×(2m+1) containing only the

spectroscopic signals and

B ¼

b0;j
b1;j
:::
b2n;j

0

B

B

@

1

C

C

A

is a vector containing the unknown parameters of the regres-

sion model. The 11 unknowns, from b0,j to b2n,j, of this

system are then obtained by minimizing the quantity v2j ¼
Pn

i¼1 e2i;j usually called predicted residual sum of squares

(PRESS) [15]. The vector of the concentrations predicted by

the multivariate model is then given by Eq. (3):

ˆCj

h i

¼ Cj

� �

� ej
� �

¼ U½ � Bj

� �

: ð3Þ

To establish the regression model, the procedure consists

firstly in calculating the signal matrix [U ] and the concentration

ratios [Cj] matrix. Therefore, since the U matrix is not square,

the pseudo-inverse [15] is used to calculate the predicted con-

centration ratios:

ˆCj

h i

¼ P Cj

� �

ð4Þ

where P ¼ U UTUð Þ
�1
UT is a projection matrix, UT designates

the transpose of U and U −1 designates the inverse of U .

Finally, the residuals [ej] are calculated from Eq. (3).

Establishing a reliable calibration model requires generally

taking into account all the compounds present into the samples.

However, according to Table 1, we did not take in to account

the contribution of Na2O, K2O, P2O5, and MnO in the model.

Indeed, the appropriate analytical lines for these elements,

which are suitable and free from interference for the range of

concentrations in our conditions, are in the red region (for K

and Na) or in the far UV (P) where the sensibility of our

detection system Echelle/ICCD is rather very poor. Further-

more, these oxides represent together less than 5% of the

composition in percents weight. Consequently, a multivariate

analysis was applied to our data using the signals of Al, Fe, Mg,

Ca and Ti normalized by the signal of Si and the concentration

ratios, normalized to concentration of SiO2, was also

considered. In our model, we computed n=19 calibration

samples (see Table 1) and m=5 intensity ratios. It is also worth

mentioning here that mathematically there is a minimum

number of standard samples required to establish this

calibration model. Indeed, strictly speaking, it should be

minimally equal to the number of elements plus one. However,

in order to improve the quality of the regression, it should be

preferable to use saying at least about two times the minimum

number of samples required. This means that for the 2nd order

non-linear model, we should compute at least 2(2n+1), which

means 22 here, calibration samples. Even if only 19 samples

were available for this work, we are quite confident that this

was enough since they were rather representative of the most

common glass samples. Actually, we will stress this issue

thereafter by providing the capability of prediction of

composition of unknown samples when compared to XRF

measurements.

Since we have neglected the presence of K2O, P2O5, Na2O and

MnO in our samples, the other oxide concentrations, given in %

weight, verify the condition CSiO2
þ CAl2O3

þ CFe2O3
þ CMgOþ

CCaO þ CTiO2
c1. From this equation, the SiO2 concentration can

be easily deduced and therefore the individual concentrations of

the other oxides.

We present in Fig. 4a–c the concentrations of three selected

oxides, Fe2O3, CaO and TiO2, predicted by LIBS combined

with our linear multivariate model for our 19 calibration

samples as a function of their concentrations measured by XRF.
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(Graphs obtained for Al2O3, MgO and SiO2 exhibits a very

similar behavior but are not shown here.)

In Table 3, we present the coefficient of determination R2,

the relative standard error (RSD) and the root-mean-square error

of calibration (RMSEC) associated to the linear regression

performed on the data shown on Fig. 4. (RMSEC2 is defined by

the ratio of the PRESS calculated for the calibration samples by

the number of degrees of freedom which is here n−1.) The

quantities R2 and RMSEC indicate the quality of the

multivariate model while the RSD corresponds to the systematic

error associated to the R2 coefficient. As shown in Table 3, our

multivariate regression model provides R2 values higher than

0.92 for all the elements of interest here. This indicates that a

reasonable correlation is obtained for the calibration samples.

The global error on the prediction curves shown in Fig. 4 is the

sum of three contributions. The first one is due to regression

model itself and is characterized by the relative standard error

(RSD) shown in Table 3. Another one is the uncertainties on the

concentrations measured by XRF, which can be estimated to

about a few percents on the measured values. Finally, the LIBS

technique itself introduced also an uncertainty on the spectro-

scopic signals as already mentioned in Section 2.

3.2. Validation of the model

Finally, as a validation of the calibration model, we predicted

the composition of 12 solidified mineral melt samples, denoted

20 to 31, with unknown composition.

In Fig. 5a–c, we present a comparison of the concentration

(in % weight) of the oxides selected on Fig. 4 for the unknown

samples predicted using the LIBS combined with our

multivariate model and those measured by X-ray fluorescence

(XRF). We also indicated the expected error bars on the

concentration of these various elements. This error is basically

due to the systematic error on the multivariate regression (see

Table 3) and the uncertainty on the intensity ratio for each line.

We estimated the uncertainty on the mean intensity ratio, i.e.,

the repeatability of the measurement, to be generally about 3%

in our conditions. We would like to point out here that these

values give only an estimate of the error on the predicted

concentration. We think that these errors are generally over-

Fig. 4. Concentrations (in % weight) of Fe2O3 (a), CaO (b) and TiO2 (c)

predicted by LIBS as a function of the concentrations measured by XRF for the

calibration samples.

Table 3

Coefficient of determination and RSDs for the prediction given by the

multivariate regression model based on the 19 calibration samples

Element Calibration samples Prediction samples

R2 RSD (%) RMSEC

(% weight)

R2 RSD (%) RMSEP

(% weight)

Al 0.9573 7.13 1.45 0.9978 6.40 1.40

Fe 0.9727 9.18 0.69 0.9826 16.87 1.36

Mg 0.9840 7.29 0.76 0.9815 8.53 1.06

Ca 0.9256 10.24 1.96 0.9827 7.25 0.88

Ti 0.9353 13.57 0.17 0.9746 11.99 0.17

Si 0.9343 3.88 2.37 0.9999 4.10 2.08

RSD: relative standard deviation of the regression.

RMSEC: root-mean-square error of calibration.

RMSEP: root-mean-square error of prediction.
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estimated, except for samples with composition very different

from the ones computed in the calibration model.

In Table 3, the values of the coefficient of determination R2,

the relative standard error (RSD) and the root-mean-square error

of prediction (RMSEP) are shown for the validation samples.

(RMSEP2 is defined by the ratio of the PRESS calculated for the

prediction samples by the number of prediction samples.) The

correlation obtained for the prediction samples is very strong,

R2 higher than 0.97. It also appears that RMSEC is generally

comparable to RMSEP.

Taking into account of the errors bars, Fig. 5 indicates that

we obtained a good agreement between the values obtained by

LIBS combined with a multivariate model and the XRF

measurements. However, the concentration of Fe is slightly

over-estimated. Actually, a more realistic model will require

taking into all the compounds present in the samples.

Therefore, we present in Table 4 the minimum relative

difference, the maximum relative difference and also the mean

relative difference between the values of concentration

obtained by LIBS combined with a univariate or a multivariate

Table 4

Minimum relative difference, maximum relative difference and mean relative

difference between the values of concentration obtained by XRF and LIBS

combined with a univariate or a multivariate calibration model (in bold)

Component Al2O3 Fe2O3 MgO

Minimum relative

difference (%)

0.5 (sample 29) 2.6 (sample 29) 0.4 (sample 30)

1.5 (sample 20) 10.9 (sample 21) 0.5 (sample 25)

Maximum relative

difference (%)

12.7 (sample 25) 24.5 (sample 26) 24.6 (sample 26)

11.3 (sample 26) 38.0 (sample 22) 22.2 (sample 26)

Mean relative

difference (%)

5.6 14.5 10.1

6.2 25.4 10.3

Component CaO TiO2 SiO2

Minimum relative

difference (%)

0.5 (sample 31) 2.5 (sample 26) 0.2 (sample 26)

4.1 (sample 24) 8.6 (sample 30) 0.9 (sample 26)

Maximum relative

difference (%)

8.2 (sample 23) 21.5 (sample 29) 8.2 (sample 25)

45.9 (sample 21) 206.7 (sample 23) 15 (sample 21)

Mean relative

difference (%)

3.6 10.7 4.0

19.2 51.9 8.2

The sample number associated to the value is indicated between brackets.

Fig. 6. Comparison between LIBS (coupled with a multivariate model) and XRF

measurements obtained for the main oxides (SiO2, Al2O3, Fe2O3, MgO, CaO

and TiO2) present in the 32 glass samples. The solid line corresponds to the

perfect agreement between XRF and LIBS.

Fig. 5. Concentration (in % weight) of Fe2O3 (a), CaO (b) and TiO2 (c) obtained

measured by LIBS (combined with a univariate or a multivariate model) and

XRF in the unknown glass samples.
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model and XRF. The results are presented for each main

compound in the unknown samples and taken into account in

our calibration model. The mean relative difference (given in

%) was defined as: Di ¼ 100jCXRF
i � CLIBS

i j=
P

Ci where
P

Ci ¼ CXRF
i þ CLIBS

i

� �

=2.
Fig. 6 summarizes the results presented in this paper by

showing the concentration obtained by LIBS combined with a

non-linear multivariate model as a function of the XRF

measurements for the two sets of samples, 19 calibration

samples and 12 unknown samples, available for this work. The

coefficient of determination of the global prediction curve

shown in Fig. 6 is equal to R2=0.9989, which indicates a good

quality of the regression.

4. Conclusion

The goal of this work was to evaluate the potential of the

Laser-Induced Breakdown Spectroscopy (LIBS) technique for

multi-elemental analysis of solidified mineral melt samples.

These samples contain several components among which the

major ones are Al2O3, Fe2O3, MgO, CaO, TiO2 and SiO2.

The experimental results obtained here showed that the

univariate calibration approach traditionally used in LIBS does

not provide satisfactory results and is not reliable enough due to

the presence of strong matrix effects. Instead, we found out that a

2nd order polynomial linear inversemultivariate regressionmodel

was a more satisfying approach. Indeed, the poor linearity of the

univariate calibration curves can strongly affect the accuracy and

the precision of the prediction. We showed here that the

multivariate approach generally provides better predictions that

the univariate approach, when compared with XRF

measurements.

The results presented clearly show that the LIBS technique

present a great potential formineral melt, butmust be combined to

a multivariate model to provide accurate measurements. In

principle, such an approach can be applied to the analysis of

materials with wide range of analyte concentration and where

matrix effects are an important issue. This kind of calibration

approach is useful for quantitative analysis and clearly opens new

field of applications for LIBS analysis of complex matrices.

Further improvements in the prediction of unknown samples

are expected by computing a larger number of calibration

samples into our multivariate model. We also believe that the

results presented here could be improved using an Echelle

spectrometer/detector exhibiting better performance. Further-

more, adding into the calibration model the presence of the

other minor oxides, K2O, P2O5, MnO and Na2O, is expected to

improve the accuracy of prediction. However, this improvement

will require more calibration samples. Finally, further work

needs to be addressed in order to apply this study for industrial

on-line chemical analysis in the mineral melt for simultaneous

analysis of multiple constituents.
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