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ABSTRACT 

A novel type of multi-evaporator Closed-Loop Two-Phase Thermosyphon has been designed and tested at different 

inclinations and heat input levels. The device consists in an aluminum tube (I.D./O.D. 3/5 mm), bended into a planar 

serpentine with five U-turns in the heated zone, with a 50 mm transparent section for the purpose of visualization. The tube is 

closed in a loop, evacuated and partially filled with FC-72, 50% vol. Each turn is equipped with an electric wiring heater and 

the peculiar location of the heating sections causes the fluid to circulate regularly in a preferential direction. The condenser 

zone is embedded into a heat-sink and cooled by fans blowing air at 20 °C. Sixteen T-type thermocouples are located on the 

external tube wall in the evaporator and condenser zones, while the fluid pressure is measured in the condenser zone adjacent 

to the transparent tube. The flow pattern is recorded by means of a high-speed camera, the device operational limits (start-up 

and dry-out heating levels at the different inclinations) are detected and the overall thermal performance is calculated for 

different inclination angles and heat power inputs. Thanks to the fluid flow motion stabilization in a preferential direction due 

to the peculiar position of the heating elements, in vertical position the device is able to dissipate heat fluxes higher than 57% 

with respect to the CHF limit for FC-72, keeping also the temperatures at the evaporator zone lower than 80 °C. 

 

 

INTRODUCTION 

Two phase heat transfer devices have always been attractive for their compactness, high performance and, above all, the 

possibility of being completely thermally driven (passive). The increasing need of managing high heat fluxes, either to be 

dissipated (electronics cooling) or to be recovered (solar concentrators), drives toward the design of more efficient and 

reliable devices. Despite the last decades witnessing the overwhelming spread of the heat pipe technology under various 

forms such as grooved and sintered heat pipes, loop heat pipes and capillary pumped loops, the interest in wickless, gravity 

driven technologies, namely the Two Phase Thermo-Syphons (TPTS), never damped out. The capability to transport heat at 

high rates over appreciable distances, without any requirement for external pumping devices, the low cost, durability and 

relatively simpler modeling/design process make this technology very attractive for many thermal management applications. 

Indeed, TPTS have been investigated in plenty of fields such as: nuclear plants (Lahey and Moody 1993), energy systems 

(Franco and Filippeschi 2013), solar heat recovery (Esen and Esen, 2005), (Li et al. 2014), (Moradgholi et al. 2014), air 

conditioning (Han et al. 2013), electronic cooling in avionics (Sarno et al. 2013) and in railway traction (Perpinà et al. 

2007). The typical TPTS (Reay and Kew 2006) consists of a single envelope where the heat-receiving (evaporator) zone is 

usually filled with the liquid phase and it is located below the heat rejecting (condenser) zone. As the evaporator zone is 

heated up, the liquid starts boiling and vapor rises and condenses on the walls in the heat-rejecting zone. The liquid film 

flows down by gravity the walls to the evaporator zone counter-current the vapor. At high heating power input, because of 

the correspondingly large mass flow rate of the vapor, the liquid-vapor interfacial shear stress becomes increasingly relevant. 

Once the interfacial shear force overcomes the gravitational force on the liquid film, the liquid flow may be reversed and the 

flooding limit is reached. Many novel designs have been proposed to overcome the flooding limit, which include an internal 

physical barrier along the adiabatic section by-pass line for liquid return, a cross-over flow separator. The main advantage of 

these designs is that the liquid and vapor flows have partially separated passages, which can result in a higher flooding-

limited heat transfer capacity. Another way to separate phases and increase the device performance is to create a loop where 
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the fluid is forced to circulate in a preferential direction by the coupled effect of vapor pressure and gravitational force. The 

present device consists in a relatively small diameter aluminum tube (3 mm ID, 5 mm OD), however higher than the capillary 

diameter for the used refrigerant (1.6 mm for FC-72 at 20 °C). Indeed, as thoroughly described by Franco and Filippeschi 

(2010, 2012) thanks to the relatively small cross section with respect to the standard TPTS, the expanding vapor phase is able 

to push batches of fluid (both liquid and vapor) towards the condenser section. In the cooled zone, vapor condenses and the 

tube is completely filled by the liquid phase that is driven back to the evaporator by gravity. This particular fluid flow motion 

is better known as “bubble lift” principle.  The looped TPTS based on the “bubble lift” concept, exploits the higher heat 

transfer performance linked to the convective flow boiling process in order to overcome the limits due to the pool boiling 

critical heat flux. In the field of electronic cooling, the loop thermosyphons are largely investigated because of their 

geometrical flexibility in the design of the evaporator and the condenser zones with respect to a single straight channel 

typical of a normal thermosyphon (Franco and Filippeschi, 2012). Indeed, the aluminum tube is bended in a serpentine 

manner, allowing the device to meet especially electronic cooling requirements. Furthermore, a strategic asymmetric 

alternation of multiple heating and cooling zones guarantees the fluid circulation in a preferential direction without losing the 

constructive simplicity, expanding the above concept into a multi-evaporator two-phase thermosyphon. The asymmetrical 

positions of the heating elements, permitting fluid circulation in a preferential direction, make this device different from the 

parallel assessments (Kim et al. 2005), (Kaminaga et al. 2012) previously studied. Thanks to the self-sustained fluid 

circulation, the maximum heat flux abundantly exceeds the standard pool boiling limit allowing the device to maintain high 

performances at even high heat input levels with respect to standard TPTS operated with fluorinerts (Jouhara and Robinson 

2010). 

EXPERIMENTAL SETUP 

The proposed cooling device is made of an aluminum tube (I.D./O.D. 3.0 mm/5.0 mm respectively) bent into a planar 

serpentine with ten parallel channels and five turns at the evaporator (all axial curvature radii are 7.5 mm), as shown in Figure 

1a. The aluminum tube is filled up with a refrigerant fluid (FC-72), utilizing a Filling Ratio FR=50%, corresponding to a 

liquid volume of 8.3 ml. The thermosyphon has been tested at different heat loads from 10 W up to 260 W and different 

inclination angles (vertical, 75°, 60°, 45°, 30°, 15°, 5°, 2°, horizontal). A 50 mm glass tube closes the loop at the top of the 

condenser zone, allowing the flow pattern visualization. The glass tube is connected to the aluminum serpentine by means of 

two “T” junctions that derive two ports at each side: one is devoted to the vacuum and filling procedures, while the second 

one hosts a pressure transducer (Kulite
®

, XCQ-093, 1.7 bar Absolute).  

  
Figure 1. a) Thermocouples and heaters location along the thermosyphon tube; b) Exploded view of the test cell with all its 

main components.  

a) b) 
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Sixteen “T” type thermocouples (bead diameter 0.2 mm, ± 0.3 K) are located on the thermosyphon external tube wall: ten in 

the evaporator zone and six in the condenser zone, while an additional thermocouple is utilized to measure the ambient air 

temperature as illustrated in Figure 1a. A low vapor-pressure glue (Varian Torr Seal
®

) seals together the aluminum tube, the 

“T” junctions and the glass tube. 

The exploded view of the test cell, with its main components, is visible in Figure 1b. A compact camera (Ximea
®

, 

MQ013MG-ON objective: Cosmicar/Pentax
®

 C2514-M) records the flow patterns within the glass tube. The camera, 

diminishing the recorded region of interest at the glass tube only, acquires images up to 450 fps with a resolution of 

1280x162 pixel (corresponding to a spatial resolution of 25 pixel/mm). The thermosyphon is firstly evacuated by means of a 

vacuum system Varian
® 

DS42,
 
TV81-T) down to 10

-6
 mbar. Before filling up, the incondensable gases are earlier removed by 

continuous boiling and vacuum cycles in a secondary tank, as described by Henry et al. [2004]. Finally, the system is filled 

up with the working fluid (FC-72) utilizing a filling ratio of 0.50 ± 0.03. The difference between the actual fluid pressure 

inside the tube and its saturation pressure, at the ambient temperature, gives an indication of the incondensable gas content. 

For the present case this difference is less than the pressure transducer accuracy. Five electrical heaters (Thermocoax
®

 Single 

core 1Nc Ac, 0.5 mm O.D., 50 Ω/m, each wire is 720 mm long) are wrapped  just above the evaporator U-turns (Figure 1a) 

covering a tube portion of 20 mm and providing an asymmetric heating on the device. A power supply (GWInstek
®

 6006A) 

is connected to the heaters, providing an electric power input up to 260 W (corresponding to a wall to fluid radial heat flux of 

27 W/cm
2
).  Steady state conditions can be reached in approximately 3 minutes due to the low thermal inertia of the heating 

system.  

Figure 2. a) CAD view of the milled heat sink; b) The two fans mounted above the heat sink. 

In order to increase the condenser surface, the device is embedded between a heat sink and a back plate (Figure 2a) where 

circular cross section channels are milled. The thermosyphon is cooled down by means of two air fans (Sunon® 

PMD1208PMB-A), positioned just above the heat sink (165 mm total length), as shown in Figure 2b. The thermal contact 

between the heat sink, the aluminum back plate and the enclosed thermosyphon is enhanced by the use of thermal conductive 

paste (RS® Heat Sink Compound). All the tests are performed at controlled ambient temperature (20 °C ± 1 °C). The cooling 

device, the thermocouples, the pressure transducer, the heating and cooling system as well as the visualization system are 

installed on a structure that can be easily tilted from the vertical position (bottom heat mode) to the horizontal. The 

thermocouples and the pressure transducer outputs are recorded by a data acquisition system (NI-cRIO-9073®, NI-9214®, 

NI-9215®) at 16 Hz. A video sequence (10 seconds at 450 fps) is recorded during each tested combination of heat input 

power and inclination angle. The video acquisition starts 13 minutes after each heat input power variation in order to reach 

pseudo-steady state conditions. 

 

  

a) b) 
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EXPERIMENTAL RESULTS 

The experimental campaign is carried on in order to identify: 

- the temporal evolution of the tube temperature in every branch of the evaporator zone and along the condenser zone; 

- the operation regimes in terms of fluid motion; 

- the operational limits in terms of heat input levels and orientation; 

- the device thermal performance at each input level and orientation.  

Indeed, for each inclination, the heater input power is increased in multiples of 10 W steps, with finer detail in the lower 

power region, until a thermal crisis condition (namely the evaporator dry-out condition) is reached. After the sudden increase 

of the evaporator temperatures due to the dry-out condition, at the following power step the heating power is reduced and the 

thermal characterization is continued while decreasing the heat input levels. Each power step is maintained for at least 15 up 

to 16 minutes so that the system can reach a steady state condition and the equivalent thermal resistance can be evaluated as 

follows: 

eq e cR T Q
−

= Δ &                                 (1) 

where e c
T

−
Δ

 is the difference between the evaporator and the condenser mean temperatures, averaged in time during the last 

minute of the pseudo-steady state, and Q
&

 is the effective heat power input provided to the evaporator zone by the five 

heaters. Care is taken to allow the liquid to reside evenly among the curves by holding the device horizontal before raising it 

to the desired inclination. 

Thermal characterization in vertical position 

Figure 3 shows the history of the tube wall temperature in several locations: the red/yellow lines indicate the temporal 

evolution of the temperatures in the evaporator zone just above the heater (TC1, TC3, TC5, TC7, TC9); the pink colour lines 

correspond to the temperatures at the evaporator zone far from the heaters (TC0, TC2, TC4, TC6, TC8); the temperatures 

recorded in the condenser zone are illustrated with blue colour lines (TC10, TC11, TC12, TC13, TC14, TC15); the ambient 

temperature is shown in green; finally, the fluid pressure is displayed in grey with the scale reported on the secondary y-axis 

at the right. The sequence of the heat input levels is indicated at the upper side of the chart. 

 
Figure 3. Temperature, pressure and power input diagram in vertical position. 
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During the first heat input levels (up to 30 W) the fluid is not moving, as evidenced by the smooth pressure signal, and heat is 

transferred mostly by pure conduction along the tubes. For this reason, even small differences in the thermal contact between 

the five heating wires and the tube portions can cause a 10 °C temperature spread within the evaporator zone. At 40 W, the 

device starts up and the regime switches from stationary to circulating almost instantaneously, resulting in a sharp decrease of 

the temperatures close to the heaters and a noticeable narrowing of the evaporator temperature distribution. In vertical 

position indeed, thanks to the asymmetrical position of the heaters, the combined effect of vapor bubble-lift and gravity helps 

the fluid rise up from the heated tubing sections and descend into the cooled sections respectively, as shown in Figure 4.  

 
Figure 4. a) Asymmetric heater layout and flow circulation: up-headers highlighted with red arrows; down-comers 

highlighted with blue arrows; the positions of the TC14 and the TC15 are also indicated; b) Flow circulation at 160 W in 

vertical orientation; sequence of images at 200 fps; the fluid flow direction is pointed out with blue arrows; c) Evolution of 

the temperatures at the edges of the glass tube. 

In the heated branches (up-headers, highlighted with red arrows in Figure 4a), the fluid batches are lifted up from the 

evaporator to the condenser in the form of slugs, by means of the expanding vapor bubbles; the gravity head along the 

adjacent branches (down-comers, highlighted with blue arrows in Figure 4a), assisting the return of the fluid from the 

condenser down to the evaporator zone, generates a stabilization of the fluid motion in a preferential direction. This can also 

be observed through the transparent section of the condenser that connects directly the up-header and the down-comer at the 

right and left sides of the device respectively. During circulation the fluid is always seen going preferentially from left to 

right of the observation field, as shown in Figure 4b. This net circulation has a direct effect also on the temperatures at the 

edges of the transparent section in the condenser zone (Figure 4c). During the start-up, the temperatures at the edges of the 

transparent section are equal, because there is no fluid motion. However, as soon as the fluid starts to reach the condenser 

zone, TC 14 starts to show values higher than TC 15. This can be explained as follows: the fluid that is pumped from the up-
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header reaches the other end with a lower temperature because releases thermal energy during its passage through the T-

junctions and the transparent section. 

The asymmetrical position of the heaters promotes a stable fluid circulation that allows the device to start up at relatively low 

power inputs and to dissipate heat fluxes widely beyond the pool boiling Critical Heat Flux (CHF) limits for FC-72 at 80 °C 

that sets approximately to 17.5 W/cm
2
 according to the following correlation (Katto, 1985): 

( ){ }0.250.5

lv v l vKu q h gρ σ ρ ρ⎡ ⎤′′= Δ −⎣ ⎦
                                 (2) 

Where Ku is set to 0.14 for the case of pool boiling on an ideally infinite plate. Thusly the device continues to work without 

reaching any kind of thermal crisis up to the power supply limit of 260 W, corresponding to a tube to fluid radial heat flux of 

27 W/cm
2
, maintaining the evaporator temperature below 80 °C.  

During power-down a flow transition from circulating to oscillating at 30 W is detected, causing the evaporator temperatures 

to fluctuate. At 20 W, the fluid motion stops altogether, causing the temperature distribution to be again determined by 

conduction only. The device activation, defined as the onset of continuous fluid motion, occurring at different heat input 

levels, seems to depend on the heating history (increasing/decreasing heat power levels) thus leading to speculate about the 

existence of hysteresis in the system: what if the heat input level is again increased? Would the device operation be activated 

again at 40 W, proving the existence of hysteresis? Or does the flow motion follow the last registered trend, activating at 20 

W, testifying only a single start-up phenomenon? In order to answer the previous questions additional tests are performed 

with three subsequent heating ramps. The device is first heated up through 10 W, 20 W, 30 W, 40 W and 80 W; then it is 

powered down following the same steps down to 10 W and finally heated up another time up to 80 W. Like the other tests, 

every power step is held for 15 minutes in order to reach pseudo-steady state conditions and thus have the possibility to 

calculate the Req. Figure 5 shows the equivalent thermal resistances in the three different power ramps: the first power-up 

(Qup), the subsequent power-down with the same power steps (Qdown) and finally the second power-up again through the same 

heating levels (Qup2). 

 
Figure 5. Equivalent thermal resistance during the start-up test. 

During the first power-up phase the device start-up is easily recognized in terms of thermal performance by the sudden 

decrease of the equivalent thermal resistance occurring at 40 W (red line) and confirmed by the absence of visible fluid 
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motion up to 30 W in the transparent section, while regular motion is detected at 40 W. At 80 W the fluid circulation is fully 

activated and, during the power-down phase, a residual oscillation is still detected even at 30 W, resulting in a lower thermal 

resistance with respect to the power-up case. Since the second power-up trend nearly coincides with the power-down, it can 

therefore be concluded that the difference in performance is not due to hysteresis but just to a single start-up issue. This could 

be explained as follows: the Qup2 part of the test starts from a higher energized condition than the Qup. The nucleation sites, 

already vigorously activated by the first two ramps (Qup and Qdown), are not completely de-activated when the Qup2 starts. This 

situation causes an earlier start-up in the Qup2, allowing the two-phase fluid to move even at 30 W. 

Effect of orientation 

After the vertical test, other tests at 75°, 60°, 45°, 30°, 15°, 2.5° and another one leaving the device horizontally are 

performed to evaluate the effect of inclination on the thermal performance of the device. Results are shown in Figure 6a for 

the power-up case and 6b for the power-down case.  

 
Figure 6. Equivalent thermal resistance at various inclinations. a) The first power-up; b) the subsequent power-down. 

Figure 6a shows the power-up phases at every examined inclination, while Figure 6b shows the corresponding power-down 

phases. In light of the start-up test results, the thermal resistance values registered during the first power-up are only 

indicative of the device’s behavior at start-up. The fact that the liquid phase returns to the condenser more efficiently when 

the device is fully assisted by gravity (vertical operation) is not valid for the start-up phase, as already shown for other looped 

two phase passive devices (Mameli et al. 2013). In fact, one could expect that the device start-up may occur at lower heat 

input levels for lower inclinations but, looking at Figure 6a, it is evident that the start-up heat input ranges from 30 W to 90 

W, without a univocal dependence on the tilting angle. On the other hand, in the power down case (Fig. 6b), the fluid motion 

remains active down to 30 W for all the inclinations, meaning that the liquid phase is pushed back to the condenser more 

efficiently only when the gravity effect is coupled with fluid inertial effects or, in other words, when the flow motion has 

already been activated. Therefore, the power-down phase better describes real operative performance and can be further 

examined to distinguish a power range where the device exhibit a stable operation from one where thermal crisis conditions 

begin to manifest.  

In the horizontal orientation, since the tube diameter is larger than the capillary limit (almost 1.6 mm for FC-72 at 20 °C), the 

liquid phase always resides in the lower half of the pipe while the vapor phase in the upper one: fluid motion is not assisted 

by gravity and vapor is never confined between liquid batches. This results in a complete absence of macroscopic fluid 

motion for all the tested heat input levels, proving that gravitational assistance is required to initiate fluid flow motion and 

thus to activate the device. Indeed, in horizontal orientation, the heat transfer is mainly due to conduction within the tube wall 

and the fluid itself and the equivalent thermal resistance keeps constant to the higher value of 0.7/0.8 K/W. This trend is 

taken as reference point because it basically states that the device is not working at all. A slight inclination with respect to the 

horizontal position (2.5°) is sufficient to assist the fluid motion and makes the device less sensitive to the above mentioned 

start-up issues. Indeed both during power-up and power-down the fluid starts oscillating at 20 W: the rising bubbles flatten 

against the upper side of the tubing and, despite the bubble lift effect being drastically reduced, vapor is able to slide upwards 
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and contribute to convective cooling. The absence of fluid circulation for all the tested heat inputs results in a higher 

equivalent thermal resistance with respect to the higher inclinations. 

For all the inclinations at the lowest power output setting, 10 W, the system always shows its highest thermal resistance 

(between 0.5 and 0.7 K/W) because the heating power is never sufficient to activate the fluid motion inside the device and the 

heat transfer is mainly due to pure conduction.  

At medium-low power inputs (the normal operation range in Figure 6b), all experiments show the same performance trend: 

after the activation, the curves collapse into a narrow band of thermal resistance values and performance can therefore be 

considered independent of inclination. This indicates that in this range, where fluid circulation is strong, the inertia of the 

circulating fluid is a much more relevant factor than the effect of inclination. As power is increased, equivalent thermal 

resistance values continue to gradually decrease until a thermal crisis condition is reached, causing temperatures in the 

affected sections to rise over 100 °C, noticeably penalizing thermal performance. When the heat flux locally exceeds the 

CHF, a local dry-out condition occurs meaning that a vapor film that prevents contact between liquid and heated surface. The 

resulting loss of heat transfer capability causes the local temperature to rise abruptly in at least one channel of the device,  

significantly increasing the Req. Since the heating power was especially high when dry-out occurred at 75° and 60°, the last 

thermal resistance values are only approximations because the power input had to be immediately reduced in order to avoid 

the risk of burn out of some set-up components. .  

On the other hand, inclination clearly dictates the CHF level (medium-high heat input zone in fig. 6b): the 15° configuration 

is the first one to experience the thermal crisis, at 120 W, then the 30° one at 140 W, 45° at 160 W, 60° and 75° at 210 W, 

while the vertical setup’s limits lie beyond the current equipment limit of 260 W. It is therefore clear that the effect of gravity 

aids in maintaining fluid motion, especially in the down-comer sections, which bring down the cooled liquid to displace the 

vapor bubbles being formed in the evaporator: the lower the gravity head, the lower the fluid momentum opposing to the 

vapor expansion in the down-comer (see Fig. 6a).  

 
Figure 7. Temperature and pressure during Qup in vertical conditions. a) Partial startup at 30W; b) Complete activation at 

40W.  

As previously mentioned, the full device operation is reached once stable fluid motion is achieved. This event is always 

associated with a rapid drop in all evaporator temperatures, an increase in condenser temperatures, a pressure spike followed 

by sustained pressure oscillation (as seen in Figure 7b). Before that, temperatures may drop in one evaporator curve only (see 

Figure 7a) without necessarily initiating a visible movement of fluid. This is referred to as a partial start-up or partial 

activation (indicated as “S” in Table 1 at 90°, 30 W) since the reduction in thermal resistance is relatively small compared to 

full activation. This operating condition can arise in the low power ranges, both during power-up and power-down; it is 

however an unstable condition, meaning that even without any change to the power output, the activated sections can also 

regress back to an inactive condition where local fluid motion stops and temperatures rise back up. During the various stages 

of operation, several different flow regimes can be observed and distinguished through the transparent tubing section (see 

Table 1): 

- “  “ no symbol = test not performed; 

- “-“ = no fluid motion; 
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- “S” = start-up, shut down (unstable): flow may be stratified or weakly oscillating, with partial activation or deactivation 

of at least one heated section visible from the temperature readings; 

- “O” = oscillating (stable): a strong movement of fluid oscillating back and forth; 

- “C” = circulating (stable): a strong movement of fluid in one specific preferential direction; 

- “D” = dry-out: when excessive heat power input causes a thermal crisis in at least one evaporator section. 

 

 
Table 1. Observed flow and activation conditions at varying degrees of inclination and heat power input. Empty fields are 

untested power levels and behaviour is inferred when possible. 

Table 1 shows how an increase in inclination, and thus gravitational assistance, improves the flow conditions and broadens 

the operative range of the device. In nearly all experiments, the flow transitions from circulating to oscillatory for at least one 

full power step before eventually stopping. During circulation the fluid is always seen going preferentially from left to right 

of the observation field. However, also during circulation the fluid motion still maintains an oscillating component which 

causes brief pauses in movement between pulsations. This is visible in Figure 8: in the first three frames, circulation is rapid 

as shown by the rapid transition of bubble A, while in the last three frames the fluid decelerates, causing the next bubble 

marked B to briefly pause its movement. 
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Figure 8. Flow circulation at 260 W in vertical orientation. The time interval between each image is 1/25

th
 of a second and the 

flow bubble velocity varies from approximately 0.1 to 0.5 m/s.  

Other interesting fluid flow phenomena were observed in the transparent section: larger bubbles travel fast enough that their 

trailing edge breaks up into smaller bubbles (Figure 9b). These smaller bubbles visibly shrink as the vapor condenses, and 

some of them collapse completely as a result (Figure 9a).  

 
Figure 9. a) Small bubble condensation; b) Trailing edge break-up. 

Before the start-up and during the shutdown, the other two visually characteristic flow types are stratified flow (Figure 10a), 

where from the only visible activity are ripples running along the liquid-vapor interface, and the oscillating bubble (Figure 

10b). This last kind of motion is seen mostly during power-down: a single, elongated bubble oscillates back and forth in the 

condenser zone. In this condition, thermal resistance values still remain relatively low at about 0.3-0.34 K/W compared to 

0.48-0.55 K/W for stratified flow.  
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Figure 10. a) Stratified flow with highlighted ripples; b) Oscillating bubble. 

CONCLUSIONS  

A novel multi-evaporator, closed loop thermosyphon was tested with five heaters placed asymmetrically on an aluminium 

tube arranged on planar serpentine (3 mm internal diameter, filled with FC-72). The device’s heat sink was cooled externally 

using ambient temperature air and the fluid flow conditions were observed through its transparent section, while a set of 

sixteen thermocouples was used to thermally characterize the device and to assess the beneficial effects of fluid circulation 

induced by the asymmetric heating.  

The main outcomes are: 

- The device does not exhibit hysteresis between power-up and power-down, but instead experiences penalized 

performance only during the first start-up from cold conditions. Once activation is achieved, power-up and power-down 

phases show similar performance. 

- Inclination is a key parameter for dryout conditions, while also playing a less significant role in start-up. Raising the 

inclination (always in bottom heated mode) therefore effectively widens the device’s operative power range, until peak 

performance is obtained in vertical orientation. 

- The asymmetric placement of the heaters promotes a stable circulation of fluid in a preferential direction, directly 

observable from the glass tube that closes the loop in the condenser zone. 

- Once the device is activated, thermal performance increases with power: above 3.3 W/cm
2
, the equivalent thermal 

resistance drops below 0.34 K/W, reaching values of 0.1 K/W at 27 W/cm
2
 in vertical conditions. For FC-72, this is a 

57% gain compared to the pool boiling CHF limits. 
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