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Abstract

Supervised object detection and semantic segmentation

require object or even pixel level annotations. When there

exist image level labels only, it is challenging for weakly

supervised algorithms to achieve accurate predictions. The

accuracy achieved by top weakly supervised algorithms is

still significantly lower than their fully supervised coun-

terparts. In this paper, we propose a novel weakly su-

pervised curriculum learning pipeline for multi-label ob-

ject recognition, detection and semantic segmentation. In

this pipeline, we first obtain intermediate object localiza-

tion and pixel labeling results for the training images, and

then use such results to train task-specific deep networks

in a fully supervised manner. The entire process consists

of four stages, including object localization in the training

images, filtering and fusing object instances, pixel label-

ing for the training images, and task-specific network train-

ing. To obtain clean object instances in the training im-

ages, we propose a novel algorithm for filtering, fusing and

classifying object instances collected from multiple solution

mechanisms. In this algorithm, we incorporate both met-

ric learning and density-based clustering to filter detected

object instances. Experiments show that our weakly super-

vised pipeline achieves state-of-the-art results in multi-label

image classification as well as weakly supervised object de-

tection and very competitive results in weakly supervised

semantic segmentation on MS-COCO, PASCAL VOC 2007

and PASCAL VOC 2012.

1. Introduction

Deep neural networks give rise to many breakthroughs in

computer vision by usinging huge amounts of labeled train-

ing data. Supervised object detection and semantic segmen-

tation require object or even pixel level annotations, which

are much more labor-intensive to obtain than image level la-

bels. On the other hand, when there exist image level labels

only, due to incomplete annotations, it is very challenging to

predict accurate object locations, pixel-wise labels, or even

image level labels in multi-label image classification.

Given image level supervision only, researchers have

proposed many weakly supervised algorithms for detecting

objects and labeling pixels. These algorithms employ dif-

ferent mechanisms, including bottom-up, top-down [44, 23]

and hybrid approaches [32], to dig out useful information.

In bottom-up algorithms, pixels are usually grouped into

many object proposals, which are further classified, and the

classification results are merged to match groundtruth im-

age labels. In top-down algorithms, images first go through

a forward pass of a deep neural network, and the result is

then propagated backward to discover which pixels actually

contribute to the final result [44, 23]. There are also hybrid

algorithms [32] that consider both bottom-up and top-down

cues in their pipeline.

Although there exist many weakly supervised algo-

rithms, the accuracy achieved by top weakly supervised al-

gorithms is still significantly lower than their fully super-

vised counterparts. This is reflected in both the precision

and recall of their results. In terms of precision, results from

weakly supervised algorithms contain much more noise and

outliers due to indirect and incomplete supervision. Like-

wise, such algorithms also achieve much lower recall be-

cause there is insufficient labeled information for them to

learn comprehensive feature representations of target object

categories. However, different types of weakly supervised

algorithms may return different but complementary subsets

of the ground truth.

These observations motivate an approach that first col-

lect as many evidences and results as possible from multi-

ple types of solution mechanisms, put them together, and

then remove noise and outliers from the fused results using

powerful filtering techniques. This is in contrast to deep

neural networks trained from end to end. Although this

approach needs to collect results from multiple separately

trained networks, the filtered and fused evidences are even-

tually used for training a single network used for the testing

stage. Therefore, the running time of the final network dur-

ing the testing stage is still comparable to that of state-of-

the-art end-to-end networks.

According to the above observations, we propose a

weakly supervised curriculum learning pipeline for object

recognition, detection and segmentation. At a high level, we



obtain object localization and pixelwise semantic labeling

results for the training images first using their image level

labels, and then use such intermediate results to train ob-

ject detection, semantic segmentation, and multi-label im-

age classification networks in a fully supervised manner.

Since image level, object level and pixel level analy-

sis has mutual dependencies, they are not performed in-

dependently but organized into a single pipeline with four

stages. In the first stage, we collect object localization re-

sults in the training images from both bottom-up and top-

down weakly supervised object detection algorithms. In

the second stage, we incorporate both metric learning and

density-based clustering to filter detected object instances.

In this way, we obtain a relatively clean and complete set of

object instances. Given these object instances, we further

train a single-label object classifier, which is applied to all

object instances to obtain their final class labels. Third, to

obtain a relatively clean pixel-wise probability map for ev-

ery class and every training image, we fuse the image level

attention map, object level attention maps and an object de-

tection heat map. The pixel-wise probability maps are used

for training a fully convolutional network, which is applied

to all training images to obtain their final pixel-wise label

maps. Finally, the obtained object instances and pixel-wise

label maps for all the training images are used for training

deep networks for object detection and semantic segmen-

tation respectively. To make pixel-wise label maps of the

training images help multi-label image classification, we

perform multi-task learning by training a single deep net-

work with two branches, one for multi-label image classifi-

cation and the other for pixel labeling. Experiments show

that our weakly supervised curriculum learning system is

capable of achieving state-of-the-art results in multi-label

image classification as well as weakly supervised object de-

tection and very competitive results in weakly supervised

semantic segmentation on MS-COCO [26], PASCAL VOC

2007 and PASCAL VOC 2012 [12].

In summary, this paper has the following contributions.

• We introduce a novel weakly supervised pipeline for

multi-label object recognition, detection and semantic seg-

mentation. In this pipeline, we first obtain intermediate

labeling results for the training images, and then use such

results to train task-specific networks in a fully supervised

manner.

• To localize object instances relatively accurately in the

training images, we propose a novel algorithm for filter-

ing, fusing and classifying object instances collected from

multiple solution mechanisms. In this algorithm, we incor-

porate both metric learning and density-based clustering to

filter detected object instances.

• To obtain a relatively clean pixel-wise probability map for

every class and every training image, we propose an algo-

rithm for fusing image level and object level attention maps

with an object detection heat map. The fused maps are used

for training a fully convolutional network for pixel labeling.

2. Related Work

Weakly Supervised Object Detection and Segmentation.

Weakly supervised object detection and segmentation re-

spectively locates and segments objects with image-level la-

bels only [28, 7]. They are important for two reasons: first,

learning complex visual concepts from image level labels is

one of the key components in image understanding; second,

fully supervised deep learning is too data hungry.

Methods in [28, 10, 9] treat the weakly supervised lo-

calization problem as an image classification problem, and

obtain object locations in specific pooling layers of their

networks. Methods in [4, 38] extract object instances from

images using selective search [40] or edge boxes [48], con-

vert the weakly supervised detection problem into a multi-

instance learning problem [8]. The method in [8] at first

learns object masks as in [10, 9], and then uses the E-M al-

gorithm to force the network to learn object segmentation

masks obtained at previous stages. Since it is very hard for

a network to directly learn object locations and pixel labels

without sufficient supervision, in this paper, we decompose

object detection and pixel labeling into multiple easier prob-

lems, and solve them progressively in multiple stages.

Neural Attention. Many efforts [44, 2, 23] have been made

to explain how neural networks work. The method in [23]

extends layer-wise relevance propagation (LRP) [1] to com-

prehend inherent structured reasoning of deep neural net-

works. To further ignore the cluttered background, a pos-

itive neural attention back-propagation scheme, called ex-

citation back-propagation (Excitation BP), is introduced in

[44]. The method in [2] locates top activations in each con-

volutional map, and maps these top activation areas into the

input image using bilinear interpolation.

In our pipeline, we adopt the excitation BP [44] to cal-

culate pixel-wise class probabilities. However for images

with multiple category labels, a deep neural network could

fuse the activations of different categories in the same neu-

rons. To solve this problem, we train a single-label object

instance classification network and perform excitation BP in

this network to obtain more accurate pixel level class prob-

abilities.

Curriculum Learning. Curriculum learning [3] is part of

the broad family of machine learning methods that starts

with easier subtasks and gradually increases the difficulty

level of the tasks. In [3], Yoshua et al. describe the concept

of curriculum learning, and use a toy classification problem

to show the advantage of decomposing a complex problem

into several easier ones. In fact, the idea behind curricu-

lum learning has been widely used before [3]. Hinton et

al. [17] trained a deep neural network layer by layer using

a restricted Boltzmann machine [36] to avoid the local min-
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Figure 1. The proposed weakly supervised pipeline. From left to right: (a) Image level stage: fuse the object heatmaps H and the image

attention map Ag to generate object instances R for the instance level stage, and provide these two maps for information fusion at the pixel

level stage. (b) Instance level stage: perform triplet loss based metric learning and density based clustering for outlier detection, and train a

single label instance classifier φs(·, ·) for instance filtering. (c) Pixel level stage: integrate the object heatmaps H , instance attention map

Al, and image attention map Ag for pixel labeling with uncertainty.

ima in deep neural networks. Many machine learning algo-

rithms [37, 14] follow a similar divide-and-conquer strategy

in curriculum learning.

In this paper, we adopt this strategy to decompose the

pixel labeling problem into image level learning, object in-

stance level learning and pixel level learning. All the learn-

ing tasks in these three stages are relatively simple using

the training data in the current stage and the output from the

previous stage.

3. Weakly Supervised Curriculum Learning

3.1. Overview

Given an image I associated with an image level label

vector yI = [y1, y2, ..., yC ]T , our weakly supervised cur-

riculum learning aims to obtain pixel-wise labels Y I =
[y

1
,y

2
, ...,yP ]

T , and then use these labels to assist weakly

supervised object detection, semantic segmentation and

multi-label image classification. Here C is the total num-

ber of object classes, P is the total number of pixels in I ,

and yl is binary. yl = 1 means the l-th object class exists in

I , and yl = 0 otherwise. The label of a pixel p is denoted

by a C-dimensional binary vector yp. The number of object

classes existing in I , which is the same as the number of

positive components of yI is denoted by K. Following the

divide-and-conquer idea in curriculum learning [3], we de-

compose the pixel labeling task into three stages: the image

level stage, the instance level stage and the pixel level stage.

3.2. Image Level Stage

The image level stage not only decomposes multi-label

image classification into a set of single-label object instance

classifications, but also provides an initial set of pixel-wise

probability maps for the pixel level stage.

(a) Heatmap Proposals (b) Attention Proposals (c) Fused Proposals

Figure 2. (a) Proposals R
h and R

l generated from an object

heatmap, (b) proposals generated from an attention map, (c) fil-

tered proposals (green), heatmap proposals (red and blue), and at-

tention proposals (purple).

Object Heatmaps. Unlike the fully supervised case,

weakly supervised object detection produces object in-

stances with higher uncertainty and also misses a higher

percentage of true objects. To reduce the number of miss-

ing detections, we propose to compute an object heatmap

H for every object class existing in the image.

For an image I with width W and height H , a dense

set of object proposals R = (R1, R2, ..., Rn) are generated

using sliding anchor windows. And the feature stride λs is

set to 8. The number of locations in the input image where

we can place anchor windows is H/λs×W/λs. Denote the

short side of image I by Lρ. Following the setting used for

RPN [29], we let the anchor windows at a single location

have four scales [Lρ/8, Lρ/4, Lρ/2, Lρ] and three aspect

ratios [0.5, 1, 2]. After proposals out of image borders have

been removed, there are usually 12000 remaining proposals

per image. Here we define a stack of object heatmaps H =
[H1,H2, ...,HC ] as a C×H×W matrix, and all values are



set to zero initially. The object detection and classification

network φd(·, ·) used here is the weakly supervised object

testing net VGG-16 from [38]. For every proposal Ri in

R, its object class probability vector φd(I, Ri) is added to

all the pixels in the corresponding window in the heatmaps.

Then every heatmap is normalized to [0, 1] as follows,

Hc = (Hc
−min(Hc))/max(Hc),

where Hc is the heatmap for the c-th object class. Note

that only the heatmaps for object classes existing in I are

normalized. All the other heatmaps are ignored and set to

zeros.

Multiple Evidence Fusion. The object heatmaps high-

light the regions that may contain objects even when the

level of supervision is very weak. However, since they are

generated using sliding anchor windows at multiple scales

and aspect ratios, they tend to highlight pixels near but out-

side true objects, as shown in Fig 2. Given an image clas-

sification network trained using the image level labels (here

we use GoogleNet V1 [44]), neural attention calculates the

contribution of every pixel to the final classification result.

It tends to focus on the most influential regions but not nec-

essarily the entire objects. Note that false positive regions

may occur during excitation BP [44]. To obtain more ac-

curate object instances, we integrate the top-down atten-

tion maps Ag = [A1

g,A
2

g, ...,A
C

g ] with the object heatmaps

H = [H1,H2, ...,HC ].

For object classes existing in image I , their correspond-

ing heatmaps H and attention maps Ag are thresholded by

distinct values. The heatmaps H are too smooth to indicate

accurate object boundaries, but they provide important spa-

tial priors to constrain object instances obtained from the

attention maps. We assume that regions with a sufficiently

high value in the object heatmaps should at least include

parts of objects, and regions with sufficiently low values

everywhere do not contain any objects. Following this as-

sumption, we threshold the heatmaps with two values 0.65

and 0.1 to identify highly confident object proposals Rh =
(Rh

1
, Rh

2
, ..., Rh

Nh
) and relatively low confident object pro-

posals Rl = (Rl
1
, Rl

2
, ..., Rl

Nl
) after connected component

extraction. Then the attention maps are thresholded by 0.5

to attention proposals Ra = (Ra
1
, Ra

2
, ..., Ra

Na
) as shown

in Fig 2. Nh, Nl and Na are the proposal numbers of Rh,

Rl and Ra. All these object proposals have corresponding

class labels. During the fusion, for each object class, the at-

tention proposals Ra which cover more than 0.5 of any pro-

posals in Rh are preserved. We denote these proposals by

R, each of which is modified slightly to completely enclose

the corresponding proposal in Rh meanwhile be completely

contained inside the corresponding proposal in Rl (Fig 2).

(a) Input Proposals (b) Distance Map

Figure 3. (a) Input proposals of the triplet-loss network, (b) dis-

tance map computed using features from the triplet-loss network.

3.3. Instance Level Stage

Since multiple object categories present in the same im-

age make it hard for neural attention to obtain an accurate

pixel-wise attention map for each class, we train a single-

label object instance classification network and compute at-

tention maps in this network to obtain more accurate pixel

level class probabilities. The fused object instances from

the image level stage are further filtered by metric learning

and density-based clustering. The remaining labeled object

proposals are used for training this object instance classi-

fier, which can also be used to further remove remaining

false positive object instances.

Metric Learning for Feature Embedding. Metric learn-

ing is popular in face recognition [34], person re-

identification and object tracking [34, 46, 39]. It embeds

an image X into a multi-dimensional feature space by as-

sociating this image with a fixed size vector, φt(X, ·), in

the feature space. This embedding makes similar images

close to each other and dissimilar images apart in the fea-

ture space. Thus the similarity between two images can

be measured by their distance in this space. The triplet-

loss network φt(·, ·) proposed in [34] has the additional

property that it can well separate classes even when intra-

class distances have large variations. When there exist

training samples associated with incorrect class labels, the

loss stays at a high value and the distances between cor-

rectly labeled and mislabeled samples remain very large

even after the training process has run for a long time.

Now let R = [R1, R2, ..., RO]
T denote the fused object

instances from all training images in the image level stage,

and Y = [y
1
,y

2
, ...,yO]

T are their labels. Here O is the

total number of fused instances, and yl is the label vector

of instance Rl. We train a triplet-loss network φt(·, ·) using

GoogleNet V2 with BatchNorm as in [34]. Each mini-batch

first chooses b object classes randomly, and then chooses a
instances from these classes randomly. These instances are

cropped out from the training images and fed into φt(·, ·).
Fig. 3 visualizes a mini-batch composition and the corre-

sponding pairwise distances among instances.



Clustering for Outlier Removal. Clustering aims to re-

move outliers that are less similar to other object instances

in the same class. Specifically, we perform density based

clustering [31] to form a single cluster of normal instances

within each object class independently, and instances out-

side this cluster are considered outliers. This is different

from that in [31]. Let Rc denote instances in R with class

label c, and Nc is the number of instances in Rc. Calcu-

late the pairwise distances d(·, ·) among these instances, and

obtain the Nc by Nc distance matrix Dc. For an instance

Rc
n, if its distance from another instance is less than λd (=

0.8), its density dcn is increased by 1. Rank these instances

by their densities in a descending order, and choose the in-

stance ranked at the top as the seed of the cluster. Then

add instances to the cluster following the descending order

if their distance to any element in the cluster is less than λd

and their density is higher than Nc/4.

Instance Classifier for Re-labeling. Since metric learn-

ing and clustering screen object instances in an aggressive

way and may heavily decrease their recall, we use the nor-

mal instances surviving the previous clustering step to train

an instance classifier, which is in turn used to re-label all

object proposals generated in the image level stage again.

This is a single-label classification problem as each object

instance is allowed a single label. GoogleNet V1 with the

SoftMax loss serves as the classifier φs(·, ·), and it is fine-

tuned from the image level classifier. For every object pro-

posal generated in the previous image level stage, if its la-

bel predicted by the instance classifier does not match its

original label, it is labeled as an outlier and permanently

discarded.

3.4. Pixel Level Stage

In previous stages, we have already built an image clas-

sifier, a weakly supervised object detector, and an object

instance classifier. Each of these deep networks produces

its own inference result from the input image. For exam-

ple, the image classifier generates a global attention map,

and the object detector generates the object heatmaps. In

the pixel level stage, we still perform multi-evidence fil-

tering and fusion to integrate the inference results from all

these component networks to obtain the pixelwise probabil-

ity map indicating potential object categories at every pixel.

The global attention map Ag from the image classifier has

a full knowledge about the objects in an image but some-

times only focuses on the most important object parts. The

object instance classifier has a local view of each individual

object. With the help of object-specific local attention maps

generated from the instance classifier, we can avoid missing

small objects.

Instance Attention Map. Here we define the instance

attention map Al as a C × H × W matrix, and all val-

ues are zero initially. For every surviving object instance

from the instance level stage, the object instance classifier

φs(·, ·) is used to extract its local attention map, and add

it to the corresponding region in the instance attention map

Al. Normalize the range of Al to [0, 1] as we did for object

heatmaps.

Probability Map Integration. The final attention map A

is obtained by calculating the element-wise maximum be-

tween the image attention map Ag and the instance atten-

tion map Al. That is, A = max(Al,Ag). For both the

heatmap H and the attention map A, only the classes exist-

ing in the image are considered. The background maps of

A and H are defined as follows,

A0 = max(0, 1− ΣC

l=1
ylAl),

H0 = max(0, 1− ΣC

l=1
ylH l).

Now both A and H become (C+1)×H×W matrices.

For the l-th channel, if yl = 0, Al = 0 and H l = 0.

Then we perform softmax on both maps along the channel

dimension independently. The final probability map P is

defined as the result of applying softmax to the element-

wise product between A and H by treating H as a filter.

That is, P = softmax(H ⊙A).

Pixel Labeling with Uncertainty. Pixel labels Y I are

initialized with the probability map P . For every pixel p,

if the maximum element in its label vector yp is larger than

a threshold (=0.8), we simply set the maximum element to

1 and other elements to 0; otherwise, the class label at p is

uncertain. To inspect these uncertain pixels more carefully,

we obtain additional evidence by computing their saliency

scores S (normalized into [0, 1]) using an existing state-of-

the-art salient object detection algorithm [25]. Given an un-

certain pixel q with a high saliency score (Sq > 0.3), if

the maximum element in its label vector yq is larger than

a threshold (=0.6) and this element does not correspond to

the background, we set the maximum element to 1 and other

elements to 0. Given another uncertain pixel o with a low

saliency score (So < 0.3), if the maximum element in its

label vector yo corresponds to the background, we set the

background element to 1 and other elements to 0.

4. Object Recognition, Detection and Segmen-

tation

4.1. Semantic Segmentation
Given pixel-wise labels generated at the end of the pixel

level stage for all training images, we train a fully convo-

lutional network (FCN) similar to the network in [27] to

perform semantic segmentation. Note that all pixels with

uncertain class labels are excluded during training. In the

prediction part, we adopt atrous spatial pyramid pooling as

in [5]. The resulting trained network can be used for la-

beling all pixels in any testing image as well as pixels with

uncertain labels in all training images.



(a) Input/Image (b) Object Heatmap (c) Image Attention (d) Instance Attention (e) Probability (e) Segmentation

Figure 4. The pixel labeling process in the pixel level stage. White pixels in the last column indicate pixels with uncertain labels.

4.2. Object Detection

Once all pixels with uncertain labels in the training im-

ages have been re-labeled using the above network for se-

mantic segmentation, we generate object instances in these

images by computing bounding boxes of connected pixels

sharing the same semantic label. As in [38] and [24], we

train fast RCNN [13] using these bounding boxes and their

associated labels. Since the bounding boxes generated from

the semantic label maps may contain noise, we filter them

using our object instance classifier as in Section 3.3. VGG-

16 is still the base network of our object detector, which is

trained with five scales and flip as in [38].

4.3. Multi­label Classification

The main component in our multi-label classification

network is the structure of ResNet-101 [16]. There are

two branches after layer res4b22 relu of the main compo-

nent, one branch for classification and the other for semantic

segmentation. Both branches share the same structure af-

ter layer res4b22 relu. Here we adopt multi-task learning

to train both branches. The idea is using the training data

for the segmentation branch to make the convolutional ker-

nels in the main component more discriminative and power-

ful. This network architecture is shown in the supplemental

materials. Layer pool5 of ResNet-101 in the classification

branch is removed, and the output X(∈ R
14×14×2048) of

layer res5c is a 14 × 14 × 2048 matrix. X is directly fed

into a 2048× 1× 1× C convolutional layer, and a classi-

fication map Ŷ cls(∈ R
14×14×C) is obtained. We let the

semantic label map Ŷ seg(∈ R
14×14×C) play the role of an

attention map Ŷ att after the summation over each channel

of the semantic label map is normalized to 1. The final im-

age level probability vector ŷ is the result of spatial average

pooling over the element-wise product between Ŷ cls and

Ŷ att. Here Ŷ att is used to identify important image re-

gions and assign them larger weights. At the end, the prob-

ability vector ŷ is fully connected to an output layer, which

performs binary classification for each of the C classes. The

cross-entropy loss is used for training the multi-label classi-

fication network. The segmentation branch uses atrous spa-

tial pyramid pooling to perform semantic segmentation, and

softmax is applied to enforce a single label per pixel.

5. Experimental Results

All our experiments are implemented using Caffe [18]

and run on an NVIDIA TITAN X(Maxwell) GPU with

12GB memory. The hyper-parameters in Section 3 are set

according to common sense and confirmed after we visually

verify that the segmentation results on a few training sam-

ples are valid. The same parameter setting is used for all

datasets and has not been tuned on any validation sets.

5.1. Semantic Segmentation

Datasets and performance measures. The Pascal VOC

2012 dataset [11] serves as a benchmark in most existing

work on weakly-supervised semantic segmentation. It has

21 classes and 10582 training images (the VOC 2012 train-

ing set and additional data annotated in [15]), 1449 for val-

idation and 1456 for testing. Only image tags are used as

training data in our experiments. We report results on both

the validation (supplemental materials) and test sets.

Implementation details. Our network is based on VGG-

16. The layers after relu5 3 and layer pool4 are removed.

Dilations in layers conv5 1, conv5 2, and conv5 3 are set

to 2. The feature stride λs at layer relu5 3 is 8. We add the

atrous spatial pyramid pooling as in DeepLab V3 [5] after

layer relu5 3. The dilations in our atrous spatial pyramid

pooling layers are [1, 2, 4, 6]. This FCN is implemented in

py-faster-rcnn [30]. For data augmentation, we use five im-

age scales (480, 576, 688, 864, 1024) (the shorter side is

resized to one of these scales) and horizontal flip, and cap

the longer side at 1200. During testing, the original size of

an input image is preserved. The network is fine-tuned from

the pre-trained model for ImageNet in [35]. The learning

rate γ is set to 0.001 in the first 20k iterations, and 0.0001

in the next 20k iterations. The weight decay is 0.0005, and

the mini-batch size is 1. Post-processing using CRF [22] is

added during testing.

Result comparison. We compare our method with exist-

ing state-of-the-art algorithms. Table 1 lists the results of

weakly supervised semantic segmentation on Pascal VOC

2012. The proposed method achieves 55.6% mean IoU,

comparable to the state of the art (AE-SPL [43]). Recent



Figure 5. The detection and semantic segmentation results on Pascal VOC 2012 test set (the first row) and Pascal VOC 2007 test set (the

second row). The detection results are gotten by select proposals with the highest confidence of every class. The semantic segmentation

results are post-processed by CRF [22].

method bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

SEC[21] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

FCL[32] 85.7 58.8 30.5 67.6 24.7 44.7 74.8 61.8 73.7 22.9 57.4 27.5 71.3 64.8 72.4 57.3 37.0 60.4 42.8 42.2 50.6 53.7

TP-BM[20] 83.4 62.2 26.4 71.8 18.2 49.5 66.5 63.8 73.4 19.0 56.6 35.7 69.3 61.3 71.7 69.2 39.1 66.3 44.8 35.9 45.5 53.8

AE-PSL[43] - - - - - - - - - - - - - - - - - - - - - 55.7

Ours+CRF 86.6 72.0 30.6 68.0 44.8 46.2 73.4 56.6 73.0 18.9 63.3 32.0 70.1 72.2 68.2 56.1 34.5 67.5 29.6 60.2 43.6 55.6

Table 1. Comparison among weakly supervised semantic segmentation methods on PASCAL VOC 2012 segmentation test set.

algorithms, including AE-PSL[?], F-B [33], FCL [32], and

SEC [21], all conduct end-to-end training to learn object

score maps. Our method demonstrates that if we filter and

integrate multiple types of intermediate evidences at differ-

ent granularities during weakly supervised training, the re-

sults become equally competitive or even better.

5.2. Object Detection
Datasets and performance measures. The performance of

our object detector in Section 4.2 is evaluated on the pop-

ular Pascal VOC 2007 and Pascal VOC 2012 datasets [11].

Each of these two datasets is divided into train, val and test

sets. The trainval sets (5011 images for 2007 and 11540 im-

ages for 2012) are used for training, and only image tags are

used. Two measures are used to test our model: mAP and

CorLoc. According to the standard Pascal VOC protocol,

the mean average precision (mAP) is used for testing our

trained models on the test sets, and the correct localization

(CorLoc) is used for measuring the object localization ac-

curacy [6] on the trainval sets whose image tags are already

used as training data.

Implementation details. We use the code for py-faster-

rcnn [30] to implement fast R-CNN [13]. The network is

still VGG-16. The learning rate is set to 0.001 in the first

30k iterations, and 0.0001 in the next 10k iterations. The

momentum and weight decay are set to 0.9 and 0.0005 re-

spectively. We follow the same data augmentation setting in

[38], use five image scales (480, 576, 688, 864, 1200) and

horizontal flip, and cap the longer image side at 2000.

Result comparison. Object detection results on Pascal

VOC 2007 test set (Table 2) and Pascal VOC 2012 test

set (supplemental materials) are reported. Object localiza-

tion results on Pascal VOC 2007 trainval set and Pascal

VOC 2012 trainval set are also reported (supplemental ma-

terial). On Pascal VOC 2012 test set, our algorithm achieves

the highest mAP (47.5%), at least 5.0% higher than the

latest state-of-the-art algorithms including OICR [38] and

HCP+DSD+OSSH3[19]. Our trained model also achieves

the highest mAP (51.2%) among all weakly supervised al-

gorithms on Pascal VOC 2007 test set, 4.2% higher than

the latest result from [38]. The object localization accuracy

(CorLoc) of our trained model on Pascal VOC 2007 train-

val set and Pascal VOC 2012 trainval set are respectively

67% and 69.4%, which are 2.7% and 3.8% higher than the

previous best.

5.3. Multi­Label Classification
Dataset and performance measures. Microsoft

COCO [26] is the most popular dataset in multi-label

classification. MS-COCO was primarily built for object

recognition tasks in the context of scene understanding.

The training set is composed of 82081 images in 80

classes, on average 2.9 object labels per image. Since

the groundtruth labels of the test set is not available,

performance evaluation is conducted on the validation set

with 40504 images. We train our models on the training set

and test them on the validation set.

Performance measures for multi-label classification is



method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

OM+MIL+FRCNN[24] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

HCP+DSD+OSSH3[19] 54.2 52.0 35.2 25.9 15.0 59.6 67.9 58.7 10.1 67.4 27.3 37.8 54.8 67.3 5.1 19.7 52.6 43.5 56.9 62.5 43.7

OICR-Ens+FRCNN[38] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

Ours+FRCNN w/o clustering 66.7 61.8 55.3 41.8 6.7 61.2 62.5 72.8 12.7 46.2 40.9 71.0 67.3 64.7 30.9 16.7 42.6 56.0 65.0 26.5 48.5

Ours+FRCNN w/o uncertainty 66.8 63.4 54.5 42.2 5.8 60.5 58.3 67.8 7.8 46.1 40.3 71.0 68.2 62.6 30.7 16.5 41.1 55.2 66.8 25.2 47.5

Ours+FRCNN w/o instances 67.7 62.9 53.1 44.4 11.2 62.4 58.5 71.2 8.3 45.7 41.5 71.0 68.0 59.2 30.3 15.0 42.4 56.0 67.2 26.8 48.1

Ours+FRCNN 64.3 68.0 56.2 36.4 23.1 68.5 67.2 64.9 7.1 54.1 47.0 57.0 69.3 65.4 20.8 23.2 50.7 59.6 65.2 57.0 51.2

Table 2. Average precision (in %) of weakly supervised methods on PASCAL VOC 2007 detection test set.

method F1-C P-C R-C F1-O P-O R-O F1-C/top3 P-C/top3 R-C/top3 F1-O/top3 P-O/top3 R-O/top3

CNN-RNN[41] - - - - - - 60.4 66.0 55.6 67.8 69.2 66.4

RLSD[45] - - - - - - 62.0 67.6 57.2 66.5 70.1 63.4

RNN-Attention[42] - - - - - - 67.4 79.1 58.7 72.0 84.0 63.0

ResNet101-SRN[47] 70.0 81.2 63.3 75.0 84.1 67.7 66.3 85.8 57.5 72.1 88.1 61.1

ResNet101(448× 448)(baseline) 72.8 73.8 72.9 76.3 77.5 75.1 69.5 78.3 63.7 73.1 83.8 64.9

Ours 74.9 80.4 70.2 78.4 85.2 72.5 70.6 84.5 62.2 74.7 89.1 64.3

Table 3. Performance comparison among multi-label classification methods on Microsoft COCO 2014 validation set.

quite different from those for single-label classification.

Following [47, 42], we employ macro/micro precision,

macro/micro recall, and macro/micro F1-measure to eval-

uate our trained models. For precision, recall and F1-

measure, labels with confidence higher than 0.5 are consid-

ered positive. “P-C”, “R-C” and “F1-C” represent the aver-

age per-class precision, recall and F1-measure while “P-O”,

“R-O” and “F1-O” represent the average overall precision,

recall and F1-measure. These measures do not require a

fixed number of labels per image. To compare with exist-

ing state-of-the-art algorithms, we also report the results of

top-3 labels with confidence higher than 0.5 as in [42].

Implementation details. Our main network for multi-label

classification is ResNet-101 as described earlier. The reso-

lution of the input images is at 448 × 448. We first train a

network with the classification branch only. As a common

practice, a pre-trained model for ImageNet is fine-tuned

with the learning rate γ set to 0.001 in the first 20k iter-

ations, and 0.0001 in the next 20k iterations. The weight

decay is 0.0005. Then we add the segmentation branch

and train this new branch only by fixing all the layers be-

fore layer res4b22 relu and the classification branch. The

learning rate is set to 0.001 in the frist 20k iterations, and

0.0001 in the next 20k iterations. At last, we train the

entire network with both branches using the cross-entropy

loss for multi-label classification for 30k iterations with a

learning rate 0.0001 while still fixing the layers before layer

res4b22 relu.

Result comparison. In addition to our two-branch network,

we also train a ResNet-101 classification network as our

baseline. The multi-label classification performance of both

networks on MS-COCO is reported in Table 3. Since the in-

put resolution of our baseline is 448 × 448, in comparison

to the latest work (ResNet101-SRN) [47], the performance

of our baseline is slightly better. Specifically, the F1-C of

our baseline is 72.8%, which is 2.8% higher than the F1-

C of ResNet101-SRN. In comparison to the baseline, our

two-branch network further achieves overall better perfor-

mance. Specifically, the P-C of our two-branch network is

6.6% higher than the baseline, the R-C is 2.7% lower, and

the F1-C is 2.1% higher. All F1-measures (F1-C, F1-O, F1-

C/top3 and F1-O/top3) of our two-branch network are the

highest among all state-of-the-art algorithms.

5.4. Ablation Study

We perform an ablation study on Pascal VOC 2007 de-

tection test set by replacing or removing a single component

in our pipeline every time. First, to verify the importance

of object instances, we remove all steps related to object

instances, including the entire instance level stage and the

operations related to the instance attention map in the pixel

level stage. The mAP is decreased by 3.1% as shown in Ta-

ble 2. Second, the clustering and outlier detection step in

the instance level stage is removed. We directly train an in-

stance classifier using the object proposals from the image

level stage. The mAP is decreased by 2.7%. Third, instead

of labeling a subset of pixels only in the pixel level stage,

we assign a unique label to every pixel even in the case of

low confidence. The mAP drops to 47.5%, 3.7% lower than

the performance of the original pipeline.

6. Conclusions

In this paper, we have presented a new pipeline for

weakly supervised object recognition, detection and seg-

mentation. Different from previous algorithms, we fuse and

filter object instances from different techniques and perform

pixel labeling with uncertainty. We use the resulting pixel-

wise labels to generate groundtruth bounding boxes for ob-

ject detection and attention maps for multi-label classifica-

tion. Our pipeline has achieved clearly better performance

in all of these tasks. Nevertheless, how to simplify the steps

in our pipeline deserves further investigation.
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