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Multi-exponential error extrapolation and combining error

mitigation techniques for NISQ applications
Zhenyu Cai 1,2✉

Noise in quantum hardware remains the biggest roadblock for the implementation of quantum computers. To fight the noise in

the practical application of near-term quantum computers, instead of relying on quantum error correction which requires large

qubit overhead, we turn to quantum error mitigation, in which we make use of extra measurements. Error extrapolation is an error

mitigation technique that has been successfully implemented experimentally. Numerical simulation and heuristic arguments have

indicated that exponential curves are effective for extrapolation in the large circuit limit with an expected circuit error count

around unity. In this Article, we extend this to multi-exponential error extrapolation and provide more rigorous proof for its

effectiveness under Pauli noise. This is further validated via our numerical simulations, showing orders of magnitude improvements

in the estimation accuracy over single-exponential extrapolation. Moreover, we develop methods to combine error extrapolation

with two other error mitigation techniques: quasi-probability and symmetry verification, through exploiting features of these

individual techniques. As shown in our simulation, our combined method can achieve low estimation bias with a sampling cost

multiple times smaller than quasi-probability while without needing to be able to adjust the hardware error rate as required in

canonical error extrapolation.
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INTRODUCTION

While fault-tolerant quantum computers promise huge speed-up
over classical computers in areas like chemistry simulations,
optimisation and decryption, their implementations remain a
long term goal due to the large qubit overhead required for
quantum error correction. With the recent rapid advance of
quantum computer hardware in terms of both qubit quantity
and quality, culminating with the “quantum supremacy” experi-
ment1, one must wonder is it possible for us to perform
classically intractable computations on such Noisy Intermediate-
Scale Quantum (NISQ) hardware without quantum error correc-
tion2. Resource estimation has been performed for one of the
most promising applications on NISQ hardware: the
Fermi–Hubbard model simulation3,4, realising that even with
an optimistic local gate error rate of 10−4, the large number of
gates needed for a classically intractable calculation will lead to
an expected circuit error count of the order of unity. To obtain
any meaningful results under such an expected circuit error
count, it is essential to employ error mitigation techniques,
which relies on making extra measurements, as opposed to
employing extra qubits in the case of quantum error correction,
to estimate the noise-free expectation values from the noisy
measurement results. Three of the most well-studied error
mitigation techniques are symmetry verification5,6, quasi-
probability and error extrapolation7–9.
Previously all of these error mitigation techniques have been

discussed separately. They make use of different information
about the hardware and the computation problems to perform
different sets of extra circuit runs for error mitigation. Symmetry
verification makes use of the symmetry in the simulated system
and performs circuit runs with additional measurements. Quasi-
probability makes use of the error models of the circuit
components and performs circuit runs with different additional
gates in the circuit. Error extrapolation makes use of the

knowledge about tuning the noise strength via physical control
of the hardware and performs additional circuit runs at different
noise levels. Consequently, the three error mitigation techniques
are equipped to combat different types of noise with different
additional sampling costs (number of additional circuit runs
required). Hence, it is natural to wonder how these techniques
might complement each other. For NISQ application, it may be
essential to understand and develop ways for these error
mitigation techniques to work in unison, to achieve better
performance than the individual techniques in terms of lower
bias in the noise-free expectation values estimates and/or lower
sampling costs. Thus one key focus of our Article is on the
methods for combining these error mitigation techniques and
trying to gauge their performance under different scenarios
through analytical arguments and numerical simulations.
To achieve efficient combinations of these mitigation techni-

ques, we will need to exploit certain features of these constituent
techniques. As we will see later, we will show that quasi-
probability can be used for error transformation instead of error
removal and the circuit runs that fail the symmetry verification can
actually be utilised instead of being discarded. It is also essential to
understand the mechanism behind error extrapolation, especially
in the NISQ limit in which the number of errors in the circuit will
follow a Poisson distribution. Heuristic arguments and numerical
validations have been made by Endo et al.9 on error extrapolation
using exponential decay curves in this NISQ limit. However, it
cannot be applied to certain situations arising in practice, for
example when the data points have an increasing trend. Our
Article will take this further and provide a more rigorous argument
showing that single-exponential error extrapolation is just a
special case of the more general multi-exponential error extra-
polation framework, using which we can achieve a much lower
estimation bias.
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RESULTS

Symmetry verification

Suppose we want to perform a state preparation and we know
that the correct state must follow a certain symmetry S, i.e., we
expect our end state to be the eigenstate of S with the correct
eigenvalue s (or within a set of eigenvalues {s}). In such a case, we
can perform S measurement on our output state and discard the
circuit runs that produce states that violate our symmetry. This
was first proposed and studied by McArdle et al.5 and Bonet-
Monroig et al.6. Discarding erroneous circuit runs results in an
effective density matrix that is the original density matrix
ρ projected into the S= s subspace via the projection operator Πs

ρs ¼
ΠsρΠs

TrðΠsρΠsÞ
¼ ΠsρΠs

TrðΠsρÞ
:

Here, we have used ΠsΠs= Πs.
Now let us suppose we want to measure an observable O,

which commutes with our symmetry S. Thus they can both be
measured in the same run and we will discard the measurement
results in the runs that failed the symmetry verification. The
symmetry-verified expectation value of the observable O is then

Osym

� �
¼ TrðOρsÞ ¼

TrðOΠsρÞ
TrðΠsρÞ

� OΠsh i
Πsh i (1)

in which we have used [S,O]= 0⇒ [Πs,O]= 0. Note that Πs

measurement takes the value 1 if the symmetry verification is
passed and 0 otherwise and hence Πsh i ¼ TrðΠsρÞ is just the
fraction of circuit runs that fulfil the symmetry condition. We will
use Pd to denote the fraction of circuit runs that fail the symmetry
verification, which gives

Πsh i ¼ TrðΠsρÞ ¼ 1� Pd:

Recall that ρs is the effective density matrix of the non-
discarded runs, which as mentioned is a TrðΠsρÞ fraction of the
total number of runs. Therefore to obtain statistics from ρs, we
need a factor of

CS ¼
1

TrðΠsρÞ
¼ 1

1� Pd
(2)

more circuit runs than obtaining directly from ρ.
In the method discussed above, OΠs is usually obtained through

measuring O and S in the same run. However, sometimes this
cannot be done due to, for example, the inability to perform non-
demolishing measurements. In such a case we need to break OΠs

into its Pauli basis6 and reconstruct it via post-processing, this is
discussed in Supplementary Note 1. In this article, we will mainly
be focusing on direct symmetry verification instead of post-
processing verification, but most of the arguments are valid for
both methods besides discussions about costs.
Now let us move on to see what errors are detectable by

symmetry verification. We want to produce the state ψfj i which is
known to fall within the S= s symmetry subspace

S ψfj i ¼ s ψfj i:

To produce the state, we usually start with a state ψ0j i that
follows the same symmetry and uses a circuit U that consists of
components that conserve the symmetry

ψfj i ¼ U ψ0j i; S ψ0j i ¼ s ψ0j i; U; S½ � ¼ 0:

Suppose that some error E occurs during the circuit in between
the symmetry-preserving components and it satisfies

ΠsE ¼ EΠs0 (3)

in which s; s0 are some eigenvalues of the symmetry operator S.

We then have

ΠsEΠs ¼ EΠs0Πs ¼
EΠs s ¼ s0

0 s≠ s0

�
(4)

ΠsEΠs= EΠs means that E is a transformation within the S= s
subspace, hence E is undetectable by the symmetry verification
using S. ΠsEΠs= 0 means that E contains no components that map
states in the S= s subspace back into the same subspace, hence
E is (completely) detectable by the symmetry verification using S.
A general error will be a combination of detectable and
undetectable error components.
In this Article, we will be focusing on Pauli errors and Pauli

symmetries, for which Eq. (4) is reduced to

S; E½ � ¼ 0 ) s ¼ s0 E is undetectable

S; Ef g ¼ 0 ) s ¼ �s0 E is detectable :
(5)

Quasi-probability

To describe the quasi-probability method, we will make use of the
Pauli transfer matrix (PTM) formalism10. Using G to denote the set
of Pauli operators, any density operators can be written in the
vector form by decomposing into the Pauli basis G 2 G

ρ ¼ 1
2N

P
G2G

TrðGρÞG

) ρj ii ¼ P
G2G

Gj iihhGjρii

where we have defined the inner product as

hhGjρii ¼ 1ffiffiffiffiffi
2N

p TrðGρÞ:

Note that we need to add a normalisation factor 1ffiffiffiffi
2N

p when we
use the Pauli operators as a basis, with N being the number of
qubits.
The quasi-probability method was first introduced by Temme

et al.8, and the implementation details were later studied by Endo
et al.9. Let us suppose we are trying to perform the operation U ,
but in practice, we can only implement its noisy version

Uϵ ¼ EU:

In addition to Uϵ, we can also implement a set of basis
operation fBng. We can decompose the ideal operation U that we
want to implement into a set of gates fBnUϵg that we can
implement

U ¼
X

n

qnBnUϵ ) E�1 ¼
X

n

qnBn:

In this way, we are essentially trying to simulate the behaviour
of the inverse noise channel E�1 using the set of basis operations
fBng, which can undo the noise E.
If we have a state ρj ii passing through the circuit U and we

perform measurement O, then the observable we obtain during
the experiment will be:

Oh i ¼ Oh jh U ρj ii ¼
P
n

qn Oh jh BnUϵ ρj ii

¼ Q
P
n

sn
qnj j
Q

Oh jh BnUϵ ρj ii:

in which Q ¼
P

n qnj j and sn= sgn(qn). This is implemented by
sampling from the set of basis operations fBng with the
probability distribution f qnj j

Q
g. We will weight each measurement

outcome by the sign factor sn and rescale the final expectation
value by the factor Q.
Now if we break down our computation into many components

U ¼
QM

m¼1 Um, with noise associated with each component, then
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the observable that we want to measure is

Oh i ¼ O
YM

m¼1

Um

�����

�����ρ
* +* +

;

but in reality, we can only implement the noisy version

Oϵh i ¼ O
YM

m¼1

EmUm

�����

�����ρ
* +* +

:

Each noise element can be removed by simulating the inverse
channels using the set of basis operations fBng

E�1
m ¼

X

n

qmnBn ¼ Rm
X

n

smn

qmnj j
Rm

Bn

with Rm ¼Pn qmnj j.
Hence, we can get back the noiseless observable using

Oh i ¼ O
QM

m¼1

P
nm

qmnm
Bnm

 !
EmUm

�����

�����ρ
* +* +

¼ Q
P
~n

s~n
q~nj j
Q

O
QM

m¼1

BnmEmUm

����
����ρ

� �� �

in which we have used ~n to denote the set of number {n1, n2, ... ,
nM} and we have defined q~n ¼

QM
m¼1 qmnm

, s~n ¼
QM

m¼1 smnm ¼
sgn ðq~nÞ and

Q ¼
YM

m¼1

Rm ¼
YM

m¼1

X

nm

qmnm

�� ��: (6)

To implement this, we simply sample the set of basis operations
fBn1 ;Bn2 ; ¼ ;BnMg that we want to implement with the

probability
jq~n j
Q

and weight each measurement outcome by a sign

factor s~n ¼ sgn ðq~nÞ, so that the outcome we get is an effective
Pauli observable OQ. And the error-free observable expectation
value can be obtained via

Oh i ¼ Q OQh i: (7)

Hence, to estimate Oh i by sampling OQ, we need CQ times more
samples than sampling O directly, where the sampling cost factor
CQ is

CQ ¼ Q2 ¼
YM

m¼1

X

nm

qmnm

�� ��
 !2

: (8)

In this article, we will be mainly focusing on Pauli error channels,
which can be inverted using quasi-probability by employing Pauli
gates as the basis operations.
Using to denote a super-operator

any Pauli channel can be written in the form

ð9Þ

with ∑GαG= 1. We use p
ϵ
to denote the total probability of all the

non-identity components. This channel can be approximately
inverted using the quasi-probability channel G�p

ϵ

since

G�p
ϵ

Gp
ϵ

� I þOðp2
ϵ
Þ:

Hence, to the first-order approximation, the cost of inverting Gp
ϵ

will be the cost of implementing G�p
ϵ

, which using Eq. (8) is

CQ1;0 � ð1þ 2p
ϵ
Þ2 � 1þ 4p

ϵ
: (10)

Here, we have only discussed approximately inverting a Pauli
channel because the exact inverse channel can be hard to express
in a compact analytical form. However, it can be obtained

numerically by first obtaining the PTM of the noise channel and
then performing matrix inversion.
Instead of removing the error channel completely, quasi-

probability can also be used to transform the form of an error
channel. In the case of Pauli channels, suppose we want to
transform a channel of the form in Eq. (9) to

we can approximately achieve this transformation up to first order
in q

ϵ
and p

ϵ
by applying the quasi-probability channel

This will incur the implementation cost

CQ1;q ¼ 1þ p
ϵ
� q

ϵ
ð Þj j þ

X

G2G�I

p
ϵ
αG � q

ϵ
βGj j

 !2

:

In the limit of small p
ϵ
and q

ϵ
, we have

CQ1;q � 1þ 2 p
ϵ
� q

ϵ
ð Þ þ 2

P
G2G�I

p
ϵ
αG � q

ϵ
βGj j

¼ 1þ 4
P

GϵG�l
pεαG>qϵβG

p
ϵ
αG � q

ϵ
βGð Þ:

In the last step we have used
P

G p
ϵ
αG � q

ϵ
βGð Þ ¼ p

ϵ
� q

ϵ
from

∑GαG= ∑GβG= 1.
If we are suppressing all error components evenly, or if we are

simply removing certain error components, we will have
p
ϵ
αG � q

ϵ
βG 8G 2 G� I. In this case, the cost of implementing

the transformation using quasi-probability will simply be

CQ1;q � 1þ 4 p
ϵ
� q

ϵ
ð Þ: (11)

Group errors

Here, we will introduce a special kind of error channel: group error
channels, which enable us to make more analytical predictions
about the error mitigation techniques that we have already
discussed and also will help our understanding about error
extrapolation later.
The group error J p;E of the group E is defined to be

ð12Þ

By groups we mean the subgroups of the Pauli group with a
composition rule that ignores all the irrelevant phase factors. For
the case of p= 1, we will call J 1;E the pure group errors.
Many physically interesting noise models like depolarising

channels, dephasing channels, Pauli-twirled swap errors and
dipole–dipole errors are all group errors.
Now let us consider the effect of applying a set of Pauli symmetry

checks S to the group error in Eq. (12). Using Eq. (5), S can remove
and detect components in J p;E that anti-commute with any
elements in S 2 S. We look at the action of S on the subset of
qubits affected by J p;E, and denote the set of these operators on
the subset of qubits as Ssub. The commutation relationship
between S and E is equivalent to that of Ssub and E. We denote
their generators as eSsub and eE. Note that here Ssub is not a group,
by eSsub we just mean the set of independent elements in Ssub. For
Pauli generators, we can choose eE in such a way that for every
eSsub 2 eSsub, there will at most be only one element in eE that anti-
commutes with it. We will denote the elements in eE that commute
with all elements in eSsub as eQ
eQ ¼ feE 2 eE j eE;eSsub

h i
¼ 0 8eSsub 2 eSsubg

and it will generate the remaining error components in E that are
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not detectable, which we denote as Q. Hence the detectable error
components are just E�Q
Going back to our error channel in Eq. (12), the probability that

the error gets detected is just the total probability of the
detectable error components

pd ¼ Ej j � Qj j
Ej j p: (13)

Removing the detected errors in J p;E and renormalising the
error channel by the factor 1− pd gives the effective channel after
verification, which is just another group error channel

ð14Þ

with

r ¼ Qj jp
Ej j 1� pdð Þ ¼

Qj jp
Ej j 1� pð Þ þ Qj jp � Qj j

Ej j pþOðp2Þ:

An example of removing detectable errors for depolarising
channels will be worked out later in Section “Numerical simulation
for multi-exponential extrapolation”.
For a given general Pauli channel, we have only discussed its

approximate inverse channel in Section “Quasi-probability”. This is
because its exact inverse channel can be hard to express in a
compact analytical form. However, for any group channel, we can
easily write down the explicit form of its inverse channel.
As shown in Supplementary Note 2, it is easy to verify that the

inverse of a group channel J p;E is just

J p;E

	 
�1 ¼ J �α;E ¼ 1þ αð ÞI � αJ 1;E (15)

with α ¼ p
1�p

.
Using Eq. (15) and (8), the cost of using quasi-probability to

invert J p;E is thus

CQ1;0 ¼ 1þ 2
Ej j � 1ð Þp
Ej jð1� pÞ

� �2

� 1þ 4
Ej j � 1
Ej j pþOðp2Þ;

(16)

which is the same as Eq. (10) with

p
ϵ
¼ Ej j � 1

Ej j p: (17)

As shown in Eq. (14), for a given group error J p;E, the resultant
error channel after symmetry verification is another group channel

J r;Q where Q is a subgroup of E and r ¼ Qj j
Ej j p. The remaining

errors can then be completely removed by implementing J �1
r;Q

using quasi-probability.
Similarly, if we implement the quasi-probability inverse channel

J �1
r;Q first and then perform symmetry verification, we can still

completely remove the group error J p;E. The gates we need to

implement in the inverse channel J �1
r;Q will not be detected and

thus will not be affected by the symmetry verification. As shown in
Supplementary Note 3, the resultant error channel after applying

J �1
r;Q is

ð18Þ

This is a channel that only contains the error components that
are detectable by the symmetry verification with the error rate pd.
As discussed in Section “Quasi-probability” and explicitly shown

in Supplementary Note 3, we can implement additional quasi-
probability operations to further reduce the error rate of the
resultant channel to q ≤ pd. The resultant detectable error channel

will be

ð19Þ

NISQ limit

The number of possible error locations in the circuit, which is
usually the number of gates in the circuit, will be denoted as M.
These error locations might experience different noise with
different error rates. From here on, instead of building our
discussions around local gate error rates, we will see that the more
natural quantity to consider in the context of NISQ error mitigation
is the expected number of errors occurring in each circuit run,
which is called the mean circuit error count and denoted as μ. In
order to achieve quantum advantage using NISQ machine, we
would generally expect the circuit size to be large enough to be
classically intractable while the mean circuit error count should
not be too far beyond unity

M � 1; μ � 1: (20)

This is also called the Poisson limit since using Le Cam’s
theorem, the number of errors occurring in each circuit run will
follow the Poisson distribution—i.e. the probability that l errors
occur will be

Pl ¼ e�μ μ
l

l!
: (21)

If we assume that every local error channel in the circuit can be
approximated as the composition of an undetectable error
channel and a detectable error channel, then symmetry verifica-
tion will have no effects on the undetectable error channels and
we can focus only on the detectable error channels. Alternatively,
as we have seen in Section “Group errors”, we can use quasi-
probability to remove all the local undetectable errors in the
circuit, leaving us with only detectable error channels. The
expected number of detectable errors occurring in each circuit
run is denoted as μd. Taking the NISQ limit and using Eq. (20), the
probability that l detectable errors occur in the circuit is

Pl ¼ e�μd
μld
l!
:

Using Eq. (5), an odd number of detectable errors will anti-
commute with the symmetry and get detected while an even
number of detectable errors will commute with the symmetry and
pass the verification. Therefore, the total probability that the errors
in the circuit will be detected by the verification of one Pauli
symmetry is thus

Pd ¼
X

odd l

Pl ¼ e�μd sinhðμdÞ ¼
1� e�2μd

2
: (22)

Note that this is upper-bounded by 1
2
, i.e. at most we can catch

errors in half of the circuit runs.
Hence, using Eq. (2), the cost of implementing symmetry

verification for one Pauli symmetry is

CS;μd ¼
1

1� Pd
¼ 1

e�μd coshðμdÞ
¼ 2

1þ e�2μd
(23)

which is upper-bounded by 2.
After symmetry verification, the fraction of circuit runs that still

have errors inside is

Pcirc ¼ 1� Pd � P0 ¼
1

2
1� e�μdð Þ2: (24)

In Eq. (11) we have only been focusing on applying quasi-
probability to one error channel. Assuming there are M such
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channels in the circuit, then using Eq. (11) and taking the NISQ
limit (Eq. (20)), the sampling cost factor of transforming all M error
channels with error probability p

ϵ
into new error channels with

error probability q
ϵ
≤ p

ϵ
using quasi-probability is

CQ;Mq ¼ CM
Q1;q � lim

M!1
1þ 4 p

ϵ
� q

ϵ
ð Þð ÞM ¼ e4M p

ϵ
�q

ϵ
ð Þ: (25)

At q
ϵ
= 0, we will obtain the sampling cost of removing all the

noise using quasi-probability

CQ;0 � e4Mp
ϵ : (26)

Remember that we are focusing on Pauli errors and p
ϵ
is

defined to be the total probability of all non-identity components.
This is not equivalent to the error probability p because
sometimes there are some identity components in our definition
of error probability such as the group errors that we discussed in
Section “Group errors”. Similar to the definition of p

ϵ
, we can

denote the expected number of non-identity errors in each circuit
run as μ

ϵ
. In the above cases, we have μ

ϵ
=Mp

ϵ
and similarly we

can define ν
ϵ
=Mq

ϵ
. In the cases where different noise locations

experience different noise, using Le Cam’s theorem with negative
probabilities and focusing on the zero-occurrence case, we can
generalise Eq. (25) to

CQ;ν ¼ e4ðμϵ�νϵÞ: (27)

i.e. the sampling cost of quasi-probability transformation grows
exponentially with the reduction in the error rate μ

ϵ
− ν

ϵ
.

Multi-exponential error extrapolation

The idea of amplifying the hardware error rate and performing
extrapolation using the original result and the noise-amplified
result was first introduced by Li et al.7 and Temme et al.8, and was
later successfully realised experimentally using superconducting
qubits11. Endo et al.9 provided heuristic arguments on why the
exponential decay curve should be used for error extrapolation in
the large circuit limit, whose improved performance over linear
extrapolation was validated via numerical simulations in refs. 9,12.
Using L to denote the set of locations that the errors have

occurred, when l errors have occurred in the circuit, our
observable O will be transformed to a noisy observable O Lj j¼l .
Recall that in the NISQ limit, the probability that l errors happen
(denoted as Pl) will follows the Poisson distribution in Eq. (21).
Therefore, the expectation value of the observable O at the mean
circuit error count μ is then

Oμ

� �
¼
X1

l¼0

Pl O Lj j¼l

� �
¼ e�μ

X1

l¼0

μl

l!
O Lj j¼l

� �
: (28)

Hence, how Oμ

� �
changes with μ is entirely determined by how

O Lj j¼l

� �
changes with l. When we try to fit a nth degree

polynomial of μ to Oμ

� �
, for example performing a linear

extrapolation7,8, we are essentially assuming that O Lj j¼l

� �
is a

nth degree polynomial of l using the expressions of the moments
of the Poisson distribution.
At l= 0, we have the error-free result Oh i
O Lj j¼0

� �
¼ Oh i:

At large error number l, in the case of stochastic errors, the
circuit will move closer to a random circuit. Hence, for a Pauli
observable O we will expect

lim
l!1

O Lj j¼l

� �
¼ 0:

A generic polynomial of l will not satisfy the above boundary
conditions. Hence, to align with the above boundary conditions,
we can instead assume an exponential decay of O Lj j¼l

� �
as l

increase

O Lj j¼l

� �
¼ Oh ið1� γÞl

in which γ is the observable decay rate that satisfies 0 ≤ γ ≤ 1. This
will lead to an exponential function in μ

Oμ

� �
¼ Oh ie�μ

X1

l¼0

μð1� γÞð Þl
l!

¼ Oh ie�γμ; (29)

which is just the extrapolation curves employed in ref. 9.
Using Eq. (29), if we probe at the error rates μ and λμ, we can

perform two-point exponential extrapolation and obtain the error-
mitigated estimate of Oh i, denoted as O0h i, using the following
equation:

O0h i ¼ Oμ

� �λ

Oλμ

� �
 ! 1

λ�1

:

As discussed in Supplementary Note 7B, the sampling cost factor
of performing such an extrapolation is

CE � 2
λ2e2γμ þ e2λγμ

λ� 1ð Þ2
: (30)

Now let us try to gain a deeper insight about the reason behind
the exponential decay of O Lj j¼l

� �
. If a Pauli error G occurs at the

end of a circuit and we are trying to measure an Pauli observable
O, then the expectation value is just

TrðGρGOÞ ¼ ηðG;OÞTrðρOÞ
where η(G,O) is the commutator between G and O

GO ¼ ηðG;OÞOG:
If a pure group error J 1;E occurs at the end of the circuit, then

the resultant expectation value is

TrðJ 1;EðρÞOÞ ¼ 1
Ej j
P
E2E

TrðEρEOÞ

¼ 1
Ej j
P
E2E

ηðE;OÞ

 �

TrðρOÞ

Using the fact that the composition of the commutators of
elements in a Pauli subgroup follows the same structure as the
composition of the elements themselves

ηðEE0;OÞ ¼ ηðE0;OÞηðE;OÞ;
we can rewrite the above formula in terms of the generator of E

TrðJ 1;EðρÞOÞ ¼
Y

eE2eE

1þ ηðeE;OÞ
2

0
@

1
ATrðρOÞ (31)

in which

Y

eE2eE

1þ ηðeE;OÞ
2

¼
1 if ηðE;OÞ ¼ 1 8E 2 E

0 otherwise :

�

Hence, if a pure group error J 1;E occurs right before measuring
a Pauli observable O, then the resultant expectation value
TrðJ 1;EðρÞOÞ will only remain unchanged if O commutes with
all elements in E, otherwise the information about O is “erased”
by the group error and the expectation value will be 0.
If we decompose the gates in a unitary circuit U ¼

Q1
m¼M Vm

into their Pauli components: Vm ¼Pjm
αmjmGmjm , then we have

U ¼
Y1

m¼M

X

jm

αmjmGmjm ¼
X

~j

α~jG~j

where

X

~j

¼
Y1

m¼M

X

jm

; G~j ¼
Y1

m¼M

Gmjm ; α~j ¼
Y1

m¼M

αmjm :
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i.e. the circuit U can be viewed as the superposition of many Pauli
circuits G~j .

The expectation value of observing O after applying the circuit
U on ρ is

Oh i ¼ TrðUρUyOÞ
¼ 2

P
~i>~j

Re α	~i α~jTrðρG
y
~i
OG~jÞ

n o
(32)

which is a linear sum of the measurement results for the set of

effective Pauli observables G
y
~i
OG~j for different

~i and~j. Similar to

Eq. (31), the information about G
y
~i
OG~j will either be “erased” or

perfectly preserved if a group error occurs in the circuit. Assuming
the average fraction of group error locations in our circuit that can

erase the information about G
y
~i
OG~j is γ~i;~j , then as proven in

Supplementary Note 4, in the limit of large M and non-vanishing
1� γ~i;~j , the expectation value given l errors occurred can be

approximated to be

O Lj j¼l

� �
� 2

X

~i>~j

Re α	~i α~jTrðρG
y
~i
OG~jÞ 1� γ~i;~j

� �l� �
:; (33)

which is just a multi-exponential decay curve.
If we consider the case in which many error locations in the

circuit are affected by the same type of noise, and adding onto
the fact that in practice there are usually many repetitions of the
circuit structures along the circuit and across the qubits, we can

expect many γ~i;~j of different
~i and~j to be very similar. Hence, by

grouping the terms with similar γ~i;~j together, Eq. (33) becomes

O Lj j¼l

� �
¼
XK

k¼1

Ak 1� γkð Þl (34)

where Ak is the sum of 2 Re α	~i α~jTr ρG
y
~i
OG~j

� �n o
for some subset of~i

and ~j. Note that Ak are independent of l and we havePK
k¼1 Ak ¼ Oh i.
So far we have only been considering group error channels.

However, as shown in Supplementary Note 5, by approximating
general Pauli channels as the composition of pure group channels,
we can prove that decay of the expectation value under general
Pauli noise can also be approximated by a sum of exponentials
like in Eq. (34).
Equation (34) can be translated into a multi-exponential decay

of Oμ

� �
over the mean circuit error count μ using Eq. (28)

Oμ

� �
¼ e�μ

X1

l¼0

μl

l!

XK

k¼1

Akð1� γkÞl (35)

¼
XK

k¼1

Ake
�γkμ: (36)

This can be rewritten as

Oμ

� �
¼
XK

k¼1

Ak e�γkð Þμ �
XK

k¼1

Ak 1� γkð Þμ:

Comparing with Eq. (34), we see that the shape of Oμ

� �
and

O Lj j¼l

� �
are the same up to the leading order of γk with the mean

circuit error count μ in place of the circuit error count l.
The simplest shape that we can fit over Oμ

� �
is a single

exponential decay curve (K= 1), which is the one we used in
exponential extrapolation. We see here that a natural extension of
this will be probing Oμ

� �
at more than two different error rates

and trying to fit them using a sum of exponentials (K > 1). The

estimate of the error-free observable Oh i can then be obtained by
substituting μ= 0 into our fitted curve.
From Eq. (36), we see that the kth exponential component can

only survive up to the mean circuit error count μ � 1
γk
, thus we can

only obtain information about this component by probing at the

mean circuit error count μt 1
γk
. Since 0 ≤ γk ≤ 1, we have 1

γk
� 1 for

all k, i.e. we should be able to retrieve all exponential components
if we can probe enough points within μ≲ 1. In practice, there is a
minimum mean circuit error count that we can achieve, which we
denote as μ*. To have an accurate multi-exponential fitting, it is
essential that for all components with non-negligible Ak, we have

μ	t 1
γk
, i.e. none of the critical exponential components has died

away at the minimal error rate that we can probe.

Numerical simulation for multi-exponential extrapolation

In this section, we will try to apply multi-exponential extrapolation
to the Fermi–Hubbard model simulation circuit as outlined in
ref. 3, which consists of local two-qubit components that
correspond to different interaction terms and the fermionic
swaps. It can be used for both eigenstate preparation and time
evolution simulation. We will assume there are M of these two-
qubit components, and they all suffer from two-qubit depolarising
noise of error probability p, which is just a group channel of the
two-qubit Pauli group (without the phase factors). Using Eq. (17),
we have

p
ϵ
¼ Ej j � 1

Ej j p ¼ 15

16
p ) μ

ϵ
¼ 15

16
μ: (37)

Since we usually know the number of fermions in the system,
we can try to verify the fermion number parity symmetry of the
output state, which is simply

Sσ ¼
Y

i

Z i

in the Jordan–Wigner qubit encoding. All the local two-qubit
components in the circuit conserve the symmetry Sσ. Hence when
we start in a state with the right fermion number, the output state
should also have the correct fermion number, enabling us to
perform symmetry verification.
By checking Sσ= ∏iZi, we can detect all error components with

one X or Y in the local two-qubit depolarising channels since they
anti-commute with Sσ. We will remove the other error compo-
nents in the local two-qubit depolarising channels using quasi-
probability. The removed components are those can be generated
from the set eQ ¼ fZ1; Z2; X1X2g following Section “Group errors”.
Thus we have Qj j ¼ 23 ¼ 8 and using Eq. (13) we also have

pd ¼ Ej j � Qj j
Ej j p ¼ p

2
) μd ¼ μ

2
: (38)

The resultant noise channel after the application of quasi-
probability is given by Eq. (19), which is just a uniform distribution
of the two-qubit Pauli errors that are detectable by Sσ. We will call
it the detectable noise.
In this section and later in Section “Numerical simulation for a

combination of error mitigation techniques”, we will perform
numerical simulations using the circuit for the 2 × 2 half-filled
Fermi–Hubbard model, which consists of 8 qubits and 144 two-
qubit gates. The two-qubit gates in the circuit that correspond to
interaction terms are parametrised gates with the parameters
indicating the strength of the interaction. In our simulation, we
will obtain the results for a set of randomly chosen gate
parameters (with additional results for another set of random
parameters listed in Supplementary Note 9). We will also look at
two different error scenarios: depolarising errors and detectable
errors. One of them is a group channel while the other is a more
general Pauli channel. The measurements that we perform will be
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the Pauli components of the Hamiltonian, from which we can
reconstruct the energy of the output state. The simulations are
performed using the Mathematica interface13 of the high-
performance quantum computation simulation package QuEST14.
In Fig. 1, we have plotted the noisy expectation values Oμ

� �
for

each Pauli observable at the mean circuit error counts μ= 0.5, 1,
1.5, 2. When we perform multi-exponential extrapolation on them,
we find that all of the observables can be fitted using a sum of at
most two exponentials, even though there should be very few
symmetries in our circuits since they are generated from a set of
random parameters. We now can proceed to compare the
absolute bias in the estimate of the noiseless expectation values
(μ= 0) using dual-exponential extrapolation against that using the
conventional single-exponential extrapolation for all of the noisy
observables in Fig. 1. The absolute biases of single- and dual-
exponential extrapolation are denoted as ϵ1 and ϵ2, respectively,
and different colours in the plots correspond to different
estimation bias ratios ϵ1

ϵ2
.

For 32 out of the 34 observables we plotted, dual-exponential
extrapolation can achieve a smaller estimation bias than single-
exponential extrapolation (ϵ1

ϵ2
> 1). Within the two cases that dual-

exponential extrapolation is outperformed (the green curves in
Fig. 1), one of them is the case in which single- and dual-
exponential extrapolation both achieve very small estimation bias
of similar order. The other remaining case with larger ϵ2 relative to
ϵ1 is mainly due to the small magnitude of its true expectation
value, which lead to large uncertainties in the fitting parameters. It
is also because we are only using the bare minimum of 4 data

points to fit a dual-exponential curve with 4 free parameters and
thus the problem may be alleviated by simply probing at more
error rates to obtain more data points. On the other hand, there
are also a few cases in which the ϵ1 are exceptionally large (e.g.
certain orange and red curves in Fig. 1a, b). These are usually
observables whose decay curves have extrema and/or crossing
over the x-axis, thus it is impossible to get a good fit with a single-
exponential curve. We have zoomed into one such observable in
Fig. 2. For these observables, dual-exponential extrapolation can
still perform extremely well and achieve ϵ2 ~ 10−5, which is up to
tens of thousands times lower than ϵ1:

ϵ1

ϵ2
� 104.

Now we will exclude the few observables above with
exceptionally large ϵ1 or ϵ2 and take the average of the
remaining ϵ1 and ϵ2 to obtain a more representative perfor-
mance of dual-exponential extrapolation against single-
exponential extrapolation. This is shown in Table 1, from which
we see that by using dual-exponential extrapolation instead of
single-exponential extrapolation, we can achieve a tens or even a
hundred times reduction in estimation bias across both noise
models. Note that in Fig. 1 it appears to the eye that the true
(noiseless) expectation values, marked by filled circles, never
deviate from the dual-exponential (dashed) lines. In fact there
are minute discrepancies as specified in Table 1, but the
extrapolation is remarkably successful.

Combination of error mitigation techniques

We have shown that extrapolating using a multi-exponential curve
can be very effective assuming Pauli noise. Besides the shape of
the extrapolation curve, the other key component to error
extrapolation is the way to tune the noise strength. Previously,
noise is boosted by increasing gate pulse duration8, applying
additional gates that cancel each other12 or simulating the noise
using random gate insertion7. There are various practical

(a)

(b)

Fig. 1 Comparison between single-exponential extrapolation and
dual-exponential extrapolation in an eight-qubit simulation. Plots
showing the noisy expectation values of different Pauli observables
under a depolarising noise and b detectable noise obtained at the
four mean circuit error counts μ= 0.5, 1, 1.5, 2 (cross markers). The
single- and dual-exponential extrapolation curves fitted to the data
points are represented by the solid and dashed lines, respectively.
The circular markers lie at μ= 0 and denote the true noiseless
expectation values. Different colours represent different ratios
between the estimation bias of using single- and dual-exponential
extrapolation (e.g. orange means that for the given observable, the
estimation bias of single-exponential extrapolation is between 103

and 104 times larger than that of dual-exponential extrapolation).

Fig. 2 A noisy Pauli observable from Fig. 1(b) that cannot be
fitted well using single exponential decay since it crosses over the
x-axis. Here we have plotted the noisy expectation values at the four
mean circuit error counts μ= 0.5, 1, 1.5, 2 (cross markers). The single-
and dual-exponential extrapolation curves fitted to the data points
are represented by the solid and dashed lines, respectively. The
circular markers lie at μ= 0 and denote the true noiseless
expectation values.

Table 1. The bias in the single- and dual-extrapolation estimates

averaged over observables within each plot in Fig. 1 excluding

observables with exceptionally large ϵ1 or ϵ2.

ϵ1; ϵ2=10
�4 Depolarising Detectable

Single-exp 150 74

Dual-exp 1.0 1.0

The entries are in the unit of 10−4.
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challenges associated with these noise-boosting techniques, and
furthermore as discussed at the end of Section “Multi-exponential
error extrapolation”, data points at boosted error rates may not
contain enough information for effective extrapolation. Now as
shown in Section “Quasi-probability”, we can actually use quasi-
probability to reduce the error rate and obtain a set of data points
with reduced noise strength, which can then be used for
extrapolation. We should expect a smaller estimation bias by
using data points with reduced noise strength rather than boosted
noise strength, but the sampling cost will also increase due to the
use of quasi-probability. For the special case of two-point
extrapolation using a single-exponential curve with the two data
points at the unmitigated error rate μ and the quasi-probability-
suppressed error rate ν, the total sampling cost as shown in
Supplementary Note 7C is

CQE � 2
λ2e

2
λ
γμþ2 λ�1ð Þμ

ϵ
½ � þ e2γμ

λ� 1ð Þ2
(39)

with μ= λν. We will call this special case quasi-probability with
exponential extrapolation.
As discussed in Section “Multi-exponential error extrapolation”,

the number of exponential components in the multi-exponential
extrapolation can be reduced with an increased degree of
symmetry in the circuit and/or if the error channels are group
channels. Hence, besides using quasi-probability for error
suppression, we can also use quasi-probability to transform the
error channels into group errors and/or errors of similar form for
easier curve fitting in the extrapolation process.
Moving on, we may wish to combine symmetry verification and

quasi-probability. We can first apply quasi-probability to transform
all the error channels in the circuit with the total mean error count μ
into detectable error channels with a total mean error count μd.
After that, we can apply symmetry verification, but note that the
additional quasi-probability operations may contain gates that take
us from one symmetry space to another, for which we need to
adjust our symmetry verification criterion accordingly. As discussed
in Section “NISQ limit”, an even number of occurrence of local
detectable errors can still escape the symmetry test and lead to
circuit errors. We can further suppress them by applying additional
quasi-probability operations as shown in Supplementary Note 6.
Alternatively, we can also try to remove these remaining errors by
applying error extrapolation as we will see below.
After using quasi-probability to transform all local errors into

local detectable errors with the mean circuit error count μd,
performing symmetry verification will split the circuit runs into
two partitions, one has an even number of detectable errors
occurring and will pass the symmetry test, the other has an odd
number of detectable errors occurring and will fail the symmetry
test. Consequently, the noisy observable expectation value
(Eq. (35)) can also be split into the weighted sum of these two
partitions

Oμd

� �
¼ e�μd coshðμdÞ Oc;μd

� �
þ sinhðμdÞ Os;μd

� �	 

(40)

in which e�μd coshðμdÞ and e�μd sinhðμdÞ are the probability to
have an even and an odd number of errors occurring in the circuit,

respectively. And Oc;μd

� �
, Os;μd

� �
are the corresponding expecta-

tion values in these cases with

Oc;μd

� �
¼ 1

coshðμdÞ
PK

k¼1

Ak coshð 1� γkð ÞμdÞ;

Os;μd

� �
¼ 1

sinhðμdÞ
PK

k¼1

Ak sinhð 1� γkð ÞμdÞ:
(41)

We will consider the case that the decay of our expectation

value Oμd

� �
over increased mean circuit error count μd follows a

single exponential curve (K= 1) for simplicity, we then have

Oc;μd

� �
¼ Oh i coshð 1� γð ÞμdÞ

coshðμdÞ

Os;μd

� �
¼ Oh i sinhð 1� γð ÞμdÞ

sinhðμdÞ
(42)

which gives

Oh i ¼ sgn Oc;μd

� �	 

´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oc;μd

� �2
cosh2ðμdÞ � Os;μd

� �2
sinh2ðμdÞ

q
:

(43)

Note that we have used the fact that Oc;μd

� �
and Oh i have the

same sign since 1− γ > 0 and μd > 0. Here with the help of
symmetry verification and quasi-probability, we can now obtain
an estimate of the error-free expectation value Oh i by combining
the expectation value of the passed runs and failed runs at one
error rate μd instead of combining the expectation value of runs at
different error rates in the conventional error extrapolation. Note
that here we have assumed that we know the value of the mean
detectable circuit error count μd, which needs be known before
we can apply the quasi-probability step anyway. The method we
employed in Eq. (43) will be called hyperbolic extrapolation.
As derived in Supplementary Note 7D, the sampling cost factor

of hyperbolic extrapolation is

CH;μd ¼ coshð2 1� γð ÞμdÞ coshðμdÞeμd : (44)

To combine all three error mitigation techniques, we first use
quasi-probability to remove the error components that are
undetectable by symmetry verifications. Applying symmetry
verification will then split the circuit runs into two sets: runs with
even number of errors and runs with odd number of errors,
obtaining two separate expectation values. Using our under-
standing about the decay of the expectation value from our study
of error extrapolation, we can simply combine these two
erroneous expectation values and obtain the error-free expecta-
tion value. The full process is called quasi-probability with
hyperbolic extrapolation, and the corresponding total sampling
cost factor can be obtained using Eqs. (27) and (44)

CQHðγÞ ¼ CQ;μdCH;μd ¼ e4μϵ

coshðμdÞ coshð2 1� γð ÞμdÞ
e3μd

: (45)

We note that this is always smaller than the cost of pure quasi-
probability CQ;0 ¼ e4μϵ . Its cost-saving over pure quasi-probability
will increase with the increase of γ.

Numerical simulation for a combination of error mitigation
techniques

In this section, we will compare the performance of quasi-
probability with exponential extrapolation (QE) and quasi-
probability with hyperbolic extrapolation (QH) discussed in
Section “Combination of error mitigation techniques”. Similar to
Section “Numerical simulation for multi-exponential extrapola-
tion”, we will perform Fermi-Hubbard model simulation with local
two-qubit depolarising noise with a mean circuit error count μ.
The symmetry we will used in QH is the fermionic number parity
symmetry, which means that the resultant mean detectable circuit
error count after we apply the quasi-probability step in QH will be
μd ¼ μ

2
following Eq. (38). For the quasi-probability in QE in this

section, we will keep it at the same strength as that in QH, which
means that they have the same resultant circuit error rate: ν ¼ μ

2
.

Note that even though resultant channels after the partial quasi-
probability in both QE and QH give the same mean circuit error
count ν ¼ μ

2
¼ μd , in one case the resultant noise is still

depolarising while in the other case the resultant noise is locally
detectable. In this section, we will assume the quasi-probability
process is performed perfectly. Recall that for simplicity we have
only explicitly derived QH under the assumption that the
observable follows a single-exponential decay, so for a fair
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comparison, the QE method in this section will also only employ
single-exponential extrapolation. However as we will see later,
even when we look at observables that follow a dual-exponential
decay, which breaks our assumptions above, QH can still achieve
robust performance.
As shown in Fig. 1, for our example circuits, some observables

can be fitted well enough using single-exponential decay curves
while the other observables can only be fitted well using dual-
exponential decay curves. We will call these two types of
observables single-exponential observables and dual-exponential
observables, respectively. In Fig. 3, we have plotted the absolute
estimation bias ϵest using the two different extrapolation
techniques for the single-exponential and dual-exponential
observables. First, we can see that the estimation biases for the
dual-exponential observables are almost one order of magnitude
higher than the biases for the single-exponential observables. This
should not come as a surprise since both single-exponential
extrapolation and hyperbolic extrapolation are derived under the
assumptions of single-exponential observables. At the mean
circuit error counts μ= 2, for each observable, we have used
markers to label the method that can achieve a lower estimation
bias out of the two. We see that the number of single-exponential
observables that can achieve a lower estimation bias using
QE is comparable to that of QH. On the other hand, almost all
dual-exponential observables can achieve a lower estimation bias
using QH.
In Table 2, we further calculate the average estimation bias

of single-exponential, dual-exponential and all observables

separately at the circuit error rate μ= 1, 2, which re-confirm all
of our observations above. We see that the estimation bias of QE is
lower than that of QH for single-exponential observables, and on
the other hand, QH can achieve a lower estimation bias for dual-
exponential observables. In other words, the performance of QH is
more robust against whether the observable is single-exponential
or not. When looking at the estimation bias averaged over all
observables, we see the estimation bias of QH is always lower than
QE and can be four times smaller than QE at μ= 2. The all-
observable averages can be more indicative about the practical
performance of the mitigation techniques since in experiments we
do not know whether a given observable should be fitted with
single-exponential or not beforehand.
There is another added layer of robustness when we try to

apply QH instead of QE to multi-exponential observables when we
look back at the hyperbolic extrapolation equation Eq. (43). We
can see that if the shape of the observable is far off from a single-
exponential decay, then this might lead to a negative number in
the square root of Eq. (43), allowing us to realise that we need to
probe at more error rates to perform multi-exponential extrapola-
tion instead, and avoiding performing a bad extrapolation with a
very large bias. In the simulation, we indeed identify a few
observables that we cannot perform QH on. For these observables,
we can still perform QE, but it will lead to huge biases in the
estimates. These observables have been excluded in our
comparison between QE and QH.
Using Eqs. (45), (37) and (38), the sampling cost factor of

performing QH in our example circuit is

CQHðγÞ ¼ e
9
4
μ cosh

μ

2

� �
coshð 1� γð ÞμÞ;

where γ is the decay rate of the observable expectation values
under noise.
Using Eqs. (39), (37) and ν ¼ μd ¼ μ

2
) λ ¼ 2, the sampling cost

factor of performing QE is

CQE ¼ 2 4e γþ15
8ð Þμ þ e2γμ

� �
:

For comparison purpose, we also write down the sampling cost
factor for removing all the errors using quasi-probability given by
Eq. (26)

CQ;0 � e4μϵ ¼ e
15
4
μ:

The comparison between CQ,0, CQE(γ) and CQH(γ) at different γ is
plotted in Fig. 4. We can see that CQH(γ) is always lower than CQ,0
across all μ and γ, i.e. we can always get a sampling cost saving by
applying QH instead of pure quasi-probability, which is also

(a)

(b)

Fig. 3 Comparison of the biases in the error-mitigated expecta-
tion values between quasi-probability with exponential extra-
polation (QE) and quasi-probability with hyperbolic extrapolation
(QH) in an eight-qubit simulation. Plots showing a observables
following single-exponential decay and b observables following
dual-exponential decay. Within each plot, different colours represent
different observables. The solid lines denote QH, while the dashed
lines denote QE. At the mean circuit, error counts μ= 2, for each
observable, we use markers to denote the method that has lower
estimation bias out of the two. For a given observable, circular
markers denote lower estimation bias when using QH, while triangle
markers denote lower estimation bias when using QE.

Table 2. The biases in the error-mitigated estimates using QE and QH

averaged over single-exponential, dual-exponential and all

observables at the mean circuit error count (a) μ= 1 and (b) μ= 2.

a

ϵest=10
�4

1-Exp. Obs. 2-Exp. Obs. All Obs.

QE 5.1 100 53

QH 7.8 56 32

b

ϵest=10
�3 1-Exp. Obs. 2-Exp. Obs. All Obs.

QE 1.8 82 39

QH 3.2 20 11

The entries in (a) and (b) are in the units of 10−4 and 10−3, respectively.
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proven in Section “Combination of error mitigation techniques”.
On the other hand, at γ= 1, CQE is larger than CQH for all μ and
larger than CQ,0 for μ < 2.4. As γ decreases, CQH(γ) will increase
while CQE(γ) will decrease. Thus they naturally complement each
other as QH will be more suitable for large-γ error mitigation while
QE will be more suitable for small-γ error mitigation. At γ= 0, we
see that CQE becomes lower than both CQH and CQ,0 at μ > 1.8.
The average fitted γ of all the single-exponential observables

within each plot in Fig. 1 all lie within the range 0.5–0.6. Hence, we
will now focus on the γ= 0.5 plot in Fig. 4 to get an indication of
the practical sampling costs of implementing different mitigation
techniques.
At μ= 1, the sampling cost factor of quasi-probability is 43. QE

requires a higher sampling cost, thus there is no point performing
QE since pure quasi-probability can remove all the noise perfectly
in theory with a lower cost. Compared to quasi-probability, QH can
reduce the cost by more than 70% while still achieving the small

estimation bias ϵQH � 3 ´ 10�3 shown in Table 2. In order for
quasi-probability to have many advantages over QH, we must
sample enough times such that the shot noise of pure quasi-
probability is smaller than the estimation bias of QH (more
rigorous arguments in Supplementary Note 8), which will require

N	 � CQ;0

ϵ
2
QH

� 4:3 ´ 106 samples for each observable. Therefore in

practice, QH could be the preferred method over pure quasi-
probability as it is challenging to sample more than N* for each
observable within reasonable runtime constraints3.
At μ= 2, now the sampling cost factor of quasi-probability is

1800, which is hardly practical. QE can reduce this sampling cost
by half while achieving estimation bias around 4 × 10−2 (Table 2),
and QH can reduce this sampling cost by almost 90% while
achieving estimation bias around 1 × 10−2 (Table 2), thus they
both would be preferred over pure quasi-probability in practice

following similar arguments in the μ= 1 case. We also see that QH
outperforms QE in terms of both sampling cost and estimation
bias at μ= 2, and thus would be preferred over QE. The cost of QE
will only become lower than QH at μ= 3.9, however, at this point,
neither of their sampling costs are likely to be practical.

DISCUSSION

In this article, we have recapped and studied the mechanism and
performance of three of the most well-known error mitigation
techniques: symmetry verification, quasi-probability and error
extrapolation under Pauli noise. By introducing the concepts of
group errors and NISQ limits, we managed to prove that the
change of the expectation value of a Pauli observable with
increased Pauli noise strength can be approximated using multi-
exponential decay, enabling us to extend exponential error
extrapolation to multi-exponential extrapolation. We then per-
formed eight-qubit numerical simulations for Fermi–Hubbard
simulation under two different Pauli noise models, finding that
the decay of their Pauli expectation values can all be fitted using
single- or dual-exponential curves, confirming our earlier proof of
multi-exponential decay. Using the same circuits, we performed
dual-exponential extrapolation by probing at four different error
rates, which is a minimal number of data points required, and
managed to obtain a low estimation bias of ≲10−4 for almost all
34 observables except for one fringe case. In our simulations, the
estimation bias of dual-exponential extrapolation is on average
~100 times lower than that of single-exponential extrapolation,
with the maximum factor of bias reduction reaching ~104.
We then proceeded to combine different error mitigation

techniques in the context of well-characterised local Pauli noise.
Instead of using quasi-probability to completely remove all the

(a) (b)

(c)

Fig. 4 Comparison of the sampling cost factors between pure quasi-probability (Q), quasi-probability with exponential extrapolation
(QE) and quasi-probability with hyperbolic extrapolation (QH). Plots showing different noisy observable decay rate a γ= 1, b γ= 0 and
c γ= 0.5. We have labelled the values of the lines at the mean circuit error counts μ= 0.5, 1, 2, 4. We have also labelled the intersects between
lines of different methods using red markers.
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noise, we can use it to suppress the noise strength and perform
error extrapolation, which is named quasi-probability with
exponential extrapolation (QE). Alternatively, we can use quasi-
probability to remove the local undetectable noise and perform
symmetry verification. Then instead of discarding all the circuit
runs that fail the symmetry test, we have developed a way to
recombine the expectation values of the “failed” and “passed”
runs to obtain an estimate of the noiseless observable. The full
combined method is called quasi-probability with hyperbolic
extrapolation (QH). Note that both QE and QH are free of the
requirement to adjust the hardware error rate despite the name
“extrapolation”. By performing eight-qubit Fermi–Hubbard model
simulations under local depolarising noise and using the fermionic
number parity symmetry, we found that QH outperforms QE in
terms of both estimation bias and sampling costs for almost all
cases. When compared to pure quasi-probability, QH can achieve
factor-of-4 and factor-of-9 sampling cost savings at the mean
circuit error count μ= 1 and μ= 2, respectively, while still
maintaining a low estimation bias of 10−3–10−2. Hence, QH
would outperform pure quasi-probability in our examples unless
we obtain an impractical number of samples (more than millions)
per observable.
QH is derived under the assumption that the observables decay

along single-exponential curves with increased noise. Our simula-
tion shows that QH can be robust against violation of this
assumption when applied to dual-exponential observables. How-
ever, such robustness may not persist with a further increase in the
number of exponential components. A multi-exponential version of
QH can be done through probing at more error rates and fitting Eq.
(41) to the data. Alternatively, instead of probing at more error
rates, we can also try to verify more symmetries. In such a way, we
can obtain a set of expectation values corresponding to different
verification syndromes for the multi-exponential version of the
hyperbolic fitting. An example can be using the separate fermion
number parity symmetries for each spin subspace, which will lead
to expectation values corresponding to the four possible verifica-
tion syndromes. However, how to recombine these expectation
values in the case of multiple symmetries and how to use quasi-
probability to transform the local error channels into the suitable
forms for such a recombination is not a simple extension of the
single-symmetry case we considered.
In our derivation, the number of exponential components in the

expectation value decay curve in Eq. (34) is expected to scale
exponentially with the number of gates. However, in our
simulations, we fitted at most two exponential components for
each of the observable decay curves. More analysis is needed to
bridge the gap between the expected and the actual number of
exponential components required, possibly based on the sym-
metry of the circuit. This will help us understand how the number
of exponential components scales with the system size, enabling
us to gauge the performance and the costs of scaling up the
multi-exponential extrapolation method. It might be useful to
draw ideas from non-Clifford randomized benchmarking15–17, in
which multi-exponential decay is also employed for the fitting of
the fidelity curves. When applying multi-exponential extrapolation
in practice, we might want to develop Bayesian methods to
determine whether we need to probe at more error rates, which
error rates to probe, and whether to change the number of
exponential components of our fitted curve based on the existing
data. This has been done in the context of randomized
benchmarking18 and it would be interesting to see its perfor-
mance in the context of multi-exponential extrapolation.
One combination of error mitigation techniques that we have

not explored here is pairing symmetry verification with error
extrapolation without using quasi-probability. The naive version of
such a combination is discussed in ref. 3. To make use of the results
in this Article, one possible way is to approximate all the local error
channels as the compositions of detectable and undetectable error

channels, so that we can deal with them separately using
hyperbolic extrapolation and exponential extrapolation. It would
be very interesting to see the implementation details of such a
method and how it compares to pure error extrapolation.
We have only considered Pauli noise in this Article, thus it will

also be interesting to see whether our arguments can be extended
to other error channels like amplitude damping or coherent errors.
In practice, we can transform any error channels into Pauli
channels using Pauli twirling19,20 and then apply our methods.
Note that we can even perform further twirling like Clifford
twirling to transform the error channels into group channels,
which can be better mitigated as we have observed. Ways to
transform a given error channel into a group channel can be an
interesting area of investigation.
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