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ABSTRACT

We propose a patch-wise approach for multi-exposure image

fusion (MEF). A key step in our approach is to decompose

each color image patch into three conceptually independent

components: signal strength, signal structure and mean inten-

sity. Upon processing the three components separately based

on patch strength and exposedness measures, we uniquely re-

construct a color image patch and place it back into the fused

image. Unlike most pixel-wise MEF methods in the literature,

the proposed algorithm does not require significant pre/post-

processing steps to improve visual quality or to reduce spatial

artifacts. Moreover, the novel patch decomposition allows us

to handle RGB color channels jointly and thus produces fused

images with more vivid color appearances. Extensive experi-

ments demonstrate the superiority of the proposed algorithm

both qualitatively and quantitatively.

Index Terms— Multi-exposure fusion, image enhance-

ment, perceptual image processing

1. INTRODUCTION

Natural scenes often contain luminance levels that span a very

high dynamic range (HDR), whose visual information may

not be fully captured by a normal camera with a fixed ex-

posure setting [1]. Multi-exposure image fusion (MEF) al-

leviates the problem by taking multiple images of the same

scene under different exposure levels and synthesizing a low

dynamic range (LDR) image from them. The resulting fused

image is expected to be more informative and perceptually

appealing than any of the input images. An example is given

in Fig. 1. Compared with the typical HDR imaging pipeline,

MEF bypasses the intermediate HDR construction step and

directly yields an LDR image for normal displays.

Since first introduced in 1984 [3], MEF has attracted con-

siderable interests from both academia and industry. Most ex-

isting MEF algorithms are pixel-wise methods that typically

take the form of

Y(i) =
K
∑

k=1

Wk(i)Xk(i) , (1)

where K is the number of input images in the multi-exposure

source sequence, Wk(i) and Xk(i) indicate the weight and

(a) Source image sequence by courtesy of Erik Reinhard

(b) Song12 [2] (c) Proposed

Fig. 1. Demonstration of MEF.

intensity values at the i-th pixel in the k-th exposure image,

respectively; Y represents the fused image. A straightforward

extension of this approach in transform domain is to replace

Xk(i) with transform coefficients. The weight map Wk often

bears information regarding structure preservation and visual

importance of the k-th input image at a pixel level. With spe-

cific models to quantify this information, existing MEF algo-

rithms differ mainly in the computation of Wk. In 1994, Burt

and Kolczynski applied Laplacian pyramid decomposition [3]

to MEF, where Wk is computed from local coefficient en-

ergy and the correlation between pyramids [4]. Mertens et

al. [5] defined contrast, color saturation and well exposure

measures to compute Wk. The fusion is done in a multires-

olution fashion. Edge preserving filters such as bilateral fil-

ter [6], guided filter [7] and recursive filter [8] are applied

to retrieve edge information and/or refine Wk in [9], [10]

and [11] respectively. Song et al. [2] incorporated MEF into a

MAP framework by first estimating the initial image with the

maximum visual contrast and scene gradient, and then sup-

pressing reversals in image gradients. Another MAP based

approach embedded perceived local contrast and color satu-

ration [12]. Gu et al. [13] extracted pixel-level gradient in-

formation from the structure tensor and smoothed it to com-

pute Wk. A similar gradient-based MEF method is proposed

in [14]. By exploiting the gradient direction, the method is

able to handle dynamic scenes that have moving objects. A
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detail-enhanced MEF is proposed in [15] on the basis of [5].

A relevant work in [16] divided input images into several non-

overlapping patches and selected the ones with the highest

entropy as the winners. The blocking artifact is reduced by

adopting a pixel-wise blending function. A main drawback

of most pixel-wise MEF algorithms is that the weight map

Wk is often very noisy and may create a variety of artifacts

if directly applied to the fusion process. Thus, most of the al-

gorithms resort to certain ad-hoc remediation efforts either by

pre-processing Xk (such as histogram equalization [11]) or

post-processing Wk (such as smoothing [5, 13, 15] and edge

preserving filtering [9–11]).

Different from the widely used pixel-wise approach of

MEF in the literature, we work with image patches. Specifi-

cally, we first decompose a color image patch into three con-

ceptually independent components: signal strength, signal

structure and mean intensity, and determine each component

respectively based on patch strength and exposedness mea-

sures. Such a novel patch decomposition enables us to handle

RGB channels jointly so as to better make use of color infor-

mation. As a result, the fused image has a more vivid color

appearance. Another advantage of patch-wise approaches is

their resistance to noise. As a result, unlike many existing

approaches, the proposed method does not need significant

ad-hoc pre/post-processing steps to improve the perceived

quality or to suppress the spatial artifacts of fused images.

Experiments demonstrate that the proposed algorithm creates

compelling fused images both qualitatively and quantitative-

ly.

2. PATCH-WISE MULTI-EXPOSURE FUSION

Let {xk} = {xk|1 ≤ k ≤ K} be a set of color image patch-

es extracted from the same spatial location of the source se-

quence that contains K multi-exposure images. Here xk for

all k are column vectors of CN2 dimensions, where C is the

number of color channels in the input images and N is the

spatial size of a patch. Each entry of the vector is given by

one of the three intensity values in RGB channels of a pixel

in the patch. Given any color patch, we first decompose it into

three components: signal strength, signal structure and mean

intensity

xk = ‖xk − µxk
‖ ·

xk − µxk

‖xk − µxk
‖
+ µxk

= ‖x̃k‖ ·
x̃k

‖x̃k‖
+ µxk

= ck · sk + lk , (2)

where ‖ · ‖ denotes the l2 norm of a vector, µxk
is the mean

value of the patch, and x̃k = xk − µxk
denotes a mean-

removed patch. The scalar ck = ‖x̃k‖, the unit-length vector

sk = x̃k/‖x̃k‖ and the scalar lk = µxk
represent the sig-

nal strength, signal structure and mean intensity components

of xk, respectively. Any patch can be uniquely decomposed

by the three components and the processing is invertible. As

such, the problem of constructing a patch in the fused image

is converted to determining the three components separately

and then inverting the decomposition.

We first determine the signal strength component. The

visibility of the local patch structure largely depends on local

contrast, which is directly related to signal strength. On one

hand, the higher the contrast, the better the visibility. On the

other hand, too large contrast may lead to unrealistic appear-

ance of the local structure. Considering all input source image

patches as realistic capturing of the scene, the patch that has

the highest contrast among them would correspond to the best

visibility under the realisticity constraint. Therefore, the de-

sired signal strength of the fused image patch is determined

by the highest signal strength of all source image patches:

ĉ = max
{1≤k≤K}

ck = max
{1≤k≤K}

‖x̃k‖ . (3)

Different from signal strength, the structures of local im-

age patches are denoted by unit-length vectors sk for 1 ≤
k ≤ K, each of which points to a specific direction in the

vector space. The desired structure of the fused image patch

corresponds to another direction in the same vector space that

best represents the structures of all source image patches. A

simple implementation of this relationship is given by

s̄ =

∑K

k=1
S (x̃k) sk

∑K

k=1
S (x̃k)

and ŝ =
s̄

‖s̄‖
, (4)

where S(·) is a weighting function that determines the con-

tribution of each source image patch in the structure of the

fused image patch. Intuitively, the contribution should in-

crease with the strength of the image patch. A straightfor-

ward approach that conforms with such intuition is to employ

a power weighting function given by

S(x̃k) = ‖x̃k‖
p , (5)

where p ≥ 0 is an exponent parameter.

Due to the construction of xk, Eq. (3) and Eq. (4) inher-

ently take into account color contrast and structure. As an ex-

ample, for uniform patches, the ones that contain strong color

information are preferred to grayish ones, which usually re-

sults from under/over-exposure. By contrast, existing MEF

algorithms that treat RGB channels separately may not make

proper use of color information in a patch and often produce

unwanted luminance changes.

With regard to the mean intensity of the local patch, we

take a similar form of Eq. (4)

l̂ =

∑K

k=1
L (µk, lk) lk

∑K

k=1
L (µk, lk)

, (6)

where L(·) is also a weighting function that takes the global

mean value µk of the color image Xk and the local mean
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value of the current patch xk as inputs. L(·) quantifies the

well exposedness of xk in Xk so that large penalty is given

when Xk and/or xk are under/over-exposed. We adopt a two

dimensional Gaussian profile to specify this measure

L (µk, lk) = exp

(

−
(µk − 0.5)2

2σ2
g

−
(lk − 0.5)2

2σ2

l

)

, (7)

where σg and σl control the spreads of the profile along µk

and lk dimensions, respectively.1

Once ĉ, ŝ and l̂ are computed, they uniquely define a new

vector

x̂ = ĉ · ŝ+ l̂ . (8)

We extract patches from the source sequence using a mov-

ing window with a fixed stride D. The pixels in overlapping

patches are averaged to produce the final output.

Throughout the paper, we set the patch size N = 11, the

stride of moving window D =
⌊

N
5

⌋

, the exponent param-

eter p = 4, two spreads of Gaussian profile σg = 0.2 and

σl = 0.5. Empirically, we find that the proposed algorithm is

robust to variations of N and p, and a smaller value of σg rela-

tive to σl is important to produce more perceptually appealing

results. The proposed method can be applied to grayscale im-

ages simply by setting C = 1.

3. EXPERIMENTAL RESULTS

We test the proposed method on a variety of static natural

scenes with different numbers of exposure levels against eight

existing MEF algorithms. For fair comparison, the same set

of parameter values is used to produce all fused images as de-

scribed previously. Due to space limit, only partial results are

shown here. Nevertheless, the proposed algorithm is demon-

strated to produce perceptually appealing results for all test

sequences both qualitatively and quantitatively.

Fig. 1 shows the fused images produced by Song12 [2]

and the proposed method on the “Balloons” sequence. We

observe that the proposed method produces a more natural

and vivid color appearance on the sky and the meadow re-

gions. Moreover, it does a better job on structure preservation

around the sun area. On the contrary, the fused image pro-

duced by Song12 [2] suffers from color distortions and detail

loss. Besides, this pixel-wise method does not explicitly re-

fine its weight map, and thus a noisy fused image may be

produced on other sequences which are not shown here.

In Fig. 2, we compare Mertens09 [5] with the proposed

method on the “Tower” sequence. The former algorithm per-

forms the best on average in a recent subjective user study

among eight MEF algorithms [17]. Compared with Merten-

s09 [5], we can clearly observe several perceptual gains on

the fused image produced by the proposed method. For ex-

ample, the structures of the tower at the top and the brightest

1Input multi-exposure images are normalized to [0,1].

(a) Mertens09 [5] (b) Proposed

Fig. 2. Comparison of the proposed method with Merten-

s09 [5]. Source sequence by courtesy of Jacques Joffre.

cloud area are much better preserved. Also, the color appear-

ance of the sky and the meadow regions is more natural and

consistent with the source sequence.

(a) Shutao12 [11] (b) Proposed

Fig. 3. Comparison of the proposed method with

Shutao12 [11]. Source sequence by courtesy of Tom Mertens.

Fig. 3 compares Shutao12 [11] with the proposed method

on the “House” sequence. Shutao12 [11] treats RGB channels

separately, making it difficult to properly make use of color

information. As a result, the color in the uniform areas such

as the walls and window frames, appears dreary. The global

luminance of the fused image also changes drastically, where

the left part of the image is clearly brighter than the right part.

By contrast, the proposed method better preserves the color

information and the overall appearance of the fused image is

more appealing.

The comparison results between Li12 [15] and the pro-

posed method on the “Belgium House” sequence is exem-

plified in Fig. 4. Li12 [15] is a detail-enhanced version of

Mertens09 [5]. Detail enhancement does not necessarily re-

sult in perceptual gains especially when it neglects the realis-

ticity constraint of camera acquisition. As a result, the fused

image produced by Li12 [15] looks unnatural around edges,

for example near the branches and window frames. The pro-
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Table 1. Performance comparison of the proposed method with existing MEF algorithms using the objective IQA model

in [18]. The quality value ranges from 0 to 1 with a higher value indicating better perceptual quality. globalEng stands for a

naı̈ve method that linearly combines the input images using global energy as weighting factors.

Source sequence [13] [15] [10] [9] [11] [2] globalEng [5] Proposed

Balloons 0.913 0.941 0.948 0.768 0.944 0.883 0.862 0.969 0.963

Cave 0.934 0.923 0.978 0.694 0.961 0.822 0.837 0.974 0.980

Chinese garden 0.927 0.951 0.984 0.911 0.982 0.878 0.928 0.989 0.988

Farmhouse 0.932 0.958 0.985 0.877 0.977 0.756 0.916 0.981 0.983

Lamp 0.871 0.933 0.934 0.864 0.937 0.817 0.887 0.948 0.945

Landscape 0.941 0.948 0.942 0.954 0.972 0.937 0.962 0.976 0.991

Madison Capitol 0.864 0.949 0.968 0.763 0.918 0.702 0.886 0.977 0.974

Office 0.900 0.954 0.967 0.907 0.972 0.919 0.955 0.984 0.986

Tower 0.931 0.950 0.986 0.895 0.984 0.178 0.912 0.986 0.981

Venice 0.889 0.937 0.954 0.892 0.952 0.845 0.913 0.966 0.978

Average 0.910 0.944 0.965 0.852 0.960 0.774 0.906 0.975 0.977

(a) Li12 [15] (b) Proposed

Fig. 4. Comparison of the proposed method with Li12 [15].

Source sequence by courtesy of Dani Lischinski.

posed method produces the fused image with a more realistic

appearance and little detail loss.

In order to evaluate the performance of MEF algorithms

objectively, we adopt a recently proposed image quality as-

sessment (IQA) model that well correlates with subjective

judgements [18]. Although a number of IQA models for gen-

eral image fusion have also been proposed [19–27], none of

them makes adequate quality predictions of subjective opin-

ions as reported in [17]. The details of these models can be

found in an excellent review paper [28]. The model in [18] is

based on the multi-scale structural similarity (SSIM) frame-

work [29,30]. It keeps a good balance between local structure

preservation and global luminance consistency. The quali-

ty value of the IQA model ranges from 0 to 1 with a high-

er value indicating better quality. The comparison results of

the proposed method with eight existing MEF algorithms on

ten source sequences are listed in Table 1, from which we

observe that the proposed method produces comparable re-

sults with Mertens09 [5] in terms of the IQA model in [18],

whose quality values are considerably higher than those of

other MEF algorithms. Note that the model in [18] works

with luminance component only and may underestimate the

quality gain of the proposed method, for which producing a

natural and vivid color appearance is one of the main advan-

tages.

The computational complexity of the proposed method in-

creases linearly with the number of pixels in the source se-

quence. Our unoptimized MATLAB code takes around 2.9
seconds to process a source sequence of size 341× 512× 3.

4. CONCLUSION AND FUTURE WORK

MEF is a handy and practical image enhancement framework

that is widely adopted in consumer electronics. Most exist-

ing MEF algorithms are pixel-wise methods, which often suf-

fer from noisy weight maps. As a result, ad-hoc pre/post-

processing steps are often involved in order to produce rea-

sonable results. By contrast, the proposed method works with

color image patches directly by decomposing them into three

conceptually independent components and determining each

component respectively based on patch strength and exposed-

ness measures. Experiments demonstrate that the proposed

method produces compelling fused images both visually and

in terms of a recently proposed objective quality model [18].

The novel patch decomposition underlying the proposed

method renders it highly flexible to include new features.

First, by incorporating the direction of structure vector sk

into the construction of the weighting function S(·), we may

be able to account for dynamic scenes. Second, by replacing

l̂ in the current computation with local patch mean values of

some already fused images, the algorithm is transformed to a

detail enhancement algorithm. The problem now is to find the

best candidate fused image that combines with the proposed

method to produce the best quality image. These issues will

be investigated in our future work.
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