
An extended abstract version of this work appears in Australasian Information Security Conference 2010, CPRIT volume 105, pp.
56–66. © Australian Computer Society, 2010. http://crpit.com/Vol105.html
This is the full version. EPRINT http://eprint.iacr.org/2008/214.

Multi-Factor Password-Authenticated Key Exchange
(full version)

Douglas Stebila
Information Security Institute, Queensland University of Technology, Brisbane, Australia

douglas@stebila.ca

Poornaprajna Udupi
Sun Microsystems Laboratories, Santa Clara, California, United States

poornaprajna.udupi@sun.com

Sheueling Chang
sheueling.shantz@gmail.com

December 2, 2009

Abstract

We consider a new form of authenticated key exchange which we call multi-factor password-
authenticated key exchange, where session establishment depends on successful authentication of
multiple short secrets that are complementary in nature, such as a long-term password and a one-time
response, allowing the client and server to be mutually assured of each other’s identity without
directly disclosing private information to the other party.

Multi-factor authentication can provide an enhanced level of assurance in higher-security scenarios
such as online banking, virtual private network access, and physical access because a multi-factor
protocol is designed to remain secure even if all but one of the factors has been compromised.

We introduce a security model for multi-factor password-authenticated key exchange protocols,
propose an efficient and secure protocol called MFPAK, and provide a security argument to show
that our protocol is secure in this model. Our security model is an extension of the Bellare-Pointcheval-
Rogaway security model for password-authenticated key exchange and accommodates an arbitrary
number of symmetric and asymmetric authentication factors.

Keywords: multi-factor authentication, passwords, key exchange, cryptographic protocols

1 Introduction
Phishing and spyware are two of the major security problems on the Internet today. Phishing, or server
impersonation, occurs when a malicious server convinces a user to reveal sensitive personal information,
such as a username and password, to a malicious server instead of the real server. Additionally, many
users’ computers are compromised with spyware, which can record users’ keystrokes (and thus passwords)
and transmit this information to a malicious party. These attacks are possible not because of the break of
any cryptographic protocol but because of externalities such as social engineering and software bugs.

In theory, these attacks can be addressed in part by using trusted cryptographic devices that can
store private keys and perform cryptographic operations, but such devices are difficult to deploy and
use. Years of experience have shown that passwords are a much more popular and easy-to-use form of
authentication, but are more susceptible to phishing and spyware attacks. In this work, we focus on the
use of passwords for authentication, since they are easier for users to use and carry between computers
than long private keys.

1

http://crpit.com/Vol105.html
http://eprint.iacr.org/2008/214
mailto:douglas@stebila.ca
mailto:poornaprajna.udupi@sun.com
mailto:sheueling.shantz@gmail.com

Phishing can be combated by protocols that provide strong, easy-to-use server-to-client authentication.
Password-authenticated key exchange (PAKE) can make server-to-client authentication easier and
resistant to offline dictionary attacks, and additionally provides a secure key for encryption.

Spyware is more difficult to defend against. If a user’s computer is compromised by passive spyware
that records keystrokes and occasionally transmits this information to an attacker’s server, then the use
of one-time passwords may be effective, since a previously used one-time password can not be used again.
Active spyware – that frequently communicates with the attacker’s server and actively alters the user’s
computer – is nearly impossible to defend against without additional trusted hardware.

To reduce the damage caused by compromising an authentication factor, many organizations with
high security requirements – such as financial institutions, governments, and corporate virtual private
networks (VPNs) – are deploying multi-factor authentication, which depends on a variety of attributes,
or factors. The factors could include: a long-term password, a set of one-time passwords, a private key,
or a biometric. To be effective in practice, factors should have different, complementary natures of
compromise. For example, one-time passwords cannot all be compromised unless one obtains the sheet
of paper listing all the one-time passwords or the device generating the one-time passwords, whereas
a biometric read by a trusted device (such as a secure fingerprint reader) should not be able to be
reproduced without the presence of the person in question (or at least their finger).

Contributions. Our goal is to design a framework for multi-factor authentication protocols that provides
flexibility in the number and nature of factors. Protocols secure in this framework should provide strong
mutual authentication, convey the authentication secrets in a secure manner, and remain secure even if
all but one of the authentication factors is compromised. The authentication secrets can be low-entropy
secrets, such as passwords. Using multiple low-entropy secrets can allow for passwords that may have
different modes of compromise, such as a memorized long-term password and a one-time password
generated from a hardware device or transmitted over a mobile phone text message.

First, we define a security model which is an extension of the Bellare-Pointcheval-Rogaway model
[BPR00] for PAKE. Our model allows for an arbitrary number of authentication factors, which can
be either symmetric or asymmetric. Our security definition formalizes the notion that a multi-factor
protocol should remain secure even if all but one of the factors has been compromised.

Next, we present an efficient multi-factor protocol that is secure in this model under standard
cryptographic assumptions in the random oracle model. Our protocol combines facets of the PAK
protocol [Mac02] for symmetric factors and the PAK-Z+ protocol [GMR05] for asymmetric factors. We
discuss how many different types of factors – long-term passwords, one-time passwords, biometrics, and
even private keys – can be used in our protocol.

Our work differs from previous work in PAKE because it uses multiple authentication factors and
maintains security even if some are compromised. Others have considered some aspects of multi-
factor authentication, but these have either used at least one factor that is a long cryptographic secret
[YWWD06b, PP04, YY06, PZ08], or have not provided strong server-to-client authentication resistant to
man-in-the-middle attacks.

Outline. The rest of our paper proceeds as follows. In Section 2, we describe the security model for
multi-factor PAKE. In Section 3, we present our protocol MFPAK and discuss its efficiency; we show
through a formal analysis that the MFPAK protocol is secure and discuss how various types of factors
can be used. Section 4 concludes the paper with what we believe are interesting directions for future
research. Appendix A specifies the PAK and PAK-Z+ protocols, design elements of which we use in
MFPAK; Appendix B presents the details of our security proof for the MFPAK protocol.

2

1.1 Related work

Password-authenticated key exchange was first introduced by Bellovin and Merritt in 1992 [BM92] as
the encrypted key exchange (EKE) protocol, in which the client and server shared the plaintext password
and exchanged encrypted information to allow them to derive a shared session key. A later variant
by Bellovin and Merritt, Augmented EKE (A-EKE) [BM93], removed the requirement that the server
have the plaintext password, instead having a (non-trivial) one-way transformation of the password,
which alone is not sufficient to impersonate the user. The former is called a symmetric password-based
protocol, because both client and server share the same plaintext password (or a trivial transformation
of it), whereas the latter is called asymmetric. The dominant model for the security of PAKE protocols
was proposed by Bellare, Pointcheval, and Rogaway [BPR00] and extended by Gentry, MacKenzie, and
Ramzan [GMR05] to accommodate asymmetric protocols.

Many PAKE protocols have been developed, including PAK [BMP00a, Mac02] and PAK-Z+ [GMR05]
which are relevant to our construction. Although universally composable constructions are attractive to
consider when combining primitives, the existing work on universally composable PAKE [CHK+05] is
only symmetric, not asymmetric, and thus unsuitable for our approach.

A number of two-factor authentication schemes have been proposed that rely on a short password
and a long cryptographic secret [PP04, YWWD06b, YY06]. Pointcheval and Zimmer [PZ08] presented a
multi-factor authentication scheme using a password, a long cryptographic secret, and biometric data;
their scheme has a formal security argument in a variant of the BPR model that shares some features
with ours.

There are also non-cryptographic approaches to multi-factor authentication, but these do not provide
as strong protection for the authentication factors. In a multi-channel system, the second factor is
delivered over a separate channel (for example, via an SMS text message on a mobile phone), which the
user then inputs into their web browser along side their password. In a multi-layer system, software
installed on the server evaluates additional attributes such as an HTTP cookie, IP address, and browser
identification string to heuristically analyze whether the user is likely to be authentic. Some multi-layer
systems try to offer additional reassurance to the user of the server’s identity by presenting the user
with a customized image or string. While these multi-channel and multi-layer approaches can offer
some increased assurance, they can be defeated by non-cryptographic means such as sophisticated
man-in-the-middle attacks and spyware, and have been shown to be easily ignored by users [SDOF07].

2 Security for multi-factor protocols
In a multi-factor PAKE protocol, multiple authentication secrets of complementary natures, such as a
long-term password and a one-time password, are used. We support two general types of authentication
factors: symmetric and asymmetric.

The authentication secrets must be used in a way that the client can convince the server that it
knows all the authentication secrets, and that the server can convince the client that it knows all the
authentication secrets: this provides mutual authentication. However, the protocol must be carefully
designed to not reveal any information about the authentication secrets to a passive or even active
adversary.

Secure communications often involve both authentication and encryption so, in addition to providing
authentication, we want protocols that establish an ephemeral shared secret key between client and
server that can be used, for example, for bulk encryption.

Informal security criteria. The general security criteria we use for multi-factor PAKE is that the protocol
should remain secure even if all but one authentication factor is known to an adversary. We identify four
security properties such a protocol should have:

3

1. Strong multi-factor server-to-client authentication: without knowledge of all of the authentication
factors, a server cannot successfully convince a client of its identity.

2. Strong multi-factor client-to-server authentication: without knowledge of all of the authentication
factors, a client cannot successfully convince a server of its identity.

3. Authentication secrets protected: no useful information about the authentication secrets is revealed
during the authentication process.

4. Secure session key establishment: at the end of the protocol, an honest client and an honest server
end up with a secure shared session key suitable for bulk encryption if and only if the mutual
authentication is successful; otherwise no session is established.

2.1 Security model

We define a model for the security of multi-factor PAKE that allows one to argue that a protocol is secure
by giving upper bounds on the probability that an adversary can break server-to-client or client-to-server
authentication, or determine the session key established; the authentication secrets are protected from
offline dictionary attacks as well.

This model is an extension of the model for PAKE proposed by Bellare, Pointcheval, and Rogaway
[BPR00] and modified by Gentry, MacKenzie, and Ramzan [GMR05]. The model allows for an arbitrary
number of authentication factors, and each factor can be either symmetric or asymmetric.

Participants. In this model, each interacting party is either a client or a server, is identified by a unique
fixed length string, and the identifier is a member of either the set Clients or Servers, respectively, with
Parties= Clients ∪̇ Servers.

Each authentication factor can be one of two types: symmetric or asymmetric. Suppose there are n
factors; let Is denote the indices of symmetric factors and Ia denote the indices of asymmetric factors. For
each client-server pair (C , S) ∈ Clients× Servers, n authentication factors exist. The `th authentication
factor pw`C ,S is chosen uniformly at random from the set Passwords` and is stored by the client. For

symmetric factors, the server also stores pw`C ,S; for asymmetric factors, the server stores a verifier pw`C ,S ,
which is some non-trivial transformation of pw`C ,S. (The notion of “non-trivial transformation” will be
clear in the freshness definition below, but intuitively the transformation should be such that compromise
of the verifier alone should not be sufficient to impersonate the user without performing a dictionary
attack.)

Execution of the protocol. During execution, a party may have multiple instances of the protocol
running. Each instance i of a party U ∈ Parties is treated as an oracle denoted by ΠU

i .
In a protocol, there is a sequence of messages, called flows, starting with a flow from the client

instance, responded to by a server instance, and so on. After some number of flows, an instance may
accept, at which point it hold a session key sk, partner id pid, and session id sid. Subsequently, it may
terminate. Two instances ΠC

i and ΠS
j are said to be partnered if they both accept, hold (pid, sid, sk)

and (pid′, sid′, sk′), respectively, with pid= S, pid′ = C , sid= sid′, and sk= sk′, and no other instance
accepts with session id equal to sid. Alternatively, an instance may reject at any point in time, meaning it
is no longer accepted or terminated.

Queries allowed. The protocol is determined by how participants respond to inputs from the envi-
ronment, and the environment is considered to be controlled by the adversary, which is formally a
probabilistic algorithm that issues queries to a challenger which simulates parties’ oracle instances. For a
protocol P, the queries that the adversary can issue are defined as follows (where clear by the setting,
we may omit the subscript P):

• ExecuteP(C , i, S, j): Causes client instance ΠC
i and server instance ΠS

j to faithfully execute protocol
P and returns the resulting transcript.

4

• SendP(U , i, M): Sends message M to user instance ΠU
i , which faithfully performs the appropriate

portion of protocol P based on its current state and the message M , updates its state as appropriate,
and returns any resulting messages.

• TestP(U , i): If user instance ΠU
i has accepted, then the following happens: the challenger chooses

b ∈R {0,1}; if b = 1, then return the session key of ΠU
i , otherwise return a random string of the

same length as the session key. This query may only be asked once.
• RevealSKP(U , i): If user instance ΠU

i has accepted, then returns session key sk held by ΠU
i .

• RevealFactorP(C , S,`): Returns the `th factor pw`C ,S held by client C with server S.

• RevealFactorVP(S, C ,`): If ` is an asymmetric factor: returns the `th factor’s verifier pw`C ,S held
by server S with client C .

The RevealFactor and RevealFactorV queries model the adversary learning the authentication
secrets, which corresponds to weak corruption in the Bellare-Pointcheval-Rogaway model. We do not
allow the adversary to modify stored authentication secrets (also called strong corruption).

Definition 2.1 (Freshness) An instance ΠU
i with partner id U ′ is fresh in the `th factor (with forward-

secrecy) if and only if none of the following events occur:
1. a RevealSK(U , i) query occurs;
2. a RevealSK(U ′, j) query occurs, where ΠU ′

j is the partner instance of ΠU
i , if it exists;

3. if U ∈ Clients: RevealFactor(U , U ′,`) (and/or RevealFactorV(U ′, U ,`) if the `th factor is asym-
metric) occurs before the Test query, and Send(U , i, M) occurs for some string M;

4. if U ∈ Servers: RevealFactor(U ′, U ,`) occurs before the Test query, and Send(U , i, M) occurs for
some string M.

This notion of freshness accommodates the idea that an instance should remain fresh even if all but one
of the authentication factors has been fully compromised. If an instance is fresh in all of its factors, then
it is also fresh in the original notion of freshness for PAKE.

Adversary’s goals. For session key security, the goal of an adversary is to guess the bit b used in the
Test query of an instance that is fresh in at least one of its factors; this corresponds to the ability of an
adversary to distinguish the session key from a random string of the same length. Let Succake-f`

P (A) be the
event that the adversary A makes a single Test query to some fresh in the `th factor instance ΠU

i that has
accepted and A eventually outputs a bit b′, where b′ = b and b is the randomly selected bit in the Test
query. The ake-f` advantage of A attacking P is defined to be Advake-f`

P (A) = 2Pr
�

Succake-f`
P (A)

�

− 1.
We can define similar notions for client-to-server, server-to-client, and mutual authentication. For

the security experiments involving authentication, the Test query is prohibited. We define Advc2s-f`
P (A)

to be the probability that a server instance ΠS
j with partner id C terminates without having a partner

oracle before the RevealFactor query in point 4 of the definition of freshness in the `th factor. We define
Advs2c-f`

P (A) to be the probability that a client instance ΠC
i with partner id S terminates without having

a partner oracle before the Reveal∗ queries in point 3 of the definition of freshness in the `th factor.
Finally, we define Advma-f`

P (A) =max{Advc2s-f`
P (A),Advs2c-f`

P (A)}.
We overload the Adv (and corresponding Pr(Succ)) notation: AdvN

P (t, qse, qex, qro) =maxA{Adv
N
P (A)},

where the maximum is taken over all adversaries running in time at most t, making at most qse and qex
queries of type SendP and ExecuteP , respectively, and at most qro random oracle queries.

Definition 2.2 (Secure multi-factor protocol) Let κ be a security parameter. A protocol P is a secure
multi-factor password authenticated key agreement protocol if there exists a negligible (in κ) ε and small

5

constants δ`, ` ∈ {1, . . . , n}, such that, for all polynomially-bounded adversaries A,

Advake-f`
P (A)≤

δ`qse
|Passwords`|

+ ε , if the `th factor is symmetric,
δ`((1−b`co)qse+b`coqro)

|Passwords`|
+ ε , if the `th factor is asymmetric,

and the corresponding bound applies for Advma-f`
P (A), where, for asymmetric factors `, b`co = 1 if A makes

a RevealFactorV(·, ·,`) query and 0 otherwise.

Intuitively, this notion of security says that any polynomially-bounded adversary can only do negligibly
better than doing an online dictionary attack at any unknown factors and can gain no advantage by
doing an offline dictionary attack. Ideally, δ` would be 1, indicating the adversary can only rule out one
password with each online guess; however, a protocol can still be secure as long as δ` is small compared
to |Passwords`|.

Since an instance that is fresh in all of its factors is also fresh in the original ake notion of PAKE, we
have that

Advake
P (A)≤ min

`∈{1,...,n}

¦

Advake-f`
P (A)

©

.

By providing bounds for each factor, we can provide greater granularity in relating the security of
factors to their risks of compromise. For example, lower entropy factors (represented by smaller values
of |Passwords`|) may be physically distributed and secured in different ways than higher entropy factors,
or may be used for a shorter period of time. This contrasts with the approach of [PZ08], in which there
is a single notion of freshness and a single bound over all factors.

2.2 Using one-time passwords

The model presented in Section 2.1 uses long-term authentication secrets that do not change over time.
However, multi-factor authentication may include a factor that varies, such as a one-time password.
Such a factor may be the response to a challenge, or may vary with time. The benefit of a one-time
password is that the compromise of a single one-time password should not affect the security for a
different one-time password. One-time passwords offer some protection against passive spyware, as
previously compromised one-time passwords are useless.

Although at first glance it may seem impractical for a user to store a large number of passwords, this
is actually quite practical and is already being done in the real world: for example, some European banks
issue paper lists of one-time passwords to users [Nor09], and corporations issue hardware devices for
pseudorandomly generating one-time passwords for virtual private network (VPN) access [RSA09] or
electronic commerce [Bli09]. Even though a user may be carrying as much data as in a cryptographic key,
one-time passwords offer usability benefits: carrying a cryptographic key requires a hardware interface
or carefully managed private key files, whereas one-time passwords can be easily entered in only a few
keystrokes.

Abdalla et al. [ACP05a] present a protocol for the use of one-time passwords in an authenticated
key exchange protocol but do not alter the security model from the standard BPR setting. Paterson and
Stebila [PS09] do present an alteration to the BPR security model that accommodates the compromise
of previous (and future) one-time passwords and we apply their ideas to allow for symmetric factors
using one-time passwords as follows.

Adjusting the model. We can alter the security definition of a multi-factor protocol to allow a symmetric
factor that corresponds to a one-time password by applying the ideas of Paterson and Stebila [PS09]. Let
` be the index of a symmetric factor for which we wish to use one-time passwords. Let Indices` be the

6

set of indices of one-time passwords, and let ch ∈ Indices`. When a party is activated, they are activated
with the index of the one-time password to use for that instance; a party can only be activated once for
each ch ∈ Indices`. Let {pw`C ,S,ch} be the set of one-time passwords between C and S, indexed by ch;

each such password is chosen uniformly at random from Passwords`. We add an additional parameter
ch to the RevealFactor query:

• RevealFactorP(C , S,ch,`): Returns the `th factor pw`C ,Sch held by client C with server S for
one-time password indexed by ch.

The definition of freshness in the `th factor of ΠU
i is adjusted as well, replacing points 3 and 4 in

Definition 2.1 with:
3. if U ∈ Clients: RevealFactor(U , U ′,ch,`) occurs before the Test query, and Send(U , i, M) occurs

for some string M , where ch is the index of the one-time password with which ΠU
i was activated;

4. if U ∈ Servers: RevealFactor(U ′, U ,ch,`) occurs before the Test query, and Send(U , i, M) occurs
for some string M , where ch is the index of the one-time password with which ΠU

i was activated.
The definitions of authentication are adjusted analogously as well.

Paterson and Stebila go on to show that any secure PAKE protocol can be used in the natural way
to build to a secure one-time PAKE protocol, by using the one-time password in place of the password.
This holds even when the one-time passwords are pseudorandomly generated or time-dependent. This
means that our MFPAK protocol in the next section can easily accommodate one-time passwords as
authentication factors.

3 MFPAK: a multi-factor password-authenticated key exchange protocol
MFPAK is the first PAKE protocol that uses multiple low-entropy authentication factors. It allows
for an arbitrary number of factors which can be asymmetric or symmetric, and these factors can be
independently changed as users need to change their passwords. Our approach is much more efficient, in
terms of number of expensive operations, than the naïve approach of combining existing PAKE protocols
as black boxes: we add no expensive operations for each additional symmetric factor, and only one
additional expensive operation (signature generation/verification) for each party for each asymmetric
factor.

3.1 Design ideas

We designed MFPAK by considering two existing one-factor protocols as our building blocks: the
asymmetric password protocol PAK-Z+ for asymmetric factors, and the symmetric password protocol
PAK for symmetric factors. These two protocols are similar in structure which allows us to gain some
efficiency improvements. All factors are tightly integrated into the authentication and key exchange
processes. The underlying session key agreement comes from a hashed Diffie-Hellman construction.
Authentication for asymmetric factors is done using a digital signature scheme, while for symmetric
factors it is done using hash functions.

Shielded ephemeral key. One of the main efficiency and security gains in the MFPAK protocol comes
in the first flow from the client to the server. In this flow, the client shields its ephemeral public key
by multiplying it by (the hash of) each factor. The client is made to commit to those values, thereby
preventing a malicious client from making an offline dictionary attack later on. Moreover, the server
must use the same values to unshield the client’s ephemeral public key or Diffie-Hellman key agreement
will fail, thereby committing the server to its choice of values. By doing this multiple shielding operation,
the client and server achieve mutual authentication, the client saves expensive operations compared to
running multiple protocols separately, and the authentication secrets are protected.

Digital signature for asymmetric factors. Authentication for asymmetric factors comes from using a
digital signature scheme, where the (short) authentication secret is used to shield the digital signature

7

private key which is stored on the server. During the login stage of the protocol, the server returns the
shielded private key, which the client can unwrap only if she knows the correct password. The client uses
the private key to perform a signing operation which the server verifies using the public key. This allows
for asymmetry: the compromise of the server’s database is not enough to impersonate the client to the
server without a dictionary attack. This technique, as used in PAK-Z+ [GMR05], is an instantiation of
the generic technique proposed by Gentry et al. [GMR06] for asymmetric password-based authentication.
It is important to note that the digital signature scheme is not used in its normal sense with published or
certified public keys, but simply as a convenient asymmetric construction.

Hash function for symmetric factors. The hash of a symmetric factor is stored on the server. The server
proves its knowledge of a symmetric factor by hashing it with the session key; the client does the same.

3.2 Protocol specification

The MFPAK protocol, like many other protocols, contains two stages: a user registration stage, com-
pleted once per client-server pair, and a login stage, completed each time a user attempts to login. For
convenience in presentation of the login stage, we assume there is at least one symmetric factor and
one asymmetric factor; however, the protocol can be altered in the natural way to deal with exclusively
symmetric or exclusively asymmetric factors. The number and type of factors are fixed and publicly
known.

Ingredients and notation. Let κ be a cryptographic security parameter. The notation z ∈R Z denotes
an element z selected uniformly at random from a set Z . Angle brackets 〈·〉 denote a list, and ·||· denotes
concatenation. The protocol operates over a finite cycle group G of order q, generated by g, for which
the Computational Diffie-Hellman (CDH) assumption holds. The function Acceptable(·) tests whether
an element is in G (or, for efficiency reasons, a group containing G; see [Mac02, §4]). It makes use
of a number of random hash functions based on random oracles [BR93]: H1 maps {0,1}∗ to group
elements (such as [CI09] for hashing into elliptic curve groups), while all other hash functions Hi
map {0,1}∗ to {0,1}κ. We also employ a signature scheme S = (Gen,Sign,Verify) that is existentially
unforgeable under chosen message attacks [GMR88]. Let (v, V)← Gen(1κ), where v is a private key
and V is the corresponding public key. Recall that pw`C ,S denotes client C ’s password for server S for the

`th factor, and pw`C ,S denotes the corresponding value held by the server, which may be equal to pw`C ,S

for symmetric factors and is some non-trivial transformation of pw`C ,S for asymmetric factors.
The user registration stage of MFPAK is given in Figure 1. This stage should be completed over

a private, authentic channel. The user registration stage can be altered in the obvious way to have
authentication secrets chosen by the server and supplied to the client, if necessary.

The login stage of MFPAK is given in Figure 2. This stage can be completed over a public, untrusted
channel. A client C initiates the login stage with a server S.

3.3 Nature of the factors

The MFPAK protocol can accommodate a wide variety of authentication secrets using either symmetric
or asymmetric factors, as we note below. Our approach offers improved functionality compared with the
naŢve way of combining multiple authentication secrets by simply concatenating them into one long
string: with concatenation, one cannot easily combine passwords that change over time (symmetric
factors) with long-term passwords (asymmetric factors) because the server does not store the plaintext
password.

Long-term passwords. Long-term passwords are best accommodated as an asymmetric factor, but can
be treated asymmetrically as well. Since long-term passwords do not change frequently (or at all), we
should reduce the damage that can be caused by compromise of the server database containing data for
these factors. Although we can never prevent dictionary attacks against the server’s database, we can

8

MFPAK User Registration
Client C Server S
for ` ∈ {1, . . . , n}:

1. store pw`C ,S ∈R Passwords
`

2. τ`← H1(C , S,`,pw`C ,S)
for ` ∈ Ia:

3. (v`, V`)←R Gen(1κ)
4. v′`← H2(C , S,`,pw`C ,S)⊕ v`
5. v′′` ← H3(`, v`)

6.
C ,{τ`},{V`},{v′`},{v

′′
` }−−−−−−−−−−−−→

for ` ∈ Is:
7. store pw`C ,S ← 〈τ`,τ

−1
`
〉

for ` ∈ Ia:
8. store pw`C ,S ← 〈τ`,τ

−1
`

, V`, v′`, v′′` 〉

Figure 1: The user registration stage of the MFPAK protocol.

raise the amount of work an attacker needs to do by using asymmetric factors.
One-time passwords. One-time passwords are usually best accommodated as symmetric factors.

Asymmetric factors could be used, but the costs for asymmetric factors may not be worth it for one-time
passwords. It may be more efficient to generate one-time passwords from a seed using a challenge-
response mechanism or a time-dependent generator. For factors that employ a challenge-response
mechanism, an initial message from the server to the client conveying the challenge can be added to the
beginning of the login stage of the protocol.

Cryptographic keys. Although our primary motivation has been the use of short strings as authentica-
tion secrets so users can easily carry their authentication secrets between computers, there is nothing
preventing a password-based protocol from using high-entropy secrets (that is, cryptographically large
keys) as opposed to low-entropy secrets. We can directly use a cryptographic key as pw`C ,S in either
the symmetric or asymmetric case. In the asymmetric case, it would be possible to further streamline
the protocol by having the user store the private key v` from the digital signature scheme, and adjust
the remainder of the protocol as follows: set pw`C ,S ← v`; in the registration stage, the server stores

pw`C ,S ← 〈τ`,τ
−1
`

, V`〉; in the login stage, the server omits steps 15 and 16 for this factor and the
client omits steps 22–25 for this factor. We recommend, however, that situations using exclusively
cryptographically large keys should consider traditional authenticated key exchange protocols as the
security models [CK01a, LLM07] are stronger and offer resistance to ephemeral key leakage in addition
to static key leakage.

Biometrics. Pointcheval and Zimmer [PZ08] describe in detail the use of biometric templates in an
authenticated key exchange protocol. They use secure sketches and fuzzy extractors to safely see if two
biometric templates match.

An alternative approach is to use fuzzy vaults, which were introduced by Juels and Sudan [JS02a].
They allow a secret to be embedded in a vault which is locked by a set of fuzzy values, such as the
minutiae of a fingerprint. Fuzzy vaults could for example be used in a multi-factor protocol as follows:
the user receives the fuzzy vault, uses her biometric to unlock the vault, and then uses the embedded
secret value as another factor in the multi-factor protocol.

Because of the privacy issues surrounding biometrics, we are not suggesting that biometrics naïvely
be used in our construction immediately, as there are numerous issues to consider. For example, should
the fuzzy vault be transmitted unencrypted or encrypted under the session key derived from the other

9

MFPAK Login
Client C Server S

1. x ∈R Zq
2. X ← g x

for ` ∈ {1, . . . , n}:
3. τ`← H1(C , S,`,pw`C ,S)
4. m← X ·

∏n
`=1 τ`

5.
C ,m

−−−−−→
6. reject if ¬Acceptable(m)
7. y ∈R Zq
8. Y ← g y

for ` ∈ Is:
9. lookup 〈τ`,τ−1

`
〉 ← pw`C ,S

for ` ∈ Ia:
10. lookup 〈τ`,τ−1

`
, V`, v′`, v′′` 〉 ← pw`C ,S

11. X ← m ·
∏n
`=1 τ

−1
`

12. σ← X y

13. sid← 〈C , S, m, Y 〉
14. k← H4(sid,σ,τ1, . . . ,τn)

for ` ∈ Ia:
15. a′`← H5(sid,σ,`,τ`)
16. a`← a′` ⊕ v′`

17.
Y,k,{a`},{v′′` }←−−−−−

18. σ← Y x

19. sid← 〈C , S, m, Y 〉
20. reject if k 6= H4(sid,σ,τ1, . . . ,τn)
21. k′← H6(sid,σ,τ1, . . . ,τn)

for ` ∈ Ia:
22. a′`← H5(sid,σ,`,τ`)
23. v′`← a′` ⊕ a`
24. v`← H2(C , S,`,pwC ,S,`)⊕ v′`
25. reject if v′′` 6= H3(`, v`)
26. s`← Signv`(sid)

27.
k′,{s`}−−−−−→

28. reject if k′ 6= H6(sid,σ,τ1, . . . ,τn)
for ` ∈ Ia:

29. reject if ¬VerifyV`(sid, s`)
30. sk← H7(sid,σ,τ1, . . . ,τn) sk← H7(sid,σ,τ1, . . . ,τn)

Figure 2: The login stage of the MFPAK protocol.

factors? Should the secret embedded in the vault contain error correcting information, as suggested in
[JS02a], or not? (We think not, as error correcting information allows an offline “dictionary” attacker
to detect whether it has the right input, whereas lack of error correction information would ideally
mean the attacker needs to do an online “dictionary” attack.) The use of biometrics in authenticated key
exchange merits further study.

10

3.4 Efficiency

In many e-commerce and online banking situations, the performance-limiting factor is the number of
connections a server can handle, and this is in turn limited by the number of expensive operations
required by the cryptographic protocol. MFPAK can increase security without a substantial additional
computational burden on the server.

Figure 3 compares the number of expensive operations (group exponentiations and signature
generation / verification) performed by a naïve combination of PAK and PAK-Z+ versus the MFPAK
protocol. MFPAK has a fixed overhead of two group exponentiations each on client and server side. For
each symmetric factor, there are no additional expensive operations (only multiplications and hashes,
not exponentiations); for each asymmetric factor, there is one additional expensive operation on each
side (signature generation by the client, signature verification by the server). This makes MFPAK much
more efficient, in terms of number of expensive operations, than if one were to make a multi-factor
scheme simply by running PAK and PAK-Z+ in parallel independently.

Operation
PAK & PAK-Z+ MFPAK

Client Server Client Server
exponentiations 2|Is|+ 2|Ia| 2|Is|+ 2|Ia| 2 2
signature generation |Ia| 0 |Ia| 0
signature verification 0 |Ia| 0 |Ia|
total 2|Is|+ 3|Ia| 2|Is|+ 3|Ia| 2+ |Ia| 2+ |Ia|

Figure 3: Comparison of expensive operations for combined PAK & PAK-Z+ and MFPAK.

3.5 Security analysis

The main idea of the security argument is that, if one factor, say the `∗th factor, remains uncompromised,
then the difficulty of breaking MFPAK is related to the difficulty of breaking the corresponding one
of either PAK (for a symmetric factor) or PAK-Z+ (for an asymmetric factor), each which is in turn
related to solving the Computational Diffie-Hellman problem.

For both symmetric and asymmetric factors, we describe a procedure (specified by a modifier M) to
transform an adversary A against MFPAK with the `∗th factor uncompromised into an adversary A∗

against the corresponding one of the two underlying protocols (PAK and PAK-Z+, respectively). The
transformations are such that, if the oracle instance in MFPAK against which the Test query is directed
is fresh in the `∗th factor, then the corresponding oracle instance is also fresh in the corresponding attack
on PAK (resp., PAK-Z+). This is possible because of the design of the MFPAK protocol: it essentially
runs both PAK and PAK-Z+ together while still capturing the security of each independently. This
design characteristic allows the relatively straightforward (although lengthy) security argument.

Our formal argument proceeds by considering four cases, two corresponding to an asymmetric factor
being uncompromised and two corresponding a symmetric factor being uncompromised. The cases are:

1. Asymmetric factor uncompromised, U∗ ∈ Clients: no RevealFactorMFPAK(U∗, U ′∗,`∗) or
RevealFactorVMFPAK(U ′∗, U∗,`∗) query.

2. Asymmetric factor uncompromised, U∗ ∈ Servers: no RevealFactorMFPAK(U ′∗, U∗,`∗) query.
3. Symmetric factor uncompromised, U∗ ∈ Clients: no RevealFactorMFPAK(U∗, U ′∗,`∗) query.
4. Symmetric factor uncompromised, U∗ ∈ Servers: no RevealFactorMFPAK(U ′∗, U∗,`∗) query.

These four cases are combined probabilistically to give the overall result. The details are provided
in Appendix B. Throughout, we assume passwords are uniformly distributed. The resulting security
statement is as follows:

11

Theorem 3.1 Let κ be a security parameter. Let G be a finite cyclic group generated by g and let S be a
signature scheme. Let A be an adversary that runs in time polynomial in κ, and makes at most qse and
qex queries of type Send and Execute, respectively, and at most qro queries to the random oracle. If ` is an
asymmetric factor, then let bco = 1 if A makes a RevealFactorV(·, ·,`) query to a server, and 0 otherwise.
Then MFPAK is a secure multi-factor PAKE protocol, with

Advake-f`
MFPAK(A)≤

16δ((1−bco)qse+bcoqro)
|Passwords`|

+ ε , if the `th factor is symmetric,
4δqse

|Passwords`|
+ ε , if the `th factor is asymmetric,

where ε is a negligible function of κ, and δ = |Clients| · |Servers|; a similar bound exists for Advma-f`
MFPAK(A).

As with any formal security argument, a proof of security does not imply security against all forms of
attack. A protocol may be vulnerable to attack methods not described by the security model. Nonetheless,
a security proof is valuable as a heuristic that the protocol is resistant to at least some types of attacks.

4 Conclusion and future work
We have presented a security model for multi-factor password-authenticated key exchange protocols
that can accommodate an arbitrary number of factors. We have provided a security argument showing
that our new protocol, MFPAK, is secure in this model. Our multi-factor authentication protocol offers
enhanced authentication protection through the use of complementary factors, such as a long-term
password and a one-time challenge/response. The construction is quite efficient in terms of the number
of operations per factor; for example, a two-factor version of our protocol using a long-term password and
one-time challenge/response has the same efficiency as the one-factor protocol PAK-Z+. The protocol
remains secure even if all but one of the authentication factors is fully known to an adversary. Our
multi-factor protocol is resistant to man-in-the-middle and impersonation attacks, providing enhanced
authentication in the face of more complex threats like phishing.

Other recent work in the field of PAKE protocols has focused on protocols where the sequence of
flows fits existing network protocols such as SSL/TLS. An open question is to design a provably secure
multi-factor PAKE protocol with support for asymmetric factors that fits within the message flow of
SSL/TLS.

Additionally, multi-factor protocols supporting an arbitrary number of factors could be designed
where some factors are optional and the number of factors used corresponds to differing levels of access
depending on the application situation: one factor could be used for read-only access, two factors for
small-value transactions, and three factors for large-value transactions.

An interesting future direction would be to further investigate the use of biometric information in a
multi-factor authenticated key exchange protocol. We have outlined some ideas involving fuzzy vaults,
but consideration of the privacy and security requirements requires further research.

Acknowledgements

This research performed while D.S. was at the University of Waterloo and S.C. was at Sun Microsystems
Laboratories. D.S. was supported in part by an NSERC Canada Graduate Scholarship. The authors
gratefully acknowledge helpful discussions with Alfred Menezes, Bodo Möller, Michele Mosca, and
Berkant Ustaoglu, and appreciate the feedback of anonymous referees.

12

References
[ACP05a] Michel Abdalla, Olivier Chevassut, and David Pointcheval. One-time verifier-based encrypted key

exchange. In Serge Vaudenay, editor, Public Key Cryptography (PKC) 2005, LNCS, volume 3386, pp.
47–64. Springer, 2005. DOI:10.1007/b105124. Full version available as [ACP05b].

[ACP05b] Michel Abdalla, Olivier Chevassut, and David Pointcheval. One-time verifier-based encrypted
key exchange, 2005. URL http://www.di.ens.fr/~mabdalla/papers/ACP05-letter.pdf.
Extended abstract published as [ACP05a].

[Bli09] Blizzard Entertainment. Blizzard authenticator, 2009. URL http://eu.blizzard.com/
support/article.xml?locale=en_GB&articleId=28152.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In Proceedings of the 1992 IEEE Computer Society Conference on Research
in Security and Privacy. IEEE, May 1992. DOI:10.1109/RISP.1992.213269.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange: a password-based pro-
tocol secure against dictionary attacks and password file compromise. In Proc. 1st ACM Conference on
Computer and Communications Security (CCS) [CCS93], pp. 244–250. DOI:10.1145/168588.168618.

[BMP00a] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure Password-Authenticated Key
exchange using Diffie-Hellman. In Preneel [Pre00], pp. 156–171. DOI:10.1007/3-540-45539-6_12.
Full version available as [BMP00b].

[BMP00b] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure Password-Authenticated Key
exchange using Diffie-Hellman, 2000. EPRINT http://eprint.iacr.org/2000/044. Short
version published as [BMP00a].

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against
dictionary attacks. In Preneel [Pre00], pp. 139–155. DOI:10.1007/3-540-45539-6_11.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In Proc. 1st ACM Conference on Computer and Communications Security (CCS) [CCS93],
pp. 62–73. DOI:10.1145/168588.168596.

[CCS93] Proc. 1st ACM Conference on Computer and Communications Security (CCS). ACM, 1993.

[CHK+05] Ron Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, Advances in Cryptology – Proc.
EUROCRYPT 2005, LNCS, volume 3494, pp. 404–421. Springer, 2005. DOI:10.1007/11426639_24.

[CI09] Jean-Sébastien Coron and Thomas Icart. A random oracle into elliptic curves, 2009. EPRINT

http://eprint.iacr.org/2009/340.

[CK01a] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology – Proc. EUROCRYPT 2001, LNCS,
volume 2045, pp. 453–474. Springer, 2001. DOI:10.1007/3-540-44987-6_28. Full version available
as [CK01b].

[CK01b] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels, 2001. EPRINT http://eprint.iacr.org/2001/040. Extended abstract published as
[CK01a].

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.
DOI:10.1137/0217017.

[GMR05] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. PAK-Z+, August 2005. URL http:
//grouper.ieee.org/groups/1363/WorkingGroup/presentations/pakzplusv2.pdf.
Contribution to the IEEE P1363-2000 study group for Future PKC Standards.

13

http://dx.doi.org/10.1007/b105124
http://www.di.ens.fr/~mabdalla/papers/ACP05-letter.pdf
http://eu.blizzard.com/support/article.xml?locale=en_GB&articleId=28152
http://eu.blizzard.com/support/article.xml?locale=en_GB&articleId=28152
http://dx.doi.org/10.1109/RISP.1992.213269
http://dx.doi.org/10.1145/168588.168618
http://dx.doi.org/10.1007/3-540-45539-6_12
http://eprint.iacr.org/2000/044
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1007/11426639_24
http://eprint.iacr.org/2009/340
http://dx.doi.org/10.1007/3-540-44987-6_28
http://eprint.iacr.org/2001/040
http://dx.doi.org/10.1137/0217017
http://grouper.ieee.org/groups/1363/WorkingGroup/presentations/pakzplusv2.pdf
http://grouper.ieee.org/groups/1363/WorkingGroup/presentations/pakzplusv2.pdf

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making password-based key
exchange resilient to server compromise. In Cynthia Dwork, editor, Advances in Cryptology – Proc.
CRYPTO 2006, LNCS, volume 4117, pp. 142–159. Springer, 2006. DOI:10.1007/11818175_9.

[JS02a] Ari Juels and M. Sudan. A fuzzy vault scheme. In Proc. IEEE International Symposium on Information
Theory (ISIT) 2002, p. 408. IEEE Press, 2002. DOI:10.1109/ISIT.2002.1023680. Full version
available as [JS02b].

[JS02b] Ari Juels and M. Sudan. A fuzzy vault scheme, 2002. URL http://www.rsa.com:80/rsalabs/
node.asp?id=2061.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated key
exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, First International Conference on
Provable Security (ProvSec) 2007, LNCS, volume 4784, pp. 1–16. Springer, 2007. DOI:10.1007/978-
3-540-75670-5_1.

[Mac02] Philip MacKenzie. The PAK suite: Protocols for password-authenticated key exchange. Technical
Report 2002-46, DIMACS Center, Rutgers University, 2002. URL http://dimacs.rutgers.edu/
TechnicalReports/abstracts/2002/2002-46.html.

[Nor09] Nordea Bank. Netbank security, 2009. URL http://www.nordea.ee/Private+customers/
E-channels++Netbank/Netbank/Netbank+Security/936612.html.

[PP04] Young Man Park and Sang Gyu Park. Two factor authenticated key exchange (TAKE) protocol in
public wireless LANs. IEICE Transactions on Communications, E87-B(5):1382–1385, May 2004.

[Pre00] Bart Preneel, editor. Advances in Cryptology – Proc. EUROCRYPT 2000, LNCS, volume 1807. Springer,
2000. DOI:10.1007/3-540-45539-6.

[PS09] Kenneth G. Paterson and Douglas Stebila. One-time-password-authenticated key exchange, Septem-
ber 2009. EPRINT http://eprint.iacr.org/2009/430.

[PZ08] David Pointcheval and Sébastien Zimmer. Multi-factor authenticated key exchange. In Steven M.
Bellovin and Rosario Gennaro, editors, Applied Cryptography and Network Security (ACNS) 2008,
LNCS, volume 5037, pp. 277–295. Springer, 2008. DOI:10.1007/978-3-540-68914-0_17.

[RSA09] RSA Security Inc. RSA SecurID, 2009. URL http://www.rsa.com/node.aspx?id=1156.

[SDOF07] Stuart Schecter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The emperor’s new security
indicators: An evaluation of website authentication and the effect of role playing on usability
studies. In Proc. IEEE Symposium on Security and Privacy (S&P) 2007, pp. 51–65. IEEE Press, 2007.
DOI:10.1109/SP.2007.35. EPRINT http://usablesecurity.org/emperor/.

[YWWD06a] Guomin Yang, Duncan S. Wong, Huaxiong Wang, and Xiaotie Deng. Formal analysis and systematic
construction of two-factor authentication scheme, 2006. EPRINT http://eprint.iacr.org/
2006/270. Short version published as [YWWD06b].

[YWWD06b] Guomin Yang, Duncan S. Wong, Huaxiong Wang, and Xiaotie Deng. Formal analysis and systematic
construction of two-factor authentication scheme (short paper). In Peng Ning, Sihan Qing, and
Ninghui Li, editors, Proc. 8th International Conference on Information and Communications Security
(ICICS) 2006, LNCS, volume 4307, pp. 82–91. Springer, 2006. DOI:10.1007/11935308_7. Full
version available as [YWWD06a].

[YY06] Eun-Jun Yoon and Kee-Young Yoo. An optimized two factor authenticated key exchange protocol
in PWLANs. In Vassil N. Alexandrov, Geert Dick van Albada, Peter M.A. Sloot, and Jack Dongarra,
editors, Computational Science – ICCS 2006, LNCS, volume 3992, pp. 1000–1007. Springer, 2006.
DOI:10.1007/11758525_133.

14

http://dx.doi.org/10.1007/11818175_9
http://dx.doi.org/10.1109/ISIT.2002.1023680
http://www.rsa.com:80/rsalabs/node.asp?id=2061
http://www.rsa.com:80/rsalabs/node.asp?id=2061
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://dimacs.rutgers.edu/TechnicalReports/abstracts/2002/2002-46.html
http://dimacs.rutgers.edu/TechnicalReports/abstracts/2002/2002-46.html
http://www.nordea.ee/Private+customers/E-channels++Netbank/Netbank/Netbank+Security/936612.html
http://www.nordea.ee/Private+customers/E-channels++Netbank/Netbank/Netbank+Security/936612.html
http://dx.doi.org/10.1007/3-540-45539-6
http://eprint.iacr.org/2009/430
http://dx.doi.org/10.1007/978-3-540-68914-0_17
http://www.rsa.com/node.aspx?id=1156
http://dx.doi.org/10.1109/SP.2007.35
http://usablesecurity.org/emperor/
http://eprint.iacr.org/2006/270
http://eprint.iacr.org/2006/270
http://dx.doi.org/10.1007/11935308_7
http://dx.doi.org/10.1007/11758525_133

A Other protocols
This section gives the specifications of the PAK [Mac02] and PAK-Z+ [GMR05] protocols and the
security statements for these protocols. The notation has been adapted from the original papers to match
the notation in this paper.

A.1 PAK

The user registration stage of the PAK protocol is given in Figure 4. This stage should be completed over
a private, authentic channel. The number of hash functions is irregular so as to match the numbering in
MFPAK.

PAK User Registration
Client C Server S

1. pwC ,S ∈R Passwords
2. τ−1← (H1(C , S,pwC ,S))

−1

3.
C ,τ−1

−→
4. store pwC ,S ← τ−1

Figure 4: The user registration stage of the PAK protocol.

The login stage of the PAK protocol is given in Figure 5. This stage can be completed over a public,
untrusted channel.

PAK Login
Client C Server S

1. x ∈R Zq
2. X ← g x

3. τ← H1(C , S,pwC ,S)
4. m← X ·τ
5.

C ,m
−→

6. reject if ¬Acceptable(m)
7. y ∈R Zq
8. Y ← g y

9. τ−1← pwC ,S
10. X ← m ·τ−1

11. σ← X y

12. sid← 〈C , S, m, Y 〉
13. k← H4(sid,σ,τ−1)

14.
Y,k
←−

15. σ← Y x

16. compute τ−1

17. sid← 〈C , S, m, Y 〉
18. reject if k 6= H4(sid,σ,τ−1)
19. k′ = H6(sid,σ,τ−1)

20.
k′−→

21. reject if k′ 6= H6(sid,σ,τ−1)
22. sk← H7(sid,σ,τ−1) sk← H7(sid,σ,τ−1)

Figure 5: The login stage of the PAK protocol.

15

We note that the client-side efficiency of PAK could be improved by having the server store both τ
and τ−1 in the user registration stage, and having both the client and server use τ instead of τ−1 in
the hash function computations on lines 13, 18, 19, 21, and 22. This would eliminate the need for the
client-side inversion on line 16 but remains equally secure.

The formal security statement for PAK is as follows, modified from the version in [Mac02] to include
constants:

Theorem A.1 [Mac02, Thm. 6.9] Let G be a finite cyclic group generated by g. Let A be an adversary that
runs in time t and makes at most qse and qex queries of type Send and Execute, and at most qro queries to
the random oracles. Then, for t ′ = t + (4q2

ro+ qse+ 2qex)texp,

Advake
PAK(A)≤

qse
|Passwords|

+ 2
�

qseAdv
cdh
G,g

�

t ′, q2
ro

�

+
(qse+ qex)(qro+ qse+ qex)

|G|

�

.

Moreover, the same bound applies for Advma
PAK(A).

A.2 PAK-Z+
The user registration stage of the PAK-Z+ protocol is given in Figure 6. This stage should be completed
over a private, authentic channel.

PAK-Z+ User Registration
Client C Server S

1. pwC ,S ∈R Passwords
2. (v, V)← Gen(1κ)
3. τ−1← (H1(C , S,pwC ,S))

−1

4. v′← H2(C , S,pwC ,S)⊕ v
5. v′′← H3(v)

6.
C ,τ−1,V,v′,v′′
−−−−−−−−−→

7. store pwC ,S ← 〈τ−1, V, v′, v′′〉

Figure 6: The user registration stage of the PAK-Z+ protocol.

The login stage of the PAK-Z+ protocol is given in Figure 7. This stage can be completed over a
public, untrusted channel.

We note that the client-side efficiency of PAK-Z+ could be improved by having the server store both
τ and τ−1 in the user registration stage, and having both the client and server use τ instead of τ−1 in
the hash function computations on lines 13, 14, 20, 21, and 28. This would eliminate the need for the
client-side inversion on line 18 but remains equally secure.

The formal security statement for PAK-Z+ is as follows, modified from the version in [GMR05] to
include constants:

Theorem A.2 [GMR05, Thm. 5.1] Let G be a finite cyclic group generated by g and let S be a signature
scheme with security parameter κ. Let A be an adversary that runs in time t and makes at most qse and qex
queries of type Send and Execute, and at most qro queries to the random oracles. Let bco = 1 if A makes a
RevealFactorV query to a server, and 0 otherwise. Then, for t ′ = t + (8q2

ro+ qse+ qex)texp,

Advake
PAK-Z+(A)≤

qse(1− bco) + qrobco
|Passwords|

+ ε ,

16

PAK-Z+ Login
Client C Server S

1. x ∈R Zq
2. X ← g x

3. τ← H1(C , S,pwC ,S)
4. m← X ·τ
5.

C ,m
−−−−−→

6. reject if ¬Acceptable(m)
7. y ∈R Zq
8. Y ← g y

9. 〈τ−1, V, v′, v′′〉 ← pwC ,S
10. X ← m ·τ−1

11. σ← X y

12. sid← 〈C , S, m, Y 〉
13. k← H4(sid,σ,τ−1)
14. a′← H5(sid,σ,τ−1)
15. a← a′ ⊕ v′

16.
Y,k,a,v′′
←−−−−−

17. σ← Y x

18. compute τ−1

19. sid← 〈C , S, m, Y 〉
20. reject if k 6= H4(sid,σ,τ−1)
21. a′← H5(sid,σ,τ−1)
22. v′← a′ ⊕ a
23. v← H2(C , S,pwC ,S)⊕ v′

24. reject if v′′ 6= H3(v)
25. s← Signv(sid)
26.

s−−−−−→
27. reject if ¬VerifyV (sid, s)
28. sk← H7(sid,σ,τ−1) sk← H7(sid,σ,τ−1)

Figure 7: The login stage of the PAK-Z+ protocol.

where

ε= 2qseAdv
cdh
G,g

�

t ′, q2
ro

�

+ 2
�

qseSucc
eu-cma
κ (t ′, qse) +

(qse+ qex)(qro+ qse+ qex)
|G|

�

.

Moreover,

Advs2c
PAK-Z+(A)≤

qse
|Passwords|

+ ε and Advc2s
PAK-Z+(A)≤

qse(1− bco) + qrobco
|Passwords|

+ ε .

B Security analysis
This section contains the details of the security analysis supporting Theorem 3.1.

It is helpful to be able to refer to the action of a party upon receipt of a message. We use the
notation CLIENTACTIONiP and SERVERACTIONiP to refer to the portion of the protocol P performed by
the client or server, respectively, after the ith flow. Thus, MFPAK as described in Figure 2 specifies
CLIENTACTION0MFPAK, SERVERACTION1MFPAK, CLIENTACTION2MFPAK, and SERVERACTION3MFPAK

17

B.1 Ingredients

Computational Diffie-Hellman assumption. MFPAK operates over a finite cycle group G for which
the Computational Diffie-Hellman (CDH) assumption holds. Let G be a finite cyclic group of order
q, let g be a generator of G, and let texp be the time it takes to perform an exponentiation in G.
Let Acceptable : G → {true, false} such that Acceptable(z) = true if and only if z ∈ G, where G is a
specified abelian group which has G as a subgroup. For two values X and Y , define DH(X , Y) = X y , if
Acceptable(X) and Y = g y , or DH(X , Y) = Y x , if Acceptable(Y) and X = g x . Let A be a probabilistic
algorithm with input (G, g, X , Y) that outputs a subset of G, and define

Advcdh
G,g(A) =Pr

�

DH(X , Y) ∈A(G, g, X , Y) :

(x , y) ∈R Zq, X = g x , Y = g y
�

.

Let Advcdh
G,g(t, n) =maxA{Adv

cdh
G,g(A)} where the maximum is taken over all algorithms running in time t

and outputting a subset of size at most n. The CDH assumption is that, for any probabilistic polynomial
time algorithm A, Advcdh

G,g(A) is negligible.

Random hash functions. MFPAK makes use of a number of random hash functions based on random
oracles [BR93]. A random hash function H : {0, 1}∗→ {0, 1}k is constructed by selecting each bit of H(x)
uniformly at random and independently for every x ∈ {0, 1}∗. We make use of a number of independent
random hash functions H1, H2, . . . , which can be constructed from a single random hash function H
by setting H`(x) = H(`||x). Constructing a hash function that outputs elements of a group instead of
{0,1}∗ is also possible and efficient, and in fact all of the hash functions used in MFPAK are into the
group G.

Signature scheme. MFPAK makes use of a signature scheme S = (Gen,Sign,Verify) that is existentially
unforgeable under chosen message attacks [GMR88]. Let (v, V)← Gen(1κ), where v is a private key
and V is the corresponding public key. Let tGen be the runtime of Gen(1κ), and tsig be the runtime of
Sign and Verify. A forger F is given a public key V and must forge signatures; it can query an oracle
that returns Signv(m) for any messages m of its choice. It succeeds if it can output a forgery (m,σ)
such that VerifyV (m,σ) = true, where m was not queried to the signing oracle. Let Succeu-cma

S,κ (F) =

Pr(F succeeds), and Succeu-cma
S,κ (t, qSign) = maxF

n

Succeu-cma
S,κ (F)

o

where the maximum is taken over
all forgers running in time t and making at most qSign queries to the signing oracle. A signature scheme
S is existentially unforgeable under chosen message attacks (eu-cma) if, for any probabilistic polynomial
time algorithm F , Succeu-cma

S,κ (F) is negligible.

B.2 Case 1: Attacking a client instance, asymmetric factor uncompromised

This case addresses impersonation of the server when the instance being attacked is a client instance
and the uncompromised `∗th factor is asymmetric.

The modifier M first uniformly at random guesses U∗ ∈R Clients and U ′∗ ∈R Servers as its guess
of who the adversary A will end up attacking. If the attacker ends up attacking the pair of users the
modifier has guessed, then we will show how to transform the attack into an attack on PAK-Z+.

Let GuessCS be the event that the modifier M correctly guesses U∗ and U ′∗. Then

Pr(GuessCS) = Pr((U∗ correct)∧ (U ′∗ correct)) (1)

≥
1

|Clients| · |Servers|
. (2)

For this case, we assume that no RevealFactorMFPAK(U∗, U ′∗,`∗) or RevealFactorVMFPAK (U ′∗, U∗,`∗)
query is issued against M: this case models server impersonation in the `∗th factor, which is why no

18

RevealFactorVMFPAK(U ′∗, U∗,`∗) query is allowed. Furthermore, no RevealFactorMFPAK(U∗, U ′∗,`∗) is
allowed because an adversary can easily recover the verifier pw`

∗

U∗,U ′∗ from the secret pw`
∗

U∗,U ′∗ and one
interaction with U ′∗.

The modifier M does the following to convert an MFPAK adversary A into a PAK-Z+ adversary
A∗.

Password preparation. For each (C , S,`) ∈ Clients × Servers × {1, . . . , n} \ {(U∗, U ′∗,`∗)}, M sets
pw`C ,S ∈R Passwords` and constructs the corresponding pw`C ,S. Of all the authentication secrets, only

pw`
∗

U∗,U ′∗ and pw`
∗

U∗,U ′∗ remain unknown to M at this point. Compute the corresponding τ`, for ` 6= `∗,
and set π←

∏n
`=1, 6̀=`∗ τ`.

Instantiation of PAK-Z+ simulator. We instantiate the PAK-Z+ simulator SPAK-Z+ with the following
random oracles: H∗i (C , S,pwC ,S) := Hi(C , S,`∗,pwC ,S) for i = 1, 2; H∗3(v) := H3(`∗, v);

H∗4(〈C ,S, m, Y 〉,σ,τ−1)

:=H4(〈C , S, m ·π, Y 〉,σ,τ1, . . . ,τ, . . . ,τn)

‖`∈Ia , 6̀=`∗H5(〈C , S, m ·π, Y 〉,σ,`,τ`) ;

H∗5(〈C , S, m, Y 〉,σ,τ−1) := H5(〈C , S, m · π, Y 〉,σ,`∗,τ); and H∗7(〈C , S, m, Y 〉,σ,τ−1) := H7(〈C , S, m ·
π, Y 〉,σ,τ1, . . . ,τ, . . . ,τn).1 These ‘starred’ functions are independent random oracles if the correspond-
ing unstarred functions are. The above construction is possible since {τ`} 6̀=`∗ and π are fixed and known
to M because of the guesses made at the beginning of this case. By using a concatenation of random
oracles, the PAK system computes the values we need in M’s handling of Execute and Send queries.

Further, SPAK-Z+ is instantiated with the following signature scheme (Gen,Sign∗,Verify∗):

Sign∗v(〈C , S, m, Y 〉) := Signv(〈C , S, m ·π, Y 〉)
Verify∗V (〈C , S, m, Y 〉, s) := VerifyV (〈C , S, m ·π, Y 〉, s).

Since the transformation that sends 〈C , S, m, Y 〉 7→ 〈C , S, m ·π, Y 〉 is just a permutation, it follows that
(Gen,Sign∗,Verify∗) is an eu-cma signature scheme whenever (Gen,Sign,Verify) is.

M’s handling of A’s queries. The modifier M performs the following modifications to the queries of
A. The main goal is for M to simulate all queries except for ones that are related to the U∗ and U ′∗

guessed at the beginning of the case: these queries are passed to the underlying PAK-Z+ simulator
SPAK-Z+.

RevealFactor(C , S,`):

1. If (C , S,`) 6= (U∗, U ′∗,`∗):
Return pw`C ,S .

2. If (C , S,`) = (U∗, U ′∗,`∗):
Reject; if this query occurs, then M’s guess
of U∗ and U ′∗ at the beginning of this case
was incorrect.

RevealFactorV(S, C ,`):

1. If (C , S,`) 6= (U∗, U ′∗,`∗):
Return pw`C ,S .

2. If (C , S,`) = (U∗, U ′∗,`∗):

Reject; if this query occurs, then M’s guess
of U∗ and U ′∗ at the beginning of this case
was incorrect.

Test(U , i):

1. If U = U∗:
Send a TestPAK-Z+(U , i) query to PAK-Z+
simulator SPAK-Z+ and return the result to
A.

2. If U 6= U∗:
Reject; if this query occurs, then M’s guess
of U∗ at the beginning of this case was incor-

1Note that we do not need to instantiate H∗6 because this oracle is not used by PAK-Z+.

19

rect.
RevealSK(U , i):

1. If U = U∗ or U = U ′∗:
Send a RevealSKPAK-Z+(U , i) query to
PAK-Z+ simulator SPAK-Z+ and return the
result to A.

2. Otherwise:
Return sk for instance ΠU

i .
Execute(C , i, S, j):

1. If (C , S) 6= (U∗, U ′∗):
M performs ExecuteMFPAK(C , i, S, j) with
all the values it has and returns the tran-
script.

2. If (C , S) = (U∗, U ′∗):
M will use the PAK-Z+ simulator SPAK-Z+
to obtain a transcript for this query.
(a) Send an ExecutePAK-Z+(C , i, S, j)

query to SPAK-Z+ and receive
〈C , m, Y, k, a, v′′, s〉.

(b) Set m̂← m ·π.
(c) Set k̂′ ∈R range(H6).
(d) Extract k̂ as the first component of k.
(e) Extract {a′`}`∈Ia , 6̀=`∗ from the remaining
|Ia| − 1 components of k.

(f) Compute {a`}`∈Ia , 6̀=`∗ .
(g) Set a`∗ ← a.
(h) Set v′′

`∗
← v′′.

(i) Compute {s`}`∈Ia , 6̀=`∗ .
(j) Set s`∗ ← s.
(k) Return 〈C , m̂, Y, k̂, {a`}, {v′′` }, k̂′, {s`}〉

to A.
Send(U , i, M):

If M is not a valid protocol message in a mean-
ingful sequence, then reject as would be done in
MFPAK.

1. If M = 〈“start”, S〉 and (U , S) 6= (U∗, U ′∗):
Perform CLIENTACTION0MFPAK and return
〈U , m〉.

2. If M = 〈“start”, S〉 and (U , S) = (U∗, U ′∗):
(a) Send a SendPAK-Z+(U , i, M) query to

SPAK-Z+ and receive 〈U , m〉.
(b) Set m̂← m ·π.
(c) Return 〈U , m̂〉.

3. If M = 〈C , m〉 and (C , U) 6= (U∗, U ′∗):
Perform SERVERACTION1MFPAK and return
〈Y, k, {a`}, {v′′` }〉.

4. If M = 〈C , m〉 and (C , U) = (U∗, U ′∗):
(a) Set m̂← m ·π−1.
(b) Send a SendPAK-Z+(U , i, 〈C , m̂〉) query

to SPAK-Z+ and receive 〈Y, k, a, v′′〉.
(c) Extract k̂ as the first component of k.
(d) Extract {a′`}`∈Ia , 6̀=`∗ from the remaining
|Ia| − 1 components of k.

(e) Compute {a`}`∈Ia , 6̀=`∗ .
(f) Set a`∗ ← a.
(g) Set v′′

`∗
← v′′.

(h) Return 〈C , m̂, Y, k̂, {a`}, {v′′` }〉.
5. If M = 〈Y, k, {a`}, {v′′` }〉 and (U , U ′) 6=
(U∗, U ′∗), where U ′ is the partner of U:
Perform CLIENTACTION2MFPAK and return
〈k′, {s`}〉.

6. If M = 〈Y, k, {a`}, {v′′` }〉 and (U , U ′) =
(U∗, U ′∗), where U ′ is the partner of U:
(a) Verify {v′′` }`∈Ia , 6̀=`∗ .
(b) Set k̂′← k‖`∈Ia , 6̀=`∗a

′
`.

(c) Send a SendPAK-Z+(U , i, 〈Y, k̂, a`∗ , v′′
`∗
〉)

query to SPAK-Z+ and receive 〈s〉.
(d) Set k̂′ ∈R range(H6) and store.
(e) Compute {s`}`∈Ia , 6̀=`∗ .
(f) Set s`∗ ← s.
(g) Return 〈k̂′, {s`}〉.

7. If M = 〈k′, {s`}〉 and (U ′, U) 6= (U∗, U ′∗),
where U ′ is the partner of U:
Perform SERVERACTION3MFPAK.

8. If M = 〈k′, {s`}〉 and (U ′, U) = (U∗, U ′∗),
where U ′ is the partner of U:
(a) Reject if k′ is not the same as the k̂′

generated in Case 6 above.
(b) Verify {s`}`∈Ia , 6̀=`∗ .
(c) Send a SendPAK-Z+(U , i, 〈s`∗〉) query to

SPAK-Z+.

Differences from MFPAK simulator. We must now analyze the differences between a true MFPAK
simulator and the view presented to the MFPAK adversary A by the modifier M.

First we note that the distributions of generated passwords exactly match the MFPAK specifications.
Furthermore, all the generated passwords exactly match the PAK-Z+ specifications.

Next, we note that M’s handling of A’s queries precisely matches what an MFPAK simulator would

20

do except in a small number of cases. The messages received from and forwarded from the use of the
PAK-Z+ simulator SPAK-Z+ can by inspection be seen to match what the MFPAK simulator would do
because SPAK-Z+ is using the specially constructed random oracles H∗i . The differences between M and
what a true MFPAK simulator would do are as follows:

• RevealFactor(C , S,`) when (C , S,`) = (U∗, U ′∗,`∗), RevealFactorV(S, C ,`) when (C , S,`) =
(U∗, U ′∗,`∗), and Test(U , i) when U 6= U∗:
The modifier M rejects here, while a true MFPAK simulator should not. If M correctly guessed
U∗ and U ′∗ at the beginning of this case, then none of these queries would occur, for if one did
then the instance in which a Test query is directed to ΠU∗

i would not be fresh in the `∗th factor.
• Execute(C , i, S, j) when (C , S) = (U∗, U ′∗), Send(U , i, M) when M = 〈Y, k, a, v′′〉 and (U , U ′) =
(U∗, U ′∗), where U ′ is the partner of U , and Send(U , i, M)when M = 〈k′, s〉 and (U , U ′) = (U ′∗, U∗),
where U ′ is the partner of U:
The modifier M generated a random value k̂′ for this instance instead of generating k′ =
H6(sid,σ,τ1, . . . ,τn). Since H6 is a random oracle, this substitution is distinguishable by the
adversary A if and only if A queries H6 on the arguments sid,σ,τ1, . . . ,τn. But if that occurs,
then A must know τ`∗ . These are the same inputs to the H∗7 oracle used to compute the session
key in the PAK-Z+ simulation SPAK-Z+, so the same adversary could distinguish the output of
TestPAK-Z+(U∗, i) received from SPAK-Z+. The latter event corresponds to the event Succake

PAK-Z+,
and so the substitution is distinguishable with probability at most Pr(Succake

PAK-Z+(A)).
Let Dist1|GuessCS be the event that the simulation M is distinguishable from a real MFPAK

simulator from A’s perspective given that the modifier correctly guessed U∗ and U ′∗ at the beginning of
this case. Then Pr(Dist1|GuessCS)≤ 3Pr(Succake

PAK-Z+(A)) by the argument above.

Result for case 1. Let U∗ ∈ Clients, U ′∗ ∈ Servers and let E1 be the event that neither
RevealFactorMFPAK(U∗, U ′∗,`∗) nor RevealFactorVMFPAK(U ′∗, U∗,`∗) occurs. The instance involving
U∗, U ′∗ in SPAK-Z+ is fresh if and only if the corresponding instance in M is fresh in the `∗th factor.
Thus, if event E1 occurs and event GuessCS occurs, then, whenever A wins against M, A∗ wins against
SPAK-Z+, except with probability at most Pr(Dist1|GuessCS). Therefore,

Pr
�

Succake-f`
M (t, qse, qex, qro)|E1,GuessCS

�

≤ Pr
�

Succake
PAK-Z+(t

′, qse, qex, q′ro)
�

,

where q′ro ≤ n(qro+ z+6qex+4qse), t ′ ≤ t+ n(qro+1)texp+qex(3texp+ |Ia|tsig)+qse(2ntexp+ |Ia|tsig),
and z =min{qse+ qex, |Clients| · |Servers|}. Moreover,

�

�

�Pr
�

Succake-f`
MFPAK(t, qse, qex, qro)|E1,GuessCS

�

− Pr
�

Succake-f`
M (t, qse, qex, qro)|E1,GuessCS

�

�

�

�

≤ Pr(Dist1|GuessCS) .

Combining these two expressions yields the following result:

Lemma B.1 Let U∗ ∈ Clients, U ′∗ ∈ Servers, and suppose that neither
RevealFactorMFPAK(U∗, U ′∗,`∗) nor RevealFactorVMFPAK(U ′∗, U∗,`∗) occurs (which is event E1). Then

Pr
�

Succake-f`
MFPAK(t, qse, qex, qro)|E1,GuessCS

�

≤ 4Pr
�

Succake
PAK-Z+(t

′, qse, qex, q′ro)
�

,

where q′ro ≤ n(qro+ z+6qex+4qse), t ′ ≤ t + n(qro+1)texp+ qex(3texp+ |Ia|tsig)+ qse(2ntexp+ |Ia|tsig),
and z =min{qse+ qex, |Clients| · |Servers|}, and a similar bound exists for Advs2c-f`

MFPAK.

21

B.3 Case 2: Attacking a server instance, asymmetric factor uncompromised

This case addresses impersonation of the client when the instance being attacked is a server instance
and the uncompromised `∗th factor is asymmetric.

The modifier M first uniformly at random guesses U∗ ∈R Servers and U ′∗ ∈R Clients as its guess of
who the adversary A will end up attacking. Let GuessSC be the event that the modifier M correctly
guesses U∗ and U ′∗. We note that Pr(GuessSC) = Pr(GuessCS).

For this case, we assume that no RevealFactorMFPAK(U ′∗, U∗,`∗) query is issued against M: this
case models client impersonation in the `∗th factor, which is why this query is not allowed.

The modifier M does the following to convert an MFPAK adversary A into a PAK-Z+ adversary
A∗.

Password preparation. For each (C , S,`) ∈ Clients × Servers × {1, . . . , n} \ {(U ′∗, U∗,`∗)}, M sets
pw`C ,S ∈R Passwords

` and constructs the corresponding pw`C ,S . Finally, M sets

pw`
∗

U ′∗,U∗ ← RevealFactorVPAK-Z+(U
∗, U ′∗)

(but only if M receives a RevealFactorVMFPAK(U∗, U ′∗,`∗) query). Of all the authentication secrets, only
pwU ′∗,U∗,`∗ remains unknown to M. Compute the corresponding τ` for ` 6= `∗ and set π←

∏n
`=1, 6̀=`∗ τ`.

Instantiation of PAK-Z+ simulator. We instantiate the PAK-Z+ simulator SPAK-Z+ with the following
random oracles: H∗i (C , S,pwC ,S) := Hi(C , S,`∗,pwC ,S) for i = 1, 2; H∗3(v) := H3(`∗, v);

H∗4(〈C , S, m, Y 〉,σ,τ−1) :=H4(〈C , S, m ·π, Y 〉,σ,τ1, . . . ,τ, . . . ,τn)

‖`∈Ia , 6̀=`∗H5(〈C , S, m ·π, Y 〉,σ,`,τ`) ;

H∗5(〈C , S, m, Y 〉,σ,τ−1) := H5(〈C , S, m · π, Y 〉,σ,`∗,τ); and H∗7(〈C , S, m, Y 〉,σ,τ−1) := H7(〈C , S, m ·
π, Y 〉,σ,τ1, . . . ,τ, . . . ,τn). These ‘starred’ functions are independent random oracles if the correspond-
ing unstarred functions are. The above construction is possible since {τ`} 6̀=`∗ and π are fixed and known
to M because of the guesses made at the beginning of this case.

Further, SPAK-Z+ is instantiated with the following signature scheme (Gen, Sign∗, Verify∗):

Sign∗v(〈C , S, m, Y 〉) := Signv(〈C , S, m ·π, Y 〉)
Verify∗V (〈C , S, m, Y 〉, s) := VerifyV (〈C , S, m ·π, Y 〉, s) .

As before, we note that (Gen,Sign∗,Verify∗) is an eu-cma signature scheme if (Gen, Sign, Verify) is.

M’s handling of A’s queries. The modifier M performs the following modifications to the queries of
A.

RevealFactor(C , S,`):

1. If (C , S,`) 6= (U ′∗, U∗,`∗):
Return pw`C ,S .

2. If (C , S,`) = (U ′∗, U∗,`∗):
Reject; if this query occurs, then M’s guess
of U∗ and U ′∗ at the beginning of this case
was incorrect.

RevealFactorV(S, C ,`):

1. If (C , S,`) 6= (U ′∗, U∗,`∗):
Return pwC ,S .

2. If (C , S,`) = (U ′∗, U∗,`∗):
(a) Send a RevealFactorV(U∗, U ′∗) query

to SPAK-Z+ and receive pw`
∗

U ′∗,U∗ .

(b) Return pw`
∗

U ′∗,U∗ .

Test(U , i):

1. If U = U∗:
Send a TestPAK-Z+(U , i) query to SPAK-Z+
and return the result to A.

2. If U 6= U∗:
Reject; if this query occurs, then M’s guess

22

of U∗ at the beginning of this case was incor-
rect.

RevealSK(U , i):
1. If U = U∗ or U = U ′∗:

Send a RevealSKPAK-Z+(U , i) query to
PAK-Z+ simulator SPAK-Z+ and return the
result to A.

2. Otherwise:
Return sk for instance ΠU

i .
Execute(C , i, S, j):

1. If (C , S) 6= (U ′∗, U∗):
M performs ExecuteMFPAK(C , i, S, j) with
all the values it has and returns the tran-
script.

2. If (C , S) = (U ′∗, U∗):
M will use the PAK-Z+ simulator SPAK-Z+
to obtain a transcript for this query.
(a) Send an ExecutePAK-Z+(C , i, S, j〉)

query to SPAK-Z+ and receive
〈C , m, Y, k, a, v′′, s〉.

(b) Set m̂← m ·π.
(c) Set k̂′ ∈R range(H6).
(d) Extract k̂ as the first component of k.
(e) Extract {a′`}`∈Ia , 6̀=`∗ from the remaining
|Ia| − 1 components of k.

(f) Compute {a`}`∈Ia , 6̀=`∗ .
(g) Set a`∗ ← a.
(h) Set v′′

`∗
← v′′.

(i) Compute {s`}`∈Ia , 6̀=`∗ .
(j) Set s`∗ ← s.
(k) Return 〈C , m̂, Y, k̂, {a`}, {v′′` }, k̂′, {s`}〉

to A.
Send(U , i, M):

If M is not a valid protocol message in a mean-
ingful sequence, then reject as would be done in
MFPAK.

1. If M = 〈“start”, S〉:
Perform CLIENTACTION0MFPAK and return

〈U , m〉.
2. If M = 〈C , m〉 and (C , U) 6= (U ′∗, U∗):

Perform SERVERACTION1MFPAK and return
〈Y, k, {a`}, {v′′` }〉.

3. If M = 〈C , m〉 and (C , U) = (U ′∗, U∗):
(a) Set m̂← m ·π−1.
(b) Send a SendPAK-Z+(U , i, 〈C , m̂〉) query

to SPAK-Z+ and receive 〈Y, k, a, v′′〉.
(c) Extract k̂ as the first component of k.
(d) Extract {a′`}`∈Ia , 6̀=`∗ from the remaining
|Ia| − 1 components of k.

(e) Compute {a`}`∈Ia , 6̀=`∗ .
(f) Set a`∗ ← a.
(g) Set v′′

`∗
← v′′.

(h) Return 〈C , m̂, Y, k̂, {a`}, {v′′` }〉.
4. If M = 〈Y, k, {a`}, {v′′` }〉 and (U , U ′) 6=
(U ′∗, U∗), where U ′ is the partner of U:
Perform CLIENTACTION2MFPAK and return
〈k′, {s`}〉.

5. If M = 〈Y, k, {a`}, {v′′` }〉 and (U , U ′) =
(U ′∗, U∗), where U ′ is the partner of U:
(a) Verify {v′′` }`∈Ia , 6̀=`∗ .
(b) Set k̂′← k‖`∈Ia , 6̀=`∗a

′
`.

(c) Send a SendPAK-Z+(U , i, 〈Y, k̂, a`∗ , v′′
`∗
〉)

query to SPAK-Z+ and receive 〈s〉.
(d) Compute {s`}`∈Ia , 6̀=`∗ .
(e) Set s`∗ ← s.
(f) Return 〈k̂′, {s`}〉.

6. If M = 〈k′, {s`}〉 and (U ′, U) 6= (U ′∗, U∗),
where U ′ is the partner of U:
Perform SERVERACTION3MFPAK.

7. If M = 〈k′, s〉 and (U ′, U) = (U ′∗, U∗), where
U ′ is the partner of U:
(a) Reject if k′ is not the same as the k̂′

generated in Case 5 above.
(b) Verify {s`}`∈Ia , 6̀=`∗ .
(c) Send a SendPAK-Z+(U , i, 〈s`∗〉) query to

SPAK-Z+.

Differences from MFPAK simulator. We must now analyze the differences between a true MFPAK
simulator and the view presented to the MFPAK adversary A by the modifier M.

First we note that the distributions of generated passwords exactly match the MFPAK specifications.
Furthermore, all the generated passwords exactly match the PAK-Z+ specifications.

Next, we note that M’s handling of A’s queries precisely matches what an MFPAK simulator would
do except in a small number of cases. The messages received from and forwarded from the use of the
PAK-Z+ simulator SPAK-Z+ can by inspection be seen to match what the MFPAK simulator would do
because SPAK-Z+ is using the specially constructed random oracles H∗i . The differences between M and

23

what a true MFPAK simulator would are as follows:
• RevealFactor(C , S,`) when (C , S,`) = (U ′∗, U∗,`∗) and Test(U , i) when U 6= U∗:

The modifier M rejects here, while a true MFPAK simulator should not. If M correctly guessed
U∗ and U ′∗ at the beginning of this case, then this query would never occur, for if it did then the
instance in which a Test query is directed to ΠU∗

i would not be fresh in the `∗th factor.
• Execute(C , i, S, j) when (C , S) = (U ′∗, U∗), Send(U , i, M) when M = 〈Y, k, a, v′′〉 and (U , U ′) =
(U ′∗, U∗) where U ′ is the partner of U , and Send(U , i, M) when M = 〈k′, s〉 and (U ′, U) = (U ′∗, U∗)
where U ′ is the partner of U:
The modifier M generated a random value k̂′ for this instance instead of generating k′ =
H6(sid,σ,τ1, . . . ,τn). Since H6 is a random oracle, this substitution is distinguishable by the
adversary A if and only if A queries H6 on the arguments sid,σ,τ1, . . . ,τn. But if that occurs,
then A must know τ`∗ . These are the same inputs to the H∗7 oracle used to compute the session
key in the PAK-Z+ simulation SPAK-Z+, so the same adversary could distinguish the output of
Test(U∗, i) received from SPAK-Z+. The latter event corresponds to the event Succake

PAK-Z+, and so
the substitution is distinguishable with probability at most Pr(Succake

PAK-Z+(A)).
Let Dist2|GuessSC be the event that the simulation M is distinguishable from a real MFPAK

simulator from A’s perspective given that the modifier correctly guessed U∗ and U ′∗ at the beginning of
this case. Then Pr(Dist2|GuessSC)≤ 3Pr(Succake

PAK-Z+(A)) by the argument above.

Result for case 2. Let U∗ ∈ Servers, U ′∗ ∈ Clients; let E2 be the event that RevealFactorMFPAK(U ′∗, U∗,`∗)
does not occur. The instance involving U ′∗, U∗ in SPAK-Z+ is fresh if and only if the corresponding in-
stance in M is fresh in the `∗th factor. Thus, if event E2 occurs and event GuessSC occurs, then, whenever
A wins against M, A∗ wins against SPAK-Z+, except with probability at most Pr(Dist2|GuessSC), since.
Therefore,

Pr
�

Succake-f`
M (t, qse, qex, qro)|E2,GuessSC

�

≤ Pr
�

Succake
PAK-Z+(t

′, qse, qex, q′ro)
�

,

where q′ro ≤ n(qro+ z+ 6qex+ 5qse), t ′ ≤ t + n(qro+ 1)texp+ qex(3texp+ |Ia|tsig) + qse(3texp+ |Ia|tsig),
and z =min{qse+ qex, |Clients| · |Servers|}. Moreover,

�

�

�Pr
�

Succake-f`
MFPAK(t, qse, qex, qro)|E2,GuessSC

�

− Pr
�

Succake-f`
M (t, qse, qex, qro)|E2,GuessSC

�

�

�

�

≤ Pr(Dist2|GuessSC) .

Combining these two expressions yields the following result:

Lemma B.2 Let U∗ ∈ Servers, U ′∗ ∈ Clients, and suppose that RevealFactorMFPAK (U ′∗, U∗,`∗) does not
occur (which is event E2). Then

Pr
�

Succake-f`
MFPAK(t, qse, qex, qro)|E2,GuessSC

�

≤ 4Pr
�

Succake
PAK-Z+(t

′, qse, qex, q′ro)
�

,

where q′ro ≤ n(qro + z + 6qex + 5qse), t ′ ≤ t + n(qro + 1)texp + qex(3texp + |Ia|tsig) + qse(3texp + |Ia|tsig),
and z =min{qse+ qex, |Clients| · |Servers|}, and a similar bound exists for Advc2s-f`

MFPAK.

B.4 Case 3: Attacking a client instance, symmetric factor uncompromised

This case addresses impersonation of the server when the instance being attacked is a client instance
and the uncompromised `∗th factor is symmetric.

The modifier M first uniformly at random guesses U∗ ∈R Clients and U ′∗ ∈R Servers as its guess of
who the adversary A will end up attacking. The event that the modifier correctly guesses these values is
GuessCS and Pr(GuessCS) is given in (2).

For this case, we assume that no RevealFactorMFPAK(U∗, U ′∗,`∗) query is issued against M: this
case models server impersonation in the `∗th factor, which is why this query is not allowed.

The modifier M does the following to convert an MFPAK adversary A into a PAK adversary A∗.

24

Password preparation. For each (C , S,`) ∈ Clients × Servers × {1, . . . , n} \ {(U∗, U ′∗,`∗)}, M sets

pw`C ,S ∈R Passwords`; and, if ` is an asymmetric factor, sets (v`, V`)
R← Gen(1κ) and constructs the

corresponding pw`C ,S. Of all the authentication secrets, only pw`U∗,U ′∗ remains unknown to M at this
point.

Instantiation of PAK simulator. We instantiate the PAK simulator SPAK with the following random
oracles: H∗1(C , S,pwC ,S) := H1(C , S,`∗,pwC ,S);

H∗4(〈C , S, m, Y 〉,σ,τ−1) :=H4(〈C , S, m ·π, Y 〉,σ,τ1, . . . ,τ, . . . ,τn)

‖`∈Ia
H5(〈C , S, m ·π, Y 〉,σ,`,τ`) ;

and H∗i (〈C , S, m, Y 〉,σ,τ−1) := Hi(〈C , S, m · π, Y 〉,σ,τ1, . . . ,τ, . . . ,τn) for i = 6,7. These ‘starred’
functions are independent random oracles if the component unstarred functions are. The above
construction is possible since {τ`} 6̀=`∗ and π are fixed and known to M because of the guesses made at
the beginning of this case.

M’s handling of A’s queries. The modifier M performs the following modifications to the queries of
A.

RevealFactor(C , S,`):

1. If (C , S,`) 6= (U∗, U ′∗,`∗): Return pw`C ,S .
2. If (C , S,`) = (U∗, U ′∗,`∗): Reject; if this

query occurs, then M’s guess of U∗ and U ′∗

at the beginning of this case was incorrect.

RevealFactorV(S, C ,`): Return pw`CS .

Test(U , i):
1. If U = U∗:

Send a TestPAK(U , i) query to simulator
SPAK and return the result to A.

2. If U 6= U∗:
Reject; if this query occurs, then M’s guess
of U∗ at the beginning of this case was incor-
rect.

RevealSK(U , i):
1. If U = U∗ or U = U ′∗:

Send a RevealSKPAK(U , i) query to PAK sim-
ulator SPAK and return the result to A.

2. Otherwise:
Return sk for instance ΠU

i .
Execute(C , i, S, j):

1. If (C , S) 6= (U∗, U ′∗):
M performs ExecuteMFPAK(C , i, S, j) with
all the values it has and returns the tran-
script.

2. If (C , S) = (U∗, U ′∗):
M will use the PAK simulator SPAK to help
construct a full transcript by performing the

following sequence of operations:
(a) Send an ExecutePAK(C , i, S, j) query to

SPAK and receive 〈C , m, Y, k, k′〉.
(b) Set m̂← m ·π.
(c) Extract k̂ as the first component of k.
(d) Extract {a′`}`∈Ia

from the remaining |Ia|
components of k.

(e) Compute {a`}`∈Ia
.

(f) Compute {s`}`∈Ia
.

(g) Return 〈C , m̂, Y, k̂, {a`}, {v′′` }, k̂′, {s`}〉
to A.

Send(U , i, M):

If M is not a valid protocol message in a mean-
ingful sequence, then reject as would be done in
MFPAK.

1. If M = 〈“start”, S〉 and (U , S) 6= (U∗, U ′∗):
Perform CLIENTACTION0MFPAK and return
〈U , m〉.

2. If M = 〈“start”, S〉 and (U , S) = (U∗, U ′∗):
(a) Send a SendPAK(U , i, 〈“start”, S〉) query

to SPAK and receive 〈U , m〉.
(b) Set m̂← m ·π and store.
(c) Return 〈U , m̂〉.

3. If M = 〈C , m〉 and (C , U) 6= (U∗, U ′∗):
Perform SERVERACTION1MFPAK and return
〈Y, k, {a`}, {v′′` }〉.

4. If M = 〈C , m〉 and (C , U) = (U∗, U ′∗):
(a) Set m̂← m ·π−1 and store.
(b) Send a SendPAK(U , i, 〈C , m̂〉) query to

25

SPAK and receive 〈Y, k〉.
(c) Extract k̂ as the first component of k.
(d) Extract {a′`}`∈Ia

from the remaining |Ia|
components of k.

(e) Compute {a`}`∈Ia
.

(f) Return 〈Y, k̂, {a`}, {v′′` }〉.
5. If M = 〈Y, k, a, v′′〉 and (U , U ′) 6= (U∗, U ′∗),

where U ′ is the partner of U:
Perform CLIENTACTION2MFPAK and return
〈k′, {s`}〉.

6. If M = 〈Y, k, {a`}, {v′′` }〉 and (U , U ′) =
(U∗, U ′∗), where U ′ is the partner of U:
(a) Verify {v′′` }`∈Ia

.
(b) Set k̂← k‖`∈Ia

a′`.

(c) Send a SendPAK(U , i, 〈Y, k̂〉) query to
SPAK and receive 〈k′〉 or reject.

(d) Compute {ŝ`}`∈Ia
.

(e) Return 〈k′, ŝ〉.
7. If M = 〈k′, s〉 and (U ′, U) 6= (U∗, U ′∗), where

U ′ is the partner of U:
Perform SERVERACTION3MFPAK.

8. If M = 〈k′, {s`}〉 and (U ′, U) = (U∗, U ′∗),
where U ′ is the partner of U:
(a) Reject if ¬VerifyV (〈U∗, U ′∗, m̂, Y 〉, s`)

for any ` ∈ Ia, where m̂ is the value
generated in step 4.

(b) Send a SendPAK(U , i, 〈k′〉) query to
SPAK.

Differences from MFPAK simulator. We must now analyze the differences between a true MFPAK
simulator and the view presented to the MFPAK adversary A by the modifier M.

First we note that the distributions of generated passwords and responses exactly match the MFPAK
specifications. Furthermore, all the generated responses exactly match the PAK specifications.

Next, we note that M’s handling of A’s queries precisely matches what an MFPAK simulator would
do except in a small number of cases. The messages received from and forwarded from the use of the
PAK simulator SPAK can by inspection be seen to match what the MFPAK simulator would do because
SPAK is using the specially constructed random oracles H∗. The differences between M and what a true
MFPAK simulator would do are as follows:

• RevealFactor(C , S,`) when (C , S,`) = (U∗, U ′∗,`∗):
The modifier M rejects here, while a true MFPAK simulator should not. If M correctly guessed
U∗ and U ′∗ at the beginning of this case, then this query would never occur, for if it did then the
instance in which a Test query is directed to ΠU∗

i would not be fresh in the `∗th factor.
• Test(U , i) when U 6= U∗:

The modifier M rejects here, while a true MFPAK simulator should not. If M correctly guessed
U∗ at the beginning of this case, then this query would never occur, for if it did then the instance
in which a Test query is directed to ΠU∗

i would not be fresh.
In particular, we note that, when the event GuessCS occurs, the handling of A’s Execute and Send

queries exactly matches the behaviour and distributions of a true MFPAK simulator.

Result for case 3. Let U∗ ∈ Clients, U ′∗ ∈ Servers; let E3 be the event that RevealFactorMFPAK(U∗, U ′∗,`∗)
does not occur. If event E3 occurs, the instance involving U∗, U ′∗ in SPAK is fresh if and only if the
corresponding instance in M is fresh in the `∗th factor. Thus, if event E3 occurs and event GuessCS
occurs, then, whenever A wins against M, A∗ wins against SPAK. Therefore,

Pr
�

Succake-f`
M (t, qse, qex, qro)|E3,GuessCS

�

≤ Pr
�

Succake
PAK(t

′, qse, qex, q′ro)
�

,

where q′ro ≤ n(2qro + 1+ 4z + 6qex + 5qse), t ′ ≤ t + z|Ia|tGen + (qro + 1)texp + qex(3texp + |Ia|tsig) +
qse(3texp+ |Ia|tsig), and z =min{qse+ qex, |Clients| · |Servers|}. Moreover,

Pr
�

Succake-f`
MFPAK(t, qse, qex, qro)|E3,GuessCS

�

= Pr
�

Succake-f`
M (t, qse, qex, qro)|E3,GuessCS

�

.

Combining these two expressions yields the following result:

26

Lemma B.3 Let U∗ ∈ Clients, U ′∗ ∈ Servers, and suppose that no RevealFactorMFPAK(U∗, U ′∗,`∗) query
occurs (which is event E3). Let A be an adversary that runs in time t and makes at most qse and qex queries
of type Send and Execute, respectively, and at most qro random oracle queries. Then

Pr
�

Succake-f`
MFPAK(A)|E3,GuessCS

�

≤ Pr
�

Succake
PAK(t

′, qse, qex, q′ro)
�

,

where q′ro ≤ n(2qro + 1+ 4z + 6qex + 5qse), t ′ ≤ t + z|Ia|tGen + (qro + 1)texp + qex(3texp + |Ia|tsig) +
qse(3texp+ |Ia|tsig), and z =min{qse+qex, |Clients| · |Servers|}, and a similar bound exists for Advs2c-f`

MFPAK.

B.5 Case 4: Attacking a server instance, symmetric factor uncompromised

This case addresses impersonation of the client when the instance being attacked is a server instance
and the uncompromised `∗th factor is symmetric. This case proceeds in the same was as Case 3, except
under the assumption that no RevealFactorMFPAK(U ′∗, U∗,`∗) query is issued against M

This leads to the following result for Case 4:

Lemma B.4 Let U∗ ∈ Servers, U ′∗ ∈ Clients, and suppose that no RevealFactorMFPAK(U ′∗, U∗,`∗) query
occurs (which is event E3). Let A be an adversary that runs in time t and makes at most qse and qex queries
of type Send and Execute, respectively, and at most qro random oracle queries. Then

Pr
�

Succake-f`
MFPAK(A)|E3,GuessSC

�

≤ Pr
�

Succake
PAK(t

′, qse, qex, q′ro)
�

,

where q′ro ≤ n(2qro + 1+ 4z + 6qex + 5qse), t ′ ≤ t + z|Ia|tGen + (qro + 1)texp + qex(3texp + |Ia|tsig) +
qse(3texp+ |Ia|tsig), and z =min{qse+qex, |Clients| · |Servers|}, and a similar bound exists for Advc2s-f`

MFPAK.

B.6 Overall result

By combining cases 1 and 2, we can obtain a result for instances that are fresh in the `∗th factor when
that factor is asymmetric, and by combining cases 3 and 4 we can obtain a result for instances that are
fresh in the `∗th factor when that factor is symmetric.

For the ake-f` advantage for an asymmetric factor, we have

Pr
�

Succake-f`
MFPAK(t, qse, qex, qro)

�

≤ Pr
�

Succake-f`
MFPAK(t, qse, qex, qro)|E1,GuessCS

�

/Pr(GuessCS)

+ Pr
�

Succake-f`
MFPAK(t, qse, qex, qro)|E2,GuessSC

�

/Pr(GuessSC)

≤ |Clients| · |Servers| · 8Pr
�

SuccPAK-Z+(t
′, qse, qex, q′ro)

�

,

where t ′ ≤ t + n(qro+ 1)texp+ qex(3texp+ |Ia|tsig) + qse(3texp+ |Ia|tsig), q′ro ≤ n(qro+ z+ 6qex+ 5qse),
and z =max{qse+ qex, |Clients| · |Servers|}.

For the ake-f` advantage for a symmetric factor, we have

Pr
�

Succake-f`
MFPAK(t, qse, qex, qro)

�

≤ 2Pr
�

Succake-f`
MFPAK(t, qse, qex, qro)|E3,GuessCS

�

/Pr(GuessCS)

≤ |Clients| · |Servers| · 2 Pr
�

SuccPAK(t
′′, qse, qex, q′′ro)

�

,

where q′′ro ≤ n(2qro + 1+ 4z + 6qex + 5qse), t ′′ ≤ t + z|Ia|tGen + (qro + 1)texp + qex(3texp + |Ia|tsig) +
qse(3texp+ |Ia|tsig), and z =max{qse+ qex, |Clients| · |Servers|}.

In each case, a similar bound applies for Advma-f`
MFPAK.

Substituting the security statements for PAK (Appendix A.1) and PAK-Z+ (Appendix A.2) and
simplifying the expressions, we obtain the following theorem describing the security of MFPAK:

27

Theorem B.5 Let G be a finite cyclic group generated by g and let S be a signature scheme with security
parameter κ. Let A be an adversary that runs in time t and makes at most qse and qex queries of
type Send and Execute, respectively, and at most qro queries to the random oracle. Let bco = 1 if A
makes a RevealFactorV(·, ·,`) query to a server, and 0 otherwise. Then MFPAK is a secure multi-factor
password-authenticated key exchange protocol, with

Advake-f`
MFPAK(A)≤

16δ((1−bco)qse+bcoqro)
|Passwords`|

+ ε, if the `th factor is symmetric,
4δqse

|Passwords`|
+ ε , if the `th factor is asymmetric,

where ε = 8qseAdv
cdh
G,g(t

′, q′2ro)+6qseSucc
eu-cma
S,κ (t ′, qse)+

5(qse+qex)(qro+qse+qex)
|G| and δ = |Clients| · |Servers|,

for t ′ = t + (z|Ia|+ 8(q′2ro + |Ia|qse + |Ia|qex))texp, q′ro = n(2qro + 4z + 6qex + 5qse), and z = max{qse +
qex, |Clients| · |Servers|}; a similar bound exists for Advma-f`

MFPAK(A).

28

	Introduction
	Related work

	Security for multi-factor protocols
	Security model
	Using one-time passwords

	MFPAK: a multi-factor password-authenticated key exchange protocol
	Design ideas
	Protocol specification
	Nature of the factors
	Efficiency
	Security analysis

	References
	Other protocols
	PAK
	PAK-Z+

	Security analysis
	Ingredients
	Case 1: Attacking a client instance, asymmetric factor uncompromised
	Case 2: Attacking a server instance, asymmetric factor uncompromised
	Case 3: Attacking a client instance, symmetric factor uncompromised
	Case 4: Attacking a server instance, symmetric factor uncompromised
	Overall result

