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ABSTRACT In order to reduce operation and maintenance costs, reliability, and quick response capability

of multi-fault intelligent diagnosis for the wind turbine system are becoming more important. This paper

proposes a rapid data-driven fault diagnostic method, which integrates data pre-processing and machine

learning techniques. In terms of data pre-processing, fault features are extracted by using the proposed

modified Hilbert–Huang transforms (HHT) and correlation techniques. Then, time domain analysis is

conducted to make the feature more concise. A dimension vector will then be constructed by including the

intrinsicmode function energy, time domain statistical features, and themaximumvalue of theHHTmarginal

spectrum. On the other hand, as the architecture and the learning algorithm of pairwise-coupled sparse

Bayesian extreme learningmachine (PC-SBELM) aremore concise and effective, it could identify the single-

and simultaneous-fault more quickly and precisely when compared with traditional identification techniques

such as pairwise-coupled probabilistic neural networks (PC-PNN) and pairwise-coupled relevance vector

machine (PC-RVM). In this case study, PC-SBELM is applied to build a real-time multi-fault diagnostic

system. To verify the effectiveness of the proposed fault diagnostic framework, it is carried out on a real wind

turbine gearbox system. The evaluation results show that the proposed framework can detect multi-fault in

wind turbine gearbox much faster and more accurately than traditional identification techniques.

INDEX TERMS Wind turbine, gearbox, multi-fault diagnosis, Hilbert-Huang transform, pairwise-coupled,

sparse Bayesian extreme learning machine.

I. INTRODUCTION

The development of wind energy has attracted the attention

of both the academics and the industries. It is predicted that,

by 2020, wind energy will account for 12% of the total

electricity production [1]. Due to the growing number of wind

farms and the harsh working conditions such as the load,

torque, and turbulence, the wind turbine is more prone to

damage than other rotating machinery. Moreover, as the wind

farms and turbines are located in areas which are hard to

access, themaintenance cost is always significant. To bemore

specific, a statistical investigation has shown that 17% of the

total failures and 30% of the maintenance cost are caused

by the gearbox [2]–[7]. As a result, real-time wind turbine

gearbox fault diagnosis is of great importance which would

help reduce the operation cost and the collateral damage

caused by a power cut.

Currently, there are many existing literature focused

on wind turbine fault diagnosis [1], [8]–[11] and can

be generally classified into (i) model-based methods,

(ii) knowledge-based methods and (iii) data-driven methods/

signal-based methods. Table 1 summarizes the pros and cons

of these three kinds of methods.

It can be noticed that none of these three categories of rotat-

ing machinery fault diagnostic methods can perfectly over-

come the issues that the others own. However, data-driven

based approaches don’t require much parameter assumption

and are prior knowledge free when compared with the other

two, which makes it more adaptive and accurate. As a result,

the new multi-fault diagnostic framework proposed in this

paper is based on the data-driven method which includes

two main stages: (1) signal processing and (2) pattern

recognition.
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TABLE 1. Advantages and disadvantages of current rotating machinery
fault diagnostic methods.

Vibration is the main signal sources adopted by many

researchers because of easy access. However, its accuracy

and the processing cost is always downgraded by the noise

interference and the relatively large datasets. To solve this

problem, signal processing techniques are studied in this

research for the selection of the most suitable one.

TABLE 2. Summary of different possible feature extraction methods.

Table 2 lists the dominant techniques used in the fault

diagnosis field, it can be seen that HHT overcomes most of

the of disadvantages encountered by other signal processing

methods. It mainly includes two steps, the first step is to

decompose the original signal using empirical mode decom-

position (EMD) into a series of IMFs which ranging from

high frequency to the low. Then, the Hilbert transform is

adopted to conduct spectrum analysis. Although HHT has

superior performance compared with other techniques and

is widely applied in fault diagnosis [25], the main disad-

vantage is the issue of mode mixing, as it uses EMD to

decompose signal. To solve the problem of the mode mixing,

an improved EMDmethod, ensemble empirical mode decom-

position (EEMD) [26]–[28], is applied to improve the perfor-

mance of EMD in Hilbert-Huang transform. As the original

signal contains many redundant components and EEMD is

only used to decompose the signal, not remove the noise,

there are still a lot of noise components in the generated IMFs

which will increase the computational cost and deteriorate the

accuracy. Therefore, selecting the fault related IMF is still an

imperative problem. To solve this problem, the correlation

coefficient in introduced and integrated into the proposed

method which can describe the correlation between each IMF

and the raw signal, eliminating the redundant IMF.Moreover,

to further extract representative fault features from the time

and frequency domain, statistical features in the time domain

and energy patterns of the processed IMF are selected. The

details of the feature extraction are discussed in Section III.

For various rotating machinery fault diagnosis circum-

stances, the most adopted techniques are relevance vector

machine (RVM) and probabilistic neural network (PNN).

However, the performance of PNN based methods is supe-

rior to that of SVM based approaches when dealing with

multi-label classifications [43]. Although PNN is better in

terms of accuracy, the network structure construction, like

the locations of neurons, the network size, and the smoothing

parameters, still hinder its applications.

The reason is that all training datasets will be included in

the pattern layer and the redundant datasets would consider-

ably increase the size of the network structure. Two serious

problems will come along with the large network which is

the higher computational cost and the over-sensitiveness. The

required computation will grow proportionally to the scale of

the network when dealing with an unknown pattern and the

over-sensitiveness would result in poor generalization perfor-

mance. Moreover, the tuning of the smoothing parameters

will also have a great influence on the performance and it

is data dependent. Relevance vector machine (RVM), also

known as a sparse Bayesian learning approach of SVM [44],

is another machine learning method capable of predicting

the posterior probability of the class. A study [45] already

showed that RVM outperformed SVM in terms of diagnos-

tic accuracy for fault diagnosis of low-speed bearings. For

engine fault diagnosis, a study [46] also demonstrated that

RVM was more robust than PNN for probabilistic classifica-

tion. One obstacle of RVM is that the complexity of Hessian

matrix computing attains O(N 2), with N being the number of

training data. This degrades the performance of RVM when

dealing with large datasets.

Sparse Bayesian extreme learning machine (SBELM) is a

variant of extreme learningmachine (ELM) developed in [47]

that combines the advantages of ELM and RVM. It mainly
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has three advantages which are the sparsity of the weights,

the low computational cost, and the probabilistic prediction

ability. It is demonstrated in [47] that compared with the N

in RVM, the L in SBELM is much smaller which is usually

around 50. This makes the Hessian matrix much simpler and

the execution time of SBELM much shorter when dealing

with large-scale classification problems. Moreover, the num-

ber of hidden nodes and the hyperparameters have much less

influence on its performance. This is a benefit to deal with

the real-time monitoring engineering problem which requires

the classifier has a quick response capability to analyze the

mass acquired signal data. From the structural point of view,

ELM ismore suitable for multi-class problems as it has multi-

input and output structure. As a result, due to the superiority

of SBELM, it is chosen to be the fundamental structure in this

study. However, as SBELM is designed only for binary clas-

sification problems, it is modified by integrating the pairwise

coupling strategy which will be discussed in Section II.

The organization of this paper is as follows. The proposed

framework and the corresponding techniques are demon-

strated in Section II. Section III shows the experimental setup

and the data pre-processing. In the fourth section, a detailed

discussion will be conducted on the results and comparisons

will be given. Conclusions will be drawn in the last section.

II. PROPOSED FRAMEWORK AND RELATED TECHNIQUES

Figure 1 shows the proposed real-time wind turbine gear-

box fault diagnosis framework. There are mainly three sub-

modules: (1) an online monitoring system; (2) multi-fault

diagnostic model; and (3) fault identification system.

FIGURE 1. Proposed real-time fault diagnostic system for wind turbine
gearbox.

In order to reduce the redundant information and improve

the overall diagnosis accuracy, data pre-processing will be

firstly conducted. A series of IMF will be generated by

decomposing the acquired vibration signal using HHT, then

CC algorithm selects useful IMF component to eliminate

the redundant IMF. After signal decomposition, E , Am, fm,

and TD indicators are extracted from time and frequency

domain to construct a fault feature vector. In this proposed

framework, fault samples in the database firstly go through

the procedure of data pre-processing to construct the offline

diagnostic model. Based on the online signal acquisition

system, the real-time unseen signal, xnew, is acquired, and

then it goes through the procedure of data pre-processing.

Finally, the trained diagnostic model is applied to identify the

real-time unseen signal.

A. HIBERT-HUANG TRANSFORM

The proposed modified HHT integrates EEMD and the

Hilbert transform. In the rest of the paper, HHTwill be used to

represent the modified HHT integrating EEMD. For EEMD,

the white noise of finite amplitude will be added into the

original signal to strengthen the energy of the original com-

ponents. As the average sum of the white noise is around

zero, the true IMF is defined as the ensemble mean of each

IMF set. In [27] and [48], the range of the standard deviation

of EEMD is set to be between 0.1 to 0.4. The details of the

EEMD algorithm can be described as:

1. A white noise series σn(t) is added to the investigated

signal x(t):

x1(t) = x(t) + σn(t) (1)

2. With the EMD algorithm, x1(t) is decomposed into

some IMF and a residual signal:

x1(t) =

n
∑

j=1

c1j(t) + r1n(t) (2)

3. For each value of white noise until from j to n, repeat

calculate Step 1 and 2:

xi(t) =

n
∑

i=1

cij(t) + rin(t) (3)

4. Calculate the mean for each IMF:

ci(t) =
1

n

n
∑

i=1

cij(t) (4)

After the EEMD decomposed, the Hilbert transform is

applied to calculate each IMF. The Hilbert spectrum H (ω, t)

is then calculated as the following:

H (ω, t) = Re

n
∑

i=1

ai(t)e
i
∫

ωj(t)dt (5)

where ωj(t) is instantaneous frequency, aj(t) is the amplitude

of the signal. According to the Hilbert spectrum H (ω, t),

the marginal spectrum h(ω) of Hilbert-Huang transform can

be defined:

h(ω) =

∫ T

0

H (ω, t)dt (6)

where T is the length of the signal, h(ω) reflects the amplitude

changing with frequency in the entire frequency range, and

H (ω, t) reveals important characteristics of the signal in the

time-frequency domain.
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B. SPARSE BAYESIAN EXTREME LEARNING MACHINE

The SBELM method employs the Bayesian learning (SBL)

algorithm for ELM. The SBL is a benefit to overcome the

drawbacks in ELM [47], [49]. For binary classification prob-

lem, SBELM treats it as an independent Bernoulli event with

the probability expressed as:

P( t| β,H) =

N
∑

i=1

σ (hiβ)
ti [1 − σ (hiβ)]

1−ti (7)

where σ (.) is sigmoid function and hj = (g(ω1xj + b1),

. . . , g(ωmxj + bm)), where j = 1, . . . ,N . Applying the

Laplace approximation approach, automatic relevance deter-

mination (ARD) approximates a Gauss for the marginal like-

lihood. The ln{p( t| β,H)p(β| a)} can be defined as follows:

ln{p( t| β,H)p(β| a)}

=

N
∑

i=1

{ti ln yi + (1 − ti) ln(1 − yi)} −
1

2
βTAβ + const (8)

where a is the hyperparameter of ARD, A is a diagonal matrix

and yi = σ (hiβ). The Laplace’s mode β̂ can be calculated

using the Newton-Raphson method - iterative reweighted

least-squares algorithm (IRLS).

βnew = (HT
BH + A)−1

H
T
Bt̂ (9)

where t̂ = Hβold + B
−1(t − y), B = diag(β1, β2, .., βN ).

Setting the differential of L(a) = Log(P( t| a,H)) with

respect to a to zero, it yields

∂L(a)

∂ai
=

1

2
(
1

ai
− 6ii − β̂2

i ) = 0

anewi =
1 − ai6ii

β̂2
i

(10)

Through the iterations through Equation (9) and (10),

the operation continues to maximize the marginal likelihood

function until reaching the convergence criteria. The final

probability distribution P(t

∣

∣

∣
f, β̂ ), where f is an unseen input

case or vector, is predicted by using sparse weight based on

y(hβ̂) = hβ̂ and σ [y(hβ̂)] = (1 + e−y(hβ̂))−1.

C. PAIRWISE COUPLING STRATEGY (PCS)

The one-versus-all strategy is simple and easy to deal with

multi-class classification problems. However, it does not con-

sider the pairwise correlation between different problems

which causes larger indecisive region than pairwise coupling

strategy (using one-versus-one) as shown in Figure 2. In the

pairwise coupling strategy, a group of classifiers lclass =

[C1,C2, . . . ,Cd ] for d-label classification problem is con-

structed. Each C i = [Ci1, . . .Cij, . . . ,Cid ] is composed of a

set of d-1 different pairwise classifiersCij, i 6= j. SinceCij and

Cji are complementary, there are totally d(d−1)/2 classifiers

in lclass as shown in Figure 3. To solve the multi-class clas-

sification as well as probabilistic output problem, pairwise

FIGURE 2. One-vs-all (left) contains shaded regions and pairwise
coupling (right).

FIGURE 3. Probabilistic output using PCS.

coupling strategy is adopted for the aforementioned proba-

bilistic classifiers PNN, RVM, and SBELM, which is noted

PC-PNN, PC-RVM, and PC-SBELM respectively.

The strategy combines all the outputs of every pair of

classifier Cij to re-estimate the overall probability ρi where

i = 1 to d . In the case study, a simple pairwise coupling strat-

egy for simultaneous-fault diagnosis is proposed. Every ρi is

calculated as

ρi = Ci(x) =

d
∑

j=1:i 6=j

Cij(x)

d
(11)

III. CASE STUDY AND EXPERIMENTAL SETUP

In order to demonstrate the effectiveness of the proposed sys-

tem, experiments on the wind turbine simulator were carried

out. The required raw datasets are acquired from the sensor

mounted on the turbine gearbox. Details of the experiment

design and the signal acquisition are discussed.

A. WIND TURBINE SIMULATOR AND

SAMPLE DATA ACQUISITION

In this research, Spectra Quest’s wind turbine simulator

is employed for conducting fundamental research in wind

turbine energy production and vibration diagnostics. The sys-

tem mainly consists of the blade, yaw system, rotor, plane-

tary gearbox, generator, and tower. The planetary gearbox is

directly connected to the input shaft through the torque sensor

via couplings as shown in Figure 4. The input shaft drives

the planet carrier of the planetary system and the sun gear

provides the output.

Due to the complexity of the whole wind turbine system

and the faults residing in the gearbox accounts for most

of the failures, this paper focuses on the fault detection of
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FIGURE 4. Spectra Quest’s wind turbine simulator.

TABLE 3. Sample single-faults and possible simultaneous-fault.

FIGURE 5. Tooth broken (C4); Chipped tooth (C5); Wear of gear
tooth (C6); Inner race fault (C7); Outer race fault (C8); Ball fault (C9).

FIGURE 6. Example of faulty signals.

the gearbox. The test rig shown in Figure 4 has the ability

to simulate many common faults cases, such as looseness,

inner race fault, and gear crack. Table 3 and Figure 5 present a

total of eleven cases including one normal case, eight single-

faults, and two simultaneous-fault cases. Samples of these

signals are illustrated in Figure 6. Note that the combina-

tion of single-faults is not randomly generated. According

to practical experiences, a machine system cannot be oper-

ated under too many faults appearing concurrently; therefore,

simultaneous-faults are an experimental selection.

TABLE 4. Division of the sample dataset into different subsets.

To make the experiment more representatives, two elec-

tric loads under the constant rotational speed (1800rpm) are

adopted. For each load, each single fault is repeated one

hundred times, and fifty for each simultaneous fault. The sam-

pling frequency is set to 4096 Hz and the recording window is

two seconds. It should be noted that in order to avoid missing

details of the fault information, the sampling frequency is set

higher than the twice of the meshing frequency. As a result,

for each sample dataset, there will be 8092 sampling points.

The acquired 2000 sample sets are shown in Table 4 which

includes 1 normal case, 8 single cases and 2 simultaneous

faults (1×100×2 load+8×100×2load+2×50×2 load).

In order to make the experiments more typical, the acquired

datasets are randomly divided into three subsets which are

for training, validation and testing, respectively. The training

sets are used to train the classifiers, the validation sets are

used for the tuning of the parameters and the testing sets are

for the evaluation of the performance. It should be pointed

out that the classifiers are only trained by the single faults

as the symptoms of the fault in simultaneous faults would be

identified due to the proposed feature extraction method.

B. SIGNAL PROCESSING

In this case study, the correlation coefficient approach [39] is

applied to select the proper number of IMFs. It is obtained by:

Coex(t)′,Ii(t) =

M
∑

i=1

(x(t)′ − x)(Ii(t) − Ii)

√

M
∑

i=1

(x(t)′ − x)2

√

M
∑

i=1

(Ii(t) − Ii)2

(12)

where M is the number of IMFs, x and Ii is the mean values

of the x(t)’ and Ii(t) respectively. A large Coex(t)′,Ii(t) value

means a high correlation between Ii(t) and x(t)’, and also

implies that Ii(t) containsmore fault information. A sample of

signal C6 is presented in Figure 7, the correlation coefficient

of IMF I7 and I8 is obviously smaller than the others. Thus,

in this case study, I7 and I8 are ignored to extract the energy

pattern.

To extract the effective fault features, six-dimensional

energy feature vector e = [E1,E2, . . . ,E6] is calculated as
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FIGURE 7. Correlation coefficients of each IMF component for the signal
of C6.

TABLE 5. Definition of common statistical features for time-domain
signals (TD).

FIGURE 8. Flowchart of the proposed feature extraction approach.

follows:

Ei =

n
∑

j=1

[(j · 1t) · |Ii(j · 1t)|2] (13)

where 1t is the time interval and j is the index of

data points. Considering the HHT marginal spectra of

different fault conditions display various corresponding

frequency fm and maximum amplitude Am, they are

added into the extracted energy feature vector e. Besides,

to enrich the fault information, six statistical features of

the time-domain (TD) are further extracted as shown in

Table 5. The procedure of data processing is demonstrated

in Figure 8. In this case study, the extracted feature vec-

tor is finally extended to an eleven-dimensional vector as

E = [E1,E2, . . . ,E6,Am, fm,TD].

IV. EVALUATION OF THE PROPOSED FRAMEWORK

In the real-time fault diagnosis of WTGS, two main tasks

need to be accomplished including dealing with large

vibration signal from the online monitoring system and

detecting various faults in the WTGS. The proposed frame-

work can detect whether there are some faults in the samples

data quickly and correctly.

A. EFFECTIVENESS OF THE SIGNAL

PROCESSING TECHNIQUES

To reveal the superiority of the proposed modified HHT

approach, conventional wavelet package transform with

principal component analysis (WPT+PCA), and empiri-

cal mode decomposition with singular value decomposi-

tion (EMD+SVD) are adopted as the comparisons. For the

wavelet-based method, the mother wavelets should be firstly

addressed. Daubechies wavelet with level 4 decomposition

is adopted in this study due to its effectiveness after car-

rying out many trails to decompose and reconstruct the

signal. Then PCA was employed to reduce the dimension

of the reconstructed signal of vibration from 4096 inputs to

40 respectively.

TABLE 6. Evaluation of different feature extraction techniques.

The results of different signal pre-processing and feature

extraction methods are shown in Table 6. Compared with

the none processed approach, the proposed method using

SBLEM has improved the overall efficiency by 40.55%.

When the proposed method are conducted with conventional

PNN and RVM, the overall accuracies are also improved

by 39.25% and 39.19, respectively. It should be noted that

the classifier is only trained by single-fault features and the

testing dataset is from the simultaneous-faults. It also can be

seen that the proposed HHT+E signal processing method is

superior to other approaches independently of the classifiers.

The reason is that the modified HHT incorporates EEMD

which could decompose the original signal both according

to the frequencies and the signals, giving it the capability
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of dealing with both non-linear and non-stationary signal.

Moreover, the mode mixing problem residing in the conven-

tional HHT is also overcome. The comparisons demonstrate

the effectiveness of the proposed modified HHT+E feature

extraction method.

B. EFFECTIVENESS OF PAIRWISE COUPLING STRATEGY

To verify the effectiveness of the PCS, the extracted fea-

tures are used to train pairwise-coupled classifiers, namely

PC-SBELM, PC-PNN, and PC-RVM. According to the

PCS, there are totally 11(11-1)/2 = 55 SBELM classifiers

trained based on 11 fault types in the proposed WTGS. For

those classification algorithms, hidden node h, spread s, and

widthw∗ are important hyper-parameters for the PC-SBELM,

PC-PNN, and PC-RVM respectively. The hyper-parameter

of hidden node h is default set to close the number of

trained classifiers 55. Meanwhile, by using the fivefold

cross-validation method, s, and w∗ were set to be 0.4,

0.62 respectively. With the proposed signal processing tech-

niques, the classification results for pairwise-coupling strat-

egy classifiers are shown in Table 7.

TABLE 7. Comparison results of different classifiers using pairwise
coupling strategy.

It can be seen that the fault diagnosis accuracy of the pro-

posed PC-SBELM in overall faults using the feature extrac-

tion method (HHT+E) outperforms the SBELM by 1.69%,

which demonstrate the proposed PC-SBELM superiority. The

classifier PC-PNN and PC-RVM also give the improvement

of 1.14% and 1.41% when compared with PNN and RVM

respectively. The improvement comes from the proposed one-

versus-one strategy as it considers different feature groups

as individuals not just classifying them as two groups. This

technique avoids the large undecided areas in the one-versus-

all strategy and giving all feature vectors the corresponding

labels. The results demonstrate that the proposed pairwise-

coupling strategy could improve the classification accuracy

for both single and simultaneous faults.

As we known, simultaneous-fault is difficult to identify

its single-fault quantity and type because of the different

single-fault signals intercoupling which display the complex

shape. Another contribution of this paper is that the proposed

PC-SBELM probabilistic classifier can effectively identify

the single-fault quantity and type as shown in Figure 9.

In Figure 9(a), 35 testing samples of simultaneous-fault

C10 are classified into 32 tooth broken (C4) and 29 ball

fault (C9); moreover, in Figure 9(b), 55 testing samples

FIGURE 9. The classification results of simultaneous-fault (C10 and C11)
testing rest. (a) 35 testing samples of simultaneous-fault C10.
(b) 55 testing samples of simultaneous-fault C11.

of simultaneous-fault C11 are classified into 47 chipped

tooth (C5) and 49 outer race fault (C8) which is belong to

single-fault. In this case study, the decision line uses the

default setting 70% which will be further optimized in future

work, that is, surpassing the decision line is defined to the

fault. It can be seen that simultaneous-fault C10 is combined

with single-fault C4 and C9, and C11 is combined with C5

and C8. The average accuracy of the proposed PC-SBELM

probabilistic classifier reaches 87.21%, which is a competi-

tive result in simultaneous-fault identification.

C. RESULTS AND DISCUSSION

In order to further demonstrate the superiority of the proposed

method in terms of the computational efficiency, Table 8 gives

the processing time of different methods besides the cor-

responding accuracy. The identification time in the table is

defined as the duration from the receiving the signal from the

sensor to the generating the fault detection alert, which means

the sensor delay is not considered.

TABLE 8. Processing time of PC-SBELM with PC-PNN and PC-RVM.

VOLUME 7, 2019 779



J.-H. Zhong et al.: Multi-Fault Rapid Diagnosis for Wind Turbine Gearbox

FIGURE 10. Diagnosis results using different classifiers trained by
extracted feature.

Figure 10 also shows that the fault detection accuracy of

PC-SBELM (93.92%) on overall faults is slightly higher than

that of PC-PNN (91.46%) and PC-RVM (92.87%) by 2.46%

and 1.05% respectively. In addition to fault detection accu-

racy, the fault identification time is also presented in Table 8.

It demonstrates that the fault identification time of PC-PNN,

PC-RVM, and PC-SBELM only take 0.59s, 0.38s, and 0.14s

respectively. In the implementation ofWTGS fault diagnosis,

it is required to continuously work all the time which means

that no data could be processed offline as the size of the

dataset would grow beyond the computation capability. As a

result, the processing time is of great importance. In Table 8,

it can be seen that, although the accuracy of the proposed

PC-SBELM is only improved slightly, the processing time

is considerably improved by 0.45s and 0.24s compared with

PC-PNN and PC-RVM, respectively. The reason is that the

size and training time of PC-PNN is heavily dependent of

the size of the input dataset, and for PC-RVM, it is that the

complexity of Hessian matrix computing attains O(N 2) is

also related to the number of training data, which deterio-

rates the ability to deal with multi-class classifications. Com-

pared with these two approaches, the O(L2) for the proposed

PC-SBELM is relatively stable where L ≈ 50. It can be

concluded that the fast training time and the sparsity of the

proposed method would present desirable performance when

dealing with large-scale dataset. Moreover, the implemen-

tation of the proposed method is also much easier as it is

insensitive to the hyperparameter and the number of hidden

nodes. Therefore, the proposed method could have better

performance in terms of accuracy and calculation efficiency.

V. CONCLUSION

This paper proposes a new real-time fault diagnostic system

for a wind turbine gearbox system. In the proposed sys-

tem, the data pre-processing approaches employ the modified

Hilbert-Huang transform adopting the EEMD to eliminate

the mode mixing problem. Moreover, energy pattern calcu-

lation is also proposed to extract the fault features in con-

junction with time-domain statistical analysis which could

further reduce the size of the features to improve calculate

efficiency. To satisfy the purpose of rapid recognition in

the real-time monitoring system, the improved probabilistic

classifier PC-SBELM is proposed. Although PC-SBELM

only produces slightly higher diagnostic accuracy (93.92%)

than PC-PNN and PC-RVM in this case study, it can gen-

erate a smaller classification model and takes less execu-

tion time (0.14s). In short, PC-SBELM is superior to PNN,

RVM, PC-PNN, and PC-RVM in terms of calculation effi-

ciency and at the same time could guarantee the fault deten-

tion accuracy. The experiment results also demonstrate the

simultaneous-fault detection ability (87.21%) with the clas-

sifier only trained by single-fault datasets. As the proposed

fault diagnostic framework is generic, it could be applied to

the other applications of condition monitoring in which the

fault identification time and simultaneous-fault diagnosis are

critical.
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