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Abstract Some of the fundamental problems faced in the
design of signature verification (SV) systems include the
potentially large number of input features and users, the lim-
ited number of reference signatures for training, the high
intra-personal variability among signatures, and the lack of
forgeries as counterexamples. In this paper, a new approach
for feature selection is proposed for writer-independent (WI)
off-line SV. First, one or more preexisting techniques are
employed to extract features at different scales. Multiple

feature extraction increases the diversity of information
produced from signature images, allowing to produce signa-
ture representations that mitigate intra-personal variability.
Dichotomy transformation is then applied in the resulting
feature space to allow for WI classification. This alleviates
the challenges of designing off-line SV systems with a limited
number of reference signatures from a large number of users.
Finally, boosting feature selection is used to design low-cost
classifiers that automatically select relevant features while
training. Using this global WI feature selection approach
allows to explore and select from large feature sets based on
knowledge of a population of users. Experiments performed
with real-world SV data comprised of random, simple, and
skilled forgeries indicate that the proposed approach provides
a high level of performance when extended shadow code and
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directional probability density function features are extracted
at multiple scales. Comparing simulation results to those of
off-line SV systems found in literature confirms the viabil-
ity of the new approach, even when few reference signatures
are available. Moreover, it provides an efficient framework
for designing a wide range of biometric systems from lim-
ited samples with few or no counterexamples, but where new
training samples emerge during operations.
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1 Introduction

Biometrics has emerged from its extensive use in law enforce-
ment and forensic sciences and is increasingly being adopted
in a wide variety of civilian applications for enhanced secu-
rity and privacy [1]. Biometric systems perform the recog-
nition of individuals based on their physiological (i.e., face
and fingerprint traits) and behavioral (i.e., voice print and
handwritten signature) characteristics. Biometric traits are
intrinsic to a person, and as such cannot be lost, stolen,
or forgotten as with security tokens and secret knowledge
[2]. Among the numerous biometric traits considered so far,
handwritten signatures have long been established as one
of the most widespread means for authenticating a person’s
identity by administrative and financial institutions. The pro-
cedure for acquisition of signature samples is familiar and
noninvasive [3].

Biometric systems provide three recognition functions:
identification, screening, and verification. Identification
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seeks to establish a person’s identity by matching his
biometric sample against all user templates in the system
database. Screening discreetly determines whether the bio-
metric sample of an individual whose enrollment procedure
is not typically well-defined matches any of the system’s
watch list of identities. Finally, verification authenticates the
claimed identity of an individual by comparing his biometric
sample to his template stored in the system database [4].

Given its behavioral nature, one of the main difficulties
in handwritten signature verification is that an individual’s
signature can vary significantly from one sample to the next.
In addition, a forger may attempt to reproduce signatures to
bypass the system. Forgeries are usually divided into three
types—random, simple, and simulated. A random forgery
occurs when the forger does not know both the writer’s name
and the signature’s morphology. It can also happen when a
genuine signature presented to the system is mislabeled to
another user. When the forger knows the writer’s name but
not the signature’s morphology, the forger can only produce
a simple forgery using a style of writing of his liking. A sim-
ulated forgery occurs when the forger has access to a sample
to produce a reasonable imitation of the genuine signature.

Features extracted from handwritten signatures are
broadly divided into two categories, static and dynamic,
according to the acquisition method [5]. Static features are
extracted by an off-line acquisition device after the writ-
ing process has been completed, while dynamic features are
extracted by an online acquisition device during the writing
process. By extension, automatic signature verification sys-
tems are either off-line or online. In either case, a neural or
statistical classifier applied to signature verification is often
trained using a limited number of training samples collected
from a complex underlying distribution.

Two approaches have been proposed for off-line signa-
ture verification—writer-dependent (WD) and writer-inde-
pendent (WI). The former approach models the signature of
each individual from his samples, and a specialized clas-
sifier is trained for each writer. The WI approach uses a
classifier to match each input questioned signature to one or
more reference signatures, and a single classifier is trained
for all writers [6]. Most automatic signature verification sys-
tems found in literature follow the WD approach. However,
as in most biometric applications, the performance of these
systems declines with large numbers of users and with lim-
ited number of reference signatures per user. For instance, in
off-line verification of bank cheque signatures, the number
of bank customers can easily reach the tens of thousands.
In most cases, acquiring a sufficient number of reference
signatures from each writer is not practical.

In contrast, the WI approach employs the dichotomy
transformation to alleviate the difficulties of designing a
verification system with a limited number of reference signa-
tures from a large number of users. Off-line SV systems that

follow the WI approach are designed in a space that is rep-
resentative of the domain according to a population of writ-
ers (using some learning or development database) and hold
several practical advantages. For one, this approach allows
to exploit a system with only one signature per user. In addi-
tion, since input feature vectors are transformed into a dis-
tance space between signatures, the number of users is of
little consequence. The signature of all writers is authen-
ticated using a single two-class classifier. This classifier
should be trained from a sufficient set of previously col-
lected genuine signatures, although writers populating this
learning set do not necessarily need to be enrolled to the
system used during operations. The underlying hypothesis is
that these dataset signatures are representative of the entire
population of legitimate users enrolled to the verification
system.

Several studies suggests that the accuracy and reliability
of a biometric system can be improved by integrating the evi-
dence obtained from multiple different sources of informa-
tion [2]. Systems that employ multiple techniques to extract
different feature types at multiple resolutions or scales may
uncover diversified information from a given biometric sam-
ple. Since useful information may go undetected by using
a single feature type and scale, these systems may improve
the overall recognition rate [7]. In this respect, handwrit-
ten signature is a promising candidate since several power-
ful feature extraction techniques have been proposed in the
literature [5,8]. Biometric sources of information are typi-
cally integrated at the sensor (raw biometric data), feature,
score, and decision levels. Since the features extracted from
sensor measurements contain richer information content
about a biometric trait than scores, integration at the feature
level should provide higher level of accuracy than at other
levels.

This paper presents a novel approach for feature selection
that is effective for the design of WI off-line signature
verification systems. It is based on the combination of
multiple feature extraction, dichotomy transformation, and
boosting feature selection. Multiple feature extraction is
adopted to extract several diverse handwritten signature rep-
resentations from a signature image, using one or more
preexisting feature extraction techniques at different lev-
els of resolution or scales. Even though the approach
applies with a wide range of feature extraction techniques
(c.f., [5]), this paper considers that the representation and
analysis of signature images are achieved by extracting
features at multiple grid scales using two well-known
grid-based techniques—extended shadow code (ESC) [9]
and directional probability density functions (DPDF) [10].
While ESC extracts information about the spatial distribu-
tion of the signature, DPDF extracts information about the
orientation of the strokes. These feature extraction tech-
niques are seen as complementary, and once combined
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into a single feature subset, they may provide a powerful
multi-scale and spatio-directional representation of signa-
tures.

In this paper, off-line signature verification is performed in
a WI framework derived from a forensic document exami-
nation approach [11] and compared to the performance of
state-of-the-art results using a database composed of 168
writers. Writer-independence is achieved by the verifica-
tion system using the dissimilarity between each questioned
signature and the reference signatures. Using the multiple
feature extraction and dichotomy transformation provides
signature representations with a large number of distance
features and may therefore reduce the impact on perfor-
mance caused by intra-personal variability. However, fea-
ture selection must be performed in the distance space to
avoid the curse of dimensionality. Boosting feature selection
is employed to efficiently select discriminant feature sub-
sets from the potentially large number of features in the dis-
tance space, while training the classifier [12]. By virtue of
the global WI (dissimilarity-based) approach, the proposed
system selects features with knowledge of a population of
users, which is difficult to achieve with a WD (feature-based)
approach.

The specialized WI feature selection approach proposed
in this paper allows learning a discriminant representation
space from a corpus of signatures (i.e., development data-
base) sampled from an independent population of writers
that are not enrolled to the system evaluated during opera-
tions (or testing phases on some exploitation dataset). The
approach proposed in this paper may be seen as an exten-
sion of the one presented in [13]. However, the approach
proposed in this paper is based on the selection of repre-
sentation spaces, not on the selection of classifiers, and the
fusion of information is performed at the feature level instead
of at the confidence score level. Moreover, the approach in
this paper does not require selecting the best grid scale or set
of grid scales. Boosting feature selection allows to perform
low-cost feature learning, and several image zones of differ-
ent sizes may be selected, with extraction techniques that are
well adapted to the type of projection, type of stroke direc-
tions, etc. Finally, the dichotomy transformation employed
with this approach allows to improve performance over time
through incremental learning of new signature references and
features during operations (exploitation phase), without hav-
ing to retrain a system from the start on all cumulative training
data.

The paper is organized as follows. Before presenting the
multiple feature extraction and selection approach proposed
in this paper (Sect. 3), Sect. 2 provides a survey of related WI
systems that are suitable for off-line signature verification.
In Sect. 4, the experimental methodology, including datasets,
protocols, and performance metrics, are defined. In Sect. 5,
simulation results are presented and discussed.

2 State-of-the-art in writer-independent signature

verification

This section presents the state-of-the-art in WI systems for
off-line signature verification. As with the standard WD case,
WI systems take as input handwritten signatures and output
verification results. However, as depicted by Fig. 1, when
acquiring a new reference signature Sr (e.g., during enroll-
ment), the corresponding feature vector xr extracted from the
signature image is stored for later use in the system’s knowl-
edge base. In verification mode, the image of a questioned
signature Sq is presented to the system and its feature vector
xq , along with the reference set {xr }

R
1 of signatures of the

users enrolled to the knowledge base, are presented to the
dichotomy transformation module. Then, the dichotomizer
(two-class classifier) takes as input distance vectors {ur }

R
1 for

each questioned signature Sq and produces the correspond-
ing set of confidence scores { f (ur )}

R
1 that are combined to

output a final decision g(xq).
The rest of this section describes the dichotomy transfor-

mation [14], followed by its application to SV [11]. Then, an
approach to WI signature verification based on dichotomizer
ensembles [13] is reviewed.

2.1 Dichotomy transformation

A dichotomy transformation [14] allows to transform
K -class pattern recognition problems where K is a large or
unspecified value into a 2-class problem. In this context, the
handwritten SV problem is formulated as follows. Given a
reference signature and a questioned signature, the objective
is to determine whether the two signatures were produced by
the same writer. Formally, let xq and xr be two feature vectors

from the feature domain labeled yq and yr , respectively, and
let ur be the distance vector in the distance domain resulting
from the dichotomy transformation:

ur =
∣

∣xq − xr

∣

∣ (1)

where |·| is the absolute value. It is important to emphasize
that each component of vector ur equals the distance between
the corresponding components of vectors xq and xr , thus dis-
tance vector and feature vectors have the same dimensional-
ity. In the distance domain, independently of the number of
writers, there are only two classes: the within class ω⊕ and
the between class ω⊖. The distance vector ur is assigned the
label vr according to:

vr =

{

ω⊕ if yq = yr

ω⊖ otherwise.
(2)

Intuitively, signatures from the same writer should be near
one another in the feature space, thus clustering near the
origin in distance space, whereas signatures from different
writers should be distant from each other in the feature space
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Fig. 1 A generic system
for off-line WI
signature verification.
Enrollment process is indicated
by dotted arrows while solid

arrows illustrate the
authentication process

and thus be scattered away from the origin in the distance
space.

As for the number of distance vectors generated by the
dichotomy transformation, if K writers provide a set of R

references each, (1) generates up to
(

K R
2

)

different distance

vectors. Of these, K
(

R
2

)

are of the within class and
(

K
2

)

R2 are
of the between class. Thus, using a small sample of references
from each writer, the dichotomy transformation generates an
appreciable quantity of samples in the distance domain.

Figure 2 presents an example to illustrate the dichotomy
transformation. Suppose a set of three writers, {ω1, ω2, ω3}

and each writer provides three signatures. Some feature
extraction technique produces a vector of two features
(x1 x2)

T from each signature. Figure 2a plots the feature
vectors of signatures into the feature space. The dichotomy
transformation calculates the distance between the features
of each pair of signatures to form vectors (u1 u2)

T in the
distance space, as depicted in Fig. 2b.

The dichotomy transformation affects the geometry of dis-
tributions. In this example, multiple boundaries are needed
to separate the three writers in the feature space as opposed
to only one in the distance space. Also, the vectors in the
distance space are always nonnegative since they consist of
distances. Finally, the dichotomy transformation augments
the number of samples in the distance space because they are
made up of every pair of signatures.

To illustrate how the verification process is independent
from the writer being verified, let xq , xr be a questioned
and a reference feature vectors, respectively, both from new
writer ω4. The dichotomy transformation (1) computes the
distance vector ur from xq and xr . As it can be seen in the
distance space (Fig. 2b), that distance vector ur is located in
the within region defined by the dichotomizer, which means
that it authenticates both questioned and reference signatures
as belonging to the same writer. On the other hand, the fea-
ture space boundaries (Fig. 2a) fail utterly by classifying
one signature (xq ) to writer ω2 and the other (xr ) to writer
ω3. In fact, it is impossible for the feature domain model to
adequately classify the signatures as belonging to writer ω4

since this writer did not contribute to the training set. Hence,
the writer-independence is provided by the distance domain
model.

One drawback of the dichotomy transformation is that
perfectly clustered writers in feature domain may not be per-
fectly dichotomized in distance domain. In other words, the
broader the spread of the feature distributions among the
writers, the less the dichotomizer is able to detect real differ-
ences between similar signatures [14]. Thus, the performance
of a dichotomizer is considerably affected by the choice of a
feature set extracted from the handwritten signatures. More-
over, since the dichotomy transformation affects the spatial
geometry of distributions, the best feature set may not be
the same in feature domain as in the distance domain. The
approach proposed in this paper (see Sect. 3) seeks to extract
a large set of potential features and efficiently selects a small
set of discriminant features in the distance domain.

2.2 Extension of dichotomy transformation for questioned
document expert

The Questioned Document Expert’s approach [11] is an
extension to the dichotomy transformation that applies when
users have more than one template stored in the knowledge
base. The idea is to emulate the expert’s approach, which
consists of comparing the questioned signature input to the
SV system to a set of genuine signatures. Each comparison
leads to a partial decision from the expert, his/her final deci-
sion being based on all partial decisions. Intuitively, the more
reference signatures that are available for comparison with
the questioned signature, the more accurate the final decision
will be.

Formally, the dichotomy transformation is applied bet-
ween the questioned signature’s feature vector xq and the
user’s reference set {xr }

R
1 from the knowledge base and pro-

duces the set of distance vectors {ur }
R
1 . The dichotomizer

evaluates each distance vector individually and outputs a set
of confidence values { f (ur )}

R
1 representing the partial deci-

sions from the expert. The final decision of the system about
the questioned signature is based on the fusion of all con-
fidence values by a function g(·). The choice of the fusion
function is dependent on the nature of the dichotomizer’s
output. For instance, if the output of the dichotomizer is a
label, then the majority vote is an appropriate fusion strat-
egy. On the other hand, if the output of the dichotomizer is a
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Fig. 2 Vectors from three
different writers {ω1, ω2, ω3} in
feature space (left) projected
into distance space (right) using
the dichotomy transformation to
form two classes {ω⊕, ω⊖}.
Decision boundaries in both
spaces are inferred by the
nearest neighbor algorithm. The
dichotomizer authenticates each
questioned signature xq with
respect to reference signatures
xr . The distance vector ur

resulting from a comparison is
assigned to the within class,
meaning both signatures belong
to the same writer

probability, then a wider range of fusion strategies is avail-
able such as the sum, mean, median, max, and min functions,
to name a few.

2.3 Ensemble of writer-independent dichotomizers

In [13], the original framework for WI off-line signature ver-
ification is improved by replacing the dichotomizer by an
ensemble of dichotomizers. To achieve ensemble diversity,
support vector machines (SVMs) are trained on a learning
set of 40 writers using 16 different scales of the segmen-
tation grid during feature extraction. The same four grid-
based feature extraction techniques of [11] are used except
for stroke curvature information, which is extracted based
on cubic Bezier curves. Thus, a pool of 64 SVMs is overpro-
duced, from which a genetic algorithm chooses a subset of
base classifiers to form the final ensemble of dichotomizers.
These dichotomizers are combined at the confidence score
level using the sum rule fusion strategy.

Different objective functions are applied with the genetic
algorithm and the authors conclude that maximizing the area
under the receiver operating characteristic (ROC) curve, or
AUC, is the most suitable. In all cases, the fitness of the
objective function is evaluated on an independent validation
set of 20 writers. The influence of the number of reference
signatures in the validation set is evaluated by increasing their
numbers from 3 to 15, repeating the ensemble optimization
every time. The authors conclude that the authentication rate
depends on a trade-off between the number of references and
the intra-class variability of the reference set.

Overall, authentication using an ensemble of dichotom-
izers shows an improvement over 2-class classification by a
single dichotomizer. However, this approach complicates the
verification system, specifically in [13], ensembles count an
average of 13 SVMs, using a total of 2,300 features and thus
increasing the use of resources while reducing recognition
speed. Moreover, the ensemble optimization process being

stochastic in nature, each run may lead to a different ensem-
ble, as demonstrated by their results. An improvement to the
authentication rate is sought with the approach proposed in
this paper (see Sect. 3). Results should improve by extract-
ing different feature types at different scales and with clas-
sifier ensembles where the measurements are integrated at
the confidence score level. However, ensembles are typically
more effective to integrate different sources of information
as early as possible in the verification system [2]. Integrating
combined information at feature level should yield improve-
ments since at this level information about the signatures is
richer. The WI approach proposed in this paper is based on
the selection of representation spaces, and the fusion of infor-
mation occurs at the feature level. Moreover, this approach
does not require selecting the best grid scale or set of grid
scales. Boosting feature selection allows to perform low-cost
feature learning, and several image zones of different sizes
may be selected.

3 A framework for multi-feature extraction and

selection

This section introduces a new approach for multi-feature
extraction and selection that is efficient in WI off-line sig-
nature verification. This novel system uses an ensemble of
dichotomizers to combine features across several scales and
feature extraction techniques, leading to low cost and accu-
rate SV. As depicted in Fig. 3, the proposed approach may
be viewed in terms of the generic system for WI off-line SV
shown in Fig.1.

However, as described in the following subsections, it
uses (i) the multiple feature extraction at different scales
and (ii) the boosting feature selection (BFS) technique for
classification.

Multiple feature extraction can be applied to reference sig-
natures Sr and questioned signatures Sq using one or more

123



88 D. Rivard et al.

Fig. 3 Overview of a WI
off-line SV system that applies a
new approach for multi-feature
extraction and selection. It is
based on ESC and DPDF for
multiple feature extraction, and
the BFS algorithm to design a
committee of stumps for
classification

Fig. 4 a Example of the ESC technique applied to the extraction of features from a binary signature image. b Gradient of a handwritten signature
binary image. Arrows indicate direction and magnitude of the gradient at each pixel location

preexisting feature extraction techniques, producing a large
set of features. In this paper, the representation of signature
images is achieved by using two grid-based techniques—
ESC and DPDF. During a preliminary design phase, the BFS
algorithm performs feature learning on a reference set of
distance vectors and produces a committee of stumps, where
each stump corresponds to a selected feature. During oper-
ations, the committee of stumps takes as input the distance
vectors {ur }

R
1 for each questioned signature Sq . It produces

the corresponding set of the committee’s confidence scores,
{F(ur )}

R
1 , which are combined to output a final decision

g(xq).

3.1 Multiple feature extraction

For handwritten signatures, it is important for the feature
extraction process to be text insensitive. In other words, the
measurements taken on signature must not rely on the seg-
mentation of specific letters, which can be a very difficult
task especially if the signature is highly personalized [9].
A practical alternative is to partition the signatures using a
virtual grid and to take local measurements in each of the
grid cells. By varying the scale of the virtual grid, purely
global to very local features are extracted. In the literature,

grid-based approaches generally tend to find a grid scale
suitable to their signature database. Here, the proposed
approach is to extract features at multiple scales and let the
classifier select the most suitable ones.

When a new signature is used for enrollment or opera-
tions, it is presented to the system as a gray-level image. From
there, two preprocessing steps are necessary in order to pre-
pare the signature for feature extraction. First, the signature
is automatically segmented from its background using Otsu’s
threshold selection method from gray-level histograms [15].
According to questioned document experts, the proportion
and orientation of handwritten signatures are intrinsic char-
acteristics of the writer when guided by a form [16]. Con-
sequently, the second preprocessing step corrects the binary
signature images in translation by aligning their centroid with
the center of the feature extraction grid.

The extended shadow code (ESC) [9,17] consists in the
superposition of a bar mask array over the binary image of a
handwritten signature as depicted by Fig. 4a. Each bar is
assumed to be a light detector related to a spatially con-
strained area of the 2D signal. A shadow projection is defined
as the simultaneous projection of each black pixel into its
closest horizontal, vertical, and diagonal bars. A projected
shadow turns on a set of bits distributed uniformly along the
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bar. After all the pixels on a signature are projected, the num-
ber of on bits in each bar is counted and normalized to the
range [0, 1] before features are extracted. Given a virtual grid
composed of I rows by J columns, the cardinality of the ESC
feature vector is equal to

∣

∣

∣
xESC

∣

∣

∣
= 4I J + I + J. (3)

Directional probability density functions (DPDF) [10]
have been used as a global shape factor for automatic off-
line handwritten signature verification. The rationale of this
approach is that the stroke orientation of handwritten signa-
tures is stable enough to properly discriminate writers. Thus,
this technique extracts features based on the frequency dis-
tribution of the orientation of the gradient at the edge of
the signature. Gradient features are used by other signature
verification systems, for instance [18]. In this work, local
DPDF are extracted from within each cell of a virtual grid
placed over the handwritten signature image. This way, local
information is extracted from different parts of the signature,
consequently increasing its discriminating power. Moreover,
the information extracted from the signature is complemen-
tary to that extracted using the ESC technique. While the
ESC extracts information about the spatial distribution of
the signature, DPDF extracts information about the orien-
tation of the strokes. Since the same grid scale is used for
both techniques, this leads to a powerful spatio-directional
representation of handwritten signatures.

The gradient is computed from the binarized version of the
signature image after it has been smoothed using a Gaussian
low-pass filter to reduce the impact that residual noise can
have on the two key derivatives used for gradient computa-
tion. Computing the gradient on a smoothed binary image
has the definitive advantage that the intensity of the image
is already normalized; consequently, there is no need of a
threshold to detect the edges of the image. In fact, the back-
ground segmentation process has already managed to detect
the edges of the signature and thus, the remaining task is to
determine their orientation. This work uses Sobel operators
to compute the gradient key derivatives.

Figure 4b illustrates the gradient of a handwritten signa-
ture image using arrows to indicate its direction and magni-
tude at each pixel location. Since the signature consists of a
binary image, gradient is null in the background of the image
and within the strokes of the signature where intensity is con-
stant. Gradient is non-null along the edges of the signature
and its direction varies perpendicularly to the contour of the
signature.

In order to obtain a fixed number of features, gradient
directions are quantized into an even � number of ranges.
A greater � results into a more exact representation of the
gradient of the signature, thus increasing between-writers
discrimination. However, the more exact the representation,

the more sensitive it is to intra-personal variance, thus low-
ering generalization capabilities. As a trade-off, this work
uses � = 8. It is important to realize that a quantized value
φ ∈

{

1, 2, . . . , �
2

}

indicates the same stroke orientation as
value φ + �

2 . Thus, after quantization, gradient magnitudes
are summed according to each stroke orientation for every
individual cell of the virtual grid, leading to a feature vector
of cardinality

∣

∣

∣
xGRD

∣

∣

∣
=

1

2
I J�. (4)

Note that both feature extraction techniques can be exe-
cuted in parallel to reduce computation time.

3.2 Boosting feature selection

Boosting is a machine-learning procedure, which combines
the performance of many weak classifiers into a power-
ful committee. The rationale behind boosting is that find-
ing many moderately inaccurate rules of thumb using many
simple classifiers can be easier than finding a single highly
accurate prediction rule using a more elaborate learning algo-
rithm. Boosting methods have proven to be very competitive
in terms of generalization in a variety of applications [19].
The general idea of boosting is to form a committee of weak
classifiers iteratively by adding one weak classifier at a time.
At the beginning of the training procedure, a uniform weight-
ing is assigned to the patterns of the training data set. Each
time, a new classifier is added to the committee, the samples
in the training data are re-weighted to reflect the performance
of this weak classifier, assigning more importance to misclas-
sified samples. Thus, the next weak classifier focuses on more
difficult samples, and the procedure ends after a predefined
number of weak classifiers have been trained.

The problem of feature selection is defined as follows:
given a set of potential features, the objective is to select the
best subset under some classification objectives. This proce-
dure has three goals: (i) to reduce the cost of extracting fea-
tures, (ii) to improve the classification accuracy, and (iii) to
improve the reliability of the estimate of performance [20].
The boosting feature selection algorithm [12] (and further
studied in [21]) explicitly incorporates feature selection into
AdaBoost [22], the most commonly used variant of boosting.
Boosting feature selection is performed by designing a weak
classifier that selects the single most discriminant feature of
a set of potential features and finds a threshold to separate
the two classes to learn, effectively a decision stump. Conse-
quently, features are selected in a greedy fashion according
to the weighting while learning is conducted by the boosting
algorithm. Given a very large set of features, the result is a
committee built on the best subset of features representing
the training data.
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The next subsections describe the boosting algorithm and
the weak classifier used in this work and are followed by a
complexity study of the resulting committee.

3.2.1 Gentle AdaBoost

The problem of handwritten signature verification can have a
significant class overlap, especially between genuine signa-
tures and simulated forgeries, and as mentioned previously,
the dichotomy transformation can exacerbate this phenom-
enon. Also, it has been observed by several authors that
AdaBoost is not an optimal method on very noisy problems
[23–25]. By design, Adaboost focuses on misclassified sam-
ples and this may results in fitting the noise.

Several boosting methods address the overfitting prob-
lem, mostly by adjusting the weighting scheme. For instance,
MadaBoost [26] bounds the weight assigned to each sam-
ple by its initial probability, Gentle AdaBoost [27] takes
adaptive Newton steps to update the weights more slowly,
BrownBoost [28] uses a non-monotone weighting function
decreasing the weight of samples far from the margin, Ada-
Boostτ [24] and AdaBoost∗ν [29] both use the concept of
soft margin to regularize by allowing for misclassifications,
SmoothBoost [25] constructs smooth distributions, which do
not put too much weight on any single sample, and Nada-
Boost [30] prevents high weight values by thresholding.

Moreover, validation sets have long been used in machine
learning to limit overfitting, and, as noted by the authors of
Adaboost [31], a validation set could be used for early stop-
ping. This work makes use of Gentle Adaboost and early
stopping to address the significant class overlap problem.
Early stopping is implemented using a holdout validation
set. The early stopping criterion is based on the maximiza-
tion of area under the receiver operating characteristics curve
(AUC) on the holdout validation set.

Receiver operating characteristics (ROC) curves are
graphs plotting the true positive rate of a classifier in func-
tion of its false positive rate. The points composing the curve
are obtained by varying the decision threshold of the classi-
fier (see Algorithm 1 of [32] for an efficient method for the
generation of ROC points). ROC curves have an attractive
property: they are insensitive to change in class distribution
[32]. If the proportion of genuine signatures and forgeries
changes between the design of a system and its exploitation,
the ROC curves will not change. It is the case with signa-
ture verification applications, as the proportions of fraud for
real applications are likely to vary in time and from place to
place. The AUC of a ROC curve has an important statistical
property: it is equivalent to the probability that the classifier
will rank a randomly chosen positive instance higher than a
randomly chosen negative instance [32]. As such, the AUC
is invariant to the decision threshold optimized by Gentle
AdaBoost, which is a significant advantage in the context of

this work since the decision threshold is learned using ran-
dom forgeries as counterexamples when in fact the commit-
tee is tested against random, simple, and simulated forgeries.
Moreover, the decision threshold is a function of the priors
and the classification cost, both of which are likely to vary in
a signature verification application.

Figure 5 describes the Gentle AdaBoost algorithm with
early stopping. Let L = {ul , vl , wl}

L
1 be a learning set of L

feature vectors u ∈ R
D labeled to vl ∈ {−1, 1} and weighted

by the distribution wl ∈ [0, 1],
∑L

l=1 wl = 1. Similarly,
let H = {uh, vh}H

1 be a holdout validation set of H non-
weighted samples. Let also TL, TH ∈ N be the maximum
iteration stopping criterion and the early stopping criterion,
respectively. The first half of the algorithm implements the
four steps of the Gentle AdaBoost algorithm: (i) train a new
decision stump ft (u) based on L, (ii) add ft (u) to the com-
mittee F (u), (iii) update the weights wl according to the
response of ft (ul), and (iv) renormalize the weights to ensure
a distribution. The second half implements a holdout val-
idation scheme using the AUC for criterion. The AUC is
computed using Algorithm 2 described in [32]. If the algo-
rithm reaches TH iterations without increase in the AUC, it
early stops. The Gentle AdaBoost with early stopping pro-
cedure outputs the committee F (u) composed of T decision
stumps.

3.2.2 Decision stumps

Decision trees classify a pattern through a sequence of ques-
tions [33]. Each question tests a single feature of the data and
is represented by a tree node, the first question being the root
of the tree and each possible decision spanning a branch to
new node (i.e., the next question) and so on until a terminal
node, called a leaf, is reached and the pattern is classified.
Each decision outcome is called a split since it effectively
splits the data into subsets, binary decisions being referred to
as single splits and higher number of decisions as multi-splits.

Decision stumps are one-level, single split trees [34]. A
decision stump ft (u) is composed of four parameters: dt the
dimension to split, τt the splitting threshold in that dimen-
sion, and ρleft

t and ρ
right
t the weighted means of the response

for the left and right leaves, respectively. Figure 6 illustrates
the decision stump learning algorithm. The first step in the
algorithm is to compute W⊕, W⊖ the positive, and nega-
tive weight totals, respectively. Then, the algorithm inde-
pendently searches each problem dimension to find the best
split point (dt , τt ). For a given dimension, the samples are
first sorted by increasing feature values. Then, the algorithm
computes w⊕, w⊖ the positive, and negative weight cumula-
tive distribution functions, respectively. Based on the CDFs
and the weight totals, the splitting threshold is selected to
minimize the probability that a training sample would be
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Fig. 5 Gentle AdaBoost algorithm with early stopping

Fig. 6 Decision stump learning algorithm
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misclassified. Once the split point is optimized, the algorithm
computes the weighted means of the response for both leaves.

When presented a sample u to classify, the decision stump
ft (u) thresholds the feature dt of u at τt and assigns the sam-
ple to the corresponding leave. Formally:

ft (u) =

{

ρleft
t if udt < τt

ρ
right
t otherwise.

(5)

Decision stumps typically have high bias and low vari-
ance. However, boosting algorithms are capable of reducing
both bias and variance, hence the increase in performance
from committee of stumps [27]. Moreover, when boosting
implements a re-weighting strategy (as opposed to re-sam-
pling), like it is the case for Gentle AdaBoost, decision
stumps cause boosting to become deterministic in the sense
that multiple runs on the same learning set will result in iden-
tical committees. Also, the order of the presentation of the
samples and of the features of the learning set do not affect
the resulting committees. Finally, following (5), a decision
stump classifies a pattern using a single feature. This means
that boosted decision stumps will greedily select informative
features while building the committee, ignoring redundant
and irrelevant features. It is worth noting that the committee
may learn several stumps based on the same feature, each
with a different decision threshold and response.

“Appendix A” presents a detailed analysis of the time com-
plexity for feature learning of a learning dataset with BFS and
for classification using a committee of decision stumps. Dur-
ing operations, the total worst-case time required to classify a
distance vector using the committee of stumps is O(T ), mak-
ing for very fast classifications. When training with larger
databases (L ≫ T ) as considered in this research, the total
average case time required to learn with Gentle AdaBoost
and early stopping, including the time for quicksort, train-
ing decision stumps, and computing the area under the ROC
curve is O(DLT ), resulting in a fast learning algorithm that
scales linearly.

4 Experimental methodology

The objective of this experimental protocol is to assess and
compare the performance of the new approach proposed in
Sect. 3 for feature selection for WI off-line SV. WI verifica-
tion implies that there is only one classifier for all writers.
Therefore, the protocol employs two disjoint sets of writers
for system design (during development phase) and system
testing (during exploitation phase). The underlying hypothe-
sis is that the set of writers used for training is representative
of the set of writers encountered during exploitation.

In most real-world applications, few genuine signatures
are available for each writer, and random forgeries are typi-
cally the only type of counterexample available for designing

a SV system. Consequently, only random forgeries were
included in the training database, although the system is
tested against random, simple, and simulated forgeries.

The following subsections describe the signature data-
base, feature sets, and protocols used to evaluate perfor-
mance. In fact, there is a generic protocol that consists in
using an increasing number of reference signatures per writer,
and this protocol is evaluated under different settings of fea-
tures and their combination. These settings allow to evaluate
performance for (1) single-scale representations, (2) infor-
mation fusion at the feature extraction level, (3) information
fusion at the confidence score level, and (4) fast incremental
learning.

4.1 Signature database

The signature database used in this work is composed of 168
writers divided into a 108 writer development database D and
a 60 writer exploitation database E . As described in [13], the
signatures were provided by 168 under-graduated students
in four different sessions, ten samples at a time, once a week
during one month, for a total of 40 genuine signatures per
writer. The signatures were collected on a white A4 sheet of
paper with no overlap and then scanned in gray level with
300 dpi. Regarding forgeries, ten people with no experience
in producing forgeries were selected as forgers, to produce
one simple and one simulated forgery for the 60 first writers.
Simple forgeries were produced by supplying only the name
of the writer to the forger. Simulated forgeries were produced
by showing the forger four genuine signatures of the writer.

To build a WI classifier, distance vectors must be com-
puted from the feature vectors using the dichotomy trans-
formation as explained in Sect. 2.1. The learning set L and
holdout validation set H are both generated from the devel-
opment database D. To do so, the 40 genuine signatures of
each writer in D are partitioned into subsets of 30 and 10
signatures denoted D1 and D2, respectively. The signatures
populating D1 are selected randomly.

The learning set L is generated using exclusively the gen-
uine signatures of subset D1. The within class samples are
computed using all genuine signatures from every writer, giv-
ing 108 · 30·29

2 = 46, 980 distance vectors. To generate an
equivalent number of counterexamples, the dichotomy trans-
formation is applied, for each writer, to 29 genuine signatures
used as signatures of references against 15 random forgeries
selected from the genuine signatures of 15 other writers. The
result is 108 · 29 · 15 = 46, 980 between class distance vec-
tors. Thus, the learning set is defined as L = {ul , vl}

93,960
l=1

with equiprobable priors.
The holdout validation set H is generated using the genu-

ine signatures of subset D1 as signatures of reference against
the genuine signatures of subset D2. Since each writer has 30
references signatures in D1 and 10 genuine signatures in D2,
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the number of within class samples is equal to 108 ·30 ·10 =

32, 400. To generate an equivalent number of counterexam-
ples, for each writer, 10 random forgeries are selected from 10
different writers in D2. The random forgeries are compared
to the 30 references from D1, giving 108 · 30 · 10 = 32, 400
between class distance vectors. Thus, the holdout validation
set is defined as H = {uh, vh}

64,800
h=1 with equiprobable priors.

To perform a WI evaluation of the system, both reference
R and questioned Q sets are generated from the exploitation
database E whose writers are unknown to the verification
system. The reference set R is composed of 30 randomly
selected genuine signatures from each writer of the exploi-
tation database E . Thus, the reference set is defined as R =

{xr , yr }
1,800
r=1 . The questioned set Q is composed of the 10

remaining genuine signatures and simple and simulated forg-
eries from each writer plus 10 random forgeries selected from
the genuine signatures of 10 different writers. Thus, the ques-
tioned set is defined as Q =

{

xq , yq

}2,400
q=1 .

4.2 Feature sets

ESC feature vectors and DPDF vectors are extracted from
both signature databases D and E . Resolution depends on the
size of the extraction grid; the smaller the grid cells, the higher
the resolution. The highest resolution used in this work is a
cell of 20×20 pixels. Since the width of a stroke measures an
average of 10 pixels, higher resolutions would results mostly
in saturated cells and empty cells. On the other hand, the low-
est resolution is limited by the size of the image. Since the
signature images are 400 pixels high by 1,000 pixels wide,
the lowest resolution consists of a single cell of that size. Let
I = {1, 2, 5, 10, 20} be a set of 5 horizontal scales defined
by their number of grid rows and J = {1, 3, 6, 12, 25, 50}

be a set of 6 vertical scales defined by their number of grid
columns. The Cartesian product I × J results in the 30 sin-
gle scales used in this work. Finally, multiple features are
achieved by combining feature sets from every scale, for a
total of 15,457 and 14,744 features for ESC and gradient
histogram, respectively, and a grand total of 30,201 features
when both techniques are combined.

4.3 Single-scale representations

In order to independently characterize both ESC and DPDF
feature extraction techniques, single-scale committees are
designed from the development database D according to the
following protocol. For each available feature set, the Gentle
AdaBoost algorithm with early stopping (see Fig. 5) builds
a committee of decision stumps on the learning set L using
the holdout validation set H to prevent overfitting. The early
stopping criterion TH = 100 and the maximum iteration
stopping criterion TL = 100, 000.

The performance of the WI committees is evaluated with
the exploitation database E , using reference signatures from
new writers in the set R to authenticate the questioned sig-
natures of set Q. To measure the impact of the cardinality of
the reference set, reference subsets containing 1, 3, . . . , 15
randomly selected signatures are used for authentication.
To simulate the effect of enrolling new signatures over time,
previously selected reference signatures are kept and new
signatures are added to increase the size of the references
subsets. This procedure is repeated 100 times for variance
estimation.

ROC analysis is used to compare the performance of the
committees on the questioned set. Additionally, the commit-
tees are evaluated using their error rates on the questioned
set. To do so, the decision threshold minimizing the zero-one
loss is used as it permits a characterization of the questioned
set and also a comparison with previous systems.

4.4 Multi-feature information fusion at the feature
extraction level

Biometric sources of information are typically integrated at
the sensor (raw biometric data), feature, score, and decision
levels. Contrary to other WI systems [13], which implement
information fusion at the confidence score level, the proposed
system implements information fusion at the feature extrac-
tion level. Since the features extracted from sensor measure-
ments contain richer information content about a biometric
trait than scores, integration at the feature level may provide
higher level of accuracy. Three multi-feature committees are
compared: (i) using a multi-feature feature set only from the
ESC technique, (ii) using a multi-feature feature set only
from the DPDF technique, and (iii) using a multiple feature
set from both ESC and DPDF techniques. Multiple feature
sets are achieved by concatenating appropriate single-scale
feature sets. To permit a straightforward result comparison,
training and evaluation protocols are the same as for single-
scale feature set, as described previously.

4.5 Multi-feature information fusion at the confidence
score level

In order to compare the approach proposed in this paper to
the overproduce and choose approach used in [13], the latter
is shown here using the same feature extraction techniques
and database partitions used in this paper. Since fusion is per-
formed at the confidence score level, committees designed
from single-scale feature sets are combined into an ensemble
of committees by summing their individual confidence lev-
els. Ensembles of committees are optimized using a genetic
algorithm based on bit representation, one-point crossover,
bit-flip mutation, and roulette wheel selection with elitism.
Parameters are set as in [13], with a population = 100,
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Fig. 7 Forward selection of representations protocol

number of generations = 300, probability of crossover = 0.7,
and probability of mutation = 0.03. The chromosomes are
composed of 60 bits, that is, one bit per single-scale com-
mittee and for a given chromosome. Bits with a value of “1”
indicate the selected committees. The fitness function is the
maximization of the AUC on the holdout validation set H.
Once an ensemble of committees is optimized, it is evaluated
on the questioned set using the evaluation protocol described
in Sect. 4.3. This procedure is also repeated 100 times for
variance estimation, thus allows direct comparison with the
other approaches explored in this work.

4.6 Fast incremental learning

In order to demonstrate the modularity of the proposed sys-
tem, a third experimental protocol implements a fast incre-
mental learning of handwritten signature representations. For
instance, suppose that domain experts extract new represen-
tations from the design database. As new signature represen-
tations become available, they are learned incrementally by
the verification system in order to increase its recognition
rate.

A greedy incremental learning scheme is implemented to
demonstrate the modularity of the proposed system. Single-
scale signature representations are presented to the system
one at a time. For each representation, a committee of stumps
is built and combined with previous committees to form an
ensemble of committees. Then, the AUC of the ensemble
of committees is evaluated on the holdout validation set H

and the newly added committee is kept if it improves the
AUC of the ensemble or dismissed otherwise. The 60 single-
scale representations are presented in random order and this

procedure is replicated 100 times to evaluate the variance of
the learning scheme.

Figure 7 details this experimental protocol. Given a sig-
nature representation p, the learning set Lp and holdout val-
idation set Hp are both generated from the design database
D and the reference set Rp and questioned set Qp are gen-
erated from the exploitation database E whose writers are
unknown to the verification system. Committees of stumps
are the result of the Gentle AdaBoost algorithm with early
stopping, described at Fig. 5, and they are evaluated accord-
ing to the evaluation protocol described in Sect. 4.3.

Finally, Fig. 8 describes the experimental protocol
designed to evaluate the impact of the quantity of signature
representations on the boosted feature selection algorithm
with early stopping. Let L, H, Q, R be the learning, hold-
out, questioned, and references sets, respectively. They are
all initialized as empty sets. Then, the 60 signature repre-
sentations are randomly selected one at a time and added to
the sets. When the sets contain 1, 5, 10, 15, 20, 25, 30, 40,
50, and 60 representations, the committee of stumps Fp is
built from sets L and H using the boosted feature selection
algorithm with early stopping and then tested on set Q using
1, 3, 5, 7, 9, 11, 13, 15 references from set R. This protocol
is repeated 10 times to show replicability.

5 Results and discussion

5.1 Single-scale representations

First, the results from committees built on single-scale fea-
ture sets are presented. Table 1 presents the committee size
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Fig. 8 Protocol to evaluate the impact of the quantity of signature representations on the boosted feature selection algorithm with early stopping

Table 1 Committee size and
ratio of selected features for
single-scale ESC representation
committees

Rows Col.

50 25 12 6 3 1

20 1,028/0.16 802/0.22 303/0.21 717/0.44 468/0.54 234/0.64

10 623/0.20 784/0.34 607/0.43 471/0.54 259/0.62 186/0.86

5 425/0.26 956/0.53 536/0.57 561/0.74 161/0.74 118/1.00

2 784/0.69 810/0.82 539/0.87 300/0.96 232/1.00 287/1.00

1 484/0.78 493/0.96 344/0.98 271/1.00 110/1.00 232/1.00

Table 2 Error rate for the committee of ESC features at scale 2 × 3 (%)

Type Cardinality of the reference set

1 3 5 7 9 11 13 15

Genuine S. 21.99 (4.14) 16.75 (3.81) 15.40 (3.05) 14.39 (2.46) 14.29 (2.16) 14.07 (2.61) 13.59 (2.19) 13.26 (2.02)

Random F. 0.77 (0.39) 0.45 (0.19) 0.39 (0.18) 0.37 (0.15) 0.34 (0.16) 0.33 (0.16) 0.32 (0.12) 0.35 (0.11)

Simple F. 1.45 (0.68) 0.81 (0.37) 0.61 (0.31) 0.56 (0.27) 0.48 (0.24) 0.43 (0.23) 0.42 (0.18) 0.41 (0.17)

Simulated F. 20.42 (3.32) 18.75 (2.83) 17.92 (2.40) 18.01 (2.14) 17.54 (1.78) 17.25 (2.11) 17.31 (1.74) 17.29 (1.63)

Overall 11.16 (0.75) 9.19 (0.49) 8.58 (0.44) 8.33 (0.36) 8.16 (0.34) 8.02 (0.30) 7.91 (0.26) 7.83 (0.24)

and ratio of features selected for single scale with the ESC
representations. Since no committee has reached TL itera-
tions, early stopping has occurred for every scale. The lower
selection rate obtained at higher resolutions indicates the
presence of redundant and irrelevant features. Best overall
error rates from ESC representations are obtained at scale
2 × 3 (see Table 2). Results are presented as the mean error
rate over 100 replications, along with one standard deviation
(in parenthesis).

Table 3 presents the committee size and ratio of selected
feature from single-scale DPDF representations. Again, no
committee has reached TL iterations, and early stopping
has occurred for every scale. When compared to ESC

representation committees, the DPDF representation com-
mittees are usually larger and have a higher ratio of selected
features that indicate that DPDF representations generally
contain less redundant and irrelevant information. Best over-
all error rates from DPDF representations are obtained at
scale 20 × 6 (see Table 4). Compared to best ESC represen-
tation committee, the DPDF representation committee pro-
vides a lower error rate.

5.2 Information fusion at feature level

This subsection presents results from committees built
on multi-scale ESC representation, committees built on
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Table 3 Number of terms for
single-scale DPDF
representation committees

Rows Col.

50 25 12 6 3 1

20 909/0.15 930/0.25 796/0.33 638/0.45 778/0.64 589/0.96

10 1,358/0.28 761/0.32 836/0.45 598/0.56 628/0.76 361/1.00

5 1,018/0.38 500/0.41 963/0.62 730/0.77 258/0.78 326/1.00

2 1,288/0.86 939/0.94 983/1.00 1,056/1.00 632/1.00 334/1.00

1 681/0.94 557/1.00 705/1.00 746/1.00 285/1.00 360/1.00

Table 4 Error rate for the committee of DPDF features at scale 20 × 6 (%)

Type Cardinality of the reference set

1 3 5 7 9 11 13 15

Genuine S. 20.69 (3.56) 16.47 (3.07) 14.65 (2.76) 14.96 (2.64) 15.12 (2.29) 14.93 (2.67) 15.07 (2.79) 15.33 (2.84)

Random F. 0.87 (0.44) 0.69 (0.29) 0.60 (0.25) 0.53 (0.21) 0.49 (0.18) 0.48 (0.17) 0.44 (0.13) 0.43 (0.14)

Simple F. 1.48 (0.56) 0.97 (0.31) 1.00 (0.25) 0.90 (0.21) 0.88 (0.18) 0.88 (0.18) 0.87 (0.19) 0.84 (0.18)

Simulated F. 16.72 (2.62) 14.83 (2.56) 15.33 (2.23) 14.44 (2.12) 13.90 (1.84) 13.94 (2.27) 13.74 (2.47) 13.52 (2.50)

Overall 9.94 (0.59) 8.24 (0.40) 7.90 (0.36) 7.71 (0.30) 7.60 (0.26) 7.56 (0.24) 7.53 (0.22) 7.53 (0.21)

Table 5 Selected features rate for the multi-scale ESC representation
committee

Rows Col.

50 25 12 6 3 1

20 0.03 0.03 0.06 0.06 0.11 0.25

10 0.03 0.03 0.06 0.07 0.08 0.25

5 0.06 0.05 0.09 0.12 0.16 0.27

2 0.05 0.11 0.20 0.25 0.34 0.45

1 0.12 0.13 0.20 0.32 0.12 0.50

Overall selected features rate: 0.05

multi-scale DPDF representation, and committees built on
a multi-feature representation (both multi-scale ESC and
DPDF representations).

The committee built on multi-scale ESC representation is
composed of 1,095 terms. Table 5 details the individual ratio

of selected features at each scale. Features from every scale
have been selected for a total of 818 features out of 15,457,
resulting in an overall selected features rate of approximately
5%. Table 6 presents the mean error rates over 100 replica-
tions with one standard deviation for the multi-scale ESC rep-
resentation committee. Using the multi-scale approach leads
to lower overall error rates compared to single-scale ESC
representation. This is explained by the greater quantity of
features available to build committees.

The committee built on DPDF multi-scale representation
is composed of 1,288 terms. Table 7 details the individ-
ual ratio of selected features for each scale. Features from
every scale have been selected for a total of 888 features out
of 14,744, resulting in an overall selected features rate of
approximately 6%; a result similar to the one obtained with
multi-scale ESC representation.

Table 8 presents the mean error rates (in %) of the 100
replications with one standard deviation for the multi-scale

Table 6 Error rate for the committee of ESC multi-scale representation (%)

Type Cardinality of the reference set

1 3 5 7 9 11 13 15

Genuine S. 19.37 (3.66) 14.41 (2.87) 13.67 (2.68) 13.34 (2.49) 12.81 (2.48) 12.46 (2.20) 12.29 (2.00) 12.19 (2.13)

Random F. 0.14 (0.11) 0.07 (0.10) 0.05 (0.09) 0.05 (0.09) 0.03 (0.07) 0.02 (0.06) 0.01 (0.05) 0.02 (0.05)

Simple F. 0.39 (0.22) 0.24 (0.11) 0.18 (0.06) 0.18 (0.05) 0.18 (0.04) 0.17 (0.03) 0.17 (0.02) 0.17 (0.00)

Simulated F. 16.17 (2.68) 15.41 (2.45) 14.82 (2.48) 14.53 (2.22) 14.82 (2.33) 14.91 (2.12) 14.97 (1.92) 14.93 (1.90)

Overall 9.02 (0.61) 7.53 (0.41) 7.18 (0.33) 7.02 (0.28) 6.96 (0.25) 6.89 (0.19) 6.86 (0.18) 6.83 (0.18)
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Table 7 Selected features rate for the multi-scale DPDF representation
committee

Rows Col.

50 25 12 6 3 1

20 0.04 0.04 0.06 0.08 0.11 0.41

10 0.03 0.04 0.04 0.06 0.12 0.30

5 0.06 0.07 0.09 0.11 0.22 0.35

2 0.14 0.11 0.19 0.25 0.21 0.38

1 0.18 0.18 0.31 0.54 0.25 0.75

Overall selected features rate: 0.06

DPDF representation committee. Similarly to the ESC multi-
scale representation, the multi-scale approach leads to lower
error rates compared to the single-scale DPDF representa-
tion. However, the multi-scale DPDF representation com-
mittee provides lower error rates than the multi-scale ESC
representation committee.

The committee built a multi-feature ESC+DPDF repre-
sentation (multi-scale representations with ESC and DPDF)
is composed of 679 terms. Table 9 details the features selec-
tion rate for each scale. Features from every scales have been
selected for a total of 555 features out of 30,201 resulting in
an overall selected features rate of less than 2%. By provid-
ing more diversified information to BFS results in a lighter
committee using less features.

Table 10 presents the mean error rates over the 100 repli-
cations for the committee built on ESC+DPDF multi-feature
representations. The error rates are lower than those obtained
from the committees based only on one of the two multi-
scale representations. This confirms that ESC+DPDF multi-
feature representation are complementary and that together,
they provide greater diversity to BFS.

5.3 Information fusion at the confidence score level

This section presents the results obtained from the overpro-
duce and choose approach. A mean of 19.81 committees
are selected per replication. Each committee uses a mean
of 1736.93 ESC features and 2004.12 DPDF features for

a total of 3741.05 features. Table 11 details the individual
ratio of selected features at each representation. Of the 30
resolutions, 4 are systematically selected for both types of
representation and 11 are systematically discarded. Interest-
ingly, the remaining fifteen (that is, half of the resolutions
available) are equally shared between both types of repre-
sentation, indicating the complementarity of the two feature
extraction techniques.

Table 12 presents the mean error rates over 100 replica-
tions for the ensemble of committees. The overall error rates
are lower than those obtained from the committees based only
on one of the two multi-scale representations, but higher than
those obtained from the committee based on both multi-scale
representations.

5.4 Fast incremental learning

This section presents results from the forward incremental
learning scheme. Figure 9a presents the mean error rate as a
function of both the number of references per writer and the
number of representations presented to the system. The actual
number of selected representations is indicated on Fig. 9b
using the mean number of features as a function of the num-
ber of representations that has been presented to the system.

The mean error rate decreases monotonically according
to both the number of representations and the number of
references. In both cases, there seems to be a limit to the
improvement provided by adding new references and new
representations since the improvement lessens as more refer-
ences or representation are added. However, the figure clearly
shows that adding new representations leads to a greater
impact on accuracy than by adding new reference signatures.

Figure 10a presents the mean error rate as a function of
both the number of references per writer and the number of
representations used by the verification system. The mean
error rate decreases monotonically for both the number of
representations and the number of references. In both cases,
there is a limit to improvements provided by adding new
references and representations. However, the figure clearly
shows that adding new representations has a greater impact
on accuracy than adding new references.

Table 8 Error rate for the committee of DPDF multi-scale representation (%)

Type Cardinality of the reference set

1 3 5 7 9 11 13 15

Genuine S. 15.68 (2.77) 11.44 (2.86) 10.61 (2.57) 10.23 (2.59) 10.23 (2.33) 10.21 (2.10) 9.94 (2.06) 9.88 (1.97)
Random F. 0.21 (0.14) 0.15 (0.11) 0.15 (0.11) 0.14 (0.11) 0.12 (0.11) 0.11 (0.10) 0.11 (0.09) 0.12 (0.10)
Simple F. 0.87 (0.40) 0.67 (0.27) 0.67 (0.21) 0.69 (0.15) 0.68 (0.16) 0.69 (0.14) 0.70 (0.14) 0.70 (0.14)
Simulated F. 15.40 (2.33) 14.03 (2.70) 13.68 (2.43) 13.45 (2.36) 13.14 (2.26) 13.00 (1.95) 13.05 (1.99) 13.05 (1.94)
Overall 8.04 (0.49) 6.57 (0.35) 6.28 (0.26) 6.13 (0.23) 6.05 (0.19) 6.00 (0.17) 5.95 (0.17) 5.94 (0.15)
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Table 9 Selected features rate for the multi-feature ESC+DPDF representation committee

Rows Col.

50 25 12 6 3 1

20 0.01/0.02 0.01/0.01 0.01/0.01 0.01/0.02 0.02/0.02 0.01/0.02

10 0.01/0.02 0.00/0.01 0.00/0.03 0.02/0.01 0.00/0.05 0.00/0.06

5 0.02/0.03 0.02/0.07 0.02/0.02 0.02/0.02 0.01/0.03 0.00/0.04

2 0.01/0.03 0.06/0.04 0.01/0.04 0.00/0.07 0.00/0.07 0.00/0.00

1 0.02/0.08 0.02/0.04 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00

Overall selected features rate: 0.01/0.02

Table 10 Error rate for the multi-scale ESC+DPDF representation committee (%)

Type Cardinality of the reference set

1 3 5 7 9 11 13 15

Genuine S. 13.53 (3.01) 10.66 (2.41) 9.83 (2.25) 9.75 (2.18) 9.36 (2.12) 9.69 (1.75) 9.80 (2.19) 9.77 (1.93)
Random F. 0.12 (0.10) 0.06 (0.08) 0.04 (0.07) 0.03 (0.06) 0.03 (0.07) 0.02 (0.06) 0.03 (0.06) 0.02 (0.05)
Simple F. 0.43 (0.22) 0.33 (0.09) 0.32 (0.06) 0.33 (0.04) 0.32 (0.04) 0.33 (0.03) 0.32 (0.05) 0.32 (0.05)
Simulated F. 14.95 (2.54) 12.52 (2.14) 11.87 (2.20) 11.36 (2.01) 11.55 (2.07) 11.11 (1.79) 10.77 (2.00) 10.65 (1.92)
Overall 7.26 (0.58) 5.89 (0.38) 5.52 (0.29) 5.37 (0.23) 5.32 (0.25) 5.29 (0.22) 5.23 (0.18) 5.19 (0.18)

Table 11 Selection rate of ESC+DPDF representation committees

Rows Col.

50 25 12 6 3 1

20 0.00/0.00 0.00/0.00 0.00/1.00 0.94/1.00 0.82/0.97 1.00/1.00

10 0.00/0.46 1.00/0.00 0.48/0.01 0.16/0.01 0.00/0.53 0.99/0.98

5 0.29/0.99 1.00/0.03 1.00/0.01 0.84/0.00 0.09/0.00 0.00/0.85

2 0.01/0.60 0.00/0.00 0.00/0.96 0.00/0.01 0.00/0.00 0.00/0.00

1 0.98/0.00 0.70/0.00 0.10/0.00 0.00/0.00 0.00/0.00 0.00/0.00

Overall ESC+DPDF representation selection rate: 0.35/0.31

Table 12 Error rate for the ensemble of committees (%)

Type Cardinality of the reference set

1 3 5 7 9 11 13 15

Genuine S. 14.36 (3.00) 12.29 (2.55) 11.32 (2.47) 11.42 (2.48) 11.49 (2.01) 11.39 (1.88) 11.38 (1.65) 11.00 (1.98)

Random F. 0.02 (0.05) 0.00 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Simple F. 0.35 (0.19) 0.23 (0.13) 0.21 (0.11) 0.20 (0.10) 0.18 (0.04) 0.17 (0.03) 0.17 (0.03) 0.19 (0.08)

Simulated F. 14.24 (2.49) 12.11 (2.38) 11.98 (2.23) 11.49 (2.26) 11.16 (1.90) 11.03 (1.80) 10.90 (1.67) 11.15 (1.92)

Overall 7.24 (0.50) 6.16 (0.37) 5.88 (0.30) 5.78 (0.26) 5.71 (0.24) 5.65 (0.20) 5.61 (0.17) 5.59 (0.15)

Figure 10b compares the mean error rates when applying
information fusion at the feature level compared to informa-
tion fusion at the confidence score level. Committees result-
ing from information fusion at feature level obtain a lower
error rate, which is explained by the richer information con-
veyed by features rather then scores.

5.5 Discussion

Table 13 summarizes the results presented in this paper,
bold indicating lowest error rates among the compared SV
systems. Results indicate that the proposed multi-feature
ESC+DPDF approach provides a high level of performance,
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Fig. 9 a Mean error rate in function of both the number of references
per writer and the number of signature representations presented to the
system. b Mean (solid line) and standard deviation (dotted lines) of the
number of features used by the system in function of the number of
representations that has been presented. The dashed line represents the

number of feature that would be used by the system, should it select all
representations presented to it. The dashed line continues outside the
graphic to reach 30,201 features when the 60 representations have been
presented
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Fig. 10 The impact of the quantity of signature representations on the
boosting feature selection algorithm with early stopping. a Mean error
rate in function of both the number of references per writer and the

number of signature representations presented to the system. b Mean
error rate in function of number of signature representations using 5
references

yet is faster than the optimal overproduce and choose
approach [13]. This is true despite the fact that the pro-
posed approach uses features extracted with two simple tech-
niques (ESC and DPDF), while the optimal overproduce
and choose approach uses more sophisticated graphomet-
ric features adapted to signature traces. Compared to [13],
the improvements are due to a combination of larger over-

all feature spaces provided by multi-feature extraction and
of boosting feature selection. With the WI feature selection
approach proposed in this paper, many samples are gener-
ated in a large feature space, and feature learning with BFS
allows for personalized feature selection, focusing on the
more relevant features. Regarding both best single-scale rep-
resentations, DPDF are significantly more discriminant than
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Table 13 Error rates comparison with other systems (%)

Approach Number features Cardinality of reference set

1 3 5 7 9 11 13 15

Single scale ESC 2 × 3 29 11.16 9.19 8.58 8.33 8.16 8.02 7.91 7.83

Single scale DPDF 20 × 6 216 9.94 8.24 7.90 7.71 7.60 7.56 7.53 7.53

Multiscale ESC 818 9.02 7.53 7.18 7.02 6.96 6.89 6.86 6.83

Multiscale DPDF 888 8.04 6.57 6.28 6.13 6.05 6.00 5.95 5.94

Multi-feature ESC+DPDF 555 7.26 5.89 5.52 5.37 5.32 5.29 5.23 5.19

All representations 10,137 7.54 6.59 6.34 6.27 6.24 6.20 6.20 6.17

Forward incremental selection 5,178 7.31 6.25 6.01 5.87 5.81 5.76 5.74 5.73

Overproduce & choose (this work) 3,741 7.24 6.16 5.88 5.78 5.71 5.65 5.61 5.59

Overproduce & choose [13] 2,300 − 7.86 7.32 6.32 7.04 7.19 6.73 6.48

MLP [11] - − − 8.02 − − − − −

Fig. 11 Comparison of the
error rates of the different
approaches presented in this
work using boxes and whiskers.
Error rates are obtained with
reference sets of 5 signatures
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ESC representations. However, an interesting fact is that ESC
performs better at low resolution while DPDF provides bet-
ter performance at higher resolution. In this respect, the two
feature extraction techniques are complementary.

Figure 11 presents a notched box and whisker plot of the
error rates of the different approaches explored in this work.
The notches represent a robust estimate of the uncertainty
about the medians for box-to-box comparison. Boxes whose
notches do not overlap indicate that the medians of the two
groups differ at the 5% significance level. All error rates
significantly differ except for the multi-scale DPDF and the
approach combining all 60 independent committees, whose
notches overlap.

The proposed solution is highly modular in the sense that
each new representation can generate an independent clas-
sifier, which in turn can be integrated to the classification
module for increased performance. For instance, if all
independent committees built from every representations
extracted in this work are combined to form ensemble of 60
committees, this “All Representations” (see Table 13) system
provides highest level of performance of any system built on
a single-scale representation.

The ensemble of committees can also be optimized using
a genetic algorithm to further improve performance by filter-
ing out redundant and irrelevant representations. The draw-
back of this approach is that the optimization process must be
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repeated each time a new representation is available. In this
case, an incremental learning strategy is more appropriate.
Results show that even forward incremental selection, argu-
ably the simplest incremental selection scheme, provides a
viable means for filtering representations and increase per-
formance. As shown in Fig. 9a, there is more to be gained
from extracting new representations than by sampling new
references. Consequently, such a verification system can run
with a few signatures of reference if it is composed of ade-
quate representations.

The combination of independent committees into ensem-
ble of committees result in the fusion of information at the
confidence score level. When committees are built across
multiple representations, the information fusion occurs at the
feature level and results small committees with better gen-
eralization performance. Both multi-scale ESC and multi-
scale DPDF committees outrank their single representation
counterparts and use only 5 and 6% of all available features,
respectively. This result is even more convincing for a multi-
scale committee built across all 60 representations; the com-
mittee uses even less features (2%) and provides a lower error
rate.

6 Conclusion

This paper presents a practical solution to some of the
fundamental problems encountered in the design of off-line
signature verification (SV)—the large number of users and
features, the limited number of reference signatures, the high
intra-personal variability of the signatures, and the lack of
forgeries as counterexamples. A new approach for feature
selection is proposed for cost-effective design of writer-
independent (WI) off-line SV systems. It combines multiple
feature extraction, dichotomy transformation, and boosting
feature selection (BFS). Computer simulations performed
on real-world signature data (comprised of random, simple,
and skilled forgeries) indicate that this approach provides
enhanced performance when extended shadow code and
directional probability density function features are extracted
at different scales.

The multi-feature extraction and selection approach pro-
posed in this paper involve dichotomy transformation to mit-
igate the effects of designing a system with many users and
a limited number of reference signatures. The global WI
approach allows to explore and select from a large set of
features by incorporating prior knowledge of a population of
users. Experimental results show the writer-independence by
training and testing the system on two disjoint sets of writ-
ers and allows for signature verification from only a single
reference signature per writer. Results further demonstrate
the viability of using random forgeries to train a classifier

in the distance space of the dichotomy transformation, thus
addressing the lack of skilled forgeries.

The high intra-personal variability of handwritten signa-
tures is dealt with by extracting a large diversified set of fea-
tures, using one or more preexisting techniques (such as ESC
and DPDF) at different scales. Simulation results have shown
that these two complementary feature extraction techniques
provide a powerful multi-scale and spatio-directional repre-
sentation of signature images. Given the large number of fea-
tures, BFS allows to select features while learning. Originally
proposed for traditional feature vectors, results also indicate
the effectiveness of BFS with distance vectors resulting from
the dichotomy transformation. Further, this approach result
in low cost, efficient classifiers that are suitable for real-time
applications.

Another significant advantage of the proposed framework
resides in the modularity of its classification architecture.
Using the properties inherited from the WI approach, new
samples and signature representations can be added to the
system during operations. A single classifier may be built
off-line, using all available signature representations, thereby
fusing information at the feature level. In contrast, one clas-
sifier may be built per representation and then grouped into
an ensemble of classifiers, thereby fusing information at
the confidence score level. The former approach yields the
more efficient classifiers, yet requires all representations to
be available during the design phase, while the latter allows
to design the system using a single representation and then
updates it incrementally when new representations become
available. There is no need to retrain the WI classifier from the
start using all cumulative references signatures. Results indi-
cate that after starting with a single representation and a sin-
gle reference signature, the accuracy of the system improves
the most by adding representations rather than references.
The proposed framework is therefore suitable to applications
where few reference samples are available.

One issue of off-line signature verification research is
the availability of large-scale data sets. Future research will
include assessing performance over a wider range of feature
extraction techniques, resolutions, and data sets. Other fea-
ture extraction techniques and scales would be considered to
increase information diversity, and thus system accuracy. An
analysis should uncover the impact of different feature types
and scales on performance. Future work will also focus on
adapting the classification function dynamically to the spe-
cific writer or signature for authentication, and thus combin-
ing the advantages of both WI and WD approaches. Finally,
significant improvement in learning time is expected from
distributed computing.
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Appendix

A complexity analysis for BFS

Suppose a committee composed of T decision stumps is built
from a two-class D-dimensional problem with training and
validation datasets of L = |L| and H = |H| patterns, respec-
tively. Let t1 be the time taken to perform an addition, sub-
straction, or comparison, and t2 the time for a multiplication,
division, or exponentiation. For the purpose of this analy-
sis, suppose that later operations are an order of magnitude
greater than the former such as t2 = 10t1.

During testing, a decision stump classifies (5) an input
distance vector regardless of the number of features and thus
has a constant time complexity of t1. A committee of stumps
repeats this operation T times and then sums the T − 1
responses from the stumps. Thus, the total worst-case time
required to classify an input vector using the committee twc

test

(normalized by t1) is twc
test
t1

= (2T − 1). The corresponding
growing rate, valid when T ≫ 1, is O(T ), making for very
fast classification during operations. By comparison, RBF-
SVM classification time complexity scales linearly with the
number of features and support vectors O(DNs) [35], where
Ns is the number of support vectors. For noisy problems such
as WI signature verification, the set Ns increases dramatically
and causes a major slowdown for SVM during operation. On
the other hand, the boosting approach does not suffer this
inconvenience. Moreover, when working with high-dimen-
sional databases such as in this work, D ≫ T , which makes
the boosting approach an attractive alternative to SVMs.

During training, the total worst-case time required to learn
with Gentle AdaBoost and early stopping includes the time
for quicksort, training decision stumps, and computing the
area under the ROC curve. Using quicksort algorithm [36],
the worst-case time required to sort the values of one feature
is defined as:

twc
sort =

(

L2

2
+

L

2

)

t1 (6)

Once values are sorted, training a decision stump (see Fig. 6)
has a worst-case time of

twc
stump = (13D(L − 1) + 5L) t1 + (D(L − 1) + L + 2) t2

= (23DL − 23D + 15L + 20) t1 (7)

The algorithm to compute the area under an ROC curve [32]
has a worst-case time of

twc
AUC = twc

sort + (5H + 3)t1 + (2H + 4)t2

=

(

H2

2
+

51H

2
+ 43

)

t1
(8)

Thus, the total worse-case time required to perform the Gen-
tle AdaBoost with early stopping in a normalized format (see

Fig. 5) is expressed by:

twc
gab = Dtsort+T tstump+T tAUC+(T L + 2L + T )t1+4Lt2

twc
gab

t1
=

DL2

2
+

H2T

2
+

DL

2
+

51H T

2
+23DLT − 23DT

+16LT + 42L + 64T (9)

and the corresponding growth rate, when D, L , T ≫ 1, is:

O(DL2 + T H2 + DT L). (10)

By comparison, the time complexity of computing a radial
basis function kernel matrix for a support vector machine
scales to O(DL2) [35], not including the time spent on
parameters selection.

It is worth noting that quicksort does much better in the
average case with tave

sort ≈ L log L . Thus, the average case
time complexity of the Gentle AdaBoost with early stopping
is O(DLT ). In computer simulations1 , the authors have
observed the average case analysis to be more representa-
tive of the reality than the worst-case analysis. Consider-
ing this, when working with large databases such as in this
work, L ≫ T , which makes the boosting approach a method
of choice since O(DLT ) grows significantly slower than
O(DL2) making the Gentle AdaBoost with early stopping a
fast learning algorithm that scales linearly. Our simulations
with SVMs were executed on the same machine as for BFS,
a dual-core Opteron 875 running at 2.2 GHz with 32 GB of
memory, using the small and medium single-scale resolu-
tion datasets presented in this work at Sect. 4. By comparing
execution durations, the SVM approach increased the time
complexity by two and three orders of magnitude for learn-
ing and testing, respectively, thus confirming the theoretical
complexity analysis presented herein. Knowing that the BFS
approach took 2 days for learning and classifies around 4,800
samples per second on the largest of the multi-feature data-
sets, by projection, the SMV approach would require over 6
months for learning and the resulting SVM classifier would
only classify up to 5 samples per second.
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