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Abstract—Multimedia data are usually represented by multiple fea-
tures. In this paper, we propose a new algorithm, namely Mulie
feature Learning via Hierarchical Regression for multimeda semantics
understanding, where two issues are considered. First, laling large
amount of training data is labor intensive. It is meaningful to effectively
leverage unlabeled data to facilitate multimedia semant& understanding.
Second, given that multimedia data can be represented by miiple
features, it is advantageous to develop an algorithm which ambines
evidence obtained from different features to infer reliabk multimedia
semantic concept classifiers. We design a hierarchical reggsion model
to exploit the information derived from each type of feature which is then
collaboratively fused to obtain a multimedia semantic conept classifier.
Both label information and data distribution of different f eatures repre-
senting multimedia data are considered. The algorithm can b applied to
a wide range of multimedia applications and experiments areonducted
on video data for video concept annotation and action recogtion. Using
Trecvid and CareMedia video datasets, the experimental redts show
that it is beneficial to combine multiple features. The perfemance of the
proposed algorithm is remarkable when only a small amount oflabeled
training data are available.

Index Terms—Multiple feature fusion, semi-supervised learning, vide
concept annotation, action recognition.

I. INTRODUCTION

Multimedia content is usually represented by multiple tieas$. For
example, given a video frame, its visual content can be seprted
by different features such as color histogram, SIFT, etthédtefore
turns an interesting research challenge to effectivelyzatthe mul-
tiple information sources of independent or heterogendeatires.
Intuitively, analyzing different features simultanegqu$$ beneficial
for disambiguation [14]. Previous research efforts haw®s ahown
that better performance could be achieved for multimediatezt
analysis if we properly fuse the evidences from differerdtdees
when compared to only using one type of feature or simplyguaih
types of feature as one feature [21], [27], [30], [31], [3f@}4], etc.

Late fusion and early fusion are two straightforward ways
dealing with multi-feature data [26]. However, it remainsclear
which fusion is more reliable [26]. It has been shown thatufesacon-
catenation is less effective in multimedia content analysspecially
when the features are independent or heterogeneous [3ie fitreld
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of machine learning, researchers have developed many -weiti
learning algorithms to address this problem. Represestatiorks
include Canonical Correlation Analysis (CCA) [11], [28}vd-view
support vector machines, i.e., SVM-2k [6] and their vasafi3],
[18]. These algorithms have been applied to different apgibns,
resulting in better performance than feature concatemati@ broad
range of applications, such as cross-language text asalgbject
recognition, image annotation, image-audio clusterinyj go on.
However, these algorithms require a large amount of labeksd
for training, which is often expensive and seldom available

Multimedia semantics understanding is to associate mettien
data with a single or multiple semantic concepts. For examptieo
concept annotation associates videos with labels/coadeptrovide
effective and efficient tools for managing video resourddy.[There
are many ways to improve the performance of multimedia séngan
understanding. One well-known method is to define more ateur
features for multimedia representation, such as a visusdatlrus
[24]. Another typical and effective approach is to apply iae
learning algorithms. Generally speaking, multimedia ssima un-
derstanding related task can be usually regarded as afidassn
problem. Many supervised classification algorithms can bedu
for multimedia semantics understanding, such as multimestent
detection [23]. However, a typical supervised classifaraglgorithm
may require a large amount of labeled data and collectirgyishiime
consuming and labor intensive. For example, 111 researdnem
23 institutes spent 220+ hours to annotate only 63 hours efvid
2003 development corpus [19].

There are three main strategies to relieve the tedious work i
labeling a large amount of training data for multimedia eont
analysis. The first strategy is known as active learning,[137],
which selects the most informative data as the training data
be labeled. The second one is transfer learning, whichzeslithe
dpbeled data from another domain, e.g., in [23], Ma et al. leynp
annotated video frames to facilitate multimedia event ct&r of
video clips. The third one is semi-supervised learning ,[32],
[36], [39], which leverages unlabeled data to infer a moreueate
classifier. Previous studies have shown that simultangautgizing
labeled and unlabeled data is beneficial for multimedia seicga
understanding.

Motivated by the recent success of semi-supervised legrimirthis
paper we address the problem of effectively exploring tifi@rmation
contained in multiple features of both labeled and unlabalata
for multimedia content analysis and propose a new semirgiseel
multi-feature learning algorithm, namely Multi-featuredrning via
Hierarchical Regression (MLHR). Different from most of tiesting
semi-supervised algorithms [3], [25], [35], [38], [39],etmanifold
structure of each feature type is preserved during theibigiphase.
MLHR is a general algorithm, which can be applied to a variety



of applications related to multimedia content analysis,exehthe

multimedia data are represented by multiple features.ismpdper, we
apply the proposed MLHR algorithm to video concept annotatind

action recognition to test its effectiveness. Compareti thie existing

algorithms, MLHR has the following two main advantages.s&ir
MLHR leverages unlabeled data represented by multiplaifeatto

improve the performance in multimedia semantic understgnd he

manifold structure of each feature type is preserved, tieguln a

more faithful learning result. Second, in order to explbé& manifold

structure of the training data, we propose a statisticatagah to

better exploit the manifold structure of the training datdich is

more robust than simply using the pairwise distances of rdiaing

data.

Regression [3] is as follows.
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where Z; is the i-th datum after subtracting the mean of all the
training data Xrrain = [Z1, ..., Z¢], and A1 and )\, are regularization
parameters. Given a multimedia datum to be annotated,hitd zan
be directly obtained by the classifié¥’. However, it is designed
to deal with a single feature. A frequently used method tolap
multiple feature data is feature concatenation but thecstral
information of each type of feature is lost. Besides, théqmerance
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The rest of this paper is organized as follows. In Section @, WS Sensitive to the parameter|[35].

briefly discuss related work. The proposed algorithm is ititan
Section 3, followed by experiment. Conclusion is drawn ict®a 5.

Il. RELATED WORK

A. Semi-supervised Learning for Multimedia Understanding

B. Multi-Feature Learning for Multimedia Understanding

Suppose a multimedia object is represented dyfeatures
zi,x%, ..., 2%, A common way of dealing with the multiple features
is to concatenate each feature vector and represent thémedia
object as[zi, 4, ..., z%]. It has been shown that such representation

Machine learning and data mining have been shown to be ffectmay degrade the performance of multimedia content anagjgis-
in bridging the semantic gap [16]. A typical example is Suppofithms, espeC|aIIy.When the features are |ndeper!de.nt. erdggnous
Vector Machine (SVM) and its variants, which have been widell26], [34]. A possible reason could be that the individualistural

used for multimedia semantic understanding, e.g., videbiarage
annotation [8], [24], [32]. Recently, semi-supervisedriéag and its
applications in multimedia have attracted much reseatemion [5],
[3], [25], [35], [38], [39].

information of each feature may be lost in feature concaiema
In [26], Snoek et al. have classified the feature fusion agiat

into two groups, which are early fusion and late fusion. Thaye

shown that if SVM classifier is used, late fusion tends to dieger

In the rest of this papef}|| ,» denotes the Frobenius Norm. Suppos@€rformance in video analysis [26]. However, more comjmrat

there aren training data{w1, ..., ¢, ¢41,...,2n} from ¢ classes, burden is required in late fusion. In [31], researchers ranayzed

in which the firstt (¢ < n) data are labeled samples. Denotdn€ limitation of linear combination. In [7], a multi-kerhkearning
Y = [Vi,..,Ya]T € {0,1}™%¢ as the label information provided algorithm is proposed for object classification. The majuritation

by human supervisors. Given a labeled datumif it belongs to the
j-th class)Y;; = 1, otherwiseY;; = 0. If x; is not a labeled datum,
Yi; =0foranyjthatl < j <c. Let F = [Fy,..., F,]T € R™*¢,
where F; € R¢ is the predicted label vector af;. A larger value of
F;; indicates a higher possibility that; is associated with thg-th
class. The affinity matrixd € R™*" is defined as follows:

Aij—{
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exp
0 )

@)

is that it requires the computation of multiple kernel nes. In [34],
cartoon image features are discussed and classified inferegit
feature classes. A bi-distance metric learning algorithas when
proposed to learn a better distance metric from heterogmnfeatures
for cartoon image retrieval [34]. However, the algorithmoposed
in [34] is application dependent and cannot be directly iappto
other applications. In [27], a multiple feature hashingoaithms is
proposed for near duplicate video retrieval.

Canonical Correlation Analysis (CCA) is a statistical ajgmh
which maximizes the correlations between two modalitiesain

whereo is a parameter. In [38], a graph based classification alggompact subspace [11]. Vinokourov et al. [28] have showh @GA

rithms, namely learning with Local and Global ConsistencGC),
was proposed, whose objective function is shown in (2).
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wherep is a parameter anf) is a diagonal matrix with its diagonal

elementD;; = 3, Aij.

gains good performance in cross-language text analysj$3JnCCA
and Linear Discriminant Analysis are combined for face abpeact
recognition. SVM-2K [6] is another well-known algorithm ofulti-
feature learning. This family of algorithms has also beeplied to
different applications [6], [18].

C. Notes of Caution

In the field of multimedia, the graph based algorithm LGC and Despite the success of semi-supervised multi-featurenitegufor

its variants have been applied to different applicatioesulting in
remarkable performance. In [29], Wang et al. have demdestridat
a limitation of LGC is that the affinity matrix4 in (1) is defined
completely according to the distance between data. Besaes
transductive classification algorithm, LGC is not able tedict the
labels of the data which are outside the training set. Eank tiew

data are added into the database, one needs to re-run the whol

algorithm.

Other semi-supervised learning algorithms, such as MahReg-
ularized Least Square Regression [3] and Flexible Manikrabed-
ding [25], are able to predict labels which are outside tlaning
set. The objective function of Manifold Regularized Leasfu&re

multimedia analysis, we should also emphasize the follgwintes
of caution:

« While semi-supervised learning has shown great potential f
multimedia content analysis, in some cases, utilizing helked
data for training can degrade performance, especially vihen
manifold assumption does not hold. It remains unclear how
to automatically decide if and when it is advisable to exploi
unlabeled data for training.
« Combining multiple features is generally beneficial for time-
dia analysis. The combination of a “weak” feature and a f&gfo
feature usually yields better performance than using oatufe
only, if the features are complementary. Yet, feature fusio



may hurt performance if the multiple features are contitadyc

Specifically, we minimize the following objective.

or a feature is very weak. Evaluating the appropriateness of

combining multiple features has not been sufficiently sddi

Ill. THE PROPOSED ALGORITHM

In this section, we give the details of the proposed algoritkive

begin with the terms and notationsis the number of labeled training
data andn is the number of the training data. In semi-supervised
learning,t < n, that is, only a small amount of training data are

labeled. Suppose each datum is represented t®atures. Given an
integerg < v, we denotezc; as theg-th feature of the-th datum and
Xy = [#},...,x]] € R%*™, whered, is the dimension of the-th

feature.l is the identity matrix.1,,, € R™ is a vector of all ones for

an arbitrary numbefn. T'r(-) is the trace operator. Following [25],

[38], we defineF’ = [F1, ..., F,,]T € R™** as the predicted matrix of
training data, which is the same as (2). The definitiolraé the same
as in (2) as well. Further, we defing = [fy1, ..., fon]* € R"*¢ as
the predicted matrix of training data derived from th¢h feature.
As indicated by previous graph based approaches [3], [ZH], [
[38], the manifold structure of input data plays an importasie in
pattern recognition and multimedia analysis. To explaé thanifold
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wherep1, p2, andy are parameters. Denoté as a diagonal matrix.
If ; is a labeled datund/;; = oo, andU;; = 0 otherwise. Then we
arrive at
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structure, we construct local sets for a datum, each of which is

computed according to one feature type. More specificaigrgthe
i-th datum represented by iisth featurex;, we construct a local
set, denoted aﬁ/;, which consists ofr; and itsk-nearest neighbors
according to the distance derived from théeh feature.

Instead of computing the affinity matrix directly, we propoa
statistical approach to exploit the manifold structurehsf input data
for semi-supervised learning. Inspired by [36], we assuhneeet is a
local classifierc;,, which classifies all the training data iN; to c
classes. The prediction errarr.t. ¢/ is be formulated as

Z Koss(c; (:cé)7 fai)s 4)

J i
acge./\fg

wherefoss(-) is a loss function. To exploit the structural information
derived from theg-th feature, we propose to minimize the totalnearest nelgh

prediction erromw.r.t. the g-th feature [36], i.e.,

min Z Z (6055 (ch(xD), foi) + )\Q(cg)) (5)

fo:cs 9 §=1 ]GNl

whereQ(c} ) is a regularization function or, and \ is a parameter.
We minimize (6) to combine the evidences from all théeatures.
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g
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We use the least square loss in our model as the loss fundtian.
objective function of MLHR is shown as follows
i 2
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wherew), € R%*° andb), € R® are the local classifier and bias term

of =}, wrt. the g-th feature, andV, € R%*° and B, € R® are the
global classifier and bias termr.t. the g-th feature
t N} {zg, xgt, ..., g} where zgt, ..., .zl are the k-
bors of, according to theg-th feature. X,
[z, xlt, .., xf] € R%X(+1) | The objective function of MLHR
can be rewritten as:
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where g = [fgi, fgir, -

) Wy + 1uBy — fo

fgik]T

is the predicted local label matrix of

Different from concatenating the features, the individual structural the data in\y according to they-th feature.

information is preserved. The predicted label matffixf the training
data should be consistent with each evideriggl < g < v). We

v
then minimizegl}n S |IF = foll%- To classify the data outside the

Jg g=1

training set, we train a set of global classifi§rs, ..., C, }, in which

By setting the derivative of (9vrt. w) and b to be zero, we
have

Cy (1 < g <) is able to predict the labels of the data according

to the g-th feature. We propose to simultaneously learn the predict

label matrixF" of the training data and theglobal classifier€y|g_; .

7 1 T iNT vt
bg = k?—-Fl ((fg) Tgt1 — (wg) XglkJrl) ) (10)
wy = (XgHi41(Xg)" + A7 X Hiy fo, (11)



where Hyy1 = I — =51,541175, is the local centering matrix.
Similarly, by setting the derivative of (9.rt. W, and B, to be
zero, we have

- wIX,1 ) (12)

By =5 (1= W,

Wy = (XgHn X, +~1) ' XgHn fy, (13)

Substitutingb},, w},, By and W, in (9) by (10), (11), (12) and (13)
respectively, we arrive at

mmZZTT(fg Lfg)-i-ulZT?“ fg Agfg)

=11i=1

e NP = 2+ Tr (P =Y U(F-Y)). (4
g=1
where
Ly = Hypr — Hipr (X)) (X Hy (X0)T 4+ M) 7 X, Hyyr (15)
and
Ag=Hn— Ho X, (XgHo X, +4I) ' XgHy. (16)

For the ease of representation, we define the selectionxmgfric
R™ (1) as follows.

1 if z¥ is thej-th element iNNZ;

Py, — g !
(89)is = { 0 otherwise. (17
Recall that all the elements iV} = {z},zi,.., .z} are

selected from the whole training set according to the destaterived
from the g-th feature. Therefore, we have

fo=(S)" fs. (18)

Then we have
f:w (reis) = ZTT (77 S5L5(89)" 1)
=1
—Tr <ng ; (S;L;(S;)T)fg>

> (SiLL(S:)™). Then (14) can be written as

=1
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which is equivalent to the following
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Let us define
le, 0
Qg = (20)
0 Ly
and
Sy =1[S4,..., Sy (21)

Then we have
Ly = S4Q4S; . (22)
Note that
L= Hypr — Heor (XD T (X Hii1 (X)T 4+ M) 7 X Hya
= Hi1 (X)) X5 4+ M) " Hipp.

It is easy to prove that the objective function shown in (E¢anvex.
By setting the derivative of (19)\.r.t f, to be zero, we have

2(Lg + mAg) fg —2p2(F — fg) =0
= fo = p2(Lg +mAg +p2l) ' F
By setting the derivative of (19\.r.t F to be zero, we have

(23)

> _pa(F = fo) +U(F ~Y) =0

g=1

Substitutingf, in (24) by (23), we have

(24)

> pa(F = pa(Lg + paAg + pal) ™" 0

g=1

F)+UF -Y) =

v -1

=F= <v,ugl +U =y > (Lo +mAg + u21)1> UY. (25)
g=1

In this way, we have obtained the optimal solution Bf f,, W,

and B, of the proposed MLHR algorithm. The detailed approach of

MLHR is summarized in Algorithm 1 as follows.

Algorithm 1: The MLHR algorithm.

1 for g=1towv do
for i =1 ton do
L ComputeLg according to (15);

ComputeL, according to (22);
ComputeA, according to (16);

ComputeF according to (25);

for g=1to v do
Computef, according to (23);
ComputeB, according to (12);
ComputeW, according to (13);

11 For a testing datum represented dyeaturesz!, ...,
predicted label vectoF; can be computed by

Z::1 (WngZ + Bg) /.

xt, its

F

(26)

Next, we briefly discuss the difference between MLHR and some
other semi-supervised learning algorithms. In recent sjeseveral
transductive classification algorithms have been proposb], [38]
and applied to different applications for multimedia cantanalysis.
Compared with other algorithms, the main advantage of MLKR i
that it is able to deal with the data which are outside theningi set,
without rerunning the training processing. Consideringt th large
amount of multimedia data are generated in every singleMaiiR
is more suitable for real world applications.

Apart from the aforementioned algorithms, there are sorherot
graph-based semi-supervised learning algorithms, whiehahle to
predict the labels of the data outside the training set, &gnifold
Regularization (MR) [3] and Flexible Manifold EmbeddingME)
[25]. MLHR mainly differs from MR and FME in two aspects. Rirs
although the multimedia data are represented by multiglependent



features in many cases, both MR and FME simply concatenata th 1) The parameter sensitivity study: First, we test the performance

to produce a high dimensional vector as input. MLHR is mopabte
of exploiting multiple features because the structurabiimfation of
individual feature is preserved and considered. Seconth MR

variation of the MLHR algorithnw.r.t the three parameters 11 and
w2 when CM and SIFT features are used to represent the videos. We
average the APs over all of the 36 concepts to compute the Mean

and FME compute the affinity matrix according to (1) directlyAverage Precision (MAP). In this experiment, we fix one of thiee

The limitation of this type of approach is that the affinity ma
A is completely based on feature similarities [29]. Besidim
performance is usually sensitive to the parametar (1). Differently,
our algorithm employs a group of local classifiers to exphbie
manifold structure and we advocate that a statistical ambras
more capable to exploit manifold structure than directlynpating
the pairwise distances [35].

IV. EXPERIMENTS

In this section, we test the proposed framework in terms déwi
concept annotation and action recognition.

A. Video concept annotation

In this subsection, we test the performance of the propokss a
rithm in video concept annotation. The Trecvid 2005 videopus

parameters and report the MAP while the other two parameters
changing. The results of using CM and SIFT features are shiown
Figure 1. MLHR gains the best performance whee: 1, p1 = 103
andpe = 10® for this dataset. From Figure 1(b) and Figure 1(c), we
can see that MLHR is comparatively less sensitive to therparar
~v when it is smaller than 1. Generally speaking, in order taiobt
better performancey. should not be smaller thain This implies that
the mismatch betweef and f,|2— (i.e., 0_, |F — f4|/%) incurs
heavier penalty than other terms. As for the regularizatiarameter
11, we observe from Figure 1(c) that if is fixed, the performance
of MLHR is not very sensitive. Yet, we would emphasize that th
optimal parameters for MLHR are data dependent.

2) Performance comparison of different algorithms: Next, we
compare the MLHR algorithm proposed in this paper with tHeeot
algorithms. The results of using CM and SIFT features arevahia

consisting of 160 hours news video is used in our experimght [ Table I. The results of using HSV and SIFT features are shown i
It contains 61,901 key-frames, which are from 137 news \ddedable Il. Because CM outperforms HSV, we additionally repbe

recorded from 13 different programs in English, Arabic ardn@se,
which are segmented into 49,532 shots and 61,901 sub-siamts
each sub-shorts, we extract one key-frame. We annotate 18 pts
which have more than 100 key-frames associated to them.

We compare our algorithm with two representative multiglatéire
learning algorithms, SVM-2K [6] and CCA [11] (followed by 3V

and Least Square regression, which are denoted as CCA-S\dM an

CCA-LS, respectively). To show the advantage of MLHR overék-
isting semi-supervised learning algorithms, we reportréseilts from
Manifold Regularized Least Square Regression (MRLS) [&kiBes,
we compare MLHR with the multi-label classification algbrit
Shared-subspace Learning for Multilabel Classificatido\§) [12].

Three types of visual features are extracted and then nizedato
represent the key-frames. The first feature is 225-D bloide WwAB-

based Color Moments (CM) extracted over 55 fixed grid partgi

The second feature is 500-D bag of visual words based on Scale

Invariant Feature Transform (SIFT) descriptors [20]. Weoalise
144-D color correlogram in Hue Saturation Value (HSV) capace

to represent the videos. SVM-2K and CCA are two-view learnin

algorithms which are designed to deal with only two typesatdres.
Therefore, while more features can be used in our algoritienonly
use two features in our algorithm to compare the differegp@thms.
Specifically, we report the results of using CM and SIFT ad asl
the results of using HSV and SIFT. We concatenate differesiiures

APs of each concept in Figure 2 when the videos are reprasente
by CM and SIFT. From Table I, Table Il and Figure 2, we have the
following observations.

« First, we observe from Table | that MLHR gains the highest
MAP over the 36 concepts. More specifically, the MAP of
MLHR is 0.1872, which outperforms MRLS by aboub%
comparatively. Table Il has similar results.

« The performance of MLHR is more stable and it always gains
good performance for different concepts. In summary, MLHR
gains the best performance or the second best performance fo
33 out of the 36 concepts.

« The semi-supervised algorithms (MRLS and MLHR) outperform

the supervised ones (SLMC, CCA-SVM, CCA-LS, SVM-2K),

indicating that it is beneficial to utilize unlabeled datar fo
multimedia semantics understanding for this dataset,célpe
when the number of labeled data is not large.

« The accuracy could be limited when a single feature typeasd.us
When we utilize multiple features, the performance is impoh
even if one of the features is a weak one. For example, as a
single feature, CM outperforms SIFT but the combination of
the two gains much better performance than using CM only. The
experiment results shown in Figure 2 validate that the MLHR
algorithm proposed in this paper is capable to utilize midti
feature types for multimedia analysis.

as the input of MRLS and SLMC. We also report the results from ,
MLHR when only one type of feature is used. We denote the t®sul
of using only one feature type as CM, HSV, and SIFT respdgtive

To show the effectiveness of semi-supervised learning, ave |
bel a small amount of key-frames for training while most oé th
training data are unlabeled. Specifically, we have sampl&@60D
key-frames from the training set indicated by [32] as théning
data. Among the 10,000 training data, we have labeled 100 key
frames for each concept, which is much less than in [32] where
over 40,000 key-frames are labeled for training. As rembite[35],
the performance is not sensitive to the local regularimatiarameter
A. We did not tune this parameter and fix it as 1. For the other
parameters in MLHR, including:;, 2 and~, we tune them from
{1075,1072,10°,10%, 10°} and report the best result. For SVM-2K,

Both MRLS and MLHR exploit two features of the labeled
and unlabeled data for video concept annotation. Yet, MLHR
proposed in this paper outperforms MRLS significantly mainl
due to the following two reasons. First, different from MRLS
MLHR does not directly compute the pairwise distance to
exploit the data distribution. Second, the individual stasal
information of each feature type is preserved in MLHR. In
contrast, MRLS simply concatenates the two features, ansl th
the individual structural information of a single featurayrbe
lost.

B. Action Recognition
In this subsection, we test the proposed algorithm in terfs o

CCA, MRLS, HSV and CM, we tune all the parameters from thaction recognition using the CareMedia dataset collecye@drnegie
same range. All of the unlabeled key-frames are used as stiage Mellon University. The CareMedia dataset was collected mavipe

data. Evaluation metric is Average Precision (AP).

useful statistics to help doctors’ diagnosis and patienésith status
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Fig. 1. Performance variation of different parameter sg#ifor video concept annotation using CM and SIFT features.

TABLE |
MAP OF THE 36 CONCEPTS OF VIDEO CONCEPT ANNOTATION USINEM AND SIFTFEATURES.
SLMC CCA-SVM || CCA-LS SVM-2K MRLS CM SIFT MLHR
MAP 0.1531 0.1589 0.1361 0.1298 0.1701 0.1528 0.1238 0.1872
TABLE I
MAP OF THE 36 CONCEPTS OF VIDEO CONCEPT ANNOTATION USINGISV AND SIFT FEATURES
SLMC CCA-SVM || CCA-LS SVM-2K MRLS HSV SIFT MLHR
MAP 0.1430 0.1462 0.1225 0.1211 0.1627 0.1001 0.1238 0.1803

assessment. 15 geriatric patients’ activities in publiacggs were indicating that the non-linear model is more capable of idgalvith
recorded in a nursing home by fielding an array of video camerthe BoW feature for action recognition. Yet, our algorithwhich
with patient, caregiver, and institution approval. Twethisee cameras utilizes a linear model for recognition, gains the best genfance,
and microphones were mounted in fixed locations, designée tas which further validates the advantage of our method. Nos ih
unobtrusive as possible. is easy to extend our algorithm to a kernel method and we dmait t
We defined 19 different human actions that caregivers woeld giscussion on this due to the space limit. We observe thahwibég
interested in. These can be categorized into two types. Tige fIMLHR with only one type of feature, MoSIFT greatly outperies
type is concerned with patients’ movement activities areisacond STIP. If we combine the two features, the performance camubiber
type is more concerned with patients’ detailed behaviors t&st the improved. These observations indicate that 1.) it is beffin
performance by annotating the following 6 concepts of tha firpe: incorporate optical flow for action recognition; 2.) mulépfeature
Walking Through, Walking To Standing Point, Sanding Up, Sitting fusion helps in action recognition even though one of thefeedures
Down, Object Placed On Table andObject Removed From Table. The IS @ weak one.
first feature used in this experiment is 1000 dimension Bag/rds
STIP feature [15]. Besides, we also propose to incorporpt&€a . Discussions
flow into feature design and use MoSIFT feature [4] as a second
feature to represent videos. Similarly, 1000 dimension-8@g/ords ples, we have compared our algorithm to different algorith@ur

MoSIFT feature is used. . . - .
experiments show that multiple feature fusion usually dsebetter
In this experiment, we use a subset recorded by a particafee performance than a single feature. As a single feature, tA@
in the dining room. After removing the clips which are too 810 ot c\M and SIFT aren.1528 and 0.1238, respectively. However, if
be captured by the feature extracting code share by [15lethee  \ye combine the two, the MAP increasesd872. Employing the
1796 video sequences left. We use 1000 data as training 8éhen complementary information for multimedia analysis tendsldad
other 796 data as testing set. 10 positive samples per coacep o an optimal solution in the global view. If we analyze featu
labeled as positive examples for training. The same as \ddaoept  fysion under a regularization framework, the two differésstures
annotation, we compare our algorithm with SLMC, CCA-SVMyeqyarize each other, by which over-fitting can be redud@dr
CCA-LS, SVM-2K, MRLS. We also report the results from singlay| HR algorithm and the second best algorithm MRLS are bothise
feature MoSIFT and STIP using our algorithm. For the paramsetf  gpervised learning algorithms. This indicates that siamelously
different algorithms, we tune them frof10~%,107%,10%,10*,10°}  ytjlizing both the labeled and the unlabeled data for mutiia
and report the best results. Again, AP is used as the evatuatétric. analysis does help. Compared to the second best algorithiaSyIR
Table Il and Figure 3 show the experiment results. We can s#® improvement of our algorithm i80.05% and 15.53% in video
that our algorithm outperforms all of the competitors. Whamm- concept annotation and action recognition, respectivElgnerally
pared with the two well-known multi-view learning algonitis CCA  speaking, there are two main reasons why the performanceirof o
(followed by SVM) and SVM-2K, the relative performance gainalgorithm is further improved. First, in our algorithm theustural
are 14.8% and 10.0%, respectively. Compared with the non-lineainformation of each type of feature is preserved and consile
model, the linear model has many advantages, such as sityplicuring the training. Second, our algorithm employs a grofifpcal
and efficiency. However, CCA-SVM greatly outperforms CCS;L regression models to exploit the manifold structure of taeadThe

Using video concept annotation and action recognition asnex
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Fig. 2. A comparison of different algorithms for video copt@annotation. This figure shows the APs corresponding tb eancept of different algorithms.
‘All" indicates the MAP of all the 36 concepts. CM and SIFT arged to represent the videos.
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Fig. 3. A comparison of different algorithms for geriatriatignt action recognition. This figure shows the APs cowadmg to each concept of different
algorithms. ‘All’ indicates the MAP of all the 6 concepts.



TABLE Il
MAP OF THEG CONCEPTS OF ACTION RECOGNITION USING DIFFERENT ALGORITHMS
SLMC CCA-SVM || CCA-LS || SVM-2K MRLS MoSIFT STIP MLHR
MAP 0.4245 0.4281 0.1918 0.4469 0.4255 0.4582 0.4002 0.4916
statistical approach is more capable to uncover the mah#fiolicture [15]

than directly computing the pairwise distances [36].

V. CONCLUSION

In this paper, we have proposed a new multiple feature legrni
algorithm MLHR for multimedia content analysis. Comparecthe
existing related algorithms, MLHR has two major advantadrésst,
instead of computing the affinity matrix directly accordiogdata fea-
tures, MLHR employs a statistical approach to exploit thracttiral
information of both the labeled and unlabeled data. Suchicgh
is more capable to leverage the unlabeled data for semirgapd
learning. Second, the structural information of each featype is
preserved in MLHR during the training phase, resulting inreno
stable learning results. Although the semi-supervisediplelfeature
fusion algorithm has shown great potential for effectiveltimedia
analysis, exploiting the unlabeled data might have negagifects
if the manifold assumption does not hold. Also, it may not @
be the case that including more features is beneficial fotimedia
analysis. The future work includes designing: 1) algorghimat are
able to predict if the unlabeled data will contribute; 2) huets that
decide which of the multiple features should be combined.
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