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Abstract—Multimedia data are usually represented by multiple fea-
tures. In this paper, we propose a new algorithm, namely Multi-
feature Learning via Hierarchical Regression for multimedia semantics
understanding, where two issues are considered. First, labeling large
amount of training data is labor intensive. It is meaningful to effectively
leverage unlabeled data to facilitate multimedia semantics understanding.
Second, given that multimedia data can be represented by multiple
features, it is advantageous to develop an algorithm which combines
evidence obtained from different features to infer reliable multimedia
semantic concept classifiers. We design a hierarchical regression model
to exploit the information derived from each type of feature, which is then
collaboratively fused to obtain a multimedia semantic concept classifier.
Both label information and data distribution of different f eatures repre-
senting multimedia data are considered. The algorithm can be applied to
a wide range of multimedia applications and experiments areconducted
on video data for video concept annotation and action recognition. Using
Trecvid and CareMedia video datasets, the experimental results show
that it is beneficial to combine multiple features. The performance of the
proposed algorithm is remarkable when only a small amount oflabeled
training data are available.

Index Terms—Multiple feature fusion, semi-supervised learning, video
concept annotation, action recognition.

I. I NTRODUCTION

Multimedia content is usually represented by multiple features. For
example, given a video frame, its visual content can be represented
by different features such as color histogram, SIFT, etc. Ittherefore
turns an interesting research challenge to effectively utilize the mul-
tiple information sources of independent or heterogeneousfeatures.
Intuitively, analyzing different features simultaneously is beneficial
for disambiguation [14]. Previous research efforts have also shown
that better performance could be achieved for multimedia content
analysis if we properly fuse the evidences from different features
when compared to only using one type of feature or simply using all
types of feature as one feature [21], [27], [30], [31], [33],[34], etc.

Late fusion and early fusion are two straightforward ways of
dealing with multi-feature data [26]. However, it remains unclear
which fusion is more reliable [26]. It has been shown that feature con-
catenation is less effective in multimedia content analysis, especially
when the features are independent or heterogeneous [34]. Inthe field
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of machine learning, researchers have developed many multi-view
learning algorithms to address this problem. Representative works
include Canonical Correlation Analysis (CCA) [11], [28], two-view
support vector machines, i.e., SVM-2k [6] and their variants [13],
[18]. These algorithms have been applied to different applications,
resulting in better performance than feature concatenation in a broad
range of applications, such as cross-language text analysis, object
recognition, image annotation, image-audio clustering, and so on.
However, these algorithms require a large amount of labeleddata
for training, which is often expensive and seldom available.

Multimedia semantics understanding is to associate multimedia
data with a single or multiple semantic concepts. For example, video
concept annotation associates videos with labels/concepts to provide
effective and efficient tools for managing video resources [10]. There
are many ways to improve the performance of multimedia semantics
understanding. One well-known method is to define more accurate
features for multimedia representation, such as a visual thesaurus
[24]. Another typical and effective approach is to apply machine
learning algorithms. Generally speaking, multimedia semantics un-
derstanding related task can be usually regarded as a classification
problem. Many supervised classification algorithms can be used
for multimedia semantics understanding, such as multimedia event
detection [23]. However, a typical supervised classification algorithm
may require a large amount of labeled data and collecting this is time
consuming and labor intensive. For example, 111 researchers from
23 institutes spent 220+ hours to annotate only 63 hours of Trecvid
2003 development corpus [19].

There are three main strategies to relieve the tedious work in
labeling a large amount of training data for multimedia content
analysis. The first strategy is known as active learning [17], [37],
which selects the most informative data as the training datato
be labeled. The second one is transfer learning, which utilizes the
labeled data from another domain, e.g., in [23], Ma et al. employ
annotated video frames to facilitate multimedia event detection of
video clips. The third one is semi-supervised learning [22], [3],
[36], [39], which leverages unlabeled data to infer a more accurate
classifier. Previous studies have shown that simultaneously utilizing
labeled and unlabeled data is beneficial for multimedia semantics
understanding.

Motivated by the recent success of semi-supervised learning, in this
paper we address the problem of effectively exploring the information
contained in multiple features of both labeled and unlabeled data
for multimedia content analysis and propose a new semi-supervised
multi-feature learning algorithm, namely Multi-feature Learning via
Hierarchical Regression (MLHR). Different from most of theexisting
semi-supervised algorithms [3], [25], [35], [38], [39], the manifold
structure of each feature type is preserved during the training phase.
MLHR is a general algorithm, which can be applied to a variety
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of applications related to multimedia content analysis, where the
multimedia data are represented by multiple features. In this paper, we
apply the proposed MLHR algorithm to video concept annotation and
action recognition to test its effectiveness. Compared with the existing
algorithms, MLHR has the following two main advantages. First,
MLHR leverages unlabeled data represented by multiple features to
improve the performance in multimedia semantic understanding. The
manifold structure of each feature type is preserved, resulting in a
more faithful learning result. Second, in order to exploit the manifold
structure of the training data, we propose a statistical approach to
better exploit the manifold structure of the training data,which is
more robust than simply using the pairwise distances of the training
data.

The rest of this paper is organized as follows. In Section 2, we
briefly discuss related work. The proposed algorithm is detailed in
Section 3, followed by experiment. Conclusion is drawn in Section 5.

II. RELATED WORK

A. Semi-supervised Learning for Multimedia Understanding

Machine learning and data mining have been shown to be effective
in bridging the semantic gap [16]. A typical example is Support
Vector Machine (SVM) and its variants, which have been widely
used for multimedia semantic understanding, e.g., video and image
annotation [8], [24], [32]. Recently, semi-supervised learning and its
applications in multimedia have attracted much research attention [5],
[3], [25], [35], [38], [39].

In the rest of this paper,‖·‖F denotes the Frobenius Norm. Suppose
there aren training data{x1, ..., xt, xt+1, ..., xn} from c classes,
in which the first t (t < n) data are labeled samples. Denote
Y = [Y1, ..., Yn]

T ∈ {0, 1}n×c as the label information provided
by human supervisors. Given a labeled datumxi, if it belongs to the
j-th class,Yij = 1, otherwiseYij = 0. If xi is not a labeled datum,
Yij = 0 for any j that 1 ≤ j ≤ c. Let F = [F1, ..., Fn]

T ∈ R
n×c,

whereFi ∈ R
c is the predicted label vector ofxi. A larger value of

Fij indicates a higher possibility thatxi is associated with thej-th
class. The affinity matrixA ∈ R

n×n is defined as follows:

Aij =

{

exp
−‖xi−xj‖

2

σ
, xi andxj arek-nearest neighbors;

0, otherwise,
(1)

whereσ is a parameter. In [38], a graph based classification algo-
rithms, namely learning with Local and Global Consistency (LGC),
was proposed, whose objective function is shown in (2).

min
F

n
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i,j=1

Aij
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∥

∥

∥

∥

Fi√
Dii

− Fj
√

Djj

∥

∥

∥

∥

∥

2

F

+ µ
∑n

i=1
‖Fi − Yi‖2F , (2)

whereµ is a parameter andD is a diagonal matrix with its diagonal
elementDii =

∑

j
Aij .

In the field of multimedia, the graph based algorithm LGC and
its variants have been applied to different applications, resulting in
remarkable performance. In [29], Wang et al. have demonstrated that
a limitation of LGC is that the affinity matrixA in (1) is defined
completely according to the distance between data. Besides, as a
transductive classification algorithm, LGC is not able to predict the
labels of the data which are outside the training set. Each time new
data are added into the database, one needs to re-run the whole
algorithm.

Other semi-supervised learning algorithms, such as Manifold Reg-
ularized Least Square Regression [3] and Flexible ManifoldEmbed-
ding [25], are able to predict labels which are outside the training
set. The objective function of Manifold Regularized Least Square

Regression [3] is as follows.

min
W

λ1
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Aij
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∥

∥
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∥

∥
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+
∥

∥

∥X̃
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TrainW − Yt
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∥

∥

2

F
, (3)

where x̃i is the i-th datum after subtracting the mean of all the
training data,X̃Train = [x̃1, ..., x̃t], andλ1 andλ2 are regularization
parameters. Given a multimedia datum to be annotated, its label can
be directly obtained by the classifierW . However, it is designed
to deal with a single feature. A frequently used method to exploit
multiple feature data is feature concatenation but the structural
information of each type of feature is lost. Besides, the performance
is sensitive to the parameterσ [35].

B. Multi-Feature Learning for Multimedia Understanding

Suppose a multimedia object is represented byv features
xi
1, x

i
2, ..., x

i
v. A common way of dealing with the multiple features

is to concatenate each feature vector and represent the multimedia
object as[xi

1, x
i
2, ..., x

i
v]. It has been shown that such representation

may degrade the performance of multimedia content analysisalgo-
rithms, especially when the features are independent or heterogenous
[26], [34]. A possible reason could be that the individual structural
information of each feature may be lost in feature concatenation.

In [26], Snoek et al. have classified the feature fusion strategies
into two groups, which are early fusion and late fusion. Theyhave
shown that if SVM classifier is used, late fusion tends to givebetter
performance in video analysis [26]. However, more computation
burden is required in late fusion. In [31], researchers haveanalyzed
the limitation of linear combination. In [7], a multi-kernel learning
algorithm is proposed for object classification. The major limitation
is that it requires the computation of multiple kernel matrices. In [34],
cartoon image features are discussed and classified into different
feature classes. A bi-distance metric learning algorithm was then
proposed to learn a better distance metric from heterogeneous features
for cartoon image retrieval [34]. However, the algorithm proposed
in [34] is application dependent and cannot be directly applied to
other applications. In [27], a multiple feature hashing algorithms is
proposed for near duplicate video retrieval.

Canonical Correlation Analysis (CCA) is a statistical approach
which maximizes the correlations between two modalities ina
compact subspace [11]. Vinokourov et al. [28] have shown that CCA
gains good performance in cross-language text analysis. In[13], CCA
and Linear Discriminant Analysis are combined for face and object
recognition. SVM-2K [6] is another well-known algorithm ofmulti-
feature learning. This family of algorithms has also been applied to
different applications [6], [18].

C. Notes of Caution

Despite the success of semi-supervised multi-feature learning for
multimedia analysis, we should also emphasize the following notes
of caution:

• While semi-supervised learning has shown great potential for
multimedia content analysis, in some cases, utilizing unlabeled
data for training can degrade performance, especially whenthe
manifold assumption does not hold. It remains unclear how
to automatically decide if and when it is advisable to exploit
unlabeled data for training.

• Combining multiple features is generally beneficial for multime-
dia analysis. The combination of a “weak” feature and a “strong”
feature usually yields better performance than using one feature
only, if the features are complementary. Yet, feature fusion
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may hurt performance if the multiple features are contradictory
or a feature is very weak. Evaluating the appropriateness of
combining multiple features has not been sufficiently studied.

III. T HE PROPOSED ALGORITHM

In this section, we give the details of the proposed algorithm. We
begin with the terms and notations.t is the number of labeled training
data andn is the number of the training data. In semi-supervised
learning, t ≪ n, that is, only a small amount of training data are
labeled. Suppose each datum is represented byv features. Given an
integerg ≤ v, we denotexi

g as theg-th feature of thei-th datum and
Xg = [x1

g, ..., x
n
g ] ∈ R

dg×n, wheredg is the dimension of theg-th
feature.I is the identity matrix.1m ∈ R

m is a vector of all ones for
an arbitrary numberm. Tr(·) is the trace operator. Following [25],
[38], we defineF = [F1, ..., Fn]

T ∈ R
n×c as the predicted matrix of

training data, which is the same as (2). The definition ofY is the same
as in (2) as well. Further, we definefg = [fg1, ..., fgn]

T ∈ R
n×c as

the predicted matrix of training data derived from theg-th feature.
As indicated by previous graph based approaches [3], [25], [35],
[38], the manifold structure of input data plays an important role in
pattern recognition and multimedia analysis. To exploit the manifold
structure, we constructv local sets for a datum, each of which is
computed according to one feature type. More specifically, given the
i-th datum represented by itsg-th featurexi

g, we construct a local
set, denoted asN i

g , which consists ofxi
g and itsk-nearest neighbors

according to the distance derived from theg-th feature.

Instead of computing the affinity matrix directly, we propose a
statistical approach to exploit the manifold structure of the input data
for semi-supervised learning. Inspired by [36], we assume there is a
local classifiercig , which classifies all the training data inN i

g to c
classes. The prediction errorw.r.t. cig is be formulated as

∑

x
j
g∈N i

g

ℓoss(cig(x
j
g), fgj), (4)

whereℓoss(·) is a loss function. To exploit the structural information
derived from theg-th feature, we propose to minimize the total
prediction errorw.r.t. the g-th feature [36], i.e.,

min
fg,cig

n
∑

i=1

∑

x
j
g∈N i

g

(

ℓoss(cig(x
j
g), fgj) + λΩ(cig)

)

, (5)

whereΩ(cig) is a regularization function oncig andλ is a parameter.
We minimize (6) to combine the evidences from all thev features.

min
fg,cig

v
∑

g=1

n
∑

i=1

∑

x
j
g∈N i

g

(

ℓoss(cig(x
j
g), fgj) + λΩ(cig)

)

. (6)

Different from concatenating thev features, the individual structural
information is preserved. The predicted label matrixF of the training
data should be consistent with each evidencefg (1 ≤ g ≤ v). We

then minimizemin
F,fg

v
∑

g=1

‖F − fg‖2F . To classify the data outside the

training set, we train a set of global classifiers{C1, ..., Cv}, in which
Cg (1 ≤ g ≤ v) is able to predict the labels of the data according
to theg-th feature. We propose to simultaneously learn the predicted
label matrixF of the training data and thev global classifiersCg|vg=1.

Specifically, we minimize the following objective.

min
F,fg,cig,Cg

v
∑

g=1

n
∑

i=1

∑

x
j
g∈N i

g

(

ℓoss(cig(x
j
g), fgj) + λΩ(cig)

)

+µ1

v
∑

g=1

n
∑

i=1

(

ℓoss(Cg(x
i
g), fgi) + γΩ(Cg)

)

+µ2

v
∑

g=1

‖F − fg‖2F ,

s.t. Fi = Yi, if xi is a labeled training data, (7)

whereµ1, µ2, andγ are parameters. DenoteU as a diagonal matrix.
If xi is a labeled datumUii = ∞, andUii = 0 otherwise. Then we
arrive at

min
F,fg,cig,Cg

v
∑

g=1

n
∑

i=1

∑

x
j
g∈N i

g

(

ℓoss(cig(x
j
g), fgj) + λΩ(cig)

)

+µ1

v
∑

g=1

n
∑

i=1

(

ℓoss(Cg(x
i
g), fgi) + γΩ(Cg)

)

+µ2

v
∑

g=1

‖F − fg‖2F + Tr
(

(F − Y )TU(F − Y )
)

. (8)

We use the least square loss in our model as the loss function.The
objective function of MLHR is shown as follows

min
F,fg,w

i
g ,

Wg ,b
i
g ,Bg

v
∑

g=1

n
∑

i=1

∑

x
j
g∈N i

g

(

∥

∥

∥
(wi

g)
Txj

g + big − fgj

∥

∥

∥

2

F
+ λ

∥
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2

F

)

+µ1

v
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g=1

n
∑

i=1

(

∥

∥

∥
(Wg)

Txi
g +Bg − fgi

∥

∥

∥

2

F
+ γ ‖Wg‖2F

)

+µ2

v
∑

g=1

‖F − fg‖2F + Tr
(

(F − Y )TU(F − Y )
)

,

wherewi
g ∈ R

dg×c andbig ∈ R
c are the local classifier and bias term

of xi
g w.r.t. the g-th feature, andWg ∈ R

dg×c andBg ∈ R
c are the

global classifier and bias termw.r.t. the g-th feature.
Let N i

g = {xi
g, x

i1
g , ..., .x

ik
g } where xi1

g , ..., .x
ik
g are the k-

nearest neighbors ofxi
g according to theg-th feature. Xi

g =

[xi
g, x

i1
g , ..., .x

ik
g ] ∈ R

dg×(k+1). The objective function of MLHR
can be rewritten as:

min
F,fg,w

i
g ,

Wg ,b
i
g ,Bg

v
∑

g=1

n
∑

i=1

(

∥
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∥
(Xi

g)
Twi

g + 1k+1b
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g − f i

g

∥

∥

∥

2

F
+ λ

∥

∥

∥
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∥

∥

∥

2

F

)

+µ1
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g=1

(

∥

∥

∥(Xg)
TWg + 1nBg − fg

∥

∥

∥

2

F
+ γ ‖Wg‖2F

)

+µ2

v
∑

g=1

‖F − fg‖2F + Tr
(

(F − Y )TU(F − Y )
)

, (9)

wheref i
g = [fgi, fgi1 , ...fgik ]

T is the predicted local label matrix of
the data inN i

g according to theg-th feature.
By setting the derivative of (9)w.r.t. wi

g and big to be zero, we
have

big =
1

k + 1

(

(f i
g)

T 1k+1 − (wi
g)

TXi
g1k+1

)

, (10)

wi
g = (Xi

gHk+1(X
i
g)

T + λI)−1Xi
gHk+1f

i
g, (11)



4

where Hk+1 = I − 1
k+1

1k+11
T
k+1 is the local centering matrix.

Similarly, by setting the derivative of (9)w.r.t. Wg and Bg to be
zero, we have

Bg =
1

n

(

fT
g 1n −W T

g Xg1n
)

, (12)

Wg = (XgHnX
T
g + γI)−1XgHnfg, (13)

Substitutingbig, wi
g, Bg andWg in (9) by (10), (11), (12) and (13)

respectively, we arrive at

min
F,fg

v
∑

g=1

n
∑

i=1

Tr
(

(f i
g)

TLi
gf

i
g

)

+ µ1

v
∑

g=1

Tr(fT
g Agfg)

+µ2

v
∑

g=1

‖F − fg‖2F + Tr
(

(F − Y )TU(F − Y )
)

, (14)

where

Li
g = Hk+1 −Hk+1(X

i
g)

T (Xi
gHk+1(X

i
g)

T + λI)−1Xi
gHk+1 (15)

and

Ag = Hn −HnX
T
g (XgHnX

T
g + γI)−1XgHn. (16)

For the ease of representation, we define the selection matrix Sp
g ∈

R
n×(k+1) as follows.

(Sp
g )ij =

{

1 if xi
g is thej-th element inN p

g ;
0 otherwise.

(17)

Recall that all the elements inN i
g = {xi

g, x
i1
g , ..., .xik

g } are
selected from the whole training set according to the distance derived
from theg-th feature. Therefore, we have

f i
g = (Si

g)
T fg . (18)

Then we have
n
∑

i=1

Tr
(

(f i
g)

TLi
gf

i
g

)

=
n
∑

i=1

Tr
(

fT
g Si

gL
i
g(S

i
g)

T fg
)

= Tr

(

fT
g

n
∑

i=1

(

Si
gL

i
g(S

i
g)

T
)

fg

)

DenoteLg =
n
∑

i=1

(

Si
gL

i
g(S

i
g)

T
)

. Then (14) can be written as

min
F,fg

v
∑

g=1

Tr
(

fT
g Lgfg

)

+ µ1

v
∑

g=1

Tr(fT
g Agfg) + µ2

v
∑

g=1

‖F − fg‖2F

+Tr
(

(F − Y )TU(F − Y )
)

,

which is equivalent to the following

min
F,fg

v
∑

g=1

Tr
(

fT
g (Lg + µ1Ag)fg

)

+ µ2

v
∑

g=1

‖F − fg‖2F

+Tr
(

(F − Y )TU(F − Y )
)

. (19)

Let us define

Qg =





L1
g 0

· · ·
0 Ln

g



 (20)

and

Sg = [S1
g , ..., S

n
g ]. (21)

Then we have

Lg = SgQgS
T
g . (22)

Note that

Li
g = Hk+1 −Hk+1(X

i
g)

T (Xi
gHk+1(X

i
g)

T + λI)−1Xi
gHk+1

= Hk+1((X
i
g)

TXi
g + λI)−1Hk+1.

It is easy to prove that the objective function shown in (19) is convex.
By setting the derivative of (19)w.r.t fg to be zero, we have

2 (Lg + µ1Ag) fg − 2µ2(F − fg) = 0

⇒ fg = µ2(Lg + µ1Ag + µ2I)
−1F (23)

By setting the derivative of (19)w.r.t F to be zero, we have
v
∑

g=1

µ2(F − fg) + U(F − Y ) = 0 (24)

Substitutingfg in (24) by (23), we have
v
∑

g=1

µ2(F − µ2(Lg + µ1Ag + µ2I)
−1F ) + U(F − Y ) = 0

⇒ F =

(

vµ2I + U − µ2
2

v
∑

g=1

(Lg + µ1Ag + µ2I)
−1

)−1

UY. (25)

In this way, we have obtained the optimal solution ofF , fg, Wg

andBg of the proposed MLHR algorithm. The detailed approach of
MLHR is summarized in Algorithm 1 as follows.

Algorithm 1: The MLHR algorithm.

1 for g = 1 to v do
2 for i = 1 to n do
3 ComputeLi

g according to (15);

4 ComputeLg according to (22);
5 ComputeAg according to (16);

6 ComputeF according to (25);
7 for g = 1 to v do
8 Computefg according to (23);
9 ComputeBg according to (12);

10 ComputeWg according to (13);

11 For a testing datum represented byv featuresxt
1, ..., x

t
v, its

predicted label vectorFt can be computed by

Ft =
∑v

g=1

(

W T
g xt

g +Bg

)

/v. (26)

Next, we briefly discuss the difference between MLHR and some
other semi-supervised learning algorithms. In recent years, several
transductive classification algorithms have been proposedin [35], [38]
and applied to different applications for multimedia content analysis.
Compared with other algorithms, the main advantage of MLHR is
that it is able to deal with the data which are outside the training set,
without rerunning the training processing. Considering that a large
amount of multimedia data are generated in every single day,MLHR
is more suitable for real world applications.

Apart from the aforementioned algorithms, there are some other
graph-based semi-supervised learning algorithms, which are able to
predict the labels of the data outside the training set, e.g., Manifold
Regularization (MR) [3] and Flexible Manifold Embedding (FME)
[25]. MLHR mainly differs from MR and FME in two aspects. First,
although the multimedia data are represented by multiple independent
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features in many cases, both MR and FME simply concatenate them
to produce a high dimensional vector as input. MLHR is more capable
of exploiting multiple features because the structural information of
individual feature is preserved and considered. Second, both MR
and FME compute the affinity matrix according to (1) directly.
The limitation of this type of approach is that the affinity matrix
A is completely based on feature similarities [29]. Besides,the
performance is usually sensitive to the parameterσ in (1). Differently,
our algorithm employs a group of local classifiers to exploitthe
manifold structure and we advocate that a statistical approach is
more capable to exploit manifold structure than directly computing
the pairwise distances [35].

IV. EXPERIMENTS

In this section, we test the proposed framework in terms of video
concept annotation and action recognition.

A. Video concept annotation

In this subsection, we test the performance of the proposed algo-
rithm in video concept annotation. The Trecvid 2005 video corpus
consisting of 160 hours news video is used in our experiment [1].
It contains 61,901 key-frames, which are from 137 news videos
recorded from 13 different programs in English, Arabic and Chinese,
which are segmented into 49,532 shots and 61,901 sub-shorts. For
each sub-shorts, we extract one key-frame. We annotate 36 concepts
which have more than 100 key-frames associated to them.

We compare our algorithm with two representative multiple feature
learning algorithms, SVM-2K [6] and CCA [11] (followed by SVM
and Least Square regression, which are denoted as CCA-SVM and
CCA-LS, respectively). To show the advantage of MLHR over the ex-
isting semi-supervised learning algorithms, we report theresults from
Manifold Regularized Least Square Regression (MRLS) [3]. Besides,
we compare MLHR with the multi-label classification algorithm
Shared-subspace Learning for Multilabel Classification (SLMC) [12].
Three types of visual features are extracted and then normalized to
represent the key-frames. The first feature is 225-D block-wise LAB-
based Color Moments (CM) extracted over 55 fixed grid partitions.
The second feature is 500-D bag of visual words based on Scale
Invariant Feature Transform (SIFT) descriptors [20]. We also use
144-D color correlogram in Hue Saturation Value (HSV) colorspace
to represent the videos. SVM-2K and CCA are two-view learning
algorithms which are designed to deal with only two types of features.
Therefore, while more features can be used in our algorithm,we only
use two features in our algorithm to compare the different algorithms.
Specifically, we report the results of using CM and SIFT as well as
the results of using HSV and SIFT. We concatenate different features
as the input of MRLS and SLMC. We also report the results from
MLHR when only one type of feature is used. We denote the results
of using only one feature type as CM, HSV, and SIFT respectively.

To show the effectiveness of semi-supervised learning, we la-
bel a small amount of key-frames for training while most of the
training data are unlabeled. Specifically, we have sampled 10,000
key-frames from the training set indicated by [32] as the training
data. Among the 10,000 training data, we have labeled 100 key-
frames for each concept, which is much less than in [32] where
over 40,000 key-frames are labeled for training. As reported in [35],
the performance is not sensitive to the local regularization parameter
λ. We did not tune this parameter and fix it as 1. For the other
parameters in MLHR, includingµ1, µ2 and γ, we tune them from
{10−6, 10−3, 100, 103, 106} and report the best result. For SVM-2K,
CCA, MRLS, HSV and CM, we tune all the parameters from the
same range. All of the unlabeled key-frames are used as the testing
data. Evaluation metric is Average Precision (AP).

1) The parameter sensitivity study: First, we test the performance
variation of the MLHR algorithmw.r.t the three parametersγ, µ1 and
µ2 when CM and SIFT features are used to represent the videos. We
average the APs over all of the 36 concepts to compute the Mean
Average Precision (MAP). In this experiment, we fix one of thethree
parameters and report the MAP while the other two parametersare
changing. The results of using CM and SIFT features are shownin
Figure 1. MLHR gains the best performance whenγ = 1, µ1 = 103

andµ2 = 103 for this dataset. From Figure 1(b) and Figure 1(c), we
can see that MLHR is comparatively less sensitive to the parameter
γ when it is smaller than 1. Generally speaking, in order to obtain
better performance,µ2 should not be smaller than1. This implies that
the mismatch betweenF andfg|vg=1 (i.e.,

∑v

i=1 ‖F − fg‖2F ) incurs
heavier penalty than other terms. As for the regularizationparameter
µ1, we observe from Figure 1(c) that ifµ2 is fixed, the performance
of MLHR is not very sensitive. Yet, we would emphasize that the
optimal parameters for MLHR are data dependent.

2) Performance comparison of different algorithms: Next, we
compare the MLHR algorithm proposed in this paper with the other
algorithms. The results of using CM and SIFT features are shown in
Table I. The results of using HSV and SIFT features are shown in
Table II. Because CM outperforms HSV, we additionally report the
APs of each concept in Figure 2 when the videos are represented
by CM and SIFT. From Table I, Table II and Figure 2, we have the
following observations.

• First, we observe from Table I that MLHR gains the highest
MAP over the 36 concepts. More specifically, the MAP of
MLHR is 0.1872, which outperforms MRLS by about10%
comparatively. Table II has similar results.

• The performance of MLHR is more stable and it always gains
good performance for different concepts. In summary, MLHR
gains the best performance or the second best performance for
33 out of the 36 concepts.

• The semi-supervised algorithms (MRLS and MLHR) outperform
the supervised ones (SLMC, CCA-SVM, CCA-LS, SVM-2K),
indicating that it is beneficial to utilize unlabeled data for
multimedia semantics understanding for this dataset, especially
when the number of labeled data is not large.

• The accuracy could be limited when a single feature type is used.
When we utilize multiple features, the performance is improved,
even if one of the features is a weak one. For example, as a
single feature, CM outperforms SIFT but the combination of
the two gains much better performance than using CM only. The
experiment results shown in Figure 2 validate that the MLHR
algorithm proposed in this paper is capable to utilize multiple
feature types for multimedia analysis.

• Both MRLS and MLHR exploit two features of the labeled
and unlabeled data for video concept annotation. Yet, MLHR
proposed in this paper outperforms MRLS significantly mainly
due to the following two reasons. First, different from MRLS,
MLHR does not directly compute the pairwise distance to
exploit the data distribution. Second, the individual structural
information of each feature type is preserved in MLHR. In
contrast, MRLS simply concatenates the two features, and thus
the individual structural information of a single feature may be
lost.

B. Action Recognition

In this subsection, we test the proposed algorithm in terms of
action recognition using the CareMedia dataset collected by Carnegie
Mellon University. The CareMedia dataset was collected to provide
useful statistics to help doctors’ diagnosis and patients’heath status
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Fig. 1. Performance variation of different parameter settings for video concept annotation using CM and SIFT features.

TABLE I
MAP OF THE 36 CONCEPTS OF VIDEO CONCEPT ANNOTATION USINGCM AND SIFT FEATURES.

SLMC CCA-SVM CCA-LS SVM-2K MRLS CM SIFT MLHR
MAP 0.1531 0.1589 0.1361 0.1298 0.1701 0.1528 0.1238 0.1872

TABLE II
MAP OF THE 36 CONCEPTS OF VIDEO CONCEPT ANNOTATION USINGHSV AND SIFT FEATURES.

SLMC CCA-SVM CCA-LS SVM-2K MRLS HSV SIFT MLHR
MAP 0.1430 0.1462 0.1225 0.1211 0.1627 0.1001 0.1238 0.1803

assessment. 15 geriatric patients’ activities in public spaces were
recorded in a nursing home by fielding an array of video cameras
with patient, caregiver, and institution approval. Twentythree cameras
and microphones were mounted in fixed locations, designed tobe as
unobtrusive as possible.

We defined 19 different human actions that caregivers would be
interested in. These can be categorized into two types. The first
type is concerned with patients’ movement activities and the second
type is more concerned with patients’ detailed behaviors. We test the
performance by annotating the following 6 concepts of the first type:
Walking Through, Walking To Standing Point, Standing Up, Sitting
Down, Object Placed On Table andObject Removed From Table. The
first feature used in this experiment is 1000 dimension Bag-of-Words
STIP feature [15]. Besides, we also propose to incorporate optical
flow into feature design and use MoSIFT feature [4] as a second
feature to represent videos. Similarly, 1000 dimension Bag-of-Words
MoSIFT feature is used.

In this experiment, we use a subset recorded by a particular camera
in the dining room. After removing the clips which are too short to
be captured by the feature extracting code share by [15], there are
1796 video sequences left. We use 1000 data as training set and the
other 796 data as testing set. 10 positive samples per concept are
labeled as positive examples for training. The same as videoconcept
annotation, we compare our algorithm with SLMC, CCA-SVM,
CCA-LS, SVM-2K, MRLS. We also report the results from single
feature MoSIFT and STIP using our algorithm. For the parameters of
different algorithms, we tune them from{10−6, 10−3, 100, 103, 106}
and report the best results. Again, AP is used as the evaluation metric.

Table III and Figure 3 show the experiment results. We can see
that our algorithm outperforms all of the competitors. Whencom-
pared with the two well-known multi-view learning algorithms CCA
(followed by SVM) and SVM-2K, the relative performance gains
are 14.8% and 10.0%, respectively. Compared with the non-linear
model, the linear model has many advantages, such as simplicity
and efficiency. However, CCA-SVM greatly outperforms CCA-LS,

indicating that the non-linear model is more capable of dealing with
the BoW feature for action recognition. Yet, our algorithm,which
utilizes a linear model for recognition, gains the best performance,
which further validates the advantage of our method. Note that it
is easy to extend our algorithm to a kernel method and we omit the
discussion on this due to the space limit. We observe that when using
MLHR with only one type of feature, MoSIFT greatly outperforms
STIP. If we combine the two features, the performance can be further
improved. These observations indicate that 1.) it is beneficial to
incorporate optical flow for action recognition; 2.) multiple feature
fusion helps in action recognition even though one of the twofeatures
is a weak one.

C. Discussions

Using video concept annotation and action recognition as exam-
ples, we have compared our algorithm to different algorithms. Our
experiments show that multiple feature fusion usually yields better
performance than a single feature. As a single feature, the MAPs
of CM and SIFT are0.1528 and 0.1238, respectively. However, if
we combine the two, the MAP increases to0.1872. Employing the
complementary information for multimedia analysis tends to lead
to an optimal solution in the global view. If we analyze feature
fusion under a regularization framework, the two differentfeatures
regularize each other, by which over-fitting can be reduced.Our
MLHR algorithm and the second best algorithm MRLS are both semi-
supervised learning algorithms. This indicates that simultaneously
utilizing both the labeled and the unlabeled data for multimedia
analysis does help. Compared to the second best algorithm MRLS,
the improvement of our algorithm is10.05% and 15.53% in video
concept annotation and action recognition, respectively.Generally
speaking, there are two main reasons why the performance of our
algorithm is further improved. First, in our algorithm the structural
information of each type of feature is preserved and considered
during the training. Second, our algorithm employs a group of local
regression models to exploit the manifold structure of the data. The
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Fig. 2. A comparison of different algorithms for video concept annotation. This figure shows the APs corresponding to each concept of different algorithms.
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TABLE III
MAP OF THE 6 CONCEPTS OF ACTION RECOGNITION USING DIFFERENT ALGORITHMS.

SLMC CCA-SVM CCA-LS SVM-2K MRLS MoSIFT STIP MLHR
MAP 0.4245 0.4281 0.1918 0.4469 0.4255 0.4582 0.4002 0.4916

statistical approach is more capable to uncover the manifold structure
than directly computing the pairwise distances [36].

V. CONCLUSION

In this paper, we have proposed a new multiple feature learning
algorithm MLHR for multimedia content analysis. Compared to the
existing related algorithms, MLHR has two major advantages. First,
instead of computing the affinity matrix directly accordingto data fea-
tures, MLHR employs a statistical approach to exploit the structural
information of both the labeled and unlabeled data. Such approach
is more capable to leverage the unlabeled data for semi-supervised
learning. Second, the structural information of each feature type is
preserved in MLHR during the training phase, resulting in more
stable learning results. Although the semi-supervised multiple feature
fusion algorithm has shown great potential for effective multimedia
analysis, exploiting the unlabeled data might have negative effects
if the manifold assumption does not hold. Also, it may not always
be the case that including more features is beneficial for multimedia
analysis. The future work includes designing: 1) algorithms that are
able to predict if the unlabeled data will contribute; 2) methods that
decide which of the multiple features should be combined.
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